Final Report

Implementation Strategies Towards The Most Efficient Water Management:

The Lake Okeechobee WSE Operational Guidelines

The Operational Planning Core Team April 12, 1999

South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida, 33413

United States Army Corps of Engineers 400 West Bay Street Jacksonville, Florida, 32232-0019

The Operational Planning Core Team Members:

Susan Bullock, USACE Luis Cadavid Dan Haunert George Hwa Kent Loftin Ronald Mierau Jayantha Obeysekera Arlane Pankow Everett R. Santee Barry Rosen Geoff Shaughnessy Suzanne Sofia, USACE Tommy Strowd Eric Swartz Beheen Trimble Paul Trimble Randy Vanzee James Vearil, USACE Cary White

Overview

In the original documentation of the simulations of alternative operational schedules for Lake Okeechobee (Neidrauer, Trimble, and Santee, 1998), the climate-based operational guidelines as incorporated in the WSE operation schedule emerged as a highly desirable approach to Lake Okeechobee water management. However, even in recognizing its apparent advantages, many questions and concerns were raised by the operational staffs of the South Florida Water Management District and the United States Army Corps of Engineers on the details of how such a schedule could be implemented. It has always been the intent of the WSE Operational Schedule developers that the entire spectrum of hydrologic, meteorologic and climatic data and forecasts be considered when implementing the WSE Operational Schedule. However, for simplicity sake and resource limitations that existed at the time of development, only the current water level and a sixmonth inflow forecast were used in the initial simulation of the WSE Operational Schedule. Since the time of the original documentation entitled Simulation of Alternative Operational Schedules for Lake Okecchobee was published, the Planning Department staff has met on a regular basis with the operational staff of the Operations and Maintenance Department and that of the United States Army Corp of Engineers to develop a detailed operational plan that could be safely implemented. This report is the product of these meeting.

The purpose of this report is to lay out the more specific operational guidelines that will allow for the successful implementation of the WSE Operational Schedule. These guidelines are quite explicit as we enter this new era of 'flexible' operations and climate based operational strategies. However, the enormous responsibility associated with Lake Okeechobee water management is clearly recognized such that this new era must be entered with the appropriate amount of caution. Therefore, it is the intent of this report to lay out clear guidelines for day to day operations while realizing that it may be appropriate to 'hedge' from these guidelines when unique environmental and hydrologic conditions present themselves. This shifting or 'hedging' should be done only after careful hydrologic analysis which demonstrates that such actions are truly desirable. Although emphasis has been placed on the water supply and environmental objectives in the development of the WSE schedule, the design and implementation of this operational schedule. This is accomplished by including the hydrology of the vast tributary basin as an integral part of the decision making process and defining windows of opportunity that climate forecasts may be applied for substantial benefits and with minimum risk if a forecasted climate regime fails to materialize.

Introduction

It has been illustrated with the application of the South Florida Water Management Model (SFWMM; South Florida Water Management District, 1998) that flexible climate-based operational rules can facilitate a higher degree of proficiency for satisfying Lake Okeechobee water management objectives. (Neidrauer, Trimble, and Santee, 1998). These results were derived by integrating climate-based six-month inflow forecasts within the operational guidelines of the Water Supply and Environmental (WSE) Operational Schedule. This Operational Schedule allows for the

water supply requirements to be satisfied at least as effectively as the current operational schedule (aka Run 25) while reducing the stress of prolonged high water levels on the littoral zone. The health of the littoral zone was originally the foremost reason for the revaluation of Lake Okeechobee Regulation Schedule. However, the 1997-1998 El Nino event illustrated that further refinements of the current operational schedule were desirable to minimize the adverse impacts to the estuaries. By incorporating the climate-based hydrologic forecasts, in addition to relieving the stress on the littoral zone, the simulated number of discharge events that adversely impact the St. Lucie and Caloosahatchee estuaries collectively were decreased while hydroperiods for the Everglades were enhanced.

In the actual implementation of the WSE Operational Schedule, it is suggested that additional hydrologic data, and the recent advances in hydro-meteorologic and climatologic forecasting be directly incorporated into the Lake Okeechobee operational guidelines. This report presents the most basic guidelines for implementation of the WSE Operational Schedule. It is expected, as new advances in hydrologic forecasting, modeling and analysis become available, innovative strategies should be investigated to apply these tools within the realm of the WSE Operational Guidelines.

Essential WSE Operational Guidelines

Figure 1 illustrates the WSE Operational Schedule. This schedule promotes the amalgamation of our knowledge of the south Florida regional hydrologic system with that of the state and trends of the current global climate for operational proficiency. Figure 2a and 2b delineate detailed operational decision trees that will enable the successful implementation of the WSE schedule. Due to the approximate nature of extended climate forecasts, the extent of their application is proposed to be constrained by hydrologic conditions existing within the vast tributary basins. For example, it would not usually be deemed appropriate to only make minimum pulse releases in Zone B of the WSE Operational Schedule based on extended dry climate forecasts while very wet conditions exist in tributary basins and large inflows to the Lake are occurring. There will be times for 'hedging' from the basic WSE Operational Schedule implementation guidelines as unique hydrologic and/or environmental conditions present themselves in the future. However, even if no such hedging occurred, the WSE Operational Schedule is designed to lead to an advancement in operational proficiency by directly incorporating tributary hydrologic conditions and climate forecasts into the operational guidelines. In the following sub-sections the decision criteria (diamonds in the decision tree; Figure 2a and Figure 2b) are discussed in detail. These criteria may be considered the starting point from which to 'hedge' our operational decisions as unique hydrologic or environmental events present themselves.

Lake Okeechobee Water Level Criteria

Lake Okeechobee water levels should continue to be checked with a similar regularity as is procedure with the current operational schedule and at least as often as necessary to determine changes in the operational zone.

