Hydrogeologic Investigation of the Floridan Aquifer System Western Hillsboro Basin Palm Beach County, Florida

Technical Publication WS-8

South Florida Water Management District

Prepared by:

Michael W. Bennett, P.G. Paul F. Linton, P.E. E. Edward Rectenwald

South Florida Water Management District 3301 Gun Club Road West Palm Beach, FL 33406

EXECUTIVE SUMMARY

The purpose of this project was to provide hydrogeologic information on the Floridan Aquifer System (FAS) in the Western Hillsboro Basin, WS-8. This area has been identified as the site for a pilot aquifer storage and recovery system in both the *Central and Southern Florida Project Comprehensive Review Study* (USACE and SFWMD, 1999) and the *Lower East Coast Regional Water Supply Plan* (SFWMD, 2000). Hydrogeologic data obtained will also support future groundwater modeling efforts of the FAS, for which current data are limited. In particular, water level information from the upper portion of the lower FAS was found insufficient while attempting to calibrate past FAS models. Therefore, South Florida Water Management District (SFWMD) Contract C-9761 for \$999,915 was executed in November 1998 to install two wells at the site, consisting of a tri-zone FAS monitor well and a dual-zone test-production well. These wells were to provide data to evaluate the subsurface at the site for water supply development and ASR potential.

This report primarily describes the drilling, construction, and testing of the 24-inch diameter Class V exploratory well identified as EXW-1 at the Western Hillsboro site. This report presents data obtained during drilling and testing operations and summarizes analyses conducted. Well EXW-1 is the designation assigned by the Florida Department of Environmental Protection (FDEP) under Permit Number UC-153872-001. The exploratory well (EXW-1) was constructed on a SFWMD-owned right-of-way proximal to the SFWMD's S-39 water control structure on the Hillsboro Canal in the southwestern quarter of Section 19, Township 47 South, Range 41 East.

The scope of the investigation consisted of constructing and testing a FDEP permitted exploratory well. The exploratory well (EXW-1) was drilled to a total depth of 1,225 feet below pad level (bpl). It was completed into a single distinct hydrogeologic zone within the upper Floridan aquifer between 1,015 and 1,225 feet bpl.

The main findings of the exploratory drilling and testing program at this site are as follows:

- Lithologic information and geophysical logs obtained from EXW-1 indicate that soft nonindurated detritial clays, silts, and poorly indurated mudstones of the Hawthorn Group predominate from 205 to 985 feet bpl. These low permeable sediments act as confining units separating the FAS from the Surficial Aquifer System.
- The top of the FAS was identified at a depth of approximately 985 feet bpl, as defined by the Southeastern Geological Society Ad Hoc Committee on Florida Hydrostratigraphic Unit Definition (1986).
- Lithologic and geophysical logs, packer test results, and specific capacity results indicate moderate to good production capacity of the upper Floridan aquifer from 1,015 to 1,225 feet bpl.

- A productive horizon in the upper Floridan aquifer from 1,015 to 1,225 feet bpl yielded a transmissivity value of 60,620 gallons per day per foot, and a dimensionless storage coefficient of 9.8 x 10⁻⁵ based on a leaky aquifer model.
- Composite water quality sampling of EXW-1 indicates that chloride and total dissolved solids exceed potable drinking water standards, with chloride and total dissolved solid concentrations of 1,812 and 4,064 milligrams per liter, respectively.
- The fluid-type logs (e.g., flow, temperature) indicate good production from flow zones between 1,050 and 1,170 feet bpl and 1,190 to 1,210 feet bpl. Below 1,210 feet bpl, the productive capacity is limited suggesting lower permeable semiconfining units near the base of the proposed storage horizon.

TABLE OF CONTENTS

Executive Sum	ımary	i				
List of Figures	3	v				
List of Tables		vii				
Acknowledgen	nents	ix				
Introduction		1				
Backgro Scope	und	1				
Project I	Description	2				
Exploratory D	rilling and Well Construction	3				
Explorat	ory Well	3				
Hydrogeologic	: Framework	10				
Surficial Intermec Floridan	Aquifer System liate Confining Unit Aquifer System	10 11 14				
Hydrogeologic	Testing	15				
Formatic Geophys Water Q Packer T	on Sampling sical Logging uality Data fests	15 16 16 18				
Step-Dra	awdown Tests	21				
Aquifer	Performance Test					
Pressure	Analysis	29				
Summary		31				
References		32				
Appendix A:	Underground Injection Control Class V Permit for EXW-1	A-1				
Appendix B:	Casing Factory Mill Certificates and Deviation Survey Data	B-1				
Appendix C:	Geophysical Logs	C-1				
Appendix D:	Site Plan Map	D-1				
Appendix E: Lithologic Descriptions E						

Appendix F:	Primary and Secondary Drinking Water and Minimum Criteria Parameters	F-1
Appendix G:	Packer Test Drawdown and Recovery Data	G-1

LIST OF FIGURES

Figure 1.	Project Location Map2
Figure 2.	Well Pad Schematic4
Figure 3.	Well Completion Diagram for EXW-111
Figure 4.	Hydrogeologic Section for the Western Hillsboro Site12
Figure 5.	General Lithostratigraphy for the Western Hillsboro Site17
Figure 6.	Results from Step-Drawdown Test No. 1 for EXW-121
Figure 7.	Results from Step-Drawdown Test No. 2 for EXW-122
Figure 8.	Well Configuration of the Aquifer Performance Test23
Figure 9.	Time Series Plot of Aquifer Performance Test Drawdown Data from Wells EXW-1 and PBF-10R
Figure 10.	Time Series Plot of Aquifer Performance Test Water Level Data from the Lower Monitor Zones of Wells PBF-11 and PBF-12 during the Drawdown Phase of the APT
Figure 11.	Time Series Plot of Aquifer Performance Test Pumping Rate Data for the Circular Orifice Weir
Figure 12.	Time Series Plot of Aquifer Performance Test Recovery Data from Well PBF-10R
Figure 13.	Time Series Plot of Aquifer Performance Test Water Level Data from Wells PBF-11 and PBF-12 from the Recovery Period
Figure 14.	Time Series Plot of Background Water Levels for Wells PBF-10R, PBF-11, and PBF-12
Figure 15.	Log-Log Plot of Drawdown versus Time for Well PBF-10R28
Figure 16.	Results of Steady-State Model Simulation
Figure C-1.	Individual Log Traces from Geophysical Log Run 1C-4
Figure C-2.	Individual Log Traces from Geophysical Log Run 2C-5
Figure C-3.	Individual Log Traces from Geophysical Log Run 3C-6
Figure C-4.	Individual Log Traces from Geophysical Log Run 4C-7
Figure C-5.	Individual Log Traces from Geophysical Log Run 5C-8
Figure C-6.	Individual Log Traces from Geophysical Log Run 6C-9
Figure C-7.	Individual Log Traces from Geophysical Log Run 7C-10
Figure C-8.	Individual Log Traces from Geophysical Log Run 8C-11
Figure C-9.	Individual Log Traces from Geophysical Log Run 9C-12
Figure D-1.	Site Plan for Western Hillsboro BasinD-3

Figure D-2. Inset for the Western Hillsboro Basin Site Plan	D-4
Figure D-3. Wellhead As-Built for the Western Hillsboro Basin Site	D-5
Figure G-1. EXW-1 Packer Test 1 during Drawdown from 1,160 to 1,225 bpl	G-3
Figure G-2. EXW-1 Packer Test 1 during Recovery from 1,160 to 1,225 bpl	G-3
Figure G-3. EXW-1 Packer Test 2 during Drawdown from 1,015 to 1,150 bpl	G-4
Figure G-4. EXW-1 Packer Test 2 during Recovery from 1,015 to 1,150 bpl	G-4

LIST OF TABLES

Table 1.	FAS Monitor Intervals	1
Table 2.	Official Pressure Test on 24-Inch Casing String for Well EXW-1	8
Table 3.	Construction and Testing Activities Associated with EXW-1	13
Table 4.	Summary of the Geophysical Logging Program for EXW-1	18
Table 5.	Packer Test Water Quality Data from the Western Hillsboro Site	19
Table 6.	Composite Water Quality Data from the Western Hillsboro Site	26
Table 7.	Summary of Analytical Solutions	28

INTRODUCTION

Background

The purpose of this project was to provide hydrogeologic information on the Floridan Aquifer System (FAS) in the Western Hillsboro Basin. This area has been identified as the site for a pilot aquifer storage and recovery (ASR) system in both the *Central and Southern Florida Project Comprehensive Review Study* (Restudy) (USACE and SFWMD, 1999) and the *Lower East Coast Regional Water Supply Plan* (SFWMD, 2000). Hydrogeologic data obtained will also support future groundwater modeling efforts of the FAS for which current data are limited. In particular, water level information from the upper portion of the lower FAS was found insufficient while attempting to calibrate past FAS models. Therefore, South Florida Water Management District (SFWMD) Contract C-9761 in the amount of \$999,915 was executed in November 1998 to install two wells at the site, consisting of a tri-zone FAS monitor well and a dual-zone, test production well. These wells were to provide data to evaluate the subsurface at the site for water supply development and ASR potential.

The drilling contractor, Diversified Drilling Corporation of Tampa, Florida, mobilized to the site in November 1998. Three distinct zones of higher permeability within the FAS were identified during the drilling and testing of a research oriented test pilot hole. A tri-zone monitor well was then constructed using various diameter concentric casings cemented in place, resulting in the FAS monitor intervals indicated in **Table 1**.

Zone Identifier	Depth Interval (feet bpl ^a)	Hydrogeologic Units
PBF-10R	1,015 - 1,225	Upper Floridan Aquifer
PBF-11	1,515 - 1,670	Middle Floridan Confining Unit
PBF-12	2,135 - 2,260	Lower Floridan Aquifer

Table 1. FAS Monitor Intervals

a. bpl = below pad level

However, the results of drilling the tri-zone FAS monitor well (at a cost of approximately \$650,000) indicated that the middle zone of the FAS did not yield as much water as anticipated. Therefore, the proposed dual-zone production well was redesigned as a single-zone exploratory well conforming to Florida Department of Environmental Protection's (FDEP) Class V injection well standards.

Scope

This report primarily describes the drilling, construction, and testing of the 24-inch diameter Class V exploratory well identified as EXW-1 at the Western Hillsboro site. Also, the data obtained during drilling and testing operations and analyses conducted on the data are presented in this report.

Project Description

The Western Hillsboro site is located approximate 15 miles west of the Atlantic Ocean and approximately 7 miles west of the western boundary of the city of Boca Raton in unincorporated Palm Beach County, Florida. The exploratory well, EXW-1, was constructed on a SFWMD-owned right-of-way proximal to the SFWMD's S-39 water control structure on the Hillsboro Canal in the southwestern quarter of Section 19, Township 47 South, Range 41 East (**Figure 1**).

Figure 1. Project Location Map

On December 8, 1999, the FDEP's Underground Injection Control (UIC) group issued Permit Number UC 153872-001 to the SFWMD. This permit allowed for the construction of one Class V, Group 8, 24-inch outside diameter exploratory well at the Western Hillsboro site. A copy of the permit is provided in **Appendix A**.

Upon issuance of the UIC permit, the exploratory well was constructed to the same depth as the monitor zone identified as PBF-10R: 1,015 to 1,225 feet below pad level (bpl). Once completed, additional data gathering and analyses were conducted including a specific capacity and aquifer performance test (APT) to evaluate ASR potential and establish design considerations for a future pilot ASR facility at the site. The remaining portion of this report will focus on the hydrogeology, well drilling, construction, and testing of the FDEP-permitted exploratory well identified as EXW-1.

A change order to Contract C-9671 was executed on November 15, 1999, to drill and construct the 24-inch diameter exploratory well. On December 9, 1999, Diversified Drilling Corporation began construction of EXW-1. Drilling and testing of the exploratory well was completed on June 16, 2000, with the exception of the APT, which was conducted in November 2000.

EXPLORATORY DRILLING AND WELL CONSTRUCTION

Exploratory Well

Diversified Drilling Corporation began site preparation during mid-November, 1999. After minor clearing and rough grading of the site, the ground surface beneath the drill rig and settling tanks was lined with an impermeable high-density polyethylene (HDPE) liner, which was covered with 10-inches of granular fill to protect the liner. A two-foot thick temporary drilling pad was then constructed using crushed limestone. An earthen berm two-feet in height above pad level surrounded the perimeter of the rig and settling tanks. This earthen berm was constructed to contain drilling fluids and/or formation waters produced during well drilling, testing, and well construction activities (**Figure 2**). Four pad monitor wells were installed at the corners of the temporary drilling pad and water quality monitoring was performed on a weekly basis to ensure no releases of brackish water occurred during construction.

Lithologic (well cuttings), packer test, and borehole geophysical log data were used to determine the actual casing setting depths. The pilot hole was then reamed to specified diameters for the selected casing setting depths. Three concentric steel casings (42-, 36-, and 24-inch diameter) were used in the construction of the Floridan aquifer exploratory well (EXW-1).

Upon issuance of UIC Permit Number UC 153872-001 (**Appendix A**), Diversified Drilling Corporation initiated drilling activities for EXW-1. Drilling operations began on December 9, 1999, by advancing a 46-inch diameter borehole to a depth of 57 feet bpl. A caliper log was then conducted on the borehole to verify depths and to calculate cement volumes for subsequent cement grouting operations. A nominal 42-inch diameter, steel

Figure 2. Well Pad Schematic

casing was installed in the nominal 46-inch diameter borehole. The steel casing was American Society of Testing Materials (ASTM) A53, Grade B, with a 0.375-inch wall thickness. The annulus was grouted to land surface using 153 cubic feet (ft^3) of ASTM Type II, Portland neat cement (15.6 pounds per gallon). A factory mill certificate for the 42-inch diameter pit casing is provided in **Appendix B**.

After installing the 42-inch diameter pit casing, a nominal 10-inch diameter pilot hole was advanced from 57 to 210 feet bpl using the mud-rotary method. MV Geophysical Inc. of Fort Myers, Florida, geophysically logged the pilot hole on December 10, 1999. The logging suite included 4-arm caliper, natural gamma, dual induction laterolog combination, and spontaneous potential (SP) logs. The individual log traces are presented in **Appendix C**, **Figure C-1**.

Using well cuttings, geophysical log data, and existing site data, the base of the Surficial Aquifer System (SAS) was identified at approximately 210 feet bpl. The pilot hole was reamed to 210 feet bpl using a nominal 42-inch diameter staged bit reamer. The nominal 42-inch borehole was geophysically logged (caliper) on December 11, 1999, to verify depths and to calculate cement volumes for subsequent grouting operations (**Appendix C, Figure C-2**). The 36-inch diameter steel casing (ASTM A53, Grade B, and 0.375-inch wall thickness) was installed in the nominal 42-inch diameter reamed borehole. Once installed, the 36-inch diameter steel pipe was pressure grouted using 505 ft^3 of Portland neat cement. An additional stage (10 ft^3) of Type III Portland Neat cement was placed using the tremie method, bringing cement levels to the surface. Installation of

the 36-inch diameter surface casing was completed on December 13, 1999. The purpose of the surface casing is to prevent unconsolidated surface sediments from collapsing into the drilled hole, to isolate the SAS from brackish water contamination, and to provide drill rig stability during continued drilling operations. A factory mill certificate for the 36-inch diameter surface casing is provided in **Appendix B**.

With the surface casing installed, the pilot hole was advanced using the closed circulation mud rotary drilling method through the unconsolidated to semi-consolidated Pliocene-Miocene aged sediments and Eocene aged carbonates. Drilling operations through these sediments were completed to a depth of 1,225 feet bpl on January 6, 2000, with a minor loss of circulation from 1,200 to 1,205 feet bpl. No further drilling mud losses were noted below 1,205 feet bpl. MV Geophysical Inc. conducted a suite of geophysical logs within the nominal 10-inch diameter pilot hole from 210 to 1,225 feet bpl. The logging suite consisted of the following logs: x-y caliper, natural gamma, spontaneous potential, dual induction-laterolog combination, and borehole compensated sonic log (**Appendix C, Figure C-3**). A deviation survey for the nominal 10-inch diameter pilot hole is summarized in **Appendix B**.

Review of lithologic data (**Appendix E**) and geophysical logs from the subject borehole and from existing site data indicates that the top of the FAS occurs at a depth of approximately 985 feet bpl. However, the final 24-inch steel production casing was set at a depth of 1,015 feet bpl for the following reasons:

- At this depth, the overlying clays of the Hawthorn Group and carbonate mud stringers and fine quartz and phosphatic sands within the Basal Hawthorn Unit were isolated.
- The quartz and phosphate silt/sand component of the limestone unit between 985 and 1,015 feet bpl, identified by the drill cuttings and peaks on the natural gamma log, indicate that this interval is not productive and should be cased off to avoid potential operational difficulties should EXW-1 be repermitted in the future as an ASR well.
- The casing needed to be located in a competent, well-indurated rock unit to reduce undermining by erosion at its base as a result of natural and induced high velocity upward flow.
- At this depth, flow characteristics of the open hole interval could be evaluated for final selection of the potential ASR horizon. The fluid-type logs (e.g., flow, temperature) from a proximal monitor well indicate good production from flow zones between 1,050 and 1,205 feet bpl.

Therefore, on January 10, 2000, the nominal 10-inch diameter pilot hole was temporarily backfilled with 3/8-inch diameter crushed limestone gravel to approximately 1,000 feet bpl. The nominal 10-inch diameter pilot hole was reamed using a nominal 35-inch diameter staged bit reamer, completed to a depth of 1,015 feet bpl on January 28, 2000. The reamed borehole was conditioned and caliper logged (**Appendix C, Figure**)

C-4) and the 24-inch diameter production casing was installed (ASTM A53, Grade B, and 0.5-inch wall thickness). The factory mill certificate for the 24-inch diameter production casing is provided in **Appendix B**. Once the casing was installed to a depth of 1,015 feet bpl, approximately 20,000 gallons of fluid was circulated through the annular space for one hour. The purpose of this postconditioning water flush was to displace the heavy drilling mud that was previously required for borehole stabilization. This water flush reduces the potential mixing of grout and drilling mud of similar densities during grouting operations, reducing the risk of mud channels (annular voids).

Pressure grouting operations began on the morning of January 30, 2000, by installing a 2 1/16-inch diameter tremie pipe to 971 feet bpl. A volume of 178 barrels (850 bags at 94 pounds per bag) of ASTM C-150 Type II neat cement was then pumped during pressure grouting operations.

A temperature/gamma survey was conducted eight hours after cementing operations ceased. These surveys were used to identify the top of the cement within the annulus as a result of pressure grouting. A significant shift in the temperature gradient log and corresponding deflection in the temperature differential log occurred at 850 feet bpl (**Appendix C, Figure C-5**), suggesting that the top of the first stage is located at that depth.

Shortly after completing the temperature/gamma survey, 2-inch diameter steel tremie pipe was run into the annulus between the nominal 35-inch diameter borehole and the 24-inch steel diameter casing. This was done to verify the top of the primary cement stage at 850 feet bpl as inferred by the temperature log. While lowering the tremie pipe into the annulus, an obstruction was encountered at a depth of 550 feet bpl. Repeated attempts to lower the tremie pipe below 550 feet bpl failed. Upon removal of the tremie pipe from the annulus, it was discovered that the tremie pipe was plugged with greenish-gray silty clay. This suggests that a clay ring encroached into the annular space during casing installation, or that sediments from the Hawthorn Group swelled causing a localized plug in the annulus or a combination of these two mechanisms.

Subsequent attempts to jet through the obstruction at a depth of 550 feet bpl and below, using high-pressure flow (2,500 pounds per square inch [psi]) and various diameter (2-, 1¹/₄- and 1-inch diameter) steel tubing met with limited success. At this point, Diversified Drilling Corporation suggested the use of a positive-displacement down-hole pump to clear the obstruction within the annulus. This method was successful in washing and clearing the sediments from a portion of the annulus to a depth of 750 feet bpl. However, difficulties were encountered at a depth of 755 feet bpl when efforts were made to move the mud pump up the annulus. Sediments from the overlying formations or the unwashed sections (550 to 755 feet bpl) of the annulus apparently caved onto the downhole mud pump, causing it to bind within the annulus. Several attempts were made to circulate drilling mud through the mud pump to lift the sediments and circulate the debris back to surface. These efforts were unsuccessful and the down-hole mud pump and 2-inch diameter steel tubing could not be moved in either direction. During the course of circulating drilling mud and pulling on the steel tubing, the tubing separated at approximately 550 feet bpl. Diversified Drilling Corporation determined that retrieval of

these items would not be possible due to the weight of overlying sediments presently atop the down-hole mud pump and instability of the annulus within the 550 and 750 feet bpl interval.

Diversified Drilling Corporation suggested that the pump and steel tubing be abandoned in place, since the probability of retrieving these items was relatively low and additional efforts to retrieve them increased the risk of additional clogging of the annulus. The SFWMD staff agreed with Diversified Drilling Corporation that additional retrieval efforts were unlikely to be successful and unreasonable because retrieval effort could cause more borehole collapse. In addition, it was the SFWMD's opinion that the uncemented annulus would be located within the relatively impermeable sediments of the Hawthorn Group, which would provide a natural seal. Specifically, the clay that squeezed into the annulus from 550 to 850 feet bpl should provide an adequate seal to prevent upward migration of water stored should this well be repermitted in the future as a functional ASR well. A letter was sent to FDEP concerning this matter and concurrence was gained shortly thereafter.