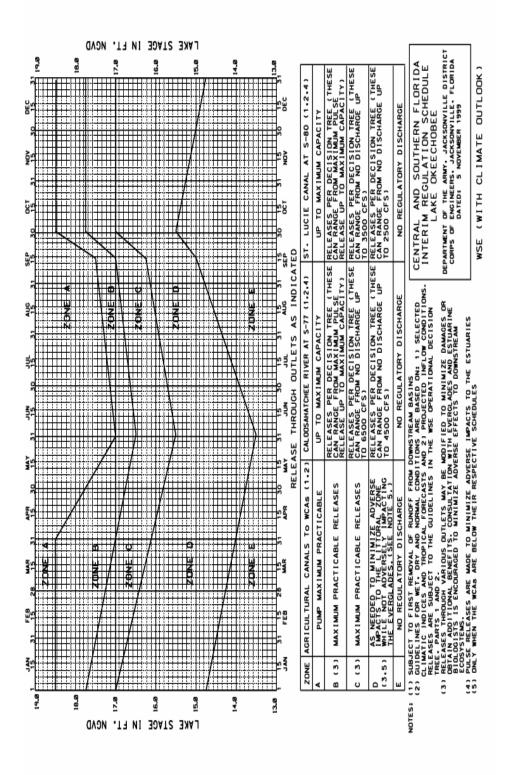


Figure 1. Proposed Regulation Schedule

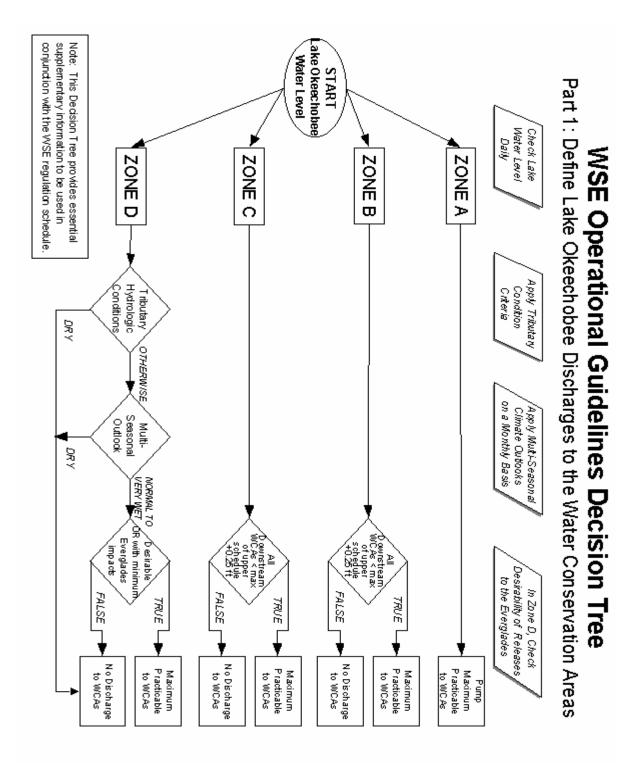
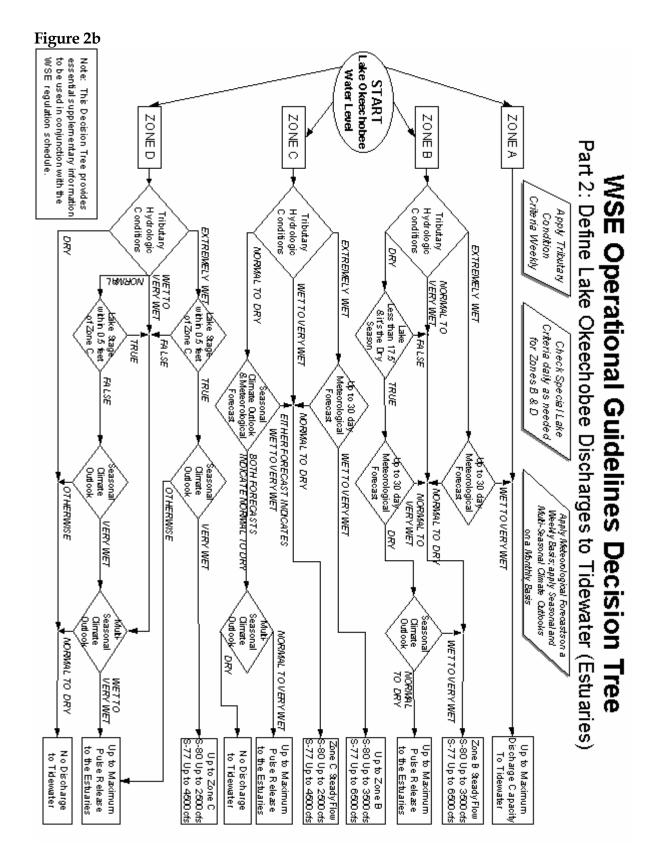



Figure 2A. Operational Decision Tree

Tributary Hydrologic Conditions

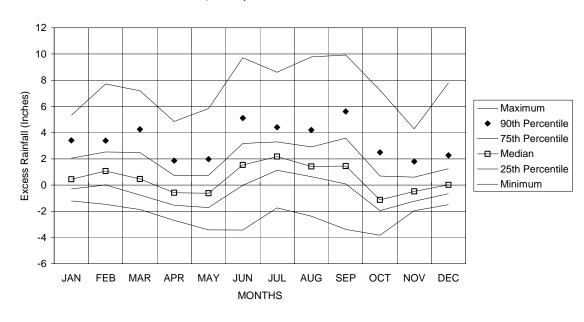
The majority of the Lake Okeechobee regulatory schedules prior to 1978 (USACE, Rules and Operating Criteria Master Regulation Manuals, 1978) included operational flexibility. This allowed for adjustments to be made in the timing and magnitude of Lake Okeechobee regulatory discharges based on conditions in the Lake tributary basins and extended meteorological outlooks. The implementation of the WSE Operational Schedule suggest that such considerations be re-emphasized. These conditions will be especially valuable for determining whether the appropriate window of opportunity exists to 'hedge' water management practices in order to take advantage of the recent advances in climate forecasting. Two measures of the tributary hydrologic conditions are included within the design of the operational decision tree: 1) regional excess or deficit of net rainfall (rainfall minus evapotranspiration) during the past four weeks and, 2) the average S-65E inflow for the past two weeks. Each measure should be updated each week.

Thirty-Day Net Rainfall

The merit of the regional net rainfall may be derived from the following data sets:

1. the monthly rainfall record from the National Climatic Data Center (NCDC) for the period 1895-1998, and

2. the monthly evapotranspiration which was estimated as being 75% of the standard project storm ET for the Kissimme River Basin (USACE, 1978).


The net rainfall was computed by subtracting the monthly ET from the monthly rainfall for the period 1895 through May of 1998. The maximum, minimum, quartiles and 90th percentile of the net rainfall for each month is illustrated in Figure 3a. Figure 3b delineates the rainfall exceedance curve with all the months of the year being considered collectively. In the implementation of WSE schedule, it is recommended that the tributary rainfall data may be represented by averaging the upper and lower Kissimmee basins for the previous 30day rainfall as made available in the South Florida Water Management District's (SFWMDs) daily weather report. The tributary basin ET may be represented as 60% of the long term daily average pan evaporation estimated at the Lake Alfred experimental station (on an annual average basis 60% of Lake Alfred Pan evaporation is equivalent to 75% of the standard project storm or about 44 inches per year). The net rainfall provides a valuable indicator of the regional hydrologic trends within the tributary basin during the past four weeks.

Two-Week Average S-65E Flow

The S-65E flow factors in the rainfall excesses or deficits that have accumulated within the Kissimmee tributary basins over periods of the past few days to periods for as long as several months. On average, S-65E flow represents between 35 to 50 percent of the structural inflows to Lake Okeechobee and thus is an additional effective regional hydrologic indicator of conditions in the tributary basin. Figure 4a and 4b summarize the statistics for the 14-day running average S-65E flow (the summary statistics consist of the maximum 14-day flow

that occurred within each month) with a similar convention as was used for net rainfall. The period of record included in this analysis extends from 1930 through June of 1998. Sequential and ranked net rainfall and S-65E flows as computed for Figure 3 and Figure 4 are included in Appendices A, B, C and D, respectively.

Figure 3 Lake Okeechobee Tributary Net Rainfall Summary Period of Analysis 1895-June 1998

a) Monthly Quartiles and 90th Percentile

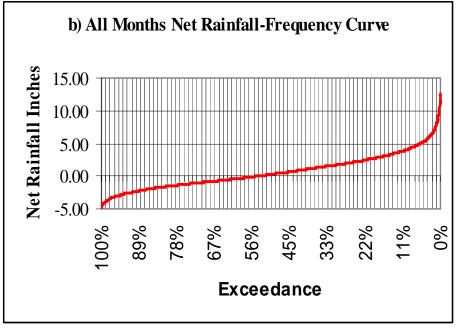
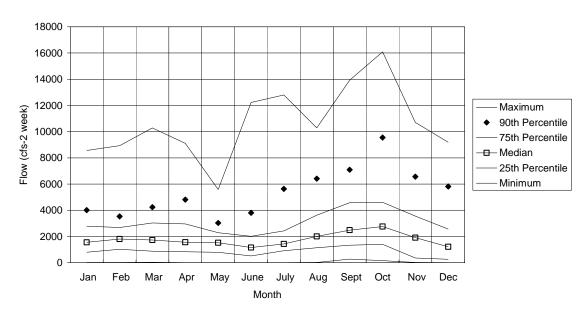
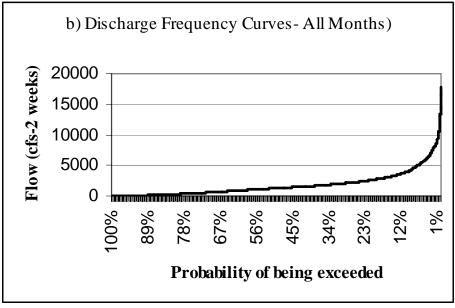




Figure 4. S-65E Maximum Monthly Flow Period of Analysis January 1930-June 1998

a) Monthly Quartiles and 90th Percentile

Identifying Various Hydrologic Regimes

Table 1 summarizes the ranges of the net rainfall and two-week average flow as they were selected to represent the various hydrologic regimes. These ranges were based on: 1. an extensive review of the available hydrologic record for the period beginning in 1930 and extending through the El Nino period of 1997-1998 and 2. testing with the application of the South Florida Water Management Model to determine the best threshold values for meeting the regional hydrologic performance measures. In this respect, each hydrologic classification are not specifically related to the mean or variances of the regional hydrologic indicator.

The wettest classification of the two regional hydrologic indicators is selected to represent the hydrologic conditions in the tributary basin to ensure that flood protection criteria are being met. Therefore, if net rainfall indicates wet conditions but S-65E flow indicates normal conditions, the operational condition will be taken to be 'wet'. During extreme wet conditions become extremely wet, there may be significant advantages for flood protection and environmental considerations to increase flows above the maximum flows rates defined for a given zone. This type of action should be taken only after the appropriate consideration has been given to all the primary water management objectives. When considering drier than normal conditions, both measures of tributary moisture should indicate dry conditions before tributary hydrologic conditions are defined to be 'dry'. The tributary hydrologic indicators should be updated weekly with a new value being computed for net rainfall and for average S-65E inflow each week.

Tributary Condition	Net Rainfall (inches past 4 weeks)	S-65E Flows (cfs-2 week average)
Very Dry	less than -3.00	less than 500
Dry	-3.001.01	500 - 1499
Normal	-1.00 - 1.99	1500 - 3499
Wet	2.00 - 3.99	3500 - 5999
Very Wet	4.00 - 7.99	6000 - 8999
Extremely Wet	greater than 8.0	greater than 9000

Table 1. Classification of Tributary Hydrologic Regimes (Check weekly)¹

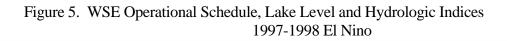
¹ Wet conditions are defined by the wettest of these two indicators.

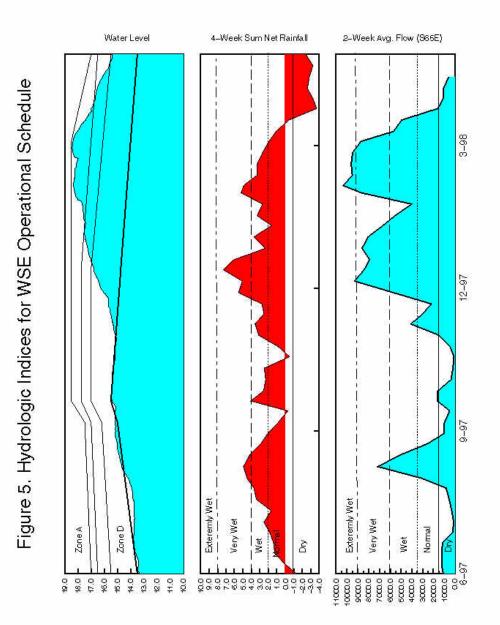
Summary of Historical Rankings

Table 2 provides supporting hydrologic data for the classifications selected in Table 1. This data includes the percentage of weeks a particular hydrologic regime occurs and the average tributary basin net rainfall, S-65E flow and Lake net inflow for each regime. From this table, it can be recognized that under normal to dry tributary conditions, the Lake water levels can most often be successfully regulated with releases southward to the Everglades and/or low impact pulse releases to tidewater. For wet to very wet tributary conditions, normally larger steady flow discharges to tidewater will be required to control the Lake level. While for extremely wet conditions, larger flows, up to maximum capacity, may be required to control the Lake water levels. The exact magnitude of discharge required to tidewater is dependent on the Lake water level, whether the seasonal Lake operational schedule is rising or falling, the conveyance capacity for delivering excess water to the WCAs, the desirability or impact such releases would have on the Everglades, and finally the temporal and spatial distribution of the rainfall.

Hydrologic Conditions during the 1997-1998 El Nino

The WSE operational guidelines were designed in part based on the events of the 1997-1998 El Nino. This period includes by far the wettest dry season in the 103 years of record available for the Lake tributary basin. Areal average net rainfall of about 22 inches occurred over the Lake's vast tributary basin during the period of November 1, 1997 through March 31, 1998. This excess rainfall was more than twice as large as the second largest event that occurred during the 1982-1983 El Nino (November-March period). The 1982-1983 event had a net rainfall which was equivalent to about 10 inches of rain averaged over the Lake tributary basin. The current operational schedule (Run 25) was designed to lessen the impacts of an El Nino event such as that which occurred during the dry season of 1982-1983 with the tools available at that time but not a dry season rainfall as extreme as the 1997-1998 event. Complicating matters for


Tributary Conditions	Percent Occurrence	Average Net Rainfall (inches past 4 weeks)	Average S-65E Flow (cfs - 2 week average)	Average Net Lake Inflow (cfs - 2 week average)
Dry	21%	-2.2	580	1463
Normal	47%	0.1	1324	3236
Wet	19%	2.4	2344	5952
Very Wet	11%	4.7	3664	10007
Extremely Wet	2%	8.1	7929	16427


 Table 2. Percentage of weeks that fall within each of the hydrologic regimes (based on the period of January 1930 through June 1998)

water management in south Florida was the fact that the last moderately strong El Nino (1991-1992) did not produce greater than normal rainfall. The WSE Operational Schedule would not recommend discharges during the 1991-1992 El Nino condition since the tributary basin remained relatively dry during this period. It does, however, allow for an earlier response at lower Lake levels during the 1997-1998 El Nino as the tributary conditions met the criteria of being 'very wet' by December 1997.

Figure 5 illustrates the Lake water levels relative to the WSE Operational Schedule during the 1997-1998 El Nino event. As the water levels in the Lake rose above the lowest line of the schedule in late November, net rainfall conditions already indicated the tributary basins were 'wet' and quickly becoming 'very wet'. This information, when combined with the Climate Prediction Center forecast for the likelihood of above normal rainfall, would have recommended the initiation of pulse releases to tidewater. Within the month of December of 1997, both net rainfall and S-65E flow conditions were indicative of 'extremely wet' conditions. During this period, while Lake water levels were in Zone D, it would have been desirable to initiate steady flow releases. Hydrologic conditions in the tributary basins remained extremely wet until the end of March. These conditions suggest that larger than the standard discharges in both Zones C and B would have been desirable in an attempt to decrease the duration of Zone A discharges. By mid-April, the tributary basins were in a drying state so that steady flow discharges were allowed to be reduced to pulse releases during the remainder of the dry season. A forecast of below normal rainfall for June of 1998 by the Climate Prediction Center and an increased potential for dry climate conditions for the 1998-1999 dry season suggested that it may be advantages to discontinue releases to tidewater during May, 1998. However, the passing of tropical storm Mitch in early November of 1998 eliminated potential advantages gained from this last action.

Another useful example of combining tributary hydrology with climate forecasts is the case of the spring and summer prior to a forecasted La Nina Year. During wet seasons months, based on the net rainfall computations for the tributary basins, conditions are normally classified as approaching or being wet during the period of June through September. However, during certain years the wet season may get a late start and/or never reach the normal wet conditions as defined in Table 1. Such combination of factors may lead to increased potential for drought especially if the following dry season is a La Nina year. Therefore, it may, at times, be desirable to discontinue or reduce regulatory discharges during the late spring months until the selected indicators suggest that a normal rainy season has begun. If conditions stay dry in the tributary basins, the Lake will decline to the desired levels by ET and water demands alone as the tropical season approaches. This will minimize impacts to the estuaries during a period of the year when large freshwater inflow are not normally desirable. This type of operational action should only be implemented in a way that ensures that Lake water levels does not exceed critical water levels during the peak of the hurricane season.

Special Lake Okeechobee Water Level Criteria

Three special Lake Okeechobee water level criteria are included in the operational decision tree. These criteria are as follows:

1. Pulse releases are only permitted to replace steady flow releases during the dry season and when the Lake is below 17.5 feet.

2. When the Lake water levels are in the upper portion of Zone D, within .5 feet of Zone C, and normal conditions exist in the tributary basin, the decision to make pulse releases should be based on multi-seasonal forecasts,

3. While water levels are in Zone D, steady flow discharges due to extremely wet tributary basins are only suggested if the Lake water levels are within .5 feet of Zone C.

Higher than desirable water levels in the WCAs should allow pulse releases to be made to tidewater at lower Lake levels while lower than desired water levels in the WCAs may preclude or lessen regulatory discharges being made to tidewater. This is particularly true while water levels are in Zone D.

Seasonal Climatic and Meteorologic Outlooks

Changnon (1982) discussed possible uses of long range climate forecasts in water resources at the International Symposium on Hydro-meteorology sponsored by the American Water Resources Division. Although at the time of his presentation, climate forecasts may not have reached the point where they could be generally applied in water resources, his insights towards desired lead times and accuracy of forecasts needed for particular water resources applications still appear valid today. Changnon's paper has been included in Appendix E for ease of reference. With the recent advances in climate forecasting, it appears, with the appropriate caution, that the time for including these forecasts in the framework of the operational guidelines has arrived.

Due to the intricate and vast nature of the C&SF Flood Control Project and the complex interactions of tropical and extra-tropical weather system that effect Florida's weather, it should not be expected that extended forecasts can be made to a very precise level of accuracy. However, with recent advances in climate prediction, it is now possible to predict with some level of confidence whether the upcoming season is likely to have above, below or near normal rainfall. Changnon indicated that certain longer term regional water resources operational planning decisions can be enhanced by applying climate forecasts that are classified into three such terciles. It is at this level of detail at which the official seasonal forecasts² from the National

²http://nic.fb4.noaa.gov:80/products/predictions/multi_season/13_seasonal_outlooks /color/index.html)

Center of Environmental Predictions, Climate Prediction Center (CPC) are to be referenced in this application.