Cementing operations resumed on March 1, 2000. The second stage of grouting, via the tremie method, was performed by setting a 2 1/8-inch tremie pipe in the annulus at 535 feet bpl. A volume of 510 ft³ of ASTM C-150 Type II neat cement was then pumped into the annulus. A temperature survey was conducted seven hours after the completion of cementing operations. This survey was used to identify the top of the cement within the annulus installed during the second grout stage. A significant shift in the temperature gradient log and corresponding deflection in the temperature differential log occurred at 240 feet bpl (**Appendix C**, **Figure C-6**). A hard tag was then conducted on March 2, 2000, using tremie pipe to verify the top of the second cement stage at 245 feet bpl. The tremie pipe was then set at 224 feet bpl to begin pumping the third stage of cement. A volume of 882 ft³ of ASTM C-150 Type II neat cement was then pumped into the annulus to bring cement levels to surface, completing grouting operations for the 24-inch diameter production casing.

A pressure test, witnessed by a FDEP representative, on the 24-inch diameter production casing was successfully completed on March 9, 2000. The wellhead was sealed at the surface with a temporary header to facilitate the test. Next, the well was filled with water and pressurized to approximately 100-psi with a high pressure pump. During the course of the 60-minute pressure test, the total pressure within the 24-inch diameter casing decreased 0.1 psi, representing a 0.1 percent decline - well within the test tolerance limit of \pm 5 percent (**Table 2**).

However, during the pressure test, the on-site FDEP representative identified a discrepancy concerning the pressure gauge's certification dates. The date of calibration on the pressure gauge was January 11, 2000, whereas the certificate itself was dated January 13, 2000. A written statement from the testing facility was faxed to the FDEP on March 14, 2000, describing the reason for the date discrepancy. The testing facility's description was sufficient to resolve this issue.

	-	Elapsed	Pressure	Delta	
	Time	Time	Reading	Pressure	
Date	(hour)	(minute)	(psi)	(psi)	Remarks
03/09/00	13:38	0	101.0	0.0	Start of Pressure Test
03/09/00	13:43	5	101.0	0.0	
03/09/00	13:48	10	100.9	0.1	
03/09/00	13:53	15	100.9	0.1	
03/09/00	13:58	20	100.9	0.1	
03/09/00	14:03	25	100.9	0.1	
03/09/00	14:08	30	100.9	0.1	
03/09/00	14:13	35	100.9	0.1	
03/09/00	14:18	40	100.9	0.1	
03/09/00	14:23	45	100.9	0.1	
03/09/00	14:28	50	100.9	0.1	
03/09/00	14:33	55	100.9	0.1	
03/09/00	14:38	60	100.9	0.1	End of Pressure Test - Total Pressure Change 0.1psi

Table 2.	Official	Pressure	Test on	24-Inch	Casing	String	for Wel	IFXW-1 ^a
	Onioiai	11000010	1001 011		ousing	oung	101 1101	

a. Recorded by Ed Rectenwald, SFWMD, and witnessed by Paul F. Linton (Engineer of Record), SFWMD, and Heidi Vandor, FDEP.

A cement bond log was conducted on March 10, 2000, to evaluate the bond quality between the annular cement and the 24-inch diameter production casing string. The recorded amplitude curve for this logging run infers that the 24-inch diameter casing is supported (cement and/or squeezed clays) with no discernible voids within the annular space (**Appendix C, Figure C-7**).

The rig and site were then prepared for reverse-air drilling procedures via open circulation. On March 22, 2000, Diversified Drilling Corporation began to drill out the cement plug from the base of the final casing string with a nominal 22-inch diameter bit. They completed drilling through the cement plug (a result of pressure grouting) on March 28, 2000. Then, they tripped back in with a nominal 10-inch bit and began to drill-out the temporary backfill material (3/8-inch diameter crushed limestone) from the original pilot hole via the open circulation, reverse-air technique. The pilot hole was redrilled to its original total depth of 1,225 feet bpl on March 29, 2000.

The production interval (1,015 to 1,225 feet bpl) was then developed by reverseair and natural flow techniques on March 30, 2000. The formation water was diverted through a series of 7,500-gallon settling tanks, then it was discharged into the Hillsboro Canal via a 12-inch diameter polyvinyl chloride (PVC) pipe equipped with a silt screen to minimize particulate matter being discharged. An in-line flowmeter was installed along the 12-inch discharge line to measure flow rates and total discharge volumes produced during well development of EXW-1. SFWMD personnel collected water quality data (three times daily) from the Hillsboro Canal during discharges produced from the exploratory well to comply with FDEP-issued National Pollutant Discharge Elimination System (NPDES) permit requirements. Sondes were used to collect temperature, pH, specific conductance, dissolved oxygen, and turbidity data during the discharges. These sondes were deployed 100 meters upstream from the discharge, at the point of discharge, and 800 meters downstream from the discharge. Water quality data were recorded prior to, during, and after discharging formation waters into the canal.

Geophysical surveys were conducted on March 31, 2000, to determine in situ borehole conditions prior to conducting packer tests. The nominal 10-inch pilot hole (1,015 to 1,225 feet bpl) logging suite consisted of the following: x-y caliper, natural gamma, SP, dual induction/laterolog combination, temperature, fluid resistivity, flowmeter (static and dynamic runs), and a borehole video survey. The logs are presented in **Appendix C, Figure C-8**. The borehole video survey was unsuccessful due to high particulate content within the fluid column but reran once the well was successfully developed.

Using the information provided by the geophysical logs and well cuttings, straddle-packer test intervals were selected. The first of two tests began on April 5, 2000 to a depth of 1,160 - 1,225, the second packer test was conducted on April 10, 2000 to a depth of 1,015 to 1,225 feet bpl. The purpose of these tests was to characterize the water quality and production capacities of specific intervals within the larger open hole interval (1,015 to 1,225 feet bpl). The set of two packer tests was completed on April 10, 2000 (see the **Packer Tests** section of this report for a description of the methods and a summary of the results).

Following the completion of packer testing operations, the pilot hole was reamed from 1,015 to 1,225 feet bpl via the reverse method using a nominal 22-inch diameter drill bit on April 12, 2000. The open hole section (1,015 to 1,225 feet bpl) was then developed using both reverse air and natural flow techniques through April 26, 2000. Geophysical surveys were conducted in the nominal 22-inch diameter open hole section of EXW-1 on April 27, 2000. The geophysical logging suite consisted of the following logs: x-y caliper, natural gamma, temperature, fluid resistivity, and a flow meter including both static and dynamic runs (**Appendix C, Figure C-9**).

On May 25, 2000, Diversified Drilling Corporation began well development of EXW-1 before starting a high flow rate step-drawdown test. The well was developed using a turbine pump with pump rates varying from 2,500 to 3,500 gallons per minute (gpm). The step-drawdown test was initiated after well development ceased and water levels within EXW-1 were allowed to recover to ambient conditions and stabilize. The step-drawdown test was initiated by pumping EXW-1 at successive increments of 500 gpm, ranging between 1,000 gpm to 3,000 gpm. The step-drawdown test yielded a specific capacity of 25.5 gpm per foot of drawdown (gpm/ft-dd) at a pump rate of 3,500 gpm (see the **Step-Drawdown Tests** section of this report for further details). The specific capacity results indicate that the production capacity of EXW-1 would not be sufficient to meet the lower threshold limits of 40 to 50 gpm/ft-dd at an anticipated withdrawal/injection rate of 3,500 gpm or 5 million gallons per day (mgd).

Based on the insufficient specific yields measured during the first step-drawdown test, well acidization of EXW-1 was conducted by HydroChem Industrial Services. On June 2, 2000, HydroChem rigged up to the acid line on the wellhead of EXW-1 and

Diversified Drilling Corporation prepared to pump the necessary volume of water. The open borehole section of EXW-1 was then acidified with 5,000 gallons of sulfuric acid (36 percent) without incident. All pumping associated with well acidization was completed on June 2, 2000. At no time during well acidization were positive pressure increases recorded at the wellhead. The acid was developed out by flushing it with fresh water from June 3-4, 2000, and neutralized with soda ash prior to surface water discharge in compliance with NPDES permit requirements.

A second step-drawdown test was then conducted on June 16, 2000. During the second step-drawdown test, EXW-1 was pumped at successive increments of 800 gpm, ranging between 2,000 gpm and 5,200 gpm. The results from step-drawdown test indicate that the production capacity of EXW-1 doubled to 50 gpm/ft-dd as a result of the well acidization. See the **Step-Drawdown Tests** section of this report for a description of the methods and summary of results.

After the second test, well construction was completed by removing the turbine pump and installing the permanent wellhead on EXW-1. **Figure 3** presents a construction schematic of the completed EXW-1. A summary of well construction and testing activities associated with EXW-1 is included in **Table 3**.

After construction was completed, EXW-1 was surveyed relative to permanent reference points by a Florida registered land surveyor, and located on a site plan map by latitude and longitude, and recorded in the public record (**Appendix D**). EXW-1 was left idle until a planned 72-hour APT could be conducted at the site.

HYDROGEOLOGIC FRAMEWORK

Two major aquifer systems underlie this site: the Surficial Aquifer System (SAS), the intermediate confining unit, and the Floridan Aquifer System (FAS) with the FAS being the focus of this test well program. These aquifer systems are composed of multiple, discrete aquifers separated by low permeable "confining" units that occur throughout the Tertiary/Quaternary aged sequence. **Figure 4** shows a hydrogeologic section underlying the Western Hillsboro site.

Surficial Aquifer System

The SAS extends from land surface (top of the water table) to a depth of 205 feet bpl. It consists of Holocene and Pliocene-Pleistocene aged sediments. The undifferentiated Holocene sediments occur from land surface to a depth of 10 feet bpl, and consist of unconsolidated orange to light gray, very fine to coarse grained quartz sands and shell fragments within a calcilutite matrix. The sediments from 10 feet to 110 feet in depth are composed primarily of yellowish gray, moderately indurated calcareous sandstone with intermittent shell beds 5 to 10 feet thick. A change in lithology to a yellowish-gray, moderately to well indurated biogenic limestone occurs below 110 feet bpl and continues to a depth of 205 feet bpl; this may be the Tamiami Formation. Low permeable, arenaceous calcilutite at 205 feet bpl forms the base of the SAS at this site. A significant

Figure 3. Well Completion Diagram for EXW-1

increase in the natural gamma ray activity below a depth 205 feet bpl suggests an increase in clay content and phosphate percentages with emissions above 30 American Petroleum Institute (API) units.

Intermediate Confining Unit

Below the SAS lies the intermediate confining unit, which extends from 205 to 985 feet bpl at this location. The Peace River and Arcadia Formations of the Miocene-Pliocene aged Hawthorn Group (Scott, 1988) act as confining units separating the FAS from the SAS. Lithologic information obtained from drill cuttings from EXW-1 indicates that soft nonindurated detritial clays, silts, and poorly indurated mudstones of the Hawthorn Group predominate from 205 to 985 feet bpl.

The signature of the compensated sonic log indicates a soft nonindurated high porosity clayey silt unit (interpreted to be the Peace River Formation) that extends from immediately below the 36-inch surface casing at 205 to 485 feet bpl with average travel times of approximately 120 microseconds per foot (μ sec/ft). Compressional wave travel times of approximately 120 μ sec/ft are typical of clay and silt units. The photoelectric log from PBF-10 (proximal monitor well) also supports a clayey-silt to fine sand composition

Figure 4. Hydrogeologic Section for the Western Hillsboro Site

Date	Description of Activities
11/15/99	Project initiated (Notice to Proceed)
11/20/99	Set up rig over EXW-1 and installed 4 pad monitor wells
12/09/99	Installed surface casing (55 ft; 42-inch diameter steel) at EXW-1
12/10/99	Drilled 10-inch diameter pilot hole to 210 feet bpl
12/11/99	Conducted geophysical logging of EXW-1 pilot hole to 210 feet bpl
12/12/99	Reamed pilot hole and installed 36-inch diameter steel casing to 205 feet bpl
01/06/00	Drilled 10-inch diameter pilot hole from 205 to 1,225 feet bpl
01/06/00	Conducted geophysical logging of EXW-1 pilot hole to 1,225 feet bpl
01/10/00	Temporarily backfilled pilot hole to 1,000 feet bpl with crushed limestone
01/28/00	Reamed pilot hole with 35-inch diameter bit to 1,015 feet bpl
01/28/00	Conducted geophysical logging of EXW-1 pilot hole to 1,015 feet bpl
01/30/00	Installed 24-inch diameter steel production casing to 1,015 feet bpl
01/30/00	Pressured grout - 850 bags at 94 pounds per bag neat cement
01/30/00	Ran temperature survey to verify top of cement at 850 feet bpl
03/01/00	Second stage of grouting completed
03/01/00	Ran temperature survey to verify top of cement at 240 feet bpl
03/01/00	Third stage of grouting completed to pad level
03/09/00	Conducted 100-psi pressure test of 24-inch diameter production casing
03/10/00	Ran cement bond log of the 24-inch diameter production casing
03/22/00	Drilled out cement plug (as a result of pressure grouting) within 24-inch diameter casing by reverse air method
03/29/00	Drilled out backfill with 10-inch diameter bit by reverse-air method to 1,225 feet bpl
03/30/00	Developed open hole interval by the reverse-air and natural flow techniques
03/31/00	Conducted geophysical logging of EXW-1 pilot hole to 1,225 feet bpl
04/05/00	Packer test was conducted from 1,160 to 1,225 feet bpl
04/10/00	Packer test was conducted from 1,015 to 1,150 feet bpl
04/12/00	Pilot hole was reamed with a 22-inch diameter drill bit
04/26/00	Developed open hole interval by the reverse air and natural flow techniques
04/27/00	Conducted geophysical logging of EXW-1 pilot hole to 1,225 feet bpl
05/25/00	Well development via a turbine pump between 2,500 to 3,000 gpm
05/25/00	Step drawdown test conducted at successive increments of 500 gpm, ranging between 1,000 and 3,000 gpm
06/02/00	Well acidization was conducted to the open hole section of EXW-1 using 5,000 gal. of sulfuric acid (36%)
06/03/00	EXW-1 was developed out by flushing it with fresh water
06/16/00	Step drawdown test conducted at successive increments of 800 gpm, ranging between 2,000 and 5,200 gpm
11/15/00	A 60-hour constant-rate discharge (3,050-gpm) test was conducted on an interval from 1,015 to 1,225 feet bpl

Table 3. Construction and Testing Activities Associated with EXW-1

of this interval with values of approximately 2 barnes per electron (b/e). Both the irregular shape of the x-y caliper trace and borehole diameter exceeding the bit size (nominal 10-inch) indicates a poorly consolidated interval. Qualitatively, the resistivity profile of the induction log also suggests a porous horizon whereby the medium resistivity curve (RILM) reads near the shallow resistivity curve (RLL3) as a result of drilling mud invading the porous sediments (see **Appendix C, Figure C-3**).

A change in lithology occurs below 485 feet bpl, which is identified by both a decrease in sonic travel times and natural gamma radiation (Arcadia Formation?). The interval from 485 to 915 feet bpl is composed of poorly indurated mudstones to wackestones. Thin, intermittent, high porosity, moderately indurated, carbonate units are identified by the sonic log from 485 to 915 feet bpl. These produce an irregular, spiked sonic trace with average sonic travel times of approximately 110 µsec/ft (see **Appendix C**, **Figure C-3**). The photoelectric log values from PBF-10 within this interval range between 3 and 4 b/e indicating a mixed carbonate lithology including a minor silt/sand component (Hallenburg, 1998). The natural gamma log below 485 feet bpl produces thin, intermittent, high gamma radiation peaks, associated primarily with intervals of high phosphate sand/ silt content. The sediments from 915 feet to 985 feet in depth are composed of yellowish to greenish gray, moderately indurated wackestone containing 25 to 35 percent nonindurated carbonate mud. These low permeable units form the lower boundary of the intermediate confining unit.

Floridan Aquifer System

The FAS consists of a series of Tertiary aged limestones and dolostones. The system includes permeable sediments of the lower Arcadia Formation, Suwannee Limestone, Ocala Limestone, Avon Park Formation, and the Oldsmar Formation. The Paleocene age Cedar Keys Formation with evaporitic gypsum and anhydrite forms the lower boundary of the FAS (Miller, 1986).

The top of the FAS, as defined by the Southeastern Geological Society Ad Hoc Committee on Florida Hydrostratigraphic Unit Definition (1986), coincides with the top of a vertically continuous permeable carbonate sequence. The Upper Floridan aquifer consists of thin, high permeable water bearing horizons interspersed within thick, low permeable units of early Miocene to middle Eocene aged sediments, including the Suwannee Limestone, Ocala Limestone, and the Avon Park Formation. At this site, the top of the FAS occurs at a depth of 985 feet bpl, which coincides with the basal Hawthorn unit (Reese and Memberg, 2000), part of the of the Arcadia Formation.

The lithology from 985 to 1,010 feet bpl is composed primarily of moderately indurated wackestones and packstones containing approximately 15-50 percent shell fragments and 10-15 percent quartz and phosphatic sands and silts. The sonic, induction, and caliper logs all indicate a competent, low porosity unit at 1,010 feet that continues to 1,025 feet bpl. The sonic travel time decreases to 90 μ sec/ft, resistivity increases to 70 ohm-meter (ohm-m), and the caliper log indicates a relatively gauged borehole (i.e.,

similar to the diameter of the drill bit) that corresponds to a well-indurated yellowish-gray packstone unit.

Sediments from 1,025 to 1,070 feet bpl consist of yellowish gray, moderately indurated wackestones interspersed with thin fine-grained calcitic sandstones. Sonicderived porosity values based on a limestone matrix (47.6 µsec/ft transit time) through this interval range between 40-45 percent. A change in lithology occurs at 1,070 feet bpl from a yellowish-gray, phosphatic wackestone to light-gray, clean, moderately indurated wackestone-packstone. This change at 1,070 feet bpl causes an attenuation of natural gamma activity, a slight increase in sonic travel times, and an enlarged borehole with increase water flow. These changes at 1,070 feet bpl may represent a flow zone that occurs near the top of a lithologic contact.

The light-gray moderately indurated wackestones and packestones continue from 1,070 feet to 1,170 feet bpl. Minor water production is identified by a deflection in the temperature log at 1,140 feet bpl. A light orange to yellowish gray, moderately to well indurated packstone unit is encountered from 1,170 to 1,205 feet bpl. A minor lost circulation interval was present at 1,205 feet bpl, necessitating the use of thinned mud to prevent additional mud loss by reducing the weight of the mud column. This resulted in no drill cutting returns at the surface. This continued to the total depth of the well, which was 1,225 feet bpl.

The fluid type logs (e.g., flow, temperature) indicate good production from flow zones between 1,050 and 1,170 feet bpl and 1,190 to 1,210 feet bpl. Below 1,210 feet bpl, the productive capacity is limited (as indicated by the fluid-type logs) suggesting lower permeable units near the base of the proposed storage horizon. Review of previous data from the FAS monitor well (PBF-10), located approximately 330 feet to the west of EXW-1, shows consistent lithologic and geophysical trends with depth indicating lower permeable sediments. The lower permeable sediments at 1,225 feet bpl marked the base of the production interval of EXW-1.

HYDROGEOLOGIC TESTING

Specific information was collected during the drilling program to determine the lithologic, hydraulic, and water quality characteristics of the FAS at the Western Hillsboro site. These data were to be used to design both the FAS monitor and exploratory wells for use in a site-specific aquifer test and for a long-term water level and water quality monitoring program.

Formation Sampling

During the drilling of the pilot hole, geologic formation samples (well cuttings) were collected, washed, and described on-site using the Dunham classification scheme (Dunham, 1962). Formation samples were collected continuously and separated based on their dominant lithologic or textural characteristics, and, to a lesser extent, color. If a massively bedded unit was encountered, composite samples were taken at 5-foot intervals.

The representative formation samples were split into two sets and distributed to the SFWMD and the Florida Geological Survey (FGS).

The lithostratigraphic column shown in **Figure 5** was constructed using the SFWMD's on-site drilling log for EXW-1 and PBF-10. A copy of the SFWMD's lithologic descriptions for well EXW-1 is provided in **Appendix E**.

Geophysical Logging

Geophysical logs were conducted in the pilot hole after each stage of drilling and before reaming of the borehole for casing installations. These logs were conducted to provide a continuous record of the physical properties of the subsurface formations and their contained fluids. These logs were later used to assist in the interpretation of lithology; to provide estimates of permeability, porosity, bulk density, and resistivity of the aquifer; and to determine the salinity of the groundwater using Archie's equation (Archie, 1942). In addition, the extent and degree of confinement of confining intervals can be discerned from the individual logs. The geophysical logs also provided data to determine the desired casing setting depths on the exploratory well. A cement bond log was conducted on the 24-diameter production casing for EXW-1 to assess the quality of the cement sheath as a result of grouting operations.

All geophysical log data were downloaded directly from the on-site logging processor in log American Standard Code for Information Interchange (ASCII) version 1.2 or 2.0 format. The geophysical log traces from log runs 1 through 9 for well EXW-1 are presented in **Appendix C.** The original geophysical logs and video surveys are archived and available for review at SFWMD's headquarters in West Palm Beach, Florida. A summary of the geophysical logging program conducted at this site is listed in **Table 4**.

Water Quality Data

Upon completion of well construction of EXW-1, background water quality samples were collected. The samples were analyzed to determine basic water quality characteristics (temperature, pH, and specific conductance) as well as primary and secondary drinking water standards (Chapter 62-550, Florida Administrative Code [F.A.C.]) and minimum criteria parameters (Chapter 62-520, F.A.C.).

On November 30, 2000, EXW-1 was purged until three borehole volumes were evacuated, or until field parameters of samples collected from the discharge pipe had stabilized. A limit of +/-5 percent variation in consecutive field parameter readings was used to determine chemical stability. The flow of water from the discharge point was adjusted to minimize the aeration and disturbance of the samples. Unfiltered and filtered samples were collected directly from the discharge point by SFWMD staff into a clean plastic bucket. An equipment blank was obtained prior to sampling to qualify sampling procedures. A Teflon bailer was then placed on a bailer stand where the sample bottles were filled slowly to minimize aeration. Replicate samples were collected from consecutive bailers (SFWMD, 1999).

Figure 5. General Lithostratigraphy for the Western Hillsboro Site (generalized geology is based on testing results from the on-site monitor well - PBF-10)

Run Number	Date	Logging Company	Elevation (ft NGVD) ^a	Logged Interval (feet bpl)	Caliper	Natural Gamma	Spontaneous Potential	Dual Induction	Sonic	Flowmeter	Temperature	Fluid resistivity	Cement Bond	Video
1	12/10/99	MV Geophysical	12.86	0-208	х	х	х	х						
2	12/11/99	MV Geophysical	12.86	0-210	х	х								
3	01/06/00	MV Geophysical	12.86	210-1,225	х	х	х	х	х					
4	01/28/00	MV Geophysical	12.86	207-1,015	х	х								
5	01/30/00	MV Geophysical	12.86	0-983		х					х			
6	03/01/00	MV Geophysical	12.86	0-701		х					х			
7	03/10/00	MV Geophysical	12.86	0-983									х	
8	03/31/00	MV Geophysical	12.86	0-1,229	х	х	х	х		х	х	х		х
9	04/27/00	MV Geophysical	12.86	900-1,225	х	х				х	х	х		

Table 4. Summary of the Geophysical Logging Program for EXW-1

a. ft NGVD = feet National Geodetic Vertical Datum, 1929

Once the samples were collected, the bottles were preserved, if necessary, and immediately placed on ice in a closed container and transported to the SFWMD's water quality laboratory. The samples were then shipped to a laboratory operated by ELAB, Inc. located in Ormond Beach, Florida. The samples were analyzed for primary and secondary drinking water standards and minimum criteria parameters using United States Environmental Protection Agency (USEPA) and/or Standard Method procedures. The results of these analyses are presented in **Appendix F**.

Packer Tests

A preliminary packer test on an open hole interval 1,160 to 1,225 feet bpl was successfully completed on April 5, 2000. A single packer with an open port at its base was set at 1,160 feet bpl. The single packer was connected to nonperforated, 4-inch inner diameter drill pipe that extended back to land surface. A 15-horsepower submersible pump was installed within the standpipe at 137 feet bpl. A 100-psi pressure transducer was set to 110 feet bpl and then connected to an electronic data recorder (Hermit 3000 data logger) to measure water-level changes during testing operations. The pressure transducer readings within the standpipe and water quality parameters (temperature, pH, and specific conductance) of the purged formation water were monitored for stability. These parameters were used to determine the quality of isolation of the test interval. The drawdown and recovery phases of the formal packer test on the 1,160 to 1,225 foot interval were successfully completed on April 6, 2000.

The results of the drawdown test indicated good production, with a specific capacity (SC) of 22.6 gpm/ft-dd. The specific capacity was calculated using **Equation 1**.

$$SC = Q/Drawdown$$

$$SC = 95 \text{ gpm}/(12.3 \text{ feet} - 8.1 \text{ feet})$$

$$SC = 22.6 \text{ gpm/ft-dd}$$
(1)

where

SC	_	Specific capacity
be	_	Speeme capacity
Q	=	Pumping rate in gpm as measured by an in-line flowmeter
Drawdown	=	Aquifer head loss in feet, which is the measured drawdown
		minus the pipe friction losses. The frictional loss coefficient
		was 0.70 feet per 100 feet of pipe for a 4-inch inside diameter
		pipe with a flow rate of 95 gpm (Appendix 13.K., Driscoll,
		1989). The pipe extended to 1,160 feet bpl resulting in a pipe
		frictional loss of 8.1 feet.

The productive nature of this interval enabled it to respond almost instantaneously to the limited applied pumping stress. The rapid reduction or addition of water within the standpipe, caused by the starting or stopping of pumping, induced a pressure wave into the formation. The response to this pressure wave as seen in the drawdown and recovery semi-log plots labeled PBF13-PT1D and PBF13-PT1R, respectively, masks its true drawdown and recovery responses. Therefore, no formal curve matching techniques were used to determine the transmissivity of this interval. These time series plots are provided in **Appendix G, Figure G-1 and G-2**.

Shortly before the end of the drawdown phase for Packer Test 1, a composite water sample was taken from the discharge point and field water quality parameters were measured. The results were as follows: temperature was 23.91 degrees Celsius ($^{\circ}$ C); specific conductance was 4,600 micromhos per centimeter (µmhos/cm); and pH was 7.57 standard units (s.u.). The composite water samples were submitted to the SFWMD's Water Quality Laboratory for major cation/anion/total dissolved solids (TDS) analysis. The analytical results are present in **Table 5**.

Table 5. Packer Test Water Quality D	Data from the Western Hillsboro Site
--------------------------------------	--------------------------------------

			Cations (mg/L) ^b			An	ions (mg/L	_) ^c		Field Par	ametei	rs	
ldentifier ^a	Depth Interval (feet bpl)	Sample Date	Na ⁺	K⁺	Ca ²⁺	Mg ²⁺	CI ⁻	Alkalinity as CaCO ₃	SO4 ²⁻	TDS	Specific Conductivity (µmhos/cm)	Temp (^o C)	рН (s.u.)
EXW-1PT#2	1,015-1,150	04/10/00	1,228.1	45.8	157.7	182.3	2,336.3	131.6	734.0	5,110	8,223	23.82	7.52
EXW-1PT#1	1,160-1,225	04/05/00	722.6	30.9	103.2	117.1	1,287.6	125.0	397.9	2,932	4,600	23.91	7.57

a. PT = packer test

b. mg/L = milligram per Liter; Na = sodium; K = potassium; Ca = calcium, Mg = magnesium

c. Cl = chloride; CaCO₃ = calcium carbonate; SO₄ = sulfate, TDS = total dissolved solids

Upon completion of the first packer test, Diversified Drilling Corporation tripped the packer assembly out of the hole and reconfigured it for the second test. On April 7, 2000, Diversified Drilling Corporation installed the newly configured packer assembly and reinflated the single packer set at 1,150 feet bpl. The packer assembly consisted of 20 feet of slotted 4-inch inner diameter pipe connected to an 8 1/4-inch diameter packer. The remaining portion of drill stem that extended back to land surface consisted of nonperforated, 4-inch inner diameter drill pipe. A 15-horsepower submersible pump was installed within the standpipe at a depth of 100 feet bpl. A 100-psi pressure transducer was set to 90 feet bpl and then connected to an Hermit 3000 data logger, an electronic data recorder, to measure water level changes during testing operations. The 24-inch diameter steel casing set at 1,015 feet bpl formed the upper limit of the test interval. A preliminary test on the 1,015 to 1,150 foot bpl interval began the afternoon of April 7, 2000. The pressure transducer readings within the standpipe and water quality parameters (temperature, pH, and specific conductance) of the purged formation water were again monitored for stability. However, water quality indicators would not stabilize during the initial drawdown/pumping phase. A decision was made to stop the preliminary test and allow Diversified Drilling Corporation time to develop this interval over the weekend and begin preliminary testing on Monday, April 10, 2000.

Both the drawdown and recovery phases of the preliminary test were successfully completed during the afternoon of April 10, 2000. The water quality parameters and water levels in the standpipe stabilized during the initial pumping phase. Pumping ceased and water levels were allowed to recover to static conditions. The formal packer test was successfully completed on the same day. Drawdown data indicate relatively good production from the interval tested, yielding a specific capacity of 10.9 gpm/feet-drawdown. The SC was calculated using the following method:

$$SC = Q/Drawdown$$

$$SC = 105 \text{ gpm}/(18.0 \text{ feet} - 8.4 \text{ feet})$$

$$SC = 10.9 \text{ gpm/ft-dd}$$
(1)

where

SC	=	Specific capacity
Q	=	Pumping rate in gpm as measured by an in-line flowmeter
Drawdown	=	Aquifer head loss in feet, which is measured drawdown minus
		the pipe friction losses. The friction loss coefficient is 0.73 feet
		per 100 feet of pipe for a 4-inch inside diameter pipe with a
		flow rate of 105 gpm (Appendix 13.K., Driscoll, 1989). The
		pipe extended to 1,150 feet bpl, resulting in a pipe frictional
		loss of 8.4 feet.

The productive nature of this interval also enabled it to respond almost instantaneously to a limited applied pumping stress. The rapid reduction or addition of water within the standpipe, caused by the starting or stopping of pumping, induced a pressure wave into the formation. The response to this pressure wave as seen in the drawdown and recovery semi-log plots (**Figures G-3** and **G-4** in **Appendix G**) masks its true drawdown and recovery responses. Therefore, no formal curve matching techniques were used to determine the transmissivity of this interval.

Shortly before the end of the drawdown phase for Packer Test 2, a composite water sample was taken from the discharge point and field parameters measured. The field determined water quality results are as follows: temperature, 23.82° C; specific conductance, 8,223 µmhos/cm; and pH 7.52 s.u. The composite samples were submitted to the SFWMD's Water Quality Laboratory for major cation/anion/TDS analysis. The analytical results are reported in **Table 5**.

Step-Drawdown Tests

On May 25, 2000, Diversified Drilling Corporation began well development of EXW-1 before starting a high volume step-drawdown test. The well was developed via a turbine pump with pump rates varied between 2,500 to 3,000 gpm. The step-drawdown test was initiated after well development ceased and water levels within EXW-1 were allowed to recover to ambient conditions. The step-drawdown test was initiated by pumping EXW-1 at successive increments of 500 gpm, ranging between 1,000 gpm to 3,500 gpm. The specific capacity results of the first step-drawdown test are shown on **Figure 6**.

Figure 6. Results from Step-Drawdown Test No. 1 for EXW-1

Based on drawdowns and elevation of the pump and length of drop pipe within EXW-1, the higher pump rates (3,500 to 4,000 gpm) could not be achieved. However, the specific capacity results at the slightly lower pump rates indicate that the production capacity of EXW-1 would not be sufficient to meet the lower threshold limits of 40 to 50 gpm per foot of drawdown at an anticipated withdrawal/injection rate of 3,500 gpm or 5 mgd. Based on the unfavorable yields from the step-drawdown test, well acidization of EXW-1 was conducted by HydroChem Industrial Services of Jacksonville, Florida.

Following well acidization, a second step-drawdown test was then conducted on June 16, 2000. During the second step-drawdown test, EXW-1 was pumped at successive increments of 800 gpm, ranging between 2,000 gpm and 5,200 gpm. The results from the second step-drawdown test (**Figure 7**) indicate that the production capacity of EXW-1 doubled to approximately 50 gpm/ft-dd as a result of the well acidization. After the test, well construction was completed and the well was left idle until conditions were suitable to conduct a large-scale aquifer performance test.

Figure 7. Results from Step-Drawdown Test No. 2 for EXW-1

Aquifer Performance Test

An APT was conducted to determine the hydraulic performance of a proposed ASR horizon (1,015 to 1,225 feet bpl) within the upper Floridan aquifer at the Western Hillsboro site. The principle factors of aquifer performance, such as transmissivity and storage coefficients, can be calculated from the drawdown and/or recovery data obtained from the proximal monitor well, PBF-10R, completed in the same interval. If the aquifer tested is semiconfined, the hydraulic parameter of leakance of the semipervious layer(s) can also be determined.

A 60-hour constant-rate discharge (3,050-gpm) test was conducted on an interval from 1,015 to 1,225 feet bpl. **Figure 8** shows the well configuration of the FAS monitor wells (PBF-10R, PBF-11, PBF-12, and EXW-1) used in the APT. The 60-hour drawdown phase was followed by a 72-hour recovery period, during which water levels were allowed to return to background condition.

A vertical turbine pump was positioned atop the test-production well on November 15, 2000, with 12-inch diameter intake pipe installed to 145 feet below top of casing. This depth was chosen based on preliminary data that indicated low to moderate drawdowns would occur. The wellhead was reinstalled with appurtenances consisting of a shut-off

Figure 8. Well Configuration of the Aquifer Performance Test

valve, discharge pressure gauge, and a wellhead pressure gauge. A 16-inch diameter PVC discharge line was connected to the wellhead. A 16-inch diameter circular orifice weir with a 12-inch diameter orifice plate was used to measure discharge rates during pumping, verified by an in-line flowmeter. A pressure transducer was installed on the orifice weir to record discharge rates during the pump test at 2-minute intervals. Additional pressure transducers were installed on/in both the test-production (EXW-1) and monitor wells (PBF-10R, PBF-11, and PBF-12) and connected to a Hermit 3000 (Insitu, Inc) data logger via electronic cables. The transducers and data logger were used to measure and record water level changes at predetermined intervals during testing operations.

On November 15, 2000, a specific-capacity test was conducted to determine an appropriate pumping rate for the planned 72-hour drawdown test. Once completed, water levels were allowed to recover to static conditions. Later that day, the drawdown phase of the APT started by initiating pumping of EXW-1, located 330 feet east of the FAS monitor wells. The pumping rate was 3,050 gpm. During the drawdown phase, water levels and pump rates were continuously measured and recorded by the installed electronic instruments. Pumping continued uninterrupted for the next 60 hours, completing the drawdown phase on November 18, 2000. The drawdown phase of the APT was limited to 60 hours instead of the planned 72 hours. This was a result of elevated specific conductance of the surface water within the Hillsboro Canal; 800 meters downstream from the point of formation water discharges. The NPDES permit stipulated specific conductance within the Hillsboro Canal could not exceed 1,250 μ mhos or 50 percent above background at the edge of an 800-meter mixing zone. Within 60 hours after pumping began, specific conductance increased to the specified limit, requiring the premature ending of the pumping portion of the test.

Semi-log plots of the drawdown data for both the test production well (EXW-1) and corresponding monitor well (PRB-10R) are shown in **Figure 9**. Maximum drawdowns in EXW-1 and PBF-10R were 79.8 feet (34.5 psi) and 28.9 feet (12.5 psi), respectively.

Figure 9. Time Series Plot of Aquifer Performance Test Drawdown Data from Wells EXW-1 and PBF-10R (1,015 to 1,225 feet bpl)

Time series plots of water level changes during the drawdown phase for the other two FAS monitor zones (PBF-11 and PBF-12) and barometric pressure data are included in **Figure 10**. The maximum water level change in PBF-11 during pumping was recorded at -1.3 feet (-0.6 psi) with PBF-12 water level fluctuations attributed to tidal loading and changes in atmospheric pressure (i.e., barometric effect).

Discharge data from the 16-inch diameter, circular orifice weir acquired during the pumping phase of the APT are shown in **Figure 11**. **Figure 11** shows minor fluctuations in the pump rate (less than $\pm/-5$ percent) during the course of the APT. These fluctuation were small enough to be inconsequential to the overall test results.

After approximately 24-hours of pumping, samples were taken from the discharge pipe for major cation/anion analyses. Before groundwater sampling, the field parameters of samples collected from the discharge pipe had stabilized. A limit of +/-5 percent variation in consecutive field parameter readings was used to determine chemical stability. Unfiltered and filtered samples were collected directly from the discharge point into a Teflon bailer. The bailer was then placed on a bailer stand where the sample bottles were filled slowly to minimize aeration. Duplicate samples were collected by sampling from consecutive bailers. Sample splits were collected from the same bailer.

Figure 10. Time Series Plot of Aquifer Performance Test Water Level Data from the Lower Monitor Zones of Wells PBF-11 and PBF-12 during the Drawdown Phase of the APT

Figure 11. Time Series Plot of Aquifer Performance Test Pumping Rate Data for the Circular Orifice Weir

Once samples were collected, the bottles were preserved and immediately placed on ice in a closed container and transported to the SFWMD's water quality laboratory. The samples were then analyzed for major cation and anions using USEPA and/or Standard Method procedures (SFWMD, 1999). The results of the cation/anion analyses for EXW-1 are listed in **Table 6**.

			Cations (mg/L) ^a				An	ions (mg/L	_) ^b		Field Parameters		rs
	Depth										Specific		
	Interval	Sample						Alkalinity			Conductivity	Temp	рН
Identifier	(feet bpl)	Date	Na+	K+	Ca ²⁺	Mg ²⁺	CI	as CaCO ₃	SO42-	TDS	(µmhos/cm)	(°C)	(s.u.)
EXW-1	1015-1225	11/16/00	1,020.0	37.4	139.0	143.0	1,812.0	141.2	560.6	4,064	6,587	23.78	7.17

Tahlo	6 Com	nnsita	Water	Quality	Data	from	the '	Western	Hillshoro	Site
lable	0. COIII	posite	vvaler	Quality	Dala	nom	uie	vvestern	HIIISDOLO	Sile

a. Na = sodium; K = potassium; Ca = calcium, Mg = magnesium

b. $CaCO_3$ = calcium carbonate; SO_4 = sulfate, TDS = total dissolved solids

Before pumping stopped, the data loggers were reconfigured to record the recovery data. The pump was then manually stopped and water levels were allowed to recover to static condition. The recovery phase of the APT continued for 48 hours, ending on November 20, 2000. The recovery data for the pumped monitor zone (PBF-10R) is shown in **Figure 12**. Water level fluctuations during the recovery period for the lower monitor intervals (PBF-11 and PBF-12) and barometric pressure are shown in **Figure 13**. Electronic copies of the original drawdown, recovery, and manometer data for this APT are archived and available for review at the SFWMD headquarters in West Palm Beach, Florida.

Figure 12. Time Series Plot of Aquifer Performance Test Recovery Data from Well PBF-10R

Following the 72-hour recovery phase, background water level data was collected for 7 days (November 21, 2000, to November 27, 2000) from the three monitor FAS horizons (PBF-10R, PBF-11, and PBF-12) to discern tidal and barometric effects. Time series plots of background water level data from the three FAS monitor zones and barometric pressures are included in **Figure 14**.

A log/log plot of drawdown versus time for PBF-10R is shown in **Figure 15**. The shape of the drawdown curve is indicative of a leaky-type aquifer. A leaky (semiconfined)

Figure 13. Time Series Plot of Aquifer Performance Test Water Level Data from Wells PBF-11 and PBF-12 from the Recovery Period

Figure 14. Time Series Plot of Background Water Levels for Wells PBF-10R, PBF-11, and PBF-12

aquifer is defined as an aquifer that loses or gains water (depending on the pressure gradients) through a semiconfining unit (aquitard). If a semiconfining unit is composed of a thick layer of poorly indurated, high porosity sediments, it may provide water to the pumping well.

Three different analytical solutions were applied to the drawdown data collected during the APT to determine transmissivity and the storage coefficient of the proposed ASR horizon at the Western Hillsboro site. The solutions used were Theis (1935), Hantush (1960), and Moench (1985). The analytical results from each method are listed in **Table 7**.

Figure 15. Log-Log Plot of Drawdown versus Time for Well PBF-10R

Analytical Method	Transmissivity (gpd/feet)	Storativity	βα	r/B ^b
Theis,1935 (Confined)	83,470	9.776 E-05	NA ^c	NA
Hantush, 1960 (Leaky)	60,620	9.776E-05	0.10	NA
Moench, 1985 (Leaky)	75,830	1.147E-04	0.10	0.16

Table	7.	Summar	/ of	Anal	vtical	Solutions
TUDIC	•••	Gammar		7 11 101	yuoui	Conditionio

a. β storage factor

b. r/B = Leakage factor

c. NA = Not applicable

The Hantush (1960) analytical model appears to best represent the hydraulic conditions present within the upper Floridan aquifer based on the lithologic character of the overlying and underlying units, water level declines noted in PBF-11, and the resulting drawdown curve. The Hawthorn Group rests above the production interval, which is composed of approximately 800 feet of effectively impermeable clay layers interbedded with low permeable carbonate units. However, a monitor zone located above the test

interval was not available for monitoring to quantify the contribution from the overlying confining units. The underlying sediments at this site are composed of highly porous (25 percent to 45 percent) mudstones to wackestones that have the potential to supply additional water to the pumping well. The proximal FAS monitor well (PBF-11) completed below the test interval (1,515 to 1,670 feet bpl) was monitored during the APT to quantify the relative contribution of the underlying semiconfining units. During the pump test, water levels in PBF-11 declined a maximum of 1.3 feet (-0.6 psi) (**Figure 10**). This indicates that the low permeable unit below the production interval of EXW-1 is semiconfining in nature and additional water may be derived from it and lower units during pumping. Water level fluctuations in PBF-12 (2,135 to 2,260 feet bpl) during pumping are attributed to diurnal tidal and barometric pressure changes.

Hantush (1960) derived an analytical solution for predicting water level displacements in response to pumping in a leaky confined aquifer, assuming storage in the aquitard(s). Other assumptions related to this solution can be found in Hantush (1960). The production interval in the upper Floridan aquifer from 1,015 to 1,225 feet bpl yielded a transmissivity value of 60,620 gpd/foot and a storage coefficient of 9.8 x 10^{-5} based on the Hantush (1960) leaky aquifer model (**Table 7**).