The year is partitioned into two seasons:

- 1. wet season (May-October) and
- 2. dry season (November-April)

The 3 to 6 month climate forecasts should be applied to make probabilistic hydrologic forecasts for the for the remainder of the current season. In addition to climate forecasts, when lake water levels are in Zone C or higher, one to two week meteorologic forecasts should also be considered.

Multi-seasonal Climate Outlooks

Multi-seasonal outlooks are applied to determine when an increased possibility of extended periods of abnormal rainfall may occur either in the form of large inflows to the Lake or increased potential for drought. When applying multi-seasonal climate forecasts for operational planning, it is important that the cumulative hydrologic effects be considered.

Tables of Additional Tools and Measures for WSE Implementation

There are several useful measures and tools that are currently available for Lake Okeechobee operational decisions. One of the most valuable sets of tools may be the regional hydrologic models that are available within the Hydrologic Systems Modeling Division of the Planning Department. These models are summarized in Table 3. Table 4 list additional meteorological and climate forecasts that may be considered.

Models	Description	Contact
Object-Oriented Routing Model (ORM).	This model is initialized with current water levels and simulates water levels for a period of several months up to two years into the future considering climatological events that have occurred in the past. It is most useful in making probabilistic forecasts of expectation and setting confidence levels for these hydrologic projections when the climatology of the current year can be identified with a select class of past climatological years. For example, the 1998- 1999 projected La Nina conditions may suggest that only the past La Nina years be considered when determining the expected value and confidence levels of these projection. This type of application is often referred to as ' position analysis' .	Cary White, Dr. Luis Cadavid, Dr. Jayantha Obeysekera and Randy Vanzee
South Florida Water Management Model (SFWMM)	This is the most well known regional hydrologic model. It's model domain includes from Lake Okeechobee, the Caloosahatchee River, and the St Lucie River Basins, southward through the Everglades and includes the Lower east Coast Developed Region. Currently this model is only applied for continuous simulation but may also be valuable tool if applied in the framework of position analysis	Dr. Luis Cadavid Paul Trimble Ray Santee
South Florida Regional Simulation Model (SFSRM)	This is the newest of the regional models that currently may be applied for the Everglades.	Randy Vanzee
Upper Kissimmee Lakes Model (UKISS)	This model simulates the Upper Kissimmee Lakes and may be useful for projecting flows through S-65 that will make their way through the Kissimmee River Basin to the Lake	Randy Vanzee

Table 3. Regional Hydrologic Models

Climate Tool	Description	Contact
Converting NOAAs Climate Forecasts to Statistical Hydrologic Forecasts	Thomas Croley (1996) presents an approach that applies historical hydrologic data together with the new long-lead climate forecasts, for making statistical hydrologic forecasts. The potential use of this methodology is currently under investigation by the Hydrologic Systems Modeling Division. Croley's paper appears in Appendix F.	Dr. Luis Cadavid Dr. Jayantha Obeysekera
Atlantic Ocean Thermohaline Current	Ongoing research of Colorado State University and the Atlantic Oceanographic and Meteorological Laboratory, have reported on cyclic decadal shifts of the Atlantic Ocean currents that significantly effect Climate regimes. within the Atlantic Ocean Basin. The most recent indicators of the phase of this ocean current indicates that Florida may expect much wetter conditions from June through October during the next few decades similar to those that were experienced during the decades of the 1930s, 1940s, 1950s and the 1960s.	Paul Trimble
Meteorological and Climatological Forecasts	SFWMD's Meteorological Forecasts	Geoff Shaughnessy, Eric P. Swartz
Solar Eruptive Activity and Secular Trends	Rainfall Activity seasonal to multi-seasonal prediction of shifts	Paul Trimble
Artificial Neural Networks, Intelligent Systems and other pattern recognition technology	Pattern recognition technology such as neural networks have provided another valuable tool for forecasting regional climate shifts for Florida that may best be explained by considering the state of El Nino, the Atlantic Ocean Thermohaline and solar activity together	Beheen Trimble Paul Trimble

Table 4. Additional Climate Based Tools

Simulation of the WSE Implementation Plan

As a final step to this process, it is essential the detailed operational guidelines that were developed from this process are adequately tested. This is to ensure that they meet the regional water management objectives to a similar or greater level of proficiency as the original documented WSE simulation. This was accomplished with the application of the South Florida Water Management Model which was modified to incorporate the more detailed operational guidelines that are illustrated in Figure 2.

Baseline assumptions for this evaluation include:

- 1. Operation Schedule 25 (also referred to as Run 25),
- 2. 1995 infrastructure and water use levels,
- 3. Best Management Practices (BMPs) for the EAA,
- 4. BMP Replacement Water Rule is being applied,
- 5. 1995 Operational Schedules for the Water Conservation Areas,

6. Additional constraints put on discharging regulatory releases to the WCAs when the Lake water levels are Zone B or C,

In the original simulations of the alternative operational schedules it was assumed that discharges to a particular WCA were discontinued when that WCA exceeded the maximum of its upper most schedule by more than .25 feet. This rule has been refined to discontinue the discharges if a particular WCA or any of the WCAs downstream the WCA under consideration are more than .25 feet above their schedule. For WCA2A, the maximum of the current drawdown schedule replaced the WCA2A regulatory schedule when making the operational decision whether regulatory discharges should be made from the Lake to the WCAs.

Simulated Results

A complete set of the performance measures, as presented in the original documentation of the alternative Lake Okeechobee Operational Schedule evaluation, are including in Appendix G. These performance measures are limited to comparing the 1995 base condition to that of the proposed WSE operational schedule. Figure 6 illustrates a similar trade-off analysis as was presented in the original report. The WSE operational schedule illustrates similar favorable performance measure trends as was previously documented. These include: 1) a decrease by 3 in the undesirable Lake Okeechobee water level events for the Lake littoral zone, 2) an increase by approximately 4 percent of the Lake Okeechobee Service Area water supply needs being met during drought years, 3) improved hydro-pattern matches to the Natural System Figure 6

Model simulations within the WCAs, 4) a decrease in the number of times high discharge criteria were exceeded for the estuaries and 5) the simulated benefits for the estuaries and Everglades Hydroperiod. The benefits for the Everglades Hydroperiod appear to be reduced slightly due to the additional constraints that were discussed in the previous section for making regulatory releases to the WCAs. Finally, a crucial performance measure criterion is that for flood protection during the peak of the hurricane season. The number of days greater than 16.5 feet during the peak of the hurricane season (August 1-September 15th) was reduced from 47 days in the base condition to 6 days with the WSE Operational Schedule guidelines incorporated. The maximum water level for this same critical period of the year was reduced from 17.46 feet in the base condition to 16.91 feet with the WSE operational guidelines.

References

Neidrauer C.J., P.J. Trimble, E.R. Santee, Simulation of Alternative Operational Schedules for Lake Okeechobee, Hydrologic Systems Modeling Division, South Florida Water Management District, 1998

South Florida Water Management District, South Florida Water Management Model (SFWMM), 1998

Appendix A

Sequential Net Tributary Basin Rainfall (inches)