Pressure Analysis

A three-dimensional, steady state, finite difference model, MODFLOW, previously developed by SFWMD for the Lower East Coast Planning Area (encompassing Miami-Dade, Broward, and Palm Beach counties), was used in a local pressure analysis (Fairbank, 1999). The horizontal resolution of the model is one square mile with vertical discretization consisting of nine layers representing the following hydrogeologic units:

- Layer 1 Surficial Aquifer System (used as an upper boundary)
- Layer 2 Hawthorn Group (low permeability unit)
- Layer 3 Upper Floridan aquifer (upper flow zone Flow Zone 1)
- Layer 4 Upper Floridan aquifer (interaquifer confining unit)
- Layer 5 Upper Floridan aquifer (lower flow zone Flow Zone 2)
- Layer 6 Middle confining unit of the FAS
- Layer 7 Lower Floridan aquifer (upper flow zone Flow Zone 3)
- Layer 8 Lower Floridan aquifer (lower permeable units)
- Layer 9 Lower Floridan aquifer (Boulder Zone used as a lower boundary)

This model was used to evaluate water level (pressure) changes as a result of simulating injecting water into EXW-1 (the upper Floridan aquifer) at a rate of 5 mgd. The results of the steady-state model stimulation are shown in **Figure 16**.

Figure 16. Results of Steady-State Model Simulation

The model results show a net increase of approximately 8 feet within the production interval (1,015 to 1,225 feet bpl - layer 3) in the model cell where the 5-mgd injection rate is simulated. The pressure changes within all the model layers, under and above the injection cell are as follows:

- Layer 1 Surficial Aquifer System (upper boundary) negligible to no simulate effect
- Layer 2 Hawthorn Group (low permeability unit) less than 0.75 feet
- Layer 3 Upper Floridan aquifer (upper flow zone Flow Zone 1) 7.7 feet
- Layer 4 Upper Floridan aquifer (interaquifer confining unit) 6.5 feet
- Layer 5 Upper Floridan aquifer (lower flow zone Flow Zone 2) 5.5 feet
- Layer 6 Middle confining unit of the FAS 3.2 feet
- Layer 7 Lower Floridan aquifer (upper flow zone Flow Zone 3) 0.75 feet
- Layer 8 Lower Floridan aquifer (lower permeable units) less than 0.2 feet
- Layer 9 Lower Floridan aquifer (Boulder Zone used as a lower boundary)

Based on the simulated head changes in Layer 7, the layer that represents the interval containing water with TDS concentrations greater than 10,000 milligrams/Liter (mg/L), continuous long-term injection has a net effect of less than 1 foot. Therefore, the simulated effects suggest the potential for upconing of poorer quality water is limited. The simulated distribution for the various layers (hydrogeologic units) do not indicate pressure increases sufficient to induce horizontal or vertical fracture within the injection horizon or overlying/underlying confining units. The pressure required to fracture a formation is a function of the unconfined strength of the material that makes up the aquifer and the confining pressure (overburden pressure). Given the depth of even the upper formation, there is considerable confining pressure to resist fracturing. An injection pressure of greater than 1,015 psi would be necessary to overcome overburden stresses (1 psi per foot of depth multiplied by 1,015 feet from the top of production horizon at the site) to induce a horizontal fracture. A pressure of approximately 550 psi (1,000 feet multiplied by 0.55 psi per foot of depth) would be required to initiate a vertical fracture (Howard and Fast, 1970). Based on drawdown data from the 60-hour APT with a pump rate of 3,050 gpm, the maximum pressure reduction observed was 34.5 psi within the production well (EXW-1). The pressure reduction during pumping from static in the corresponding monitor well (PBF-10R) located 330 to the west was 12.1 psi. Since, the injection zone is a semiconfined, fully saturated aquifer, the pressure change due to injection should be the same as the pressure change that would result from withdrawal, albeit a rise instead of a drawdown.

SUMMARY

- A Class V, Group 8, 24-inch outer diameter exploratory well at the Western Hillsboro site was successfully constructed and tested in accordance with FDEP Permit Number UC 153872-001.
- Lithologic information and geophysical logs obtained from EXW-1 indicates that soft nonindurated detritial clays, silts, and poorly indurated mudstones of the Hawthorn Group predominate from 205 to 985 feet bpl. These low permeable sediments act as confining units separating the FAS from the SAS.
- The top of the FAS was identified at a depth of approximately 985 feet bpl, as defined by the Southeastern Geological Society Ad Hoc Committee on Florida Hydrostratigraphic Unit Definition (1986).
- Lithologic and geophysical logs, packer test results, and specific capacity results indicate moderate to good production capacity of the upper Floridan aquifer from 1,015 to 1,225 feet bpl.
- A productive horizon in the upper Floridan aquifer from 1,015 to 1,225 feet bpl yielded a transmissivity value of 60,620 gpd/foot, and a dimensionless storage coefficient of 9.8 x 10^{-5} based on a leaky aquifer model.

- Composite water quality sampling of EXW-1 indicate that chloride and TDS exceed potable drinking water standards with chloride and TDS concentrations of 1,812 and 4,064 mg/L, respectively.
- The fluid-type logs (e.g., flow, temperature) indicate good production from flow zones between 1,050 and 1,170 feet bpl and 1,190 to 1,210 feet bpl. Below 1,210 feet bpl, the productive capacity is limited, as indicated by the fluid-type logs, suggesting lower permeable semiconfining units near the base of the proposed storage horizon.

REFERENCES

- Archie, G.E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. *A.I.M.E. Transaction* 146:54-61.
- Driscoll, F.G. 1989. *Groundwater and Wells*. Second Edition, Johnson Filtration Systems Inc., St. Paul, Minnesota. 1089 p.
- Dunham, R.J. 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (ed), Classification of Carbonate Rocks, Memoir, *AAPG* 1:108-121.
- Fairbank, P. 1999. *Documentation for the Lower East Coast Floridan Aquifer Model*. South Florida Water Management, West Palm Beach, Florida.
- Hallenburg, J.K. 1998. *Standard Methods of Geophysical Formation Evaluation*. CRC Press, Lewis Publishing, Boca Raton, Florida.
- Hantush, M.S. 1960. Modification of the theory of leaky aquifers. *Journal of Geophysical Research* 65(11):3713-3725.
- Howard, G.C., and C.R. Fast. 1970. *Hydraulic Fracturing*. Society of Petroleum Engineers, New York, NY.
- Miller, J.A. 1986. *Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina*. Professional Paper 1403-B, United States Geologic Survey.
- Moench, A.F. 1985. Transient flow to a large-diameter well in an aquifer with storative semi-confining layers, *Water Resources Research* 21(8):1121-1131.
- Reese, R.S., and S.J. Memberg. 2000. *Hydrogeology and the Distribution of Salinity in the Floridan Aquifer System, Palm Beach County, Florida*. Investigation Report 99-4061, Water Resources, United States Geological Survey.
- Scott, T.M. 1988. *The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida*. Bulletin 59, Florida Geological Survey.
- SFWMD. 1999. Comprehensive Quality Assurance Plan. South Florida Water Management District, West Palm Beach, FL.

- SFWMD. 2000. Lower East Coast Regional Water Supply Plan. South Florida Water Management District, West Palm Beach, FL.
- Southeastern Geological Society Ad Hoc Committee of Florida Hydrostatgraphic Unit Definition. 1986. *Hydrogeological Units of Florida*. Special Publication 28, Bureau of Geology, Florida Department of Natural Resources, Tallahassee, FL.
- Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. *Am. Geophys. Union Trans* 16:519-524.
- USACE and SFWMD. 1999. Central and Southern Florida Project Comprehensive Review Study, Final Integrated Feasibility Report and Programmatic Environmental Impact Statement. United States Army Corps of Engineers, Jacksonville District, Jacksonville, FL, and the South Florida Water Management District, West Palm Beach, FL.

APPENDIX A UNDERGROUND INJECTION CONTROL CLASS V PERMIT FOR EXW-1

Department of **Environmental Protection**

Jeb Bush Governor

DEC 0 8 1999

Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

David B. Struhs Secretary

NOTICE OF PERMIT

Frank Finch Executive Director South Florida Water Management District 3301 Gun Club Road West Palm Beach, FL 33406

CERTIFIED MAIL Z220324375 RETURN RECEIPT REQUESTED

> PALM BEACH COUNTY UIC - South Florida Water Management District Site 1 Pilot Study File No: 153872-001-UC Class V Group 8 Exploratory Well EXW-1

Dear Mr. Finch:

Enclosed is Permit Number 153872-001-UC, to construct one Class V, Group 8, 24-Inch outside diameter (OD) exploratory well, EXW-1, for South Florida Water Management District, West Palm Beach, Palm Beach County, Florida, issued pursuant to Section(s) 403.087, Florida Statutes (FB) and Florida Administrative Codes (FAC) 62-4, 62-520, 62-522, 62-528, 62-560, 62-600, 62-601 and 62-660.

Any party to this Order (permit) has the right to seek judicial review of the permit under Section 120.65, FS, by the filing of a Notice of Appeal under Rule 9.110 of the Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 3900 Commonwealth Boulevard, Mail Station 35, Tailahassee, Florida 32399-3000; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Count of Appeal. The Notice of Appeal must: be fied within 30 days after this notice is filed with the Clerk of the Department.

Should you have any questions, please contact Jose Calas, PE, or Heidi Vandor, PG, of this office, telephone (561) 681-6891 or (561) 681-6683, respectively.

Executed in West Palm Beach, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

2/8/99 Melssa L. Meekei

Director of District Management Southeast District

MLMULEHWE

Francine Folkes, OGC/TLH Stave Anderson, SFWND Heidi Vandor, FDEP/WPB 001

Richard Deverling, FDEP/TLH Tom Lefevre, PBCPHU Lou Devillon, SFWMD

Nancy Marsh, USEPA/ATL Ron Reese, USOS/MIA

CERTIFICATE OF SERVICE

0 8 1999 This

this NOTICE OF PERMIT and all copies were mailed before the close of business on to the listed persons. Clerk Stamp

FILING, AND ACKNOWLEDGMENT FILED, on this date, pursuant to the §120.52, Florida Statutes, with the designated Department Clerk, Jeceist of which is hergarhacknowledged.

Meridary	11112	DEC 0 8 1999	9	
Ciele	Mare Protection, L	Less Process"	Date	rapper1 a
	· · · · · · · · · · · · · · · · · · ·	A manual		

Jeb Bush Governor

Department of Environmental Protection

Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

David B. Seruhs Secretary

PERMITTEE: Frank Finch Executive Director South Florida Water Management District 3301 Gun Club Road West Palm Beach FL 33406-0000

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 COUNTY: Palm Beach LATITUDE/LONGITUDE: 25*21*07*N80*17*42*W PROJECT: SFWMD Site 1 Pilot Study Class V Exploratory Well EXW-1

This permit is issued under the provisions of Chapter 403.087, Florida Statutes, and Florida Administrative Code (FAC) Rules 62-4, 62-620, 62-622, 62-528 and 62-550. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

TO CONSTRUCT: One Class V, Group 8 exploratory well, EXW-1. The well shall be constructed with 24inch outside diameter (OD) carbon steel casing to a depth of approximately 1,000 feet below land surface (bis), with a nominal 24-inch open borehole drilled to a total depth of approximately 1,200 feet bis. Final depths will be determined during construction and field testing. The purpose of the permit is for the construction and testing of an exploratory well to obtain site specific subsurface information for the proposed aquifer storage and recovery (ASR) well network for the South Florida Water Management District ASR Pilot Study. The proposed future of use of exploratory well EXW-1 is as an ASR well. Injection of fulds into EXW-1 is not permitted as part of this permit. Existing SFWMD research well PBF-10 will be used as a monitor well during aquifer performance testing (APT).

IN ACCORDANCE WITH: Application to construct a Class V, exploratory well, EXW-1 received March 30, 1999. Request for Information (RFI) dated April 29, 1999; response to RFI received May 11, 1999. RFI dated June 10, 1999; response to RFI received June 30, 1999, publication of the Notice of Draft Permit in the Palm Beach Post on August 2, 1999; consideration of receipt of public comment received as a result of a public meeting held on September 8, 1999; and publication of the Intent to Issue Permit in the Palm Beach Post on November 6, 1999.

LOCATED AT: The Eastern convergence of the Hillsboro Canal, WCA 1, WCA 2A, Paim Beach County, Florida, 33446.

TO SERVE: Lower East Coast

SUBJECT TO: General Conditions 1-24 and Specific Conditions 1-9.

"Mare Protection, Less Pracess"

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory Well EXW-1

GENERAL CONDITIONS:

- The terms, conditions, requirements, limitations and restrictions set forth in this permit, are "permit conditions" and are binding and enforceable pursuant to Sections 403.141, 403.727, FS.
- This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in subsections 403.087(7) FS, the issuance of this permit does not convey any vested rights or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state, or local laws or regulations. This permit is not a waiver of, or approval of, any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.
- 4. This permit conveys no title to land or water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall property operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this permit, are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:
 - a. Have access to and copy any records that must be kept under conditions of the permit;
 - b. Inspect facility, equipment, practices, or operations regulated or required under this permit;
 - c. Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules. Reasonable time may depend on the nature of the concern being investigated.
- If, for any reason, permittee does not comply with or will be unable to comply with any condition or imitation specified in the permit, permittee shall immediately provide the Department with the following:
 - A description of and cause of noncompliance; and
 - b. The period of noncompliance, including dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to educe, eliminate, and prevent recurrence of the noncompliance. The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

Page 2 of 11

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory Wei EXW-1

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Section 403.111 and 403.73, FS. Such evidence shall only be used to the extent it is consistent with the Florida Rules of GwI Procedure and appropriate evidentiary rules.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Rule 62-4.120 and 62-528.350 FAC, as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. The permittee shall comply with the following:
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records shall be extended automatically unless the Department determines that the records are no longer required.
 - b. The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all date used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - Records of monitoring information shall include:
 - the date, exact place, and time of sampling or measurements;
 - the person responsible for performing the sampling or measurements;
 - · the dates analyses were performed;
 - · the person responsible for performing the analyses;
 - the analytical techniques or methods used;
 - the results of such analyses.
 - d. The permittee shall furnish to the Department, within the time requested in writing, any information which the Department requests to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit.
 - e. If the permittee becomes aware the relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promotly.
- All applications, reports or information required by the Department shall be certified as being true, accurate and complete.
- Reports of compliance or noncompliance with, or any progress reports on, requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date.
- Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.

Page 3 of 11

PERMIT NUMBER: 153872-001499 DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory Well EXW-1

- 17. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- 18. The permittee shall take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with this permit.
- 19. This permit may be modified, revoked and reissued, or terminated for cause, as provided in 40 CFR, sections 144.39(a), 144.40(a), and 144.41 (1998). The filing of a request by the permittee for a permit modification, revocation or reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- 20. The permittee shall retain all records of all monitoring information concerning the nature and composition of injected fluid until five years after completion of any plugging and abandonment procedures specified under rule 62-528.435, FAC The permittee shall deliver the records to the Department office that issued the permitt at the conclusion of the retention period unless the permittee elects to continue retention of the records.
- All reports and other submittals required to comply with this permit shall be signed by a person authorized under rules 62-528.340(1) or (2), FAC All reports shall contain the certification required in rule 62-528.340(4), FAC.
- The permittee shall notify the Department as soon as possible of any planned physical alterations or additions to the permitted facility. In addition, prior approval is required for activities described in rule 62-628.410(1)(h).
- 23. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity which may result in noncompliance with permit requirements.
- 24. The permittee shall report any noncompliance which may endanger health or the environment including:
 - a. Any monitoring or other information which indicates that any contaminant may cause an endangement to an underground source of drinking water; or
 - b. Any noncompliance with a permit condition or maifunction of the injection system which may cause fluid migration into or between underground sources of drinking water.

Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent recocurrence of the noncompliance.

Page 4 of 11

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory Well EXW-1

SPECIFIC CONDITIONS

1. General Requirements

a) This permit is to construct a Class V, Group 8 exploratory well EXW-1. The exploratory well system will include the existing research well PBF-10 for monitoring. This permit allows only for the construction and withdrawal testing of EXW-1 as an exploratory well in accordance with Chapter 62-528, FAC. Any modification of this exploratory well system to acceptingent waters must be accomplished through the regulatory process and may require the application and issuance of a new permit and Department approval.

b) Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate guality assurance procedures.

c) The permittee shall be subject to all requirements and regulations of Palm Beach County and the South Florida Water Management District regarding the construction, testing and operation of this well system.

d) Four permanent shallow surficial aquifer pad monitor wells (PMWs) shall be installed at the comers of the drilling pad and identified by location number and pad location, i.e. MW, NE, SW, SE. The PMWs shall be sampled and analyzed prior to the onset of drilling, Initial analyses shall be submitted prior to the initiation of drilling. The PMWs are to be retained in service, sampled weekly and analyzed for chlorides (mg/L), conductivity (umho/om), total dissolved solids and water level (relative to NGVD) during the construction and tasting. In addition, the PMWs shall be sampled 48 hours prior to any maintenance, testing (including mechanical integrity testing) or repairs to the system which represent an increased potential for accidental discharge to the sufficial aquifer. The results of these analyses shall be submitted to the Department within 30 days of the completion of the activity. A summary sheet from the FDEP Southeast District is attached. If located in a traffic area the well head must be protected by a traffic bearing enclosure and cover. The cover must lock and be specifically marked to identify the well and its purpose.

e) Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.

 Changes to this construction permit, and/or any change in the storage zone or Floridan aquifer monitor well zone, may be addressed by a request for a permit modification in accordance with Rule 62-528, FS.

2. Construction and Testing Requirements

a) The measurement points for drilling and logging operations shall be surveyed and referenced to the National Geodetic Vertical Datum (NGVD) of 1929 prior to the onset of drilling activities for the exploratory well and associated monitor well.

b) No drilling operations shall begin without an approved disposal site for drilling fluids, cuttings, or waste. It shall be the permittee's responsibility to obtain the necessary approval(s) and permits for disposal prior to the start of construction. Any formation waters discharged to surface or surficial aquifer waters during aquifer performance test shall require an industrial Wastewater permit from the Department.

c) The Department shall be notified within 48 hours after work has commanced.

Page 5 of LL

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory Well EXW-1

d) Waters spilled during modification or testing of the exploratory well system shall be contained and properly disposed.

e) Hurricane Preparedness - Upon the issuance of a "Hurricane Watch" by the National Weather Service, the preparations to be made include but are not necessarily limited to the following:

- Secure all on-site sait and stockpiled additive materials to prevent surface and/or groundwater contamination.
- Properly secure driling equipment and rig(s) to prevent damage to well(s) and on-site treatment process equipment.
- Blow-out preventers shall be installed on wells prior to penetration of the Floridan Aquifer.

g) TAC and EPA review and Department approval are required prior to the following stages of well construction. Requests for approval shall be in the form of separate stand-alone documents:

- Spud date
- Final casing seat
- Plugging back pilot hole (if needed)
- Selection of the packer test intervals based upon testing of EXW-1

h) Upon completion of well construction, background water quality sampling shall be performed to determine water quality characteristics (chloride, conductivity, total dissolved solids, temperature and pH) as well as primary and secondary drinking water standards (Rule 62-550, FAC) and minimum criteria parameters (Rule 62-520, FAC), as attached.

- i) The geophysical logging program for well construction, shall at a minimum, include:
 - (i) 9-7/8 inch pilot hole to approximately 200 feet bis, to the base of the surficial aquifer:
 - Caliper
 - Natural gamma
 - Spontaneous potential
 - Long and short normal electric

(ii) 36-inch rearned hole to approximately 200 feet bis, to the base of the surficial aquifer:

- Caliper
- Natural gamma

(ii) 9-7/8 inch pilot hole to approximately 1200 feet bls, the final depth of the well:

- Calper
- Natural gamma
- Dual induction
- Spontaneous potential
- Borehole compensated sonic with VDL display

(iv) 36-inch reamed hole from approximately 200 feet bis to the top of the Floridan Aquifer at approximately 1000 feet bis;

- Caliper
- Natural gamma
- (v) 24-inch cased hole to the top of the Floridan Aquifer at approximately 1000 feet bis:
 - Temperature log after each stage of cementing

Page 6 of 11

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory Well EXW-1

(vi) 24-inch reamed open hole below final casing to approximately 1200 feet bis final depth;
 Caliper

- Caliper
 Natural d
- Natural gamma
- Temperature (static)
- long and short normal electric
 Flowmeter (static and pumping)
- Flowmeter (static and pumping)
 Fluid resistivity
- (vii) Completed well:
 - Downhole video survey with rotating lens
 - Temperature

j) Testing during reverse air drilling of the pilot hole in the proposed storage zone, if applicable, shall be performed to determine water quality and hydraulic characteristics. The data, results and interpretation of the results shall be submitted with the weekly reports (SC 4.d). The testing shall, at a minimum, include the following:

- (i) Bottom samples of formation water discharging from the reverse air discharge setup shall be collected and field analyzed for temperature, conductivity, pH and chlorides. Total dissolved solids shall be measured to establish a relationship between TDS and conductivity. At a minimum, water samples shall be collected at 30 foot intervals of the drilled borehole.
- (ii) Flow tests shall be conducted every 30 feet of the drilled borehole or drill rod change. Each flow test shall include a static level measurement using a fixed manometer tube, a free artesian flow for 10 minutes, flow rate and drawdown measurements, specific capacity analysis and flow water sample collection.
- (ii) A five gallon sample of formation fluid shall be collected from the completed well after development but before injection begins. Samples should be labeled as to well number, depth, type of sample and shipped to Dr. James Cowart, Department of Geology, Florida State University, Tallahassee, FL 32304.
- Hydrogeologic testing of the proposed storage/injection zone from between approximately the 1000 to 1200 feet bis depth range:
 - i) At least 3-single/straddle packer tests shall be performed to determine the characteristics of the anticipated flow zones. A flow test shall be performed for each packer test and a water quality sample collected to determine the hydraulic and water quality characteristics of the tested intervals. The sample shall be analyzed for chloride, conductivity, temperature and TDS. The flow test shall be of sufficient duration to achieve stabilization of water levels and water quality. Pre-and post test monitoring shall be performed to achieve stabilization of water levels.
 - ii) Aquifer performance test to include:
 - 72-hour constant rate drawdown test.
 - 48-hour recovery test
- The Department shall be notified at least 72 hours prior to pressure testing.