Sequential Net Rainfall

							Se	quen	tial N	et Ra	unfall	L
1895	0.00	1.74	-0.40	1.41	0.00	-1.72	2.42	-0.30	0.41	-0.82	0.50	-0.58
1896	2.32	0.97	0.18	-2.48	-1.52	8.41	2.75	0.69	-0.09	-1.16	0.49	-0.22
1897	-0.05	4.11	-1.19	1.28	-1.67	0.51	2.04	1.25	8.41	-0.18	-0.43	0.49
1898	-1.13	0.65	-0.86	-2.16	-2.46	-2.71	3.41	7.86	0.04	0.18	-0.79	1.51
1899	2.64	4.09	-0.79	0.65	-3.16	1.55	4.37	1.25	1.31	1.39	-1.70	-0.19
1900	1.80	2.03	4.39	0.45	-0.03	2.62	2.50	-1.03	-0.43	0.69	-1.51	1.49
1901	0.10	2.64	2.80	-1.29	-0.48	6.99	1.62	5.13	3.58	-2.53	-1.32	-0.19
1902	-0.97	2.72	1.22	-1.37	-1.82	2.04	0.26	-0.99	4.92	0.71	0.50	1.04
1903	3.98	3.39	2.95	-2.67	0.15	1.15	1.79	1.34	3.73	-2.95	0.39	-0.25
1904	3.70	1.26	-0.55	-1.01	-1.68	2.47	1.29	1.56	0.26	1.20	0.44	-0.39
1905	-0.10	1.07	1.73	-0.58	1.13	-0.33	3.18	7.82	3.58	-1.95	-1.50	3.68
1906	2.05	1.29	0.06	-1.33	2.81	2.89	4.00	2.12	-2.00	-2.17	-1.18	-1.19
1907	-0.77	-0.64	-1.50	-0.32	0.18	1.58	2.79	0.65	3.04	-2.74	-0.75	2.68
1908	1.11	-0.04	-1.73	-0.69	-1.85	1.97	1.46	1.42	5.67	-1.39	-0.30	-1.23
1909	0.08	-0.63	-0.34	-0.78	-0.44	0.28	6.90	2.80	-0.82	-2.51	-1.33	0.35
1910	-0.70	1.54	0.18	-2.01	-2.05	4.96	2.34	4.24	-1.78	5.01	-0.43	-1.04
1911	-0.36	-1.47	0.23	-1.71	0.60	-0.30	0.90	3.86	-0.83	-0.32	1.49	1.40
1912 1913	3.46	1.09 3.14	0.69 2.34	-0.05 -0.70	1.63 -1.06	8.66	0.29 -0.01	0.04 1.82	5.14 -0.53	-0.51 -1.84	0.49 -1.18	0.05 1.07
1913 1914	0.15 3.05	3.14 3.34	2.34 -0.62	-0.70 -0.67	-1.06	-0.14 -1.26	-0.01 0.95	1.82 -0.46	-0.53	-1.84 -1.54	-1.18 -0.07	1.07
1914 1915	3.05 3.48	5.54 2.20	-0.62 0.55	-0.67 -1.16	-2.23 1.38	-1.26 0.01	0.95 2.38	-0.46 1.43	-0.53	-1.54 1.54	-0.07	0.01
1915	-0.36	-0.93	-1.17	-0.55	-0.41	1.66	2.38 0.27	0.97	-0.33	-0.41	1.52	2.38
1910	-0.30	-0.93	-1.17	-0.55	-0.41	0.51	1.34	2.47	1.78	-0.41	-1.71	-0.41
1917	0.73	-0.42	0.87	1.89	-1.72	-0.21	0.43	0.34	1.78	0.81	0.58	0.68
1918	-0.02	2.89	2.74	-0.56	2.11	2.05	3.24	1.12	0.86	-2.49	1.12	0.08
1920	0.40	3.97	-1.65	2.13	0.60	1.37	1.98	0.40	3.63	-2.49	1.39	0.61
1920	-0.63	-0.33	-0.34	-1.47	1.65	-1.43	3.30	-1.60	-3.16	5.15	-0.11	0.01
1922	0.16	0.72	-0.94	-2.42	2.81	1.43	1.80	3.52	3.81	3.63	-0.58	0.23
1923	-0.44	-0.48	-0.51	-1.09	4.14	5.12	2.08	1.20	0.42	-0.38	-1.81	-0.85
1924	2.12	1.61	3.98	-0.49	-1.32	1.00	5.26	-1.25	4.29	7.24	-1.66	-0.41
1925	1.25	0.56	-0.17	-1.19	2.02	2.20	2.46	2.18	-2.80	-2.02	1.23	3.18
1926	3.35	0.31	1.70	1.87	-1.41	3.78	4.38	3.19	2.55	-1.77	0.50	-1.22
1927	-1.09	1.77	0.05	-1.53	-3.42	1.89	1.88	1.00	-0.41	-0.67	-1.05	-0.31
1928	-0.91	1.18	1.79	3.41	-0.81	-0.06	2.16	3.98	7.98	-1.46	-1.50	-0.47
1929	1.09	-0.71	-0.87	0.28	0.23	3.13	3.69	1.46	5.78	-1.75	-1.38	0.57
1930	1.46	1.77	5.06	0.56	-0.20	8.61	-0.90	-1.04	3.02	-1.84	0.57	1.74
1931	1.79	0.20	3.28	3.30	-0.50	-3.43	1.08	0.69	1.98	-2.09	-1.88	0.02
1932	-0.30	-0.99	0.64	-1.99	1.42	2.72	-1.74	4.83	0.52	-1.67	0.92	-1.48
1933	-0.12	1.54	0.76	3.42	-1.25	1.76	6.00	0.94	7.04	-0.94	-0.71	-1.50
1934	0.25	2.04	0.67	1.94	1.98	7.93	2.18	-0.85	1.08	-1.79	-1.57	-1.04
1935	-0.73	0.03	-1.67	1.12	-1.14	0.17	3.04	2.67	5.62	-1.59	-1.04	1.39
1936	2.71	6.45	1.17	-1.30	0.04	2.89	1.10	0.51	1.64	0.49	-0.28	-0.03
1937	-0.34	4.52	1.71	1.50	-0.82	0.91	3.10	2.59	-0.54	0.98	2.54	-0.73
1938	0.09	0.01	-0.80	-2.20	-0.61	1.54	3.69	-2.38	0.94	2.71	-0.77	-1.47
1939	-0.34	-0.77	-0.82	1.32	1.97	6.41	2.86	7.34	0.81	-1.36	-1.24	-0.60
1940	2.16	2.64	1.59	-0.76	-2.36	0.97	1.73	1.84	2.50	-3.78	-1.96	2.61
1941	2.83	2.07	0.87	2.70	-3.02	1.95	4.97	-0.43	1.13	-0.44	1.80	2.55
1942	1.45	2.65	3.06	0.10	-0.62	4.61	0.02	-0.11	0.54	-3.82	-1.69	1.25
1943	-0.45	-0.57	2.49	-1.11	0.44	4.65	4.94	3.34	1.04	-0.84	-0.72	-1.16
1944	0.02	-0.99	2.29	-0.14	-1.40	1.40	2.04	1.11	-1.15	2.56	-1.54	-1.36
1945	1.70	-1.17	-1.83	-1.10	-3.02	8.25	6.37	2.20	3.90	0.21	-0.78	1.23
1946	0.44	2.05	-0.53	-2.44	1.96	1.61	3.55	0.96	1.46	-1.22	-0.58	-0.91
1947	-0.16	2.65	4.37	1.45	0.23	4.10	4.24	2.54	8.13	-0.09	1.41	-0.07
1948	4.83	-0.60	0.54	1.02	-1.42	-2.52	4.77	3.17	6.40	-1.28	-0.83	0.07
1949	-0.98	-0.63	-1.31	0.09	-2.24	3.18	1.13	9.78	3.86	-1.78	-0.53	0.55
1950	-1.21	-0.97	1.09	-0.71	-1.80	-0.92	2.40	1.03	3.31	2.33	-1.27	1.59
1951	-0.92	0.85	-0.73	4.85	-2.51	-0.86	2.84	1.10	2.83	-0.16	1.91	-0.34
1952	-0.10	3.21	2.90	-1.72	-0.62	-1.83	2.13	1.80	0.48	5.15	-0.49	-0.59
1953	1.49	1.33	1.36	1.82	-3.03	4.67	1.90	3.69	6.15	1.69	3.19	2.14
1954	0.04	0.41	-0.66	1.14	1.70	2.42	2.71	-0.03	2.03	-1.53	1.48	-0.26
									21			