 All mechanical integrity testing, must be initiated during normal business hours. Monday through Friday.

Page 7 of 11

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory WallEXW-1

n) A pressure test for the final casing shall be performed. The final casing must be tested with a fluid-filled casing at 1.5 times the expected operating pressure with a test tolerance of + or - 5%. A Certificate of Calibration of the pressure gage must be provided to the Department staff witnessing the test, prior to commencement of the test, and with the final test reports.

o) UIC-TAC meetings are scheduled on the 2nd and 4th Tuesday of each month subject to a five working day prior notice and timely receipt of critical data by all UIC-TAC members and the United States Environmental Protection Agency (EPA), Region IV, Atlanta. Emergency meetings may be arranged when justified to avoid undue construction delays.

p) Department approval at a scheduled UIC-TAC meeting shall be based on the permittee's presentation that shows compliance with Department rules and this permit.

3. Quality Assurance/Quality Control Requirements

a) Pursuant to Rule 62-528.440(5)(b), FAC, the Professional Engineer(s) of Record shall certify all documents related to the completion of all well construction. The Department shall be notified immediately of any change of the Engineer(s) of Record.

b) In accordance with Section 492, Florida Statutes, all documents prepared for the geological/hydrogeological evaluation of the exploratory well system shall be signed and sealed by a Florida Licensed Professional Geologist or qualified Florida Licensed Professional Engineer.

c) Continuous on-site supervision by qualified personnel (engineer or geologist) is required during all testing, geophysical logging and cementing operations.

4. Reporting Requirements

a) All reports, documents and surveys required by this permit shall be submitted concurrently to all members of the UIC-TAC and the United States Environmental Protection Agency (EPA), Region IV, Atlanta. The UIC-TAC shall consist of representatives of the following agencies:

- Department of Environmental Protection, West Palm Beach
- Department of Environmental Protection Tailahassee
- United States Geological Survey (USGS), Miami
- South Florida Water Management District (SFWMD), West Palm Beach
- Palm Beach County Public Health Unit (PBCPHU), West Palm Beach

b) The Department and other applicable agencies must be notified of any unusual or abnormal events occurring during construction, and in the event the Permittee is temporarily unable to comply with the provisions of the permit (e.g., on-site spills, artesian flows, large volume circulation losses, equipment damage due to: fire, wind and drilling difficulties, etc.). Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate and prevent reoccurrence of the noncompliance.

c) Prior to site preparation for the exploratory well system, a drilling and construction schedule shall be submitted. Also, prior to site preparation, a site drawing(s) shall be submitted for TAC and EPA review and Department approval at a scale that will show well locations and all surface features of the exploratory well system.

Page 8 of 11

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory Well EXW-1

d) Weekly progress reports shall be submitted throughout the construction process, and shall include at a minimum the following information:

- A cover letter summary of the daily engineer report and driller's log
- · A projection for activities in the next reporting period.
- Daily engineers report and driller's log with detailed descriptions of all drilling progress, cementing, testing, logging, casing and steel liner installation activities, etc.
- Lithologic logs, geophysical logs, flow test reports and water quality test results with interpretations.
- Interpretive flow test reports shall include the following:
 - Development records
 - Well head artesian pressure
 - Specific capacity testing, aquifer performance testing
 - Water quality
- Interpretation with all test results and geophysical logs as they relate to the week's activities
 Detailed description of any unusual construction related events that occur during the reporting
- Detailed description of any undstall construction related events that occur dur period.
- Weekly water quality analysis and water levels for the four PMWs.

e) Per Rules 62-528.410(4)(c), 62-528.420(4)(c) and 62-528.605(2), FAC, the selection of the final casing seat and the proposed storage zone must be approved by the Department. To obtain approval, the permittee must submit a request to the Department in the form of a separate stand-alone document. All requests shall be accompanied by technical justification including, but not be limited to the following items:

- Adequacy of mechanical properties of the formation to create a casing seal.
- · Geophysical log interpretations, as the interpretations relate to the casing seat.
- Lithologic drilling rate and weight on bit data, with interpretations (related to the casing seat).
- Identification of storage zone boundaries and characteristics, including hydrogeologic data and interpretations.
- Water quality data with interpretations.
- Demonstration of confinement and evaluation of potential for upconing of poorer quality water. Use all appropriate formation testing information including but not limited to hydrological, geophysical and water quality data collected in EXW-1 and other data collected from any other nearby, in particular the nearby existing research well PBF-10, that will provide useful correlative information for interpretive purposes.

 The submittal for the request for approval to plug back the plict hole, if necessary, to modify the storage zone, shall include:

- Withdrawal test data for the storage zone, with interpretations and evaluation.
- Water quality reports.
- Geophysical log interpretations including flow analysis, as the interpretations relate to the request.
- Identification of storage zone boundaries and characteristics.
- Demonstration of confinement and evaluation of potential for upconing of poorer quality water. Use all appropriate formation testing information including but not limited to hydrological, geophysical and water quality data collected in EXW-1 and other data collected from any other nearby, in particular the nearby existing research well PBF-10, that will provide useful correlative information for interpretive purposes.
- Justification of necessity or lack of necessity of BHC sonic log.

Page 9 of 11

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE DEC 0 7 2004 PROJECT: Class V Exploratory Well EXW-1

g) An interpretation of all test results and geophysical logs must be submitted with all submittals.

h) Upon completion of analysis of cores, if applicable, and sample cuttings, the permittee shall contact the Underground Injection Control Section of the Department of Environmental Protection in Tallahassee to arrange their transfer to the Florida State Geologic Survey.

 Within 30 days of completion of construction and APT, a final report shall be submitted. The report shall include, but not be limited to, all information and data collected under Rules 62-528,605, 62-528,615, and 62-528,635, FAC, with interpretations. The report shall include:

- Transmissivity test data for the storage zone, with evaluation.
- Evaluation of the maximum injection capacity within safe pressure limits.
- Evaluation of confinement and potential for upconing of poorer quality water.
- · Record (as-built) drawings of the exploratory well, surface equipment, instrumentation and
- appurtenances, if applicable, certified by the engineer of record.
 Summary of all water quality, water level and well performance data collected, with conclusions and recommendations.
- Well locations surveyed relative to permanent reference points by a Florida registered land surveyor, and located on a site plan by latitude and longitude, recorded in the public record.
- Factory mill certificates for all casing pipe.

6. Surface Equipment

a) The integrity of the monitor zone sampling systems shall be maintained at all times. Sampling lines and equipment shall be kept free of contamination with independent discharges and no interconnections with any other lines. Sampling lines shall be clearly and unambiguously identified by monitoring zone at the point at which samples are drawn. All reasonable and prudent precautions shall be taken to ensure that samples are properly identified by monitor zone and that samples obtained are representative of those zones.

b) The surface equipment for the exploratory well system must maintain compliance with Department rules for water hammer control, screening, access for logging and testing, and reliability and flexibility in the event of damage to the well and piping. Additionally, a regular program of exercising the valves integral to the well head shall be instituted on a quarterly basis.

c) The exploratory well and monitoring well surface equipment and piping, if applicable, shall be kept free of corrosion at all times.

d) Spillage onto the injection well pad during construction activities, and any waters spilled during mechanical integrity testing, other maintenance, testing or repairs to the system shall be contained by an impermeable wall around the edge of the pad and disposed of via approved and permitted methods.

e) The four surficial aquifer monitor wells installed at the corners of the well pad shall be secured, maintained, and retained in service.

Page 10 of 11

PERMIT NUMBER: 153872-001-UC DATE OF ISSUE: DEC 0 8 1999 EXPIRATION DATE: DEC 0 7 2004 PROJECT: Class V Exploratory Well EXW-1

7. Plugging and Abandonment

a) The permittee shall unconditionally obligate themselves to plug and abandon the well should the well become a threat to the waters of the State, if the well is no longer used, or if the well is no longer usable for its intended purpose, per Rules 62-528.460(1) and 62-528.605(2), FAC.

b) In the event the well must be plugged and abandoned, the permittee shall obtain an FDEP permit, as required by Rule 62-528.645, FAC.

8. Permit Extension(s), Renewal(s) and Authorization to Use

a) Pursuant to Rule 62-4.080(3), a permittee may request that a permit be extended as a modification of an existing permit. A request for an extension is the responsibility of the permittee and shall be submitted to the Department before the expiration of the permit. In accordance with Rule 62-4.070(4), FAC, a permit cannot be extended beyond the maximum 5 year statutory limit. Should construction need to continue beyond the 5 years of this permit, the permittee must apply for a new construction permit.

9. Signatories and Certification Requirements

 All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), FAC.

b) In accordance with Rule 52-528.340(4), FAC, all reports shall contain the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

> STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

8/99 Date Molfssal Meeker

Director of District Management. Southeast District

MUMULEHAN

Page 11 of LL

APPENDIX B CASING FACTORY MILL CERTIFICATES AND DEVIATION SURVEY DATA

SAGE :	11245 011246		CE 	212, 100	002 .115	125. 1001 225.	327	012.	1002 .274	992 1000	382. 1000	542. 2008			
MARTERACTURED 13 THE DEA	10 29270 191258 011262 01 10 29270 191259 07295 01	1 11627 11 DMELL (3RC) 10	L 61 CR MD CD M1 8	23 .21 .032 .004 .017 .026 .01	29 21 041 006 022 028 0	26 22 015 005 019 034 0	250,020,000,000,12,025	346 .20 030 .007 .020 .020	040, 12, 400, 000, 81, 040 5, 200, 600, 400, 010, 81, 400	0. 010. 720. 700. 710. 01. 040	940 20 210 800 210 02 940 0 100 100 400 820 01 340	210.110.000.024.000.011	E NESE MANUTACTURED, TESTED, CATION.	DATE: 6/22/98	
TEST REPORT 001PF BOTES: ALL FIFE PHOCERS 0	rr146 07226 071214 44700 07226 071249 71265 07225 07225 0 71264 07235 07235 0 71264 07235 07235 0 4/00/98 - 6/11/98	NTICH RESERVE 120 210M 240	P 5 C8 V 71 20	0. 200. 100. 000. 100. 000. 000. 000. 00	4 140 EDD 100 100 918 1	0. 200 800 101 101 100 810 8	5 200 400 500 400 210 1	0, 200, 100, 100, 010, 100, 002, 0	7 .011 .008 .001 .002 .002 .0	1. 400, 600, 300, 300, 210, 4	0. 200, 000, 400, 000, TLU, F	100, 400, 700, 800, 010, 1	EN THE COMPANY RECORDS. PLP COM OF THE APPLICABLE SPECIFIC		
MILL T CUSTONER CRUES NO: 40 MILL CUSES NO: 40	BILL CF 140190 801 07 079215 077216 077217 07 077250 077251 077252 07 077270 077269 077251 07 077320 077321 077251 077281 07	NALL GRADE SPECIFICAT 375* APT 5L GR. B	TR ELOSO MATERIAL-	1 28.5 66 15 79	24 38.5 .61 15 92 49 37.0 .63 35 .91	27 29.0 .58 .15 .53 14 .27.5 .68 .14 2.00	27 27.0 63 .16 .93 21 36.0 .64 .16 .93	15 36.5 .66 .15 .27 av 10.0 67 .13 .78	71. 62. 27. 2.04 46	95 37.0 45 14 73 06 38 8 8 8	71 41.0 69 .11 .37	142 40.5 .65 .24 .81 241 24 6 64 .14 .81	LS CORRECT AS CONTAINED I	1 marsh all	
ENG STREAT MPE CORP. 0.80X 99289 1.0.80X 99289 1.0.80X 99289 1.0.90X 91203 1.00Mud PIPE P.O. TOX 53187	13805 13805 TEST REPORTS APPLY TO 5030 14819	CUNNTITY 0.D.	NEAT TISLD TENSI N. 7.8.1 7.8.1	DA2200 46712 7084 D42202 47451 7156	D42203 43554 6302 P42585 44309 7014	D43887 40900 708	845302 45528 730 V47348 46120 719	747417 47538 719	401M5541 47429 662	411A3131 43557 674	412W0821 47863 649	423,87641 44090 675	422AT651 4JUAU 0.0 DHTFF TMAT TWIS JERORT 1 DATER IN COMPLIAN	IFICATION NUMBER: 077145	
ŝ	THESE MILL 7 YOUR P.O. # _	TTEN NO.	ND.		-	in r		i,n	~ ~	-		-	10 BA	CIRT	

Appendix B

MILL INSPECTION CERTIFICATE MILL INSPECTION CERTIFICATE MILL INSPECTION CERTIFICATE MILL TEST REPORT MILL TE	etc etc <th>01 130,005 05 0000 10000 00000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000<!--</th--><th></th><th>Ext Removed Ext Removed Sectors Denote Ext Removed Sectors Denote Ext Removed Ext Removed Sectors Denote Ext Removed Sectors Denote Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed S</th></th>	01 130,005 05 0000 10000 00000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 </th <th></th> <th>Ext Removed Ext Removed Sectors Denote Ext Removed Sectors Denote Ext Removed Ext Removed Sectors Denote Ext Removed Sectors Denote Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed S</th>		Ext Removed Ext Removed Sectors Denote Ext Removed Sectors Denote Ext Removed Ext Removed Sectors Denote Ext Removed Sectors Denote Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed Sectors Ext Removed S
Autora anara a 1. 1001. Estration 1. 1001. Estration	екатон екатон Р. м. 2. од тиск Цемати - 131 - 131	x	A STEEL, INC. ST REPORT BMITHL INFORMATION ONLY G APPROVAL FOR PUBCHASE	rede 20 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
は、第一番目前、第一番目前、第一番目前 1.50000041111111111111111111111111111111	「	11 610.0mm 1 610.0mm 1014>	BARTOM MILL TES FOR SUS PENDIN	ext

Hydrogeologic Investigation - Western Hillsboro Basin

Appendix B

1000M 0P-58 249 1979	WELL DRILLER'S LOG
	SOUTH FLORIDA WATER MANAGEMENT DISTRICT
F	ROJECT SCHE I ASA WELLIND. PISE-B DATE 1/15/00
	Preduction Cosing String 24-inch duriter Steel (oning
DEPTH	DESCRIPTION - ROCK TYPE, COLOR, HARDNESS, OTHER
	AC8864 4* 1930
2	40386 : CA 19969
. 3	A09358 4× 18921
1	AD 8841 CR 19461
5	pro 9258 466995
6	NOST LIF (KIGOGO
1	A0886 4K 18989
8	A 0 88 61 LK 18961
1	Dorsen 18930
1°	AD 9258 LK 18963
15	A07158 1x 19002
h	A08861 LK (8993
h	608x61 LK 19001
ri	A09258 18994
15	408861 LV 18990
The second se	DODSY IN POLS
11	NO 984 18029
0	11 15 15 964
14	A-9941 14 18937
20	A994LI 14/18928
1	0.005 115991
23.	40 9861 JF 18993
20	AUSTICK 44 10003
23	AD 3287 14 18966
25	158 IV 10967
	Turk 1
	now tool new 13 13 the Pool have near sense taken
	oversitive there and the stars that to the ad pad
	man a a
	LTK R AL IZO
	dieve n. uv

JAN 27 '88 12:13PM FROM LEARTON STEEL 15:36 F/23 P.01/03 863 619 8779 2853-01-26 6766 OF LADING No: BLK BILL Ship Date 12Jan22 at 14:10 From LKF Ship From: Probill 16703-339 Bartow Steel, Inc. SANCHEZ TRUCK 5015 S. Florida Ave. Via Suite 301: 5 DELIVERED TOB Lakeland; -F1. - 93813 INCLUDED Frt Tel: 863 619-7473 Tax: 863 619-8779 Route 0- 0 Manifest Vhcle Trailer 100000-0 Mike Gilliard Slp Sold To: (5647) DIVERSIFIED DRILLING Consigned To: (000) DIVERSIFIED DRILLING SOUTH FL. WATER MGNT. DIST. 8801 MAISLIN DR PALM BEACH COUNTY P O BOX 290699 TAMPA, FL 33687-0699 Tel: 813 988-1132 Fax: BILL OF LADI 1) Our Order BLK- 16703- 1 Your PO # 5374 OF LADING - REFRINT Carbon Steel Pipe ERW AFI 5L B .24" OD X .500 WALL X 40' Heat Number Quantity Wt LBS Tag No LK18930 PCS 5020 A08861 40 FT 1 40 FT LK189634 5020 A09258 1 LK18993-40 FT 5020 A98861 1 <u>A</u>99258 LK19002 ~ 5020 40 FT 1 709258 LK18994 -40 FT 1 5020 A08851 A09258 LK19801 -40 FT 5020 0.625.00 1 LK18968% 霄 1 5020 LK18992 5828 1288 61 0150 HX-1570D PR Koun FOR 53741S Tipe ERW WFI-51-BU 121 1315 WALL X 20' Heat Number Tag No Stee 21 Our 10 9 O Carbor 24 92 Quantity 20 FT Tag No Wt LBS PCS 2510 LK18926 1 AGRAT 1 ----_____ ----T.BS Tags PCS TOTAL : 9 42679 9

FROM INTERSECTION OF 441 & 827, GO WEST ON 827, FOR 5.2 MILES TO 2ND CONCRETE BRIDGE ACROSS HILLSBORD CANAL (RIG WILL BE VISABLE & THIS FOINT

Page: 1Continued

The property described planes, it appends and other second a strategy or any public of an anticipite states of a strategy of the respective of an anticipite in description. And it is and define on a first strategy distribution for the first strategy of the strategy and the state is a first strategy of the strategy of a strategy and strategies in the strategy of the strategy of a strategy and an any strategy of the strategy of		and a constant of particular polytomic, worked in the polytomic distribution, of our in more, advertised and any of which appendix the polytomic distribution and an a strength relationship, at (2) is the signifi- tanting, facilitating these within and the surf. Strength and polytomic distributions.	algung an dischard in United States, which and income filter and another balance states on a filter on another state with the state of another to be an another states with the strength income state in a state in a state target and evaluation of the information (in its contract and contractions in a state of the target and another to be a strength income and contractions are stated from a source state states. And the target and the state of the target and the states of the information with the the absolute state of the states of the target states of the information of the information of the the absolute states of the states of the target states of the information of the	ned Strengther: We concept at matching one may under of the stage upd presents and the people BE of Lading on two (2) in Streng 1997 (2014) and matching on two (2) in Streng 1997
Init to Settler 1 of Contributes of applicable bill and reports on the Catalyses, the Cottigent II are Catler chall not sale belowy of Dia Ingelet.	of lading. If this pripries all days the featuring the without payment of field	at is to be definent in the contractor manufactor to and all other lawful charges.	Sanchez	FREGAR Prepaid C
SEARTURE OF CONDENSE X			X Call Willing	Caline D
If charges are to be prepaid, write or stamp ture, "To be Prepaid,"	S S	To apply in asymptot of the charge on the property described homes.	ACINY OR CASHER 1-12-00	CHARLES ADVANCED

JAN 27 '88 12:14PM	053 519 8779	2222,21-26 15:37	1.23 P. 02/03
PROP TERRIGE STELL			
	01 140		nv 0103
Ship Fren:		Ship Date 12Janew at 13:1	2 From LKF
Bariow Steel / Inc	payment in a grad	Probill 16703-339	
015 S. Florida Ave.		Via SANCHEZ TRUCK	
duite 381 we want to a		FOB DELIVERED	
Lakeland, Fl. 33813		Frt INCLUDED	
Tel:-863-619-7473 Fax: 863	619-8779	Route · 0 0 Manifest	
		Vhcle Trailer	5-r
	· ·	Sin Nike Gilliard	
Consigned To. (000)	-	Sold To: (5647)	
Consigned To: (awa)		DTUPPETPTED DETLITIC	
DIARKSILIED DEITTING		DIVERSIFIED DEIDEAWY	
SOUTH FL. WATER MGMT. DIST		8801 MAISLIN DR	
PALM BEACH COUNTY		P O BOX 290699	
Tel: 813 988-1132 Fax:		TAMPA, FL 33687-0699	
TOTT OLD FOD LIDE LENT			

FROM INTERSECTION OF 441 & 827, GO WEST ON 827,

FOR 5.2 MILES TO 2ND CONCRETE BRIDGE ACROSS

HILLSBORD CANAL (RIG WILL BE VISABLE @ THIS POINT -

(813)988-1132 OFFICE (813)917-5565 JOBSITE

Page: 1 Last

The participal standing from the participal participant is provided in the standing of participant participant, and participant participant, and participant partite participant participant participa

"The solution 7 of Goodkines at applicable loss of taken it amounts on the consigner. On consigner shall sign arrier duti ant male delivery of this thigteest without	g, if the physical the following stars payment of margin	is to be delivered to the speciyous count: and all other lawful charges.	Sanchez	Proparid Cl
STERATURE OF CONSIGNOR			X Or Margaret	Collect Cl
17 charges are to be preparid, write or states here. "To be Propaid."	RECEIVED	To apply in payment of the charge on the property detailed harves.	ASENT OR CASHER (1-12-00)	CHARGES ADVANCED

JRN 27 '00 12:14PM 15137 6/23 P. 03/23 FROM I BARTON STEEL 053 519 6779 2888.21-25 LADING No: BLX 6788 ÔF BILL Ship Date 12Jan00 at 17:56 From LKF Ship From: Probill 16703-339 Bartow Steel, Inc. SANCHEZ TRUCK Via ,015 S. Florida Ave. DELIVERED FOE Suite 301 Trt INCLUDED Lakeland, Fl. 33813 Tel: 863 619-7473 Fax: 863 619-8779 Route 0- 0 Manifest Trailer Vhcle Slp Mike Gilliard Sold To: (5647) Consigned To: (000) DIVERSIFIED DRILLING DIVERSIFIED DRILLING SOUTH FL. WATER MGMT. DIST. 8801 MAISLIN DR P O BOX 290699 PALM BEACH COUNTY TANPA, FL 33687-0699 Tel: 813 988-1132 Fax: BILL OF LADING 1) Our Order ELK- 16703- 1 Your PO # 5374 Carbon Steel Pipe ERW API 5L B 24" OD X .500 WALL X 40' PCS Wt LBS Heat Number Quantity Tag No 40 FT -5020 A09358 LK18931 V 1 40-FT. 5020 A08861 LK18962 1 5020 40 FT A08861 LK18932 1 - 4 - 2 5020 A08861 LK18969 40 FT 1 7008551 LK18989~ 40 FT 1 5020 ... 40 FT 40 FT 40 FT 320 FT 5020 A08861 LK18961 ~ 1 and a Collins of LK18995 CARGE V 5020 1 A09258 the g 矛角 A08851 1 0150 87 sia.in Steri Pipes ali FROM_INTERSECTION_OF 441 & 827, GO WEST ON 827, FOR 5.2 MILES TO 2ND CONCRETE BRIDGE ACROSS HILLSBORD CANAL (RIG WILL BE VISABLE & THIS POINT (813)988-1132 OFFICE (813)917-5565 JOBSITE Page: 1 Last served multitud quee, to queener ped etce, want of tradi [councy] on country of a respective of trading queener ped etc. When the serve is the serve of the se nd: to Sottan 7 of Gentifices of applicable bill of lattery. If this releasest is to be delivered to the consigner undered Researce on the consigner, the consigner devid dely the following resonance: The conies shall not under delivery of this shipsheet without payment of foright and all other lawful charges. RECORD GAUCHEZ and the Propusió 🖬 ٤. SIGNATURE OF CONSISSIOR AGONT PER (Delvar's Six D trailed х X Ina ll 17 charges are to be propoid. To upply in payment of the charge AGENT GR CAS CHARGES ADVANCED RECEIVED

Date	Depth (feet)	Deviation (degrees)	Construction Activity
11/24/99	55	0	9 7/8-inch pilot hole
11/27/99	150	0	9 7/8-inch pilot hole
11/28/99	205	0	9 7/8-inch pilot hole
12/15/99	300	0	9 7/8-inch pilot hole
12/16/99	392	0	9 7/8-inch pilot hole
12/16/99	485	0	9 7/8-inch pilot hole
12/16/99	578	0	9 7/8-inch pilot hole
12/21/99	670	0	9 7/8-inch pilot hole
12/22/99	766	0	9 7/8-inch pilot hole
01/04/00	856	0	9 7/8-inch pilot hole
01/05/00	949	0	9 7/8-inch pilot hole
01/05/00	1,044	0	9 7/8-inch pilot hole
01/05/00	1,137	0	9 7/8-inch pilot hole
01/06/00	1,200	0	9 7/8-inch pilot hole

Table B-1. Deviation Summary of EXW-1 UIC Permit - 153872-001^a

a. Instrument used is a SureShot - Model A 7 Degree

APPENDIX C GEOPHYSICAL LOGS
Legend for Geophysical Log Traces

AMP3	amplitude
CPS	counts per second
degF	degrees Fahrenheit
DT	delta time
DTMP	delta temperature
FLOWN	flowmeter - dynamic
FLOWNS	flowmeter - static
FRES	fluid resistivity
ft	feet
GAPI	gamma American Petroleum Institute units
GR	gamma ray
in	inches
mV	milliVolts
MV	milliVolts
Ohm-m	ohm-meters
RILD	deep resistivity curve
RILM	medium resistivity curve
RLL3	shallow resistivity curve
SP	spontaneous potential
TEMP	temperature
ТТ3	travel time
usec	microsecond
usec/ft	microseconds per foot
XCAL	x caliper
YCAL	y caliper

GR		DEPTH		XCAL	
0 GAPI	150	FT	30	in	50
				YCAL	
			30	in	50
		50			
		50			
				5	
3					
		100			
				8	
3				3	
		150			
		150			
				2	
8					
		200			
		200			

GR 0 GAPI 20	DEPTH FT	0.2	RILD Ohm-m	200	DT 140 usec/ft 40
<u>SP</u>	ō	0.2	RILM Ohm-m	200	
XCAL	ő	0.2	RLL3 Ohm-m	200	
2					
$\frac{1}{2}$	-				
	100				
			4		
	200				
	300				
	4				
	1				
	400				
	-				
	=				
	500				
	-		1		
			l 🛛 🤹		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	600		<b>X</b>		
	700				
A and a			A A		
	_		<u>\$</u>		
	800			+++++++	
			8		
	_				
	900				
			Anali		
	-				
	1000				
	-				
	4				
	1100				
	-				
	1				
	1200			\$+      	
	-				



GR GAPL 150	DEPTH	<u>XCAL</u>
	]	YCAL
-160 40	Ď	22 in 42
		XCAL YCAL
	-	
	100	
	-	
	200	
	_	
	- 300	
	1	
	400	
	-	
	500	
~~~~~		
	- 600	
	1	
	700	
	-	
	800	
	900	
	1	
	1000	

Figure C-4. Individual Log Traces from Geophysical Log Run 4

GR		DEPTH	TEMP
0 GAPI	150	FT	70 degF 120
			DTMP
			-0.5 degr 0.5
<u> </u>			
		100	
		100	
$\frac{1}{\xi}$		200	
		300	
		300	
		400	
2			
- E		500	
		000	
5			
		600	
		700	
		800	
		000	
		900	

	G	R		DEPTH	DTMP
0	GA	PI	150	FT	-0.25 degF 0.25
					TEMP
					70 degF 100
5					
}					
~					
$\left \right\rangle$				100	
\sim					
					1 Down
				200	
~~~					A WW
2					
Ş					
				300	
1 X					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				400	
$\left  \right\rangle$				500	
~~~~~					
				600	
$ \land \land$					
5					

AMP3 0 mV	DEPTH 30 FT	TT3 0 usec 600
W N		
	100	
Murray Married		
	200	
	300	
	400	
	500	
	600	
	700	
	800	
	900	

GR 0 GAPI 100	DEPTH FT	0.2	RILD OHM-M	200 0	FRES	5	0 CPS 80
<u>SP</u> 40		0.2	RILM OHM-M	200 73	TEMP DEGF	78	FLOWNS 0 CPS 80
XCAL28		0.2	RLL3 OHM-M	200 -0.25	DT <u>MP</u> DEGF	0.25	FLOWNS FLOWN
					Whi a		
					A A A		
and the second sec	100				your the last		
					Ladolly a		
A A A A A A A A A A A A A A A A A A A	200				the brack		
					Jo- mil		
and the second s	300				Juffer		
and the second s	400				Jon An		
	+00				Jakon A		
	500						
					J. K. KA		
	600				LAVA A		
	700				Red and		
	-						
	800				J. W. A		
A Armonia a construction of the construction o	-				1 million		
	900				MV-WA		
	-						4 2
Casir	1000				All market		
	1100						
	1200						

Figure C-9. Individual Log Traces from Geophysical Log Run 9

APPENDIX D SITE PLAN MAP

Figure D-1. Site Plan for Western Hillsboro Basin

Figure D-2. Inset for the Western Hillsboro Basin Site Plan

Figure D-3. Wellhead As-Built for the Western Hillsboro Basin Site

APPENDIX E LITHOLOGIC DESCRIPTIONS

		Wester	n Hillsboro Basin - Site 1 Pilot Study Exploratory Well EXW-1 Lithologic Description
	Depth (f	eet bpl)	
Date	From	То	Description
12/09/99	0	10	No sample
12/09/99	10	15	Light olive gray to white; moderately indurated calcerous sandstone to sandy limestone; grain size is fine to coarse; 30% shell fragments; calcilutite matrix; sparry calcite cement; intergranular and moldic porosity
12/09/99	15	20	Yellowish gray unconsolidated shell bed with thin limestone stringers; intergranular porosity
12/09/99	20	45	Yellowish gray to light gray; moderately indurated sandstone; grain size is fine to coarse; 50% shell fragments; calcilutite matrix; intergranular and moldic porosity
12/09/99	45	50	Yellowish gray to light gray; unconsolidated shell bed with 35% quartz sand; sand is in the form of small calcereous sandstone fragments; intergranular porosity; some recystallization
12/10/99	50	70	Yellowish gray to light gray; moderately indurated sandstone; grain size is very fine to coarse; 40% shell fragments; calcilutite matrix; sparry calcite cement; intergranular and moldic porosity; 2% phosphatic sand
12/10/99	70	110	Yellowish gray; well indurated calcereous sandstone; grain size is very fine to coarse; 30% shell fragments; calcilutite matrix; sparry calcite cement; intergranular and moldic porosity; 3% phosphatic sand
12/10/99	110	200	Yellowish gray; moderately indurated limestone (biogenic); 65% allochems; calcilutite matrix; sparry calcite cement 20-40% quartz sand; 2% phosphatic sand; intergranular and moldic porosity; 2% phosphatic sand
12/10/99	200	210	Yellowish gray; poorly indurated silt, clay, and calcilutite matrix; 15-20% fine grained quartz sand; intergranular porosity; 3% phosphatic sand/silt
12/15/99	210	230	Same as above
12/15/99	230	270	Light olive gray; poorly indurated silt clay and calcilutite matrix; 10-15% fine grained quartz sand; intergranular porosity; 10% phosphatic sand/silt
12/15/99	270	280	Yellowish gray; moderately indurated limestone calcilutite and clay matrix; 30% silt; 20-25% quartz sand; intergranular porosity; 10% phosphatic sand/silt
12/15/99	280	290	Light olive gray poorly indurated silt/clay, clay, and calcilutite matrix; 20-25% fine grained quartz sand;10% limestone; 10% shell fragments
12/15/99	290	300	Light olive gray to yellowish gray; moderately indurated calcereous sandstone; grain size is very fine to medium; calcilutite matrix and minor sparry calcite cement; 25% silt; 15% shell fragments; 5% phosphatic sand/silt
12/15/99	300	330	Yellowish gray to light olive gray; moderately indurated limestone (biogenic and skeletal); 70% allochems; calcilutite matrix and sparry calcite cement; 20-25% quartz sand; 15% silt; 20% shell fragments; intergranular and moldic porosity
12/15/99	330	358	Light olive gray; poorly indurated silt (clayey, sandy silt), clay, and calcilutite matrix; 20-25% fine grained quartz sand; 3% shell fragments; 2% phosphatic sand/silt

		Wester	n Hillsboro Basin - Site 1 Pilot Study Exploratory Well EXW-1 Lithologic Description
	Depth (fe	eet bpl)	
Date	From	То	Description
12/16/99	358	375	Yellowish gray to olive gray; moderately indurated shelly; sandy limestone; 60% allochems; calcilutite matrix; 20-30% quartz sand; 20% silt; 20% shell fragments; low intergranular porosity; minor moldic porosity
12/16/99	375	485	Olive gray; nonindurated silt/clay; stiff, sticky, cohesive clay and calcilutite matrix; 20-25% fine grained quartz sand; trace of phosphate; low permeability
12/16/99	485	495	Yellowish gray; moderately indurated silty limestone 60% allochems; calcilutite matrix (micrite); clay matrix; 25% silt; 20% very fine-grained sand; 5% shell fragments; low intergranular porosity; phosphatic
12/16/99	495	505	Yellowish to olive gray; poorly to nonindurated silt/clay, clay, and calcilutite matrix; 5% fine grained quartz sand; 15% limestone; trace of phosphate
12/16/99	505	550	Yellowish to light gray; poorly indurated biomicrite (wackestone); 40% allochems; calcilutite matrix (micrite); 5-10% silt; 5% fine-grained sand; 5% shell fragments; 2-3% phosphatic sand
12/16/99	550	575	Yellowish to light gray; poorly indurated biomicrite (wackestone); 50% allochems; calcilutite matrix (micrite); 10-15% silt; 20% quartz sand; 40% shell fragments; 2-3% phosphatic sand
12/16/99	575	610	Yellowish to light gray; poorly indurated biomicrite (wackestone); 40% allochems; calcilutite matrix (micrite); 5% quartz sand; 10-20% shell fragments; 2-3% phosphatic sand
12/21/99	610	645	Yellowish gray; poorly to moderately indurated wackestone; 40-50% allochems; calcilutite matrix (micrite); 5% quartz sand; 10-20% shell fragments; 3% phosphatic sand
12/21/99	645	700	Yellowish to light gray; poorly indurated biomicrite (wackestone); 40% allochems; calcilutite matrix (micrite); 3% quartz sand; 10-20% shell fragments; 2-3% phosphatic sand
12/21/99	700	730	Yellowish gray; poorly to moderately indurated wackestone; 40-50% allochems; calcilutite matrix (micrite); 5% quartz sand; 10-20% shell fragments; 3% phosphatic sand
12/21/99	730	765	Yellowish to light gray; nonindurated to poorly indurated biomicrite (wackestone); 20% allochems; calcilutite matrix (micrite); 10-20% shell fragments; stringer of moderately indurated limestone; 3-5% phosphatic sand
12/21/99	765	798	Yellowish to light gray; nonindurated to poorly indurated carbonate mud; 10% allochems; calcilutite matrix; clay matrix; 10% shell fragments; 1-2% phosphatic sand with 7% at base
01/04/99	798	864	Same as above
01/05/99	864	869	Light green; nonindurated silty clay; sticky and cohesive
01/05/99	869	915	Yellowish to light gray nonindurated to poorly indurated carbonate mud (mudstone); 20% allochems; calcilutite matrix (biomicrite); 5% shell fragments; 1% phosphatic sand

		Westeri	n Hillsboro Basin - Site 1 Pilot Study Exploratory Well EXW-1 Lithologic Description
	Depth (f	eet bpl)	
Date	From	То	Description
01/05/99	915	946	Yellow to greenish gray; poorly to moderately indurated wackestone; sparry cement; calcilutite matrix; 50% shell fragments; 35% carbonate mud; 1-2% phosphatic sand; traces of silty clay clasts
01/05/99	946	985	Yellowish, greenish gray; moderately indurated wackestone; 60% allochems; calcilutite matrix; greenish clay matrix; 50% shell fragments; 25% carbonate mud; 10% quartz sand; 5% phosphatic sand
01/05/99	985	1,010	Yellowish tan; moderately indurated packstone; 70% allochems; calcilutite matrix; sparry calcite cement; 30% shell fragments; 10% quartz; 7% phosphatic sand
01/05/99	1,010	1,025	Yellowish gray; well indurated packstone; 70% allochems; calcilutite matrix; sparry calcite cement; 15% shell fragments; 3-5% quartz; 3% phosphatic sand
01/05/99	1,025	1,060	Yellowish gray; moderately indurated wackestone calcilutite matrix; 5-10% shell fragments interspersed with fine-grained calcitic sandstone
01/05/99	1,060	1,138	Light gray; moderately indurated wackestone, 5% sparry calcite; minor poorly indurated mudstone, less than 5% shell fragments; less than 2% silt to fine-grained sand
01/06/99	1,138	1,170	Same as above
01/06/99	1,170	1,205	Light orange to yellowish gray; moderately to well indurated friable packstone; 80% allochems; 5% sparry calcite, less than 5% shell fragments; less than 1% phosphatic sand
01/06/99	1,205	1,225	No sample (minor lost circulation; used thinned muds as not to induce additional mud loss by weight of mud column resulting in no drill cutting returns)

APPENDIX F PRIMARY AND SECONDARY DRINKING WATER AND MINIMUM CRITERIA PARAMETERS

EQUIPMENT BLANKS

12/03/00

12/10/00

V0

		1	60	t Revia	7 ^{#Does}	s not ge	alibles	6 d
HL LINTA CO	RIAM .					P C	Certification:	1"
SOUTH FLORID	A MATER MENT.DIST.						683079	
0034 BELVED	WINE NO.				/=			
MEST PALM DE	BACH, FL 33411							
					EL	AB, Ir	IC.	
		AMALYTICAL REPOR	7		FEB	E 0 0	, D,	age 1
a desired as 1		diantis 0.0 Number: [3]	2044	440	L			
submission m	sumper: 11000676	Tendent Mathew.		~~	0	A UNIT		
Date Receive	HG: 11/29/00	Project Name: 120				n unn		
Date Reports	Bd: 01/03/01	Elab Report Name: Finalne	M-28	inali_RP1				
Lab Sample 8 Client Sampl Sample Descr	Ramber: 0011676 1 Le Number: 966 ription: EQUIPMENT BLANK DI V	Date Sampl Bample Mat	ed: rix:	GROUND HW	TER			
Nethod	Analyte	Remult	0	Unita	Limit	Analyst	Analyzed	Pr
16138	DIOXIN (2.3.7.8-TCBB)	0.56	u.	pg/L	0.56	SML	12/21/00	12
	PRIORITI POLICITANE B/S	A BRYBACTABLES				110	12/10/00	
625	ACENAPSTREAM	5.0		Lug/L	9.9	90	127 100 00	15
625	ACIDIAPREVILENE	5.0	÷.	UQ/L	5.4	140	12/10/00	1.0
625	ANTHRACENE	9.0	÷.	ug/L	3.9	10	12/10/00	12
625	DENZIOONS	40	÷.	togy to	#2 6.4	10	12/10/00	12
625	BEDTE (A) APTHOACENE	5.0		tagy in	5.0	93	12/10/00	1.2
625	DENDO (B) PLOCIDATIVESTE	5.0		unge to	5.0	VC	12/10/00	12
635	BRHED (R) PLOOPARTHENE	8.0		up/ta	5.4	93	12/10/00	12
625	BENEGYG, B. T.) PERTLEME	5.0		run/T.	5.4	va	12/10/00	12
434	BUILDING FIREPE	TRANE 5.4		La/L	5.4	VG.	12/10/00	1.2
625	BISCO-CREASEDEDICE FIN	ER 5.4		um/L	5.0	W3	12/18/09	12
625	B18(2-0808019099091)	ETHER 5.4	v	ua/L	5.0	VG.	12/10/00	12
625	BIS (2 . ETHYLMECYL) BUTS	ALATE 5.4	U	ug/L	5.0	193	12/10/09	12
625	4-BRONCOSENVL DIESVL F	THER 5.4	U	09/5	5.0	10	12/18/00	12
625	BITTL BERRYL FOUNDATE	5.0	υ	ug/L	5.0	¥9	12/10/00	12
625	2-CHLOROMADITIALENE	5.4	U	va/L	5.4	10	12/18/08	12
625	S-CHLORD-1-METHYLENENG	6 20	U	ug/L	28	10	12/10/00	12
625	2-CHLOROPHINGL	5.0	υ	101.0%	8.4	10	12/11/11	12
625	4-CHLOROPHOPTL PRENTL	ETHER 9.0	u	ug/L	5.0	10	12/10/00	17
625	CHRISENE	5.0	U	wa/ta	5.0	10	12/11/01	12
625	DEBEMIN (A. HI ANTHRACENE	5.0	U	ug/L	5.0	10	12/10/00	52
625	DI-D-DUTYLOHTBALATE	5.0	U	49/5	5.0	1/3	12/58/09	12
625	1, 2 - DICHLOROBENZENE	5.0	U	ug/L	5.0	95	12/10/00	12
625	1.3-DICHLONGBENZENE	5.0	U	ug/1	5.0	V9	12/10/00	17
625	1.4-DICHLOROBENZENE	5.0	U	ug/L	5.0	V3	12/10/00	12
625	1.1'-DICHLOSOSENZIDINE	20	U.	ug/L	20	V9	12/10/00	13
625	1.4-DICHLOROPHENOL	5.0	U	wg/L	5.0	VO	12/10/00	12
635	DISTORTANIATE	5.0	u	ug/L	5.0	VD	12/38/00	12
425	2.4.DIMETHILENENCI	5.0	U	wg/1.	5.0	VC	12/10/00	12,
		5.0	12	and L	5.0	M0	12/10/00	12

Mailing - P.O. Box 468 • Ormond Beach, Florida 32175-0468 • Shipping - 8 East Tower Circle • Ormond Beach, Florida 32174 (904) 672-5668 • Fax (904) 673-4001

DIMETRYLPHTHALATE

635

5.0 U

wg/L 5.0 ug/L 5.0

ug/L

M. LINER CHEAN SOUTH FLORIDA WRITE MONT.DIST. 2024 BELVELERE ED. MEST PALM DEACH.FL 33411

Page 2

AMALYTICAL REPORT

Submission Number: 11000575 Date Received: 11/29/00 Date Reported: 01/85/01 Client's 7.0. Number: Clipownosy Project Number: Project Name: ISC Elab Report Name: Finalnew->Final2.8P1

Lab Sample Number: 0011676 1 Client Eample Number: 964 Sample Description: EQUIPMENT BLACK DI MATER Date Eampled: 11/28/00 Sample Matrix: GROUND WATER

					Reporting	9	Date	
Method	Analyte	Result	Q	UNIES	Limit	Analyst	Analyzed	Prepared
	PRICETY POLLUTARY B/H/A RITRACTABLES							
625	4.6-DINITRO-2-METRYL96ENOL	20	U	wg/L	20	VG	12/10/00	52/05/00
625	2.4-DINITROPHENCE	20	u	ug/L	20	VD	12/10/00	12/10/10
625	2,4-DIMITROTOLUENE	5.0	U	'ng/L	5.0	VO	12/10/00	12/03/00
625	2.4-DINITHOTOLIENE	5.0	U	ug/L	5.0	VG	12/10/00	32/63/60
625	1,2-DIWENYLEYTRAEINE	5.0	U	wg/L	8.0	V0	12/10/00	11/63/00
625	DC-n-OCTYLPHTRALATE	5.0	U	ug/L	5.0	VD.	12/10/00	12/03/00
625	DIGHIN (2.3.7.8-TCDD) (SCREEN)	100	U	ug/L	100	V0	12/10/00	12/03/00
625	PLUCHANTHENE	5.0	U	ug/L	5.0	VG	12/10/00	12/03/00
625	FLOORENE	5.0	13	ug/L	5.0	V9	12/10/00	12/09/00
625	REEACHLOROWENZENE	5.0	U	14g/L	5.0	VÜ	12/10/00	12/03/03
625	REBACHLOROBUTADEENE	5.0	U	ug/L	5.0	VD	12/10/00	12/00/00
625	REBACHLOROCYCLOPENTADIENE	5.0	1.1	ug/L	5.0	¥2	12/10/00	13/00/00
625	REBACHLORORTHARE	5.0	U	ug/L	5.0	VG	12/10/00	12/03/00
625	INDENO(1,2,3-CO) PYREME	5.0	U	ug/1	5.0	WS	12/10/00	12/03/00
625	LEOPHONOME	5.0	U	49/1-	5.0	1/2	12/10/00 .	12/10/00
625	NAPSTRALENS	5.0	U	ug/L	5.0	92	12/10/00	\$2/00/00
625	NUTROBENIENE	5.0	U	149./%	5.0	1/3	12/10/00	12/03/00
625	2-SUTROPHENOL	5.0	U	ug/L	5.0	92	12/10/09	12/03/00
625	4-8178094830L	3.0	U	ug/L	21	10	12/12/00	12/01/01
625	N-NUTROBODINGTRYLARING	5.6	U	- 1/gu/1	5.0	92	12/10/09	£2/13/94
625	N-NUTROSCOLPHEN/LAMINE	5.0	U	ug/L	5.0	193	12/10/00	12/03/01
625	N-STTROUDDI-G-PROPILAMINE	5.0	U	100/12	5.0	93	13/10/00	12/01/01
625	PENDACHLOROPHENOL	2.0	U	ug/L	24	90	12/10/00	12/03/00
625	PRESSATTORNE	5.0	U.	ug/s	5.0	VG	13/10/00	12/61/07
625	PRESOL	5.0	U	ug/L	5.0	90	12/10/00	12/03/00
625	PURENE	5.0	U	ug/s	5.0	¥3	13/10/00	12/43/00
625	1,2,4-TRICHLOROBENZEME	5.0	υ	ug/L	5.0	193	12/10/00	\$2/03/08
625	2, 4, 5-TRICHLOROPHENDL	5.0	U	ug/L	5.0	95	12/10/00	12/03/00
	DW CHLORIMATED PROFICIDES & PCR							
505	ALACHLOR	1.5	U.	ug/t	1.5	TCI	12/02/00	12/01/07
505	ATRACTME	2.5	1.1	ug/L	2.5	TCE	12/02/00	12/01/00

Page 3

NS. LISTA CREAT SOUTH FLORIDA NATER HOMT.DIST. 8894 BELVEDERE RO. MEST FALM BEACH.FG 33411

AMALFTICAL REPORT

Submission Number: 1100676 Date Received: 11/29/88 Date Reported: 03/05/81 Client's P.O. Number: Clipo44000 Project Number: Project Nume: LEC Elab Report Nume: Finalney-sFinal2.001

Lab Sample Number: 0011676 1 Client Sample Number: 964 Sample Description: SQUIPMENT BLANK DI MATKE Date Sampled: 11/28/00 Sample Matrix: CROUND MATER

					Reportin	a	Eate	
Method	Analyte	Result	0	Units	Limit	Analyst	Analyzed	Prepare
	ON CHLORENATED PROTECTIONS & PCR							
8.05	g-B682 (LINDAME)	0.010	U.	49/1	4.010	TCE	12/02/08	12/01/0
505	CHELORDANE	0.020	w.	09/5	0.020	TCL	12/02/00	12/01/0
5.05	ENDRIN	0.010	Ψ.	ug/t	0.010	702	12/02/00	12/01/0
505	REPTACHLOR	0.030	u.	ug/L	0.030	208	12/02/00	13/01/0
525	REPTACHLOR EPOSIDE	0.010	U.	ng/L	0.010	772	12/02/00	10/01/0
515	REALPE.OROBENZENT	0.10	U	wa/L	0.10	702	12/02/00	13/01/00
5.25	NERACHLOROCYCLOPERTRO1808	0.10	U	ug/L	0.10	TCI	12/02/00	12/01/00
505	METHCENTHLON	0.058	ы	ug/L	0.050	TCE	12/02/00	12/01/04
505	STRAZISE	1.5	U	ug/L	1.5	TOR	12/02/00	13/01/00
105	TOXAPHENE	0.10	υ	ug/L	0.18	TCS	12/02/00	12/01/00
\$05	PCB 1016	0.10	w.	49/5	9.10	TCZ	12/02/00	12/01/10
105	PCB 1221	0.10	Ψ.	ug/L	0.10	702	12/02/00	12/01/01
105	PC8 1232	0.10	œ	ug/L	0.10	TCZ	12/02/00	12/01/01
505	PCD 1242	0.10	σ	up/L	0.10	TCZ	12/03/00	12/01/01
105	PCB 1248	0.10	U.	ug/L	0.10	TCE	12/02/00	12/01/00
sas	PCB 1254	0.10	U	wg/L	0.10	TCZ	12/02/00	13/01/00
10.5	PCB 1260	0.10	U	ug/L	0.10	TCI	12/02/00	12/01/00
05	TUTAL PCB'S	0.10	U	49/2	0.10	7.02	12/02/00	12/10/00
	DRINKING WATER ONGASIC REDISICIOUS							
15.1	2,4-0	0.10	υ	ug/t	8.10	OAO	12/05/06	12/04/10
15.1	DALAPON	1.0	v	ug/L	1.0	OND	12/05/00	12/04/07
35.1	01100868	0.20	α.	ug/L	0.20	040	12/05/08	\$2/04/01
15.1	PENTACHLOROPHENGL	0.040	α.	US/L	0.040	080	12/05/02	11/04/02
15.1	PICLORM	0.10	u .	ug/L	G.10	040	12/05/00	12/04/00
15.1	3.4.5-TP (SELWER)	0.20	U.	ve/L	0.28	CBO	12/05/00	12/04/02
	DRIMRING MATES GROANIC CARBANATES							
31.1	CRUBOFURAM	2.0	U .	wg/1,	2.0	2344	12/05/00	12/04/02
31.1	ORAWST. (VYDATE)	2.0	U	ug/L	3.0	ISBA	12/05/00	12/04/07
	IN BISINFECTANT BZ-PRODUCTS							
04.1	1, 2-DEBROND-3-CHILOROPHODANS	0.020	U	ug/L	6.020	0A0	12/05/00	32/04/00
D4.1	ETHYLENE DIBROMIDE	0.020	U	100.75	0.020	040	12/05/00	12/04/00

RE. LINEA CREAM SOUTH FLORIDA MATER MONT.DIST. 8894 RELVEDERE RD. WEST FALM BEACH.FL 33411

Page 4

ANALYTICAL REPORT

Submission Number: 11000476 Date Received: 11/29/00 Date Reported: 01/05/01 Client's D.O. Number: Cli304MCC0 Project Number: Project Name: LDC Eleb Report Name: Finalmes->Final2.8P1

Lab Sample Number: 0011675 1 Client Sample Number: 964 Sample Description: EQUIPMENT SLANK DI NATER Date Sampled: 11/28/00 Sample Matrix: OROUND WATER

					Reporting	,	Date	
Method	Analyte	Result	0	unita	Limit	Analyst	Analyzed	Preparec
	DN MISC. SOC'S - GLYPHOSATH							
547	OLY PROSATE	6.0	U.	ug/L	6.0	1.M9./108A	12/01/09	
	ON MESC. BOC'S - EMEDITALL							
548.1	SHOCTHALL	9.0	ų.	ug/L	9.0	2014	12/06/09	22/30/0
	DW MISC. SOC'S - DIGENT							
\$49.1	DEGRAT	0.40	Ψ.	- ug/1_	0.40	KSEA	12/04/00	11/30/0
	DW GROUP I UNREQUIATED OF PROVEZERS							
\$25.2	ALDRIN	0.14	Ŧ	ug/L	0.10	TIGA	12/06/00	13/01/3
535.2	DC8LDR1N	0.13	Ψ.	ug/L	0.13	TRA	12/96/90	33/20/3
525.2	PROPACHELOR	0.20	v	ug/L	0.20	TKA	12/16/30	12/06/0
	DW SROOP I UNREGULATED-CAREAGATES							
531.1	ALDICARB (TRMIN)	2.5	υ	ug/L	2.0	XHA	12/85/00	13/04/0
\$31.1	ALDICARD SULFORE	2.0	υ	ug/L	2.0	XHA	12/09/00	12/04/9
531-1	ALDICARB SULPOXIDE	2.0	υ	ug/L	3.0	XDEA.	12/85/80	13/04/0
\$31.1	CREDARYS	2.0	u	ug/L	2.0	XULA	12/05/00	12/04/0
531-1	3 - INVERSIGNCARBO FURAS	2.0	U	ug/L	2.0	XHA.	12/05/00	12/04/0
531.1	NETRI OCARB	2.0	U	ug/L	2.0	8363	12/65/80	13/04/0
531.1	NETHONYS.	2.0	U	ug/L	2.0	E4A	12/05/00	12/04/9
	IN REG AND UNERS VOLATILE OBGARICE							
503.2	DEMSENE	0.50	13	ug/L	0.50	3040	11/30/00	
502.2	BROMOBRINE 2018	8.50	U	ug/L	0.93	2012	11/30/00	
502.2	DROMODICHLOROMETRAME	0.50	u	ug/L	0.50	3/88	\$3/30/00	
502.2	BROMOVORM	0.50	U	ug/L	0.50	RME	11/30/00	
502.2	DROHOHETMANE	0.50	u	ug/L	9.50	RME:	11/30/00	
502.3	CARBON TETRACHLORIDE	0.50	U.	wg/L	0.90	RPE	11/30/00	
502.2	CIELOROETMAKE	0.50	u	ug/L	0.51	8.4E	11/30/00	
502.2	CHLOROPORM	0.64		wg/L	0.50	RME	11/10/00	
502.2	CHIGROMETRANE	0.50	œ	ug/L	0.50	1910	11/50/00	
502.2	2-CHL08070LUENE	0.50	w.	ug/%	0.50	RMG	11/30/09	
502.2	4 -CHLOROTOLARMS	0.93		ug/L	0.50	1945	11/32/08	
502.2	DOBRONDCHLOROMETHANE	0.50	w.	- ug/L	0.50	RMZ	11/30/00	