1955	1.07	0.17	0.12	-0.85	-1.75	0.55	2.25	1.11	0.90	-1.41	-0.67	-0.12
1956	-0.27	-0.17	-1.87	-0.03	-0.74	-1.12	0.37	1.48	1.58	3.29	-1.59	-1.30
1957	0.87	2.53	2.68	3.76	3.38	1.40	3.22	3.65	4.17	-1.12	-0.45	0.76
1958	5.32	1.78	3.75	0.56	-0.14	-0.00	0.29	0.30	-0.63	0.41	-0.48	2.24
1959	1.99	1.39	7.20	0.79	2.37	4.79	2.60	3.75	3.60	3.72	-0.31	0.30
1960	-0.27	3.39	5.82	0.61	-1.34	1.00	8.61	0.65	9.93	-0.84	-1.61	-0.47
1961	1.21	0.99	0.07	-0.53	-0.04	-0.66	-0.16	2.07	-2.07	-2.78	-1.09	-0.18
1962	-0.06	-0.38	1.21	-0.29	-1.31	4.36	0.79	4.21	4.73	-3.04	0.52	-1.17
1963	0.77	5.55	-0.36	-2.48	1.39	1.07	1.58	-0.25	3.28	-3.01	3.34	1.47
1964	2.56	3.57	0.88	-1.14	-0.93	-0.95	1.73	2.10	1.35	-1.82	-1.23	0.37
1965	-0.12	2.30	0.75	-1.21	-3.33	2.95	5.37	1.12	0.97	-0.28	-1.09	0.42
1966	3.86	2.87	-0.77	-0.46	-0.13	4.03	1.32	1.57	1.09	-1.60	-1.60	-0.66
1967	-0.26	2.34	-1.45	-2.68	-2.97	2.52	2.87	4.82	-0.26	-1.96	-1.71	0.64
1968	-0.83	0.48	-1.20	-2.09	1.56	9.04	3.16	0.61	0.65	0.66	0.75	-1.21
1969	1.21	0.24	4.59	-1.54	0.64	1.07	1.45	3.84	2.42	2.50	0.61	2.33
1970	2.07	1.38	4.24	-2.38	0.55	-0.48	0.77	0.65	0.67	-1.44	-1.27	-0.91
1971	-0.78	2.52	-0.84	-1.96	-0.87	0.07	2.41	2.92	1.87	1.19	-0.20	-0.08
1972	-0.22	3.49	0.47	-1.05	-0.20	2.79	-1.44	1.87	-3.39	-1.62	1.98	0.82
1973	4.12	0.77	1.15	0.65	-1.30	-0.02	4.05	1.87	2.72	-2.36	-0.72	1.23
1974	-0.76	-0.12	-0.98	-1.68	-0.71	8.53	3.76	1.71	0.81	-3.61	-1.51	0.70
1975	-0.47	0.78	-1.00	-1.89	1.37	1.09	3.05	0.93	2.64	1.15	-1.10	-0.98
1976	-0.73	-0.81	-1.09	-0.92	4.51	2.77	0.48	1.04	1.91	-2.75	0.08	0.61
1977	0.95	0.41	-1.42	-2.24	-1.27	-0.11	2.00	2.11	2.00	-2.43	0.98	2.51
1978	1.48	2.49	0.60	-2.26	0.81	2.27	4.25	0.42	-1.00	-1.94	-1.22	2.21
1979	5.07	0.13	-0.13	-1.36	5.84	-1.39	0.71	3.13	9.05	-3.42	-0.40	0.35
1980	1.55	1.07	0.04	0.74	0.65	-1.12	0.96	0.17	-0.18	-2.61	1.83	-0.66
1981	-0.80	2.19	-1.02	-2.69	-1.79	1.97	-0.42	6.18	0.47	-2.96	-0.35	0.06
1982	0.28	0.99	4.26	1.07	1.92	5.07	2.42	1.32	3.96	-0.89	0.21	-0.63
1983	1.51	7.71	4.60	-0.47	-1.90	1.70	1.14	2.39	1.65	1.09	0.61	4.03
1984	-0.07	1.84	0.67	-0.49	0.74	-1.13	3.70	0.54	0.09	-3.21	1.76	-1.23
1985	-0.08	-0.55	0.24	-0.30	-2.16	1.02	1.68	2.40	2.91	-1.15	-0.34	-0.06
1986	1.64	0.42	2.20	-2.25	-2.17	4.16	1.38	1.89	-0.52	2.16	-0.54	1.67
1987	1.47	0.34	6.94	-2.41	0.26	0.17	1.60	-0.60	1.05	-0.20	4.29	-1.30
1988	1.84	0.80	2.89	-1.57	-1.20	-1.22	2.83	3.17	3.20	-3.14	2.81	-0.42
1989	1.12	-1.05	0.42	-0.48	-2.46	0.86	1.39	0.86	2.61	-1.13	-0.60	2.27
1990	-0.67	2.17	-1.12	-1.12	-1.22	1.23	3.65	1.90	-0.49	-0.30	-0.87	-1.05
1991	2.49	0.31	2.64	1.83	3.18	1.40	5.26	1.16	-1.14	-1.17	-1.44	-1.16
1992	0.05	2.73	-0.41	1.01	-2.73	9.71	-1.10	3.71	1.05	-1.28	1.47	-0.76
1993	4.96	1.04	3.31	0.70	-1.25	-1.73	-0.01	0.93	1.03	1.23	-0.88	-0.54
1994	2.69	0.98	-0.11	0.70	-1.85	3.65	1.92	2.74	5.03	-0.08	1.98	1.96
1995	1.34	0.77	-0.01	0.50	-1.93	4.50	4.41	5.84	2.30	3.68	-0.19	-1.00
1996	3.41	0.34	4.70	-0.66	0.44	2.64	-0.93	-0.04	-0.19	0.20	-1.23	0.66
1997	0.58	-0.07	-0.08	4.33	-0.95	0.92	2.53	1.10	2.91	-1.13	3.68	7.80
1998	1.30	4.93	2.35	-3.15	-2.06	-1.12	-999	-999	-999	-999	-999	-999

Appendix B

Ranked Net Tributary Basin Rainfall (inches)

										Rar	ked	Net	Rainf	all								
January	Febru	ary	Marcl	1	April		May		June		July		Augu		Septe	mber	Octo	ber	Nover	nber	Dece	mber
1958 5.32	1983	7.71	1959	7.20	1951	4.85	1979	5.84	1992	9.71	1960	8.61	1949	9.78	1960	9.93	1924	7.24	1987	4.29	1997	7.80
1979 5.07																						
1993 4.96	1998	6.40	1960	5.82	1957	3.76	1923	4.14	1912	8.66	1945	6.37	1905	7.82	1897	8.41	1952	5.15	1963	3.34	1905	3.68
1948 4.83																						
1973 4.12																						
1903 3.98 1966 3.86																						
1904 3.70																						
1915 3.48	1964	3.57	1947	4.37	1934	1.94	1919	2.11	1901	6.99	1943	4.94	1967	4.82	1929	5.78	1938	2.71	1951	1.91	1916	2.38
1912 3.46																						
1996 3.41																						
1926 3.35 1998 3.26																						
1998 3.20																						
1941 2.83																						
1936 2.71	1919	2.89	1931	3.28	1895	1.41	1921	1.65	1943	4.65	1973	4.05	1992	3.71	1924	4.29	1899	1.39	1992	1.47	1914	1.75
1994 2.69																						
1899 2.64																						
1964 2.56 1991 2.49																						
1896 2.32																						
1940 2.16																						
1924 2.12																						
1970 2.07																						
1906 2.05 1959 1.99																						
1939 1.99 1988 1.84																						
1900 1.80																						
1931 1.79	1915	2.20	1928	1.79	1973	0.65	1920	0.60	1906	2.89	1968	3.16	1937	2.59	1988	3.20	1945	0.21	1926	0.50	1902	1.04
1945 1.70																						
1986 1.64																						
1980 1.55 1983 1.51																						
1953 1.31																						
1978 1.48																						
1987 1.47	1984	1.84	1962	1.21	1942	0.10	1907	0.18	1904	2.47	1988	2.83	1906	2.12	1975	2.64	1987	-0.20) 1915	0.23	1976	0.61
1930 1.46																						
1942 1.45 1995 1.34																						
1995 1.34																						
1961 1.21																						
1969 1.21	1933	1.54	1918	0.87	1985	-0.30	1966	-0.13	1908	1.97	1997	2.53	1973	1.87	1914	2.13	1941	-0.44	4 1971	-0.20) 1964	0.37
1989 1.12																						
1908 1.11																						
1929 1.09 1955 1.07																						
1933 1.07																						
1957 0.87																						
1963 0.77																						
1918 0.73																						
1997 0.58																						
1946 0.44 1920 0.40																						
1920 0.40 1982 0.28																						
1934 0.25																						
1922 0.16																						
1913 0.15																						
1901 0.10	1951	0.85	1955	0.12	1940	-0.76	1964	-0.93	1990	1.23	1977	2.00) 1923	1.20) 1934	1.08	1948	-1.28	8 1989	-0.60) 1955	-0.12

1938 0.09 1988 0.80 1961 0.07 1909 -0.78 1997 -0.95 1903 1.15 1920 1.98 1991 1.16 1992 1.05 1939 -1.36 1955 -0.67 1961 -0.18 1909 0.08 1975 0.78 1906 0.06 1955 -0.85 1913 -1.06 1975 1.09 1994 1.92 1919 1.12 1987 1.05 1908 -1.39 1933 -0.71 1899 -0.19 1992 0.05 1973 0.77 1927 0.05 1976 -0.92 1935 -1.14 1969 1.07 1953 1.90 1965 1.12 1943 1.04 1955 -1.41 1943 -0.72 1901 -0.19 1954 0.04 1995 0.77 1980 0.04 1904 -1.01 1988 -1.20 1963 1.07 1927 1.88 1944 1.11 1993 1.03 1970 -1.44 1973 -0.72 1896 -0.22 1944 0.02 1922 0.72 1995 -0.01 1972 -1.05 1990 -1.22 1985 1.02 1922 1.80 1955 1.11 1965 0.97 1928 -1.46 1907 -0.75 1903 -0.25 1895 0.00 1898 0.65 1997 -0.08 1923 -1.09 1993 -1.25 1960 1.00 1903 1.79 1997 1.10 1938 0.94 1954 -1.53 1938 -0.77 1954 -0.26 1919 -0.02 1925 0.56 1994 -0.11 1945 -1.10 1933 -1.25 1924 1.00 1940 1.73 1951 1.10 1955 0.90 1914 -1.54 1945 -0.78 1927 -0.31 1897 -0.05 1968 0.48 1979 -0.13 1943 -1.11 1977 -1.27 1940 0.97 1964 1.73 1976 1.04 1919 0.86 1917 -1.57 1898 -0.79 1951 -0.34 1962 -0.06 1986 0.42 1925 -0.17 1990 -1.12 1973 -1.30 1997 0.92 1985 1.68 1950 1.03 1974 0.81 1935 -1.59 1948 -0.83 1904 -0.39 1984 -0.07 1977 0.41 1909 -0.34 1964 -1.14 1962 -1.31 1937 0.91 1901 1.62 1927 1.00 1939 0.81 1966 -1.60 1990 -0.87 1917 -0.41 1985 -0.08 1954 0.41 1921 -0.34 1915 -1.16 1924 -1.32 1989 0.86 1987 1.60 1916 0.97 1970 0.67 1972 -1.62 1993 -0.88 1924 -0.41 1905 -0.10 1996 0.34 1963 -0.36 1925 -1.19 1960 -1.34 1955 0.55 1963 1.58 1946 0.96 1968 0.65 1932 -1.67 1935 -1.04 1988 -0.42 1952 -0.10 1987 0.34 1895 -0.40 1965 -1.21 1944 -1.40 1917 0.51 1908 1.46 1933 0.94 1942 0.54 1929 -1.75 1927 -1.05 1928 -0.47 1933 -0.12 1926 0.31 1992 -0.41 1901 -1.29 1926 -1.41 1897 0.51 1969 1.45 1975 0.93 1932 0.52 1926 -1.77 1961 -1.09 1960 -0.47 1965 -0.12 1991 0.31 1923 -0.51 1936 -1.30 1948 -1.42 1909 0.28 1989 1.39 1993 0.93 1952 0.48 1949 -1.78 1965 -1.09 1993 -0.54 1947 -0.16 1969 0.24 1946 -0.53 1906 -1.33 1896 -1.52 1935 0.17 1986 1.38 1989 0.86 1981 0.47 1934 -1.79 1975 -1.10 1895 -0.58 1972 -0.22 1931 0.20 1904 -0.55 1979 -1.36 1998 -1.54 1987 0.17 1917 1.34 1931 0.69 1923 0.42 1964 -1.82 1906 -1.18 1952 -0.59 1967 -0.26 1955 0.17 1914 -0.62 1998 -1.36 1917 -1.61 1971 0.07 1966 1.32 1896 0.69 1895 0.41 1913 -1.84 1913 -1.18 1939 -0.60 1956 -0.27 1979 0.13 1954 -0.66 1902 -1.37 1897 -1.67 1915 0.01 1904 1.29 1960 0.65 1916 0.40 1930 -1.84 1978 -1.22 1982 -0.63 1960 -0.27 1935 0.03 1951 -0.73 1921 -1.47 1904 -1.68 1958 -0.00 1983 1.14 1970 0.65 1904 0.26 1978 -1.94 1996 -1.23 1966 -0.66 1932 -0.30 1938 0.01 1966 -0.77 1927 -1.53 1918 -1.72 1973 -0.02 1949 1.13 1907 0.65 1984 0.09 1905 -1.95 1964 -1.23 1980 -0.66 1939 -0.34 1908 -0.04 1899 -0.79 1969 -1.54 1955 -1.75 1928 -0.06 1936 1.10 1968 0.61 1898 0.04 1967 -1.96 1939 -1.24 1937 -0.73 1937 -0.34 1997 -0.07 1938 -0.80 1988 -1.57 1981 -1.79 1977 -0.11 1931 1.08 1984 0.54 1896 -0.09 1925 -2.02 1950 -1.27 1992 -0.76 1911 -0.36 1974 -0.12 1939 -0.82 1917 -1.61 1950 -1.80 1913 -0.14 1980 0.96 1936 0.51 1980 -0.18 1931 -2.09 1970 -1.27 1923 -0.85 1916 - 0.36 1956 - 0.17 1971 - 0.84 1974 - 1.68 1902 - 1.82 1918 - 0.21 1914 0.95 1978 0.42 1996 - 0.19 1906 - 2.17 1901 - 1.32 1946 - 0.91 1923 -0.44 1921 -0.33 1898 -0.86 1911 -1.71 1908 -1.85 1911 -0.30 1911 0.90 1920 0.40 1967 -0.26 1973 -2.36 1909 -1.33 1970 -0.91 1943 -0.45 1962 -0.38 1929 -0.87 1952 -1.72 1994 -1.85 1905 -0.33 1962 0.79 1918 0.34 1927 -0.41 1977 -2.43 1929 -1.38 1975 -0.98 1975 -0.47 1917 -0.42 1922 -0.94 1975 -1.89 1983 -1.90 1970 -0.48 1970 0.77 1958 0.30 1900 -0.43 1919 -2.49 1991 -1.44 1995 -1.00 1921 -0.63 1923 -0.48 1974 -0.98 1971 -1.96 1995 -1.93 1961 -0.66 1979 0.71 1980 0.17 1990 -0.49 1920 -2.49 1905 -1.50 1934 -1.04 1990 -0.67 1985 -0.55 1975 -1.00 1932 -1.99 1910 -2.05 1951 -0.86 1976 0.48 1912 0.04 1986 -0.52 1909 -2.51 1928 -1.50 1910 -1.04 1910 - 0.70 1943 - 0.57 1981 - 1.02 1910 - 2.01 1985 - 2.16 1950 - 0.92 1918 0.43 1954 - 0.03 1913 - 0.53 1901 - 2.53 1900 - 1.51 1990 - 1.05 1935 -0.73 1948 -0.60 1976 -1.09 1968 -2.09 1986 -2.17 1964 -0.95 1956 0.37 1996 -0.04 1915 -0.53 1980 -2.61 1974 -1.51 1991 -1.16 1976 -0.73 1949 -0.63 1990 -1.12 1898 -2.16 1914 -2.23 1956 -1.12 1912 0.29 1942 -0.11 1937 -0.54 1907 -2.74 1944 -1.54 1943 -1.16 1974 - 0.76 1909 - 0.63 1916 - 1.17 1938 - 2.20 1949 - 2.24 1980 - 1.12 1958 0.29 1963 - 0.25 1958 - 0.63 1976 - 2.75 1934 - 1.57 1962 - 1.17 1907 -0.77 1907 -0.64 1897 -1.19 1977 -2.24 1940 -2.36 1984 -1.13 1916 0.27 1895 -0.30 1909 -0.82 1961 -2.78 1956 -1.59 1906 -1.19 1971 - 0.78 1929 - 0.71 1968 - 1.20 1986 - 2.25 1898 - 2.46 1988 - 1.22 1902 0.26 1941 - 0.43 1911 - 0.83 1903 - 2.95 1966 - 1.60 1968 - 1.21 1981 -0.80 1939 -0.77 1917 -1.24 1978 -2.26 1989 -2.46 1914 -1.26 1942 0.02 1914 -0.46 1978 -1.00 1981 -2.96 1960 -1.61 1926 -1.22 1968 - 0.83 1976 - 0.81 1949 - 1.31 1970 - 2.38 1951 - 2.51 1979 - 1.39 1913 - 0.01 1987 - 0.60 1991 - 1.14 1963 - 3.01 1924 - 1.66 1908 - 1.23 1928 - 0.91 1916 - 0.93 1977 - 1.42 1987 - 2.41 1992 - 2.73 1921 - 1.43 1993 - 0.01 1934 - 0.85 1944 - 1.15 1962 - 3.04 1942 - 1.69 1984 - 1.23 $1951 - 0.92 \ 1950 - 0.97 \ 1967 - 1.45 \ 1922 - 2.42 \ 1967 - 2.97 \ 1895 - 1.72 \ 1961 - 0.16 \ 1902 - 0.99 \ 1910 - 1.78 \ 1988 - 3.14 \ 1899 - 1.70 \ 1956 - 1.30 \$ 1902 -0.97 1932 -0.99 1907 -1.50 1946 -2.44 1941 -3.02 1993 -1.73 1981 -0.42 1900 -1.03 1906 -2.00 1984 -3.21 1917 -1.71 1987 -1.30 1949 -0.98 1944 -0.99 1920 -1.65 1963 -2.48 1945 -3.02 1952 -1.83 1930 -0.90 1930 -1.04 1961 -2.07 1979 -3.42 1967 -1.71 1944 -1.36 1917 -1.05 1918 -1.01 1935 -1.67 1896 -2.48 1953 -3.03 1998 -1.90 1996 -0.93 1924 -1.25 1925 -2.80 1974 -3.61 1923 -1.81 1938 -1.47 1927 - 1.09 1989 - 1.05 1908 - 1.73 1903 - 2.67 1899 - 3.16 1948 - 2.52 1992 - 1.10 1921 - 1.60 1921 - 3.16 1940 - 3.78 1931 - 1.88 1932 - 1.48 1898 -1.13 1945 -1.17 1945 -1.83 1967 -2.68 1965 -3.33 1898 -2.71 1972 -1.44 1938 -2.38 1972 -3.39 1942 -3.82 1940 -1.96 1933 -1.50 1950 -1.21 1911 -1.47 1956 -1.87 1981 -2.69 1927 -3.42 1931 -3.43 1932 -1.74