502.2	DIBROHOMETRAVIE	0.50	υ	ug/1	0.50	FINE	11/30/00	

NG. LINEA CHEAN SOUTH FLORIDA MATER MONT.DIST. SRIM. RELYEDERE RO. MERT PALM BEACH.FL 19411

AMALYTICAL REPORT

Page 5

Dubmission Number: 1100676 Date Received: 11/29/00 Date Reported: 01/05/81 Client's P.O. Number: Clipotatop Project Sumber: Project Name: LEC Eleb Report Name: Finalnew-sFinal1.NP1

Lab Gample Number: 0011676 1 Client Sample Number: 956 Sample Description: RQUIPMENT BLAIM DI NATES. Date Sampled: 11/28/00 Sample Matrix: GROUND WATES

				Reporting			Date	
Method	Analyte	Result	G	Units	Limit	Analyst	Analyzed	Preparet
	IN REG AND DERES VILATILE ORDANICE							
502.2	1, 2-DICKLORONENEENE	0.50	υ	ug/t.	0.90	395	11/34/00	
502.2	1, 3-DICELOROSEMEENE	0.90	U.	48/L	0.50	272	11/36/00	
502.2	1, 4-DICKLOROBENEENE	0.50	2	ug/L	0.90	RHE	11/30/00	
502.2	DDCWLORODO FLUOROMETHANE	0.90	υ.	ug/L	0.50	R942	11/38/00	
502.2	1,1-DECHLORONTHARE	0.50		100/12	0.50	ROBE	11/32/00	
\$02.2	1.2-DOCKLOROUTINAME	c.50	w.	up/t.	0.50	RMC	11/38/00	
502.2	1,1-DICHLOROETNEME	0.50	U.	09/5	0.50	RME	11/32/00	
502.2	cis-1,2-DICHLOROETHENS	0.50	u -	ug/L	0.50	AME	11/33/98	
5.02.2	trans-1,2-DCC#LORDETHENE	0.50	u	wg/L	0.50	8.40	11/10/08	
502.2	DICHLOROMSTRANE	0.50	U	ug/L	0.55	8.702	11/30/08	
102.2	1.2-DICELOROFROFAME	6.50	u	ug/t.	0.90	RAT.	11/30/00	
502.2	1,3-DICHLOROPROPAME	0.50	U	ug/L	0.58	3.76	11/30/00	
602.2	2.2-DICHLOROPROPANE	0.50	12	ug/1.	0.53	882	11/30/00	
502.2	1,1-DICHLOROPROPENE	0.50	υ	ug/L	0.50	SOME	11/30/00	
902.2	1,3-D3CHLOROPROPENE	0.58	υ	ug/1.	0.10	2042	11/30/00	
102.2	PTWYLAGMEEME	0.91	v	49/5	0.50	RME	11/30/00	
102.2	METRIL TERT-BUTYL-STHER (MTHE)	0.58	0	ug/6	8.50	RPER	11/30/00	
102.2	HOROCHLOROBENSENE	0.50	υ	ug/L	0.50	7.945	11/30/00	
102.2	STYRENE	0.93	u .	100/12	0.50	8.962	11/33/80	
02.2	1, 1, 1, 2-TETRACHLOROSTHANE	0.50	0	ug/L	0.50	RMS	11/30/00	
102.2	1,1,2,2-TETRACHLOROSTHAME	0.50	σ	100/12	0.50	RMC	11/30/00	
62.2	TETRACILOROETHENE	0.50	U.	ug/L	0.98	AND NO.	11/30/08	
182.2	TOLUENE	0.50	U	wm/L	0.50	8.402	11/80/00	
12.2	3.2.4-TRICHLORDBENSENE	0.50	U	ug/L	0.93	AHC .	11/30/00	
9.2.5	1,1,1-TRICHLOROFTHAME	0.50	U	ug/L	0.50	RME	11/10/00	
22.2	1.1.2 TRICHLOOSETRAME	0.50	U	ug/L	0.50	ENE .	11/30/00	
S-20	TRICHLORORTHENE	0.50	U	ug/1.	0.50	872	11/30/00	
02.2	TRICHLOROPLUGHOMETRANE	0.50	U	ug/L	0.50	1942	11/10/00	
02.2	1.2.3-TRICHLOROPROPANE	0.50	u .	ug/L	0.50	245	11/10/00	
02.2	VINTL CHEORIDE	0.50	υ	wa/L	0.50	SME	11/10/20	

HS. LINDA CREAN SOUTH FLORIDA WRITE MONT.DIST. 0934 BELVEDERE ND. NEST FALM DEACH.FL 31411

Page 6

AMALYTICAL REPORT

Dubmission Number: 1100676 Date Received: 11/29/00 Dete Reported: 01/05/01 Client's P.O. Number: Cli904M009 Project Name: LCC Elab Report Name: Finalerw:>Final2.871

Lab Sample Number: 0011575 1 Client Sample Number: 966 Sample Description: EQUIPMENT BLANK DI WRITER Date Sampled: 11/28/00 Eample Matrix: CECLND MATER

					Reporting	Deta		
Hethod	Analyte	Remult	0	Unite	Limit	Analyst	Analyzed	Prepare
	DW ADDRATES, PETHAGATES, AND PAR-	2						
525.2	BENSO (A) PERENE	0.10	u.	ug/L	0.10	752	12/06/00	12/01/0
525-2	D1 (2 - ETHYLHENYL) PHTHALATE	2.0	U.	ug/L	2.0	753.	12/06/00	12/01/0
525.2	DO (3 - STHYLHEEFL) ADD PATE	1.6	U.	wg/L	1.6	TEA	12/06/00	12/01/0
110.2	COLOR	5.0	U	UNIT	5.0	1690	11/29/00	16:11
120.1	SPECIFIC CONDUCTANCE	0.860		unhos/cm	1.0	HBO	11/29/00	
SM21308	LANCLIER SATURATION INDEX	-5-98				871	12/07/00	
140.1	ODOR.	1.0	U.	TON	1.0	MBD	11/29/00	16:15
150.1	μx	4.82		1912		MBC	11/29/00	16:20
160.1	TOTAL DISSOLVED SOLDS (TOS)	5.1	υ	mg/L	5.0	MRO	11/39/00	
180.1	TURBIDITY	0.10	U	MTU	0.10	MINC	11/29/00	16:24
100.2	ASBESTO6	0.28	U	MIL	0.20	ENSL	12/13/00	11/01/0
335.2	CYANDE - TOTAL	0.018	\mathbf{U}	mg/1.	8.010	TPE	12/04/00	
350/351.2	ORGANIC NITROGEN (as 8)	0.50	ω.	mg/1_	0.50	T25	11/30/00	
351.2	TOTAL EJELDAML NITROGEN (as N)	0.50	\mathbf{v}	mg/L	0.50	TPE	11/08/08	
365.4	TOTAL PHOSPHORUS	0.10	Ψ.	mg./1.	0.10	776	11/90/00	
380.1	AMMONIA SITROGEN (as N1	0.050	Ψ.	mg/L	0.050	296	11/29/00	
485.1	BCD 5-day	2.0	0	mg/L	2.0	106.	11/28/00	
\$25.1	SUBPACTANTS (NEAS)	0.10	3	mg/L	0.10	1054	11/29/09	
590.0	OROSS ALPHA	0.5+/-0.4	U.	pCi/L	0.5+/-0.4	15.154	12/11/00	
00.00	CROSS BETA	$L=0=J^2=0^{-1}T$	U.	pCL/L	1.0-/-0.1	N.W.	12/11/00	
947500Ra	RADIUM 226	0.2+/-0.1		pCL/L		19.25	12/14/00	
DE7500BA	RADIUM 228	1-0-/-0.8	U.	pCi/L	1.0./-0.1	8.75	12/14/00	
500.0	CHLORIDE	0.50	U	mg/L	0.50	RFE	11/29/00	
100.0	FLUCHIDE	0.050	U	mg/L	0.050	KFE	11/29/00	
100.0	NUTRATE NITRODEN (as NO	0.050	U	mg/L	0.058	RPE	11/29/00	17:44
100.0	AUTRITE MITHODEN (as M)	0.050	U.	mg/1.	0.0%8	K78	11/29/00	17:44
100.0	SUTROGEN - NO3/802 (NO8)	0.050	U	mg/L	0.050	NPE	11/39/00	
100.0	ORTHOPHDERMATE - P	0.10	L1	mg/L	0.10	KPE	11/29/00	17:44
100.0	SULFATE	0.50	U.	mg/1.	0.50	KPE	11/29/00	
104.2	ANTINONY (TOTAL)	3.0	U	ug/L	3.0	JAS	12/04/00	
7421	LEAD (TOTAL)	1.0	U	9872	1.0	EN	12/01/00	

HS. LINDA CREAN SOUTH FLORIDA WATER MONT.DIST. SAPA BELVEDERS BD. WEST FALM DEACH, FL 33411

AMALYTICAL REPORT

Page +

Submission Number: 11000676 Date Received: 11/29/00 Date Reported: 01/05/01

Client's P.O. Mumber- Cliso48009 Project Number: Project Name: LEC Elab Report Name: Finalmew->Final2.8Fi

Lab Sample Wumber: 0011676 1 Client Sample Number: 954 Sample Description: EQUIPMENT BLANK DI WATER Date Bampled: 11/28/03 Sample Matrix: GROUND WRITER

					Reportin	Date		
Mathod	Analyte	Result	0	Unita	Limit	Analyst	Analyzed	Prepare
7470	MERCURY	0.30	u	10g/%	0.20	51	12/04/00	
7740	SELENIUN (TOTAL)	2.0	0	up/L	2.0	EM.	13/06/00	
7041	TEALLIN (TOTAL)	1.0	u.	ug/L	1.0	.32.5	12/04/00	
200.7	ALUNGMUN [TOTAL]	100	U.	up/L	1.0.9	EM	11/30/00	
200.7	ARSENIC ITOTAL	5.0	U.	ng/L	5.0	8M	11/30/00	
200.7	BARDUN (TOTAL)	10	U.	wg/L	10	8H	11/30/00	
200.7	NERVILIUM ITOTALI	. 1.9	U	ug/L	1.0	EM.	11/30/00	
100.7	CADMEUM (TOTAL)	1.0	u	ug/t.	1.0	EH	11/32/00	
200.7	CHEROMEUM (TOTAL)	5.0	U	ug/L	5.0	EM	11/38/88	
200.7	COPPER (TOTAL)	10	u	ug/L	10	EN .	11/32/00	
200.7	INON (TUTAL)	40	U	199/12	40	EN.	11/38/08	
200.7	MANGAMESE (TOTAL)	5.0	υ	ug/1.	5.0	675	11/30/00	
200.7	MICKEL (TUTEL)	10	υ	ug/L	10	E8	11/30/00	
200.7	SILVER (TOTAL)	1.0	v	ug/L	5.6	124	11/30/00	
200.7	SCOIUM (TOTAL)	0.50	v	mg/1.	0.90	214	11/50/00	
206.7	SIMC (TOTAL)	20	w.	$\log/T_{\rm e}$	2.0	D4	11/10/00	

Data Qualifier Code Key:

T - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Lab Sample I Client Samp Eamole Deer	Number: 0011676 2 le Number: 945 sintien: GROND 100	Dute Sampl Sumple Mai	led:	11/20/00 0800700 W	ATRIE .			
Mechod	Analyte	Result	Q	Units	Reportin Limit	9 Analyst	Date Analyzed	preparad
1613A	DIOXIS (2.3.7.8-TCDD) PRIORITE POLICEMENT R/S/A ROTRACTABLED	0.86	U	. P9/%	8-86	94L	12/21/00	12/07/00
625	ACENAPHENENE	5.0	υ	. 93/1-	5.0	W0	12/18/00	12/03/00
625	ACIDIA PRTETLIDIC	5.0	U	ug/1	5.0	1/3	12/10/00	12/01/00

FIELD SAMPLE

EXW-1 (1,015 TO 1,225 FEET BPL)
HS. LINDA CREAF SOUTH FLORIDA WRITE HONY.DIST. 0854 DELVEDERE RD. HEIT FREM BEACH, FL 33411

AMALYTICAL REPORT

Page 4

Bubmiselos Number: 11003575 Date Received: 11/29/08 Date Reported: 01/05/01 Client's P.O. Musher: Cli904H009 Project Natker: Project Nate: LBC Elab Report Nate: Finalsev-Final2.871

Lab Sample Number: 0011676 2 Client Sample Number: 965 Sample Description: GROUND H20 Date Sampled: 11/10/00 Sample Naturia: GROUND MATER

					Reportin	g	Date	
Nethod	Analyte	Regult	Q	Units	Limit	Analyss	Analysed	Prepared
	PROBRETY POLICYANY R/S/A BATRACTABLES							
625	ANTHRACESE	5.0	L!	ug/t	5.0	VD	12/10/00	12/13/00
625	HEREICENE	25	U	ug/L	15	M2	12/10/00	12/03/00
625	DENE (A) ANTERACEME	5.0	U	ug/1	8.0	V0	12/11/04	11/83/50
625	BENED (B) FLUCKANTHEOR	5.0	υ	09/5	5.0	VS .	12/10/00	12/13/00
625	DENSO (X) FLUGRAMTNENE	5.0		ug/L	5.0	W7	12/10/00	12/13/10
625	BEMED (G, H, E) PERILEME	5.0	\overline{v}	NB/G	5.0	90	12/10/00	12/03/02
625	BENSO (A) PERENE	5.0	Ψ.	ug/L	5.1	73	13/10/00	12/03/02
625	BIS(2-CHLOROETHORY) METHANE	5.0	u.	ug/L	5.0	VG.	12/10/00	12/03/00
425	BISIS CHLOROSTHYL) ETHER	5.0	U.	ug/L	5.0	93	12/10/00	12/03/00
625	BIS(2-CHLORO(SOPROPTL) ETHER	8.0	u	mg/L	9.0	VG	12/10/00	12/03/00
625	BOB (2-STRYLHEXYL) PRTRALATE	5.0	U	wg/L	5.0	V0	13/10/00	12/03/03
625	4-BRONDONENYL PHENYL ETHER	5.0	U	ug/S	5.0	VO	12/10/00	13/03/00
625	BUTTL BENEYL PHTHALATE	5.0	U	wg/L	5.0	VG	12/10/00	12/03/00
625	2-CHLORONADHTHALENE	5.0	U	ug/L	5.0	VO	12/10/00	13/03/02
625	4 - CHLORO- 3 - METRYLPHENOL	2.0	13	ug/L	20	VG	12/10/00	12/03/00
625	2 - CHLOROPHENDL	5.8	U	49.72	5.0	VD	12/10/00	18/63/00
625	4-CHLOROPHENYL PHENYL ETKER	5.8	υ	ug/L	5.0	VC VC	12/10/00	32/09/00
615	CHEVARAN	5.0	υ	ug/s	5.0	10	12/10/00	12/13/10
825	DIDENDO (A, IE) ANTHRACENE	5.0	υ.	ug/L	5.0	703	12/10/00	\$2/63/60
635	DI-G-BUTTLFETERLATE	5.0	Ψ.	ug/t.	5.0	90	12/10/00	E2/05/00
625	1.2-01CHLOROSENEENE	5.0	Ψ.	ug/L	5.4	va	13/10/00	12/01/01
625	1, 1-DICHLORDRENZENE	5.0	u.	ug/L	5.0	VG	12/10/00	12/01/03
625	1.4 DICHLOROBENZEME	5.0	U.	ug/L	5.0	va	12/10/00	12/01/00
625	1,1'-DICHLORDBENZIDIME	20	u.	ng/t.	20	VG	12/10/00	12/03/00
625	2,4-D1CHLONOPHENCL	5.0	U	wg/L	5.0	VO	12/10/00	12/03/02
625	DIETHYLPHTHALATE	5.0	u.	wg/L	5.0	VG	12/18/30	12/01/00
625	2,4-DINETHYLPHERUL	5.0	U	wg/L	5.0	510	12/10/00	12/03/00
625	DOMETRYLOWTHALATE	5.0	U.	ug/L	5.0	VG	12/11/04	12/03/00
623	4. 6 - DIMITRO - 2 - METRELPHENOL	2.0	U	wg/L	20	V0	12/10/04	12/09/00
625	2, 4-DIMITROPHENDL	20	U.	ug/L	20	VG	12/18/88	12/10/09
625	2.4-DIMITROTOLUENE	5.0	U	ug/L	5.0	V0	12/10/00	12/13/40

MS. LEMEN CHEAN SOUTH FLORIDA WATER MEMT.DIST. 0934 BELVEDERE ND. MEET PALM NEWCH.FL 33423

Page #

AMALTICAL REPORT

Dubmission Number: 11000476 Date Received: 11/29/80 Date Reported: 01/05/81

Client's P.O. Mumber: Clipsewood Project Sumber: Project Name: LEC Elab Report Same: Finalnee->Final2.spi

Lab Eample Number: 0011676 2 Client Eample Number: 965 Sample Description: CROTHY MD0

Date Sampled: 11/28/08 Sample Hatrix. DROUND WATER

				Reportin	0	Gete	
Description Description EXECUTE FOLLUTIANT AVM/A RETEACTABLES 2.4-01N1TROTOLUTIANE 3.3-01N40001UNERE 3.3-01N40001UNERE 3.3-01N40001UNERE 0001N112,3,7,8-TCDD0 (ECREEN) FUDDRING FUDRRING FUDRRING FUDRRING FUDRRING FUDRRING FUDRRING FUDRRING FUDRRING FUDRRING FUDRRING <th>Result</th> <th>0</th> <th>Units</th> <th>Linit</th> <th>Analyst</th> <th>Analyzed</th> <th>Ртерато</th>	Result	0	Units	Linit	Analyst	Analyzed	Ртерато
PRIORITY POLLUTERY S/H/A STTRACTABLES					and the second second		
2.6-DINITRODULUENE	5.0	U.	ug/t	5.0	V0	13/10/00	12/03/0
1.1-DINGOVLANDBAZING	5.1	U.	wa/L	5.0	VD	12/18/86	10.00.00
PC-6-OCTYL/HITHALATE	5.1	υ	us/1	5.0	VS	13/18/88	12,423,40
DIGHIN (2,3,7,8-TCDD) (SCHENN)	1.08	22	va/L	180	10	12/12/08	12,002,01
PLUCHANTNENE	5.0		us/5	8 - D	10	12/18/88	53/35/3
FLOORENE	5.0	0	Lab/L	5.4	102	12/14/00	12,001,00
HIXACHLOROBENZENE	8.0	U	100/5	5.4	903	12/10/00	10.000.00
HEDGACHLOROBUTERDS ESSE	5.0	LI .	wg/L	5.0	20	13/10/00	12/01/0
HEXACHLOROCYCLO PENTAD1ENE	5.0	IJ	un/L	5.0	MD NO	12/16/66	12/03/0
RESOLUTION OF THANK	5.0	υ	ug/1.	1.0	WD.	10/10/00	11/11/11
INDEND (1, 2, 3-CD) PUTRIME	5.0	12	140.112	5.0	10	13/11/11	13,05,00
LEOPHCROSE	5.0		us/L	5.0	VC	12/18/08	10,000,000
NAFWTNALESE	5.0		ug/t	5.1	10	12/14/00	12/22/21
HITROBENZENE	8.0	U.	um/L	5.4	90	12/10/00	10.001.001
2-NITROFEINGL	5.0	U.	ap/t.	5.0	90	12/10/00	ender der
4-MITROPARADI.	20	12	wa/1.	20	MO	12/10/00	15/01/01
M-MITROSOD IMETRYLAMINE	5.0	U	un/L	8.0	10	La Jan Jan	10/03/01
S-SUTROSOD1 PRENVLARIAN	5.1	υ	ua/t.	5.0	10	12/12/28	12/02/02
N-NTTROSODI-m-PROPYLANINE	5.0		0.01%	5.0	345	10/18/88	44,445,777
PENTACKLOROPHENDL	2.8		ua/L	21		12/12/02	10,000,000
PROMATORENE	5.0	UT .	um/L	5.0	107	12/12/22	19/11/02
PHENOL	5.0	U.	100/1	5.0	540	12/10/00	1 - 432,000
PYRDEE	1.0		week L	5.0	112	12710700	13/31/03
1,7,4-TRICHLOROBENEENR	5.0	U	ug/L	8.0	100	12/10/00	10/01/02
1,4,6-TRICHLOROPHEND,	5.0		100/1	5.0	110	10120100	12/03/00
DW CHLORIDATED PESTICIDES & PCB				2.2	40	227 107 20	This call and
ALACKLOR	1.1		149.75	1.4	-	10.100.100	*******
ATRAZIME	2.5		unit.	2.5	10.0	12/02/00	10.101.000
g-BHC (LINDARC)	0.013		Land / T.	4.414	1.2	15185188	10101010
CHLORDANE	0.020		um/C	0.010	105	12/02/00	and an own
REPAIN	6 610		and the	0.010	102	75/05/00	CEPHICIP CO.
	Analyse PETORETT POLLUTANT BANA'A BUTRACTABLES 2.4 - DINITROPOLUENE 3.3 - DINBOYCLAVENALINS DC-n-OCTYLONITUALATE DCORIN (2.3,7,8-TCDD) (SCHEDN) FLUCAATHENS FLUCAATHENS FLUCAATHENS HEXACHLOROGENZENE NEXACHLOROGENZENE NEXACHLOROGENZENE NEXACHLOROGENZENE NEXACHLOROGENZENE NEXACHLOROGENZENE NEXACHLOROGENZENE NEXACHLOROGENZENE NETROSENZENE 3-NITHOFHENOL 4-NITHOFHENOL 4-NITHOFHENOL 5-NITHOFHENOL 5-NITHOFHENOL 5-NITHOFHENOL 5-NITHOFHENOL 1.1.4-TRICHLOROGENZENE NEXALINEORIENE NEXACHLOROGENZENE 3-NITHOFHENOL 4-NITHOFHENOL 1.4.4-TRICHLOROGENZENE NENOL PENDAL PENDAL NEXALINE NEXALINE NEXALINE ALACKLOR	Analyte mentic PERDENTY POLICIPARY R/M/A RETEACTABLES 5.4 2.4-0 DINITRODUCTION RATING 5.4 3.3-0 DINGONLATERATING 5.4 DC-6-0CTYLENTHALATE 5.4 DC-6-0CTYLENTHALATE 5.4 DC-6-0CTYLENTHALATE 5.4 DC0EDN [2,3,7,8-TCDD) [ECREEN] 102 FLUCRAFTERNE 5.4 FLUCRAFTERNE 5.4 </td <td>Analyse Result Q FEIGENT POLLUTIANT A/A/A HUTTACTABLES </td> <td>Analyse Deskit Q Unical 2. 4- DEFINIT POLICIPART BANA BUTRACTABLES 3.4 0 92/L 3. 4- DEFINIT POLICIPART BANA BUTRACTABLES 3.4 0 92/L 5. 4- DEFINITROPOLICENE 5.4 0 92/L 5. 5- DEFINITROPOLICENE 5.4 0 92/L FLORENE 5.4 0 92/L FLORENELOROPERANE 5.4 0 92/L FLORENELOROPERANE 5.4 0 <t< td=""><td>Analyte Result Q Units Limit 2.4-01NTRODULENE 5.8 0 NQ/L 5.0 3.4-01NTRODULENE 5.8 0 NQ/L 5.0 3.3-01TRODULENE 5.8 0 NQ/L 5.0 DC-m-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DC-m-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DC-M-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DCORESE 5.0 0 NQ/L 5.0 PLOORENE 5.0 0 NQ/L 5.0 NEXACHLONGCREDOR 5.0 0 NQ/L 5.0 NEXACHLONGCR</td><td>Avalyte Result Q Unics Linkt Analyse PERMITY POLICIPARY A/K/A BUTRACTARIES </td><td>Analyte Result Q Utit3 Lisit Analyte Analyte PERMITY POLLUTIANT A/M/A BUTRACTABLES 5.4 0 wg/L 5.0 V0 12/18/00 1,3-DIPRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.4-OINTRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.4-OINTRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.5-DIPRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.6 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE</td></t<></td>	Analyse Result Q FEIGENT POLLUTIANT A/A/A HUTTACTABLES	Analyse Deskit Q Unical 2. 4- DEFINIT POLICIPART BANA BUTRACTABLES 3.4 0 92/L 3. 4- DEFINIT POLICIPART BANA BUTRACTABLES 3.4 0 92/L 5. 4- DEFINITROPOLICENE 5.4 0 92/L 5. 5- DEFINITROPOLICENE 5.4 0 92/L FLORENE 5.4 0 92/L FLORENELOROPERANE 5.4 0 92/L FLORENELOROPERANE 5.4 0 <t< td=""><td>Analyte Result Q Units Limit 2.4-01NTRODULENE 5.8 0 NQ/L 5.0 3.4-01NTRODULENE 5.8 0 NQ/L 5.0 3.3-01TRODULENE 5.8 0 NQ/L 5.0 DC-m-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DC-m-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DC-M-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DCORESE 5.0 0 NQ/L 5.0 PLOORENE 5.0 0 NQ/L 5.0 NEXACHLONGCREDOR 5.0 0 NQ/L 5.0 NEXACHLONGCR</td><td>Avalyte Result Q Unics Linkt Analyse PERMITY POLICIPARY A/K/A BUTRACTARIES </td><td>Analyte Result Q Utit3 Lisit Analyte Analyte PERMITY POLLUTIANT A/M/A BUTRACTABLES 5.4 0 wg/L 5.0 V0 12/18/00 1,3-DIPRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.4-OINTRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.4-OINTRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.5-DIPRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.6 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE</td></t<>	Analyte Result Q Units Limit 2.4-01NTRODULENE 5.8 0 NQ/L 5.0 3.4-01NTRODULENE 5.8 0 NQ/L 5.0 3.3-01TRODULENE 5.8 0 NQ/L 5.0 DC-m-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DC-m-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DC-M-OCTYLENTINLATE 5.8 0 NQ/L 5.0 DCORESE 5.0 0 NQ/L 5.0 PLOORENE 5.0 0 NQ/L 5.0 NEXACHLONGCREDOR 5.0 0 NQ/L 5.0 NEXACHLONGCR	Avalyte Result Q Unics Linkt Analyse PERMITY POLICIPARY A/K/A BUTRACTARIES	Analyte Result Q Utit3 Lisit Analyte Analyte PERMITY POLLUTIANT A/M/A BUTRACTABLES 5.4 0 wg/L 5.0 V0 12/18/00 1,3-DIPRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.4-OINTRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.4-OINTRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 2.5-DIPRODULUTES 5.4 0 wg/L 5.0 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.6 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATTERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE 5.4 0 wg/L 5.0 V0 12/18/00 PLORATERSE

MS. LINEA CREAN SOUTH FLORIDA NATER MONT.DIST. 8004 - BELNIDERS RD. MERT PALM REACH.FG. 30411

AMALYTICAL REPORT

Page 10

Submission Mumber: 1199876 Date Received: 11/28/22 Date Reported: 01/05/01

Client's P.C. Number: Clipsewsep Project Surber: Project Name: 187 High Report Name: Finalnew-spinst2.891

Lab Hample Mumber: 0011676 2 Client Sample Mumber: 965 Hample Description: GROUND Hi0 Dete Sampled: 11/28/00 Sample Matrix: CROUND MATER

					Reportin	g .	Date	
Rethad 105 105 105 105 105 105 105 105	Analyte	Result	Q	Unite	Last	Analyst	Analyzed	Prepare
	DN CHLORESATED PESTICIDES & PCB					and the second second		
8.05	HEPTACHLOR	0.030	U.	wg/ta	0.030	TCS	13/03/00	12/01/0
5.05	HEPTACHLOR EPGEIDE	0.010	U	wg/L	0.010	TCE	12/02/00	11/01/0
5.05	REXACTLORGE END END	0.18	U	ug/L	0.10	TCS	12/02/00	13/01/00
505	RESACHLOROCYCLO PENTADI ENE	0.18	υ	ug/1	1.10	TCE	12/02/00	12/01/00
505	WETHOOV/CHLOR	0.050	υ.	ug/1	4.050	TCZ	12/02/00	12/01/00
505	815821ME	1.5		0.97%	L.5	TCZ	13/02/00	12/01/00
9.25	DURAPHENE	0.18		ug/L	0.18	708	12/02/00	12/01/00
505	PCB 1016	0.10	u.	US/L	0.10	772	12/02/00	12/01/02
505	PCB 1321	0.10	σ	up/L	0.10	TCE	12/02/00	12/01/00
9.05	PC9 1232	0.10	U.	ug/L	0.10	TCR	13/03/00	12/01/00
\$05	PCB 1242	0.10	U	198/L	0.10	TCE	12/03/00	12/01/00
105	PCB 1248	0.10	U	ug/L	0.10	TCS	12/03/00	12/01/01
\$05	PCB 1254	0.10	12	148/°L	6.10	TCE	12/02/00	13/41/00
5 0 5	PCB 1260	0.10	υ	ug/L	8.10	TCE	12/02/00	11/11/00
585	TOTAL PCB'S	0.10		49/L	6.10	705	12/02/08	12/11/00
	DRINKING MATER ORGANIC MERRICIPES							
515.1	2, H-D	0.10	u .	ug/t.	0.10	080	12/05/00	12/94/00
515.t	DALAPON	1.0	U.	um/L	1.0	0.80	12/05/00	12/04/00
515.1	ODVOREN	0.20	U.	up/L	0.23	0.40	12/05/00	12/04/02
\$15.1	PENTACHLOROPHENOL	0.040	12	way't.	0.040	DAG	12/04/00	12/04/01
15.1	PICLORAM	0.10	U	wa/L	0.10	DAO	12/15/10	13/04/00
\$15.1	2.4.5-TP (SELIER)	0.20	1.1	49/1	0.20	040	12/15/10	12/04/00
	DRINKING MATER ORGANIC CARBARATES							
331.1	CARBOPURAN	2.1	υ	43/5	2.0	K16A	12/05/00	11/24/10
35-3	OKAMYL (VYDATE)	2.0	v	010/6	2.0	8258	12/05/08	12/84/80
	DW DISINFECTANT BY-PRODUCTS					10.00	102.010.01	
04.1	1.2-DIBROMO-1-CHLOROPROPADE	0.025		um/L	0.020	080	12.005.000	12/64/00
04.1	ETRATEME DIBROHIDE	0.020	u.	ug/L	0.020	040	11/05/00	10/01/00
	BW MISC. SOC'S - GLIPHOSATE						1.41.420.44	
47	CLIPHORATE	6.0	U.	up/L	6.0	Cath / Hun	11.01.010	
	IN MISC. SOC'S - EMERTMAN					1000	181.011.00	

ME. LINDA CHERM SOUTH FLORIDA WATER HOMT.DEET. 8894 BELVEDERE RD. WEST FALM BEACH.F5 33411

1

Page 11

ANALYTICAL REPORT

Submission Number: 11333476 Date Received: 11/29/88 Date Reported: 01/95/81 Cliant's P.O. Number: Cli904W009 Project Number: Project Name: LEC Elab Report Name: Finalnes-sfinal