Appendix C

Maximum Averaged S-65E Flow (cfs-14 day) Estimated for each Month

Maximum Averaged S-65E Flow (cfs- 14 day)

1988	1051	1926	4231	2540	1173	55	235	736	2230	47	6	0
1989	530	961	1030	1524	1107	15	132	214	471	827	49	90
1990	1409	2097	753	586	253	218	922	808	443	1195	72	17
1991	117	48	328	1131	2156	956	2694	6200	2333	1949	168	97
1992	73	1333	280	2023	1463	962	1049	2794	2061	631	331	443
1993	4043	1217	2066	4962	210	104	67	97	628	262	63	24
1994	84	182	1401	713	137	2802	3365	2351	4204	4360	5386	3380
1995	1881	2037	1948	2136	740	443	1449	6478	6548	4548	1277	1410
1996	2950	1333	1398	2874	607	1021	596	1157	454	561	21	20
1997	451	1102	88	742	2258	974	452	4546	1010	527	2301	6539
1998	7800	6863	9326	3322	422							

Appendix D

Monthly Ranked S-65E Flow (cfs-14 day)

January	February	March	April	May	June	July	August	September	October	November	December	
						_						
											3 1953 6974 1	954
								8965 1948				
-								1933 7726 1953 7453				
-								1955 7455				
								1979 6412				
								1945 6145				
								1959 6118				
1996 2950	1970 2653	1958 3111	1966 2903	1991 2156	1947 2762	1994 3365	1930 4704	1948 5822	1933 5000	1987 4099	1994 3380	
1961 2891	1987 2540	1931 3109	1984 2890	1973 2150	1942 2616	1954 3253	1997 4546	1949 4839	1995 4548	1952 3813	1945 3291	
1931 2845	1942 2503	1936 2929	1996 2874	1941 1908	1972 2057	1941 2878	1976 4355	1957 4554	1930 4501	1930 3347	1930 2625	
								1930 4240				
								1973 4217				
								1994 4204				
								1934 4192 1939 3535				
								1939 3335			1951 2286 1933 2172	
								1974 3300				
								1968 2968				
								1962 2830				
1953 1817	1930 1868	1976 1878	1992 2023	1952 1469	1976 1398	1953 1648	1933 2478	1940 2707	1935 3000	1936 2135	1983 1636	
1984 1808	1973 1862	1961 1834	1954 1941	1992 1463	1948 1396	1952 1566	1994 2351	1966 2700	1941 2975	1934 2097	1954 1616	
								1967 2451				
								1941 2440				
								1976 2404				
								1991 2333				
		1941 1556 1940 1468						1954 2321 1975 2284				
-								1973 2284				
								1942 2139 1				
								1936 2123 1				
1969 1449	1940 1497	1996 1398	1952 1394	1989 1107	1951 939	1962 1122	1949 1879	1932 2122 1	968 2021	1942 1329 1	979 1186	
1990 1409	1950 1468	1987 1384	1934 1304	1937 1081	1932 802	1938 1059	1940 1783	1992 2061 1	991 1949	1995 1277	950 1147	
1955 1336	1976 1460	1938 1364	1980 1198	1961 1037	1961 772	1976 1057	1952 1716	1946 2059 1	942 1783	1975 1215	942 1098	
		1952 1335						1985 2025 1				
		1949 1310						1969 1992 1			932 875	
		1937 1264						<u>1965 1983 1</u>			1931 872	
	1937 1300 1945 1264	1934 1258	1938 999 1944 976	1985 754 1995 740				1952 1938 1 1958 1812 1		1964 839 1958 834	1977 766 1958 710	
		1930 1184						1938 1812 1 1943 1719 1			1958 710	
								1971 1584				
		1945 1070						1951 1581			1992 443	
1943 900	1951 1067	1989 1030						1986 1437		1979 480	1978 442	
1939 815	1947 1040	1955 925	1945 792	1974 675	1943 482	1961 937	1996 1157	1978 1337	1990 1195	1961 378	1964 395	
1983 809	1957 984	1951 917	1986 758	1938 674	1955 470	1990 922	1931 1142	1935 1288	1931 1171	1992 331	1968 305	
1971 803			1955 745					1931 1285		1967 258	1961 283	
1932 737	1944 945		1997 742		1995 443	1971 748		1944 1237		1986 248	1982 260	
		1943 748				1950 744		1938 1220			1970 254	
1959 728 1933 715	<u>1935</u> 907 1974 814		1982 680 1978 596		1970 389 1971 362		<u>1944 952</u> 1985 910	<u>1955 1124</u> 1983 1116		<u>1978 190</u> 1971 186	<u>1967 247</u> 1966 246	
	1974 814 1959 773		1978 590		1971 302		932 851	1961 1068		1971 180	1900 240	
1989 530		1932 502			1939 319			1937 1045		1973 163		
	1939 645			1998 421	1935 314			1981 1012		1970 122		
1956 395	1932 598	1971 333	1933 544	1967 389	1962 258	1979 464	1988 736	1997 1010	1961 537	1984 112	1991 97	
1968 217	1933 586	1991 328	1939 415	1933 378	1979 242	1935 462	1971 721	1993 628 1	997 527	1972 109	1980 94	

1962	217	1969 489	1974 297	1932 381	1939 376	1983 228	1997 452 1	1950 558	1950 620 1970 501	1974 95	1989 90
1967	195	1956 326	1992 280	1972 380	1932 328	1990 218	1969 362 1	1935 524	1972 508 1976 452	1985 91	1974 85
1991	117	1967 250	1956 263	1974 373	1970 326	1993 104	1980 249	1972 469	1980 500 1993 262	1980 88	1985 77
1976	104	1968 195	1967 171	1977 223	1990 253	1956 99	1988 235 1	1980 359	1989 471 1983 172	1976 88	1984 76
1994	84	1972 195	1968 161	1956 171	1993 210	1985 94	1987 232	1970 334	1956 465 1977 118	1990 72	1973 68
1992	73	1994 182	1962 135	1962 114	1968 189	1980 78	1985 228	1989 214	1977 457 1986 75	199 63	1971 62
1974	71	1962 165	1975 122	1967 102	1994 137	1988 55	1989 132	1987 152	1996 454 1984 72	1983 54	1993 24
1981	62	1981 101	1982 109	1968 94	1956 116	1977 29	1956 125	1956 140	1990 443 1980 64	1989 49	1996 20
1975	61	1975 63	1997 88	1979 58	1962 72	1989 15	1993 67 1	1993 97	1987 407 1988 47	1996 21	1990 17
1972	15	1991 48	1972 78	1985 51	1971 2	1981 1	1977 17	1981 43	1984 264 1981 44	1981 11	1981 3
1982	7	1985 30	1981 35	1971 13	1981 2	1987 1	1981 1 1	1977 13	1970 189 1972 36	1988 6	1988 0
1985	0	1982 9	1985 0	1981 4	1977 1						

Appendix E

Possible Uses of Long-Range Weather outlooks in Water Resources (S. A. Changnon,Jr.)

Appendix F

Using NOAA's New Climate Outlooks In Operational Hydrology

Thomas E. Croley II

Journal of Hydrologic Engineering (1996)

Appendix G

Performance Measures Graphics for the WSE Implementation Guidelines (1995 Infrastructure and Water Use Levels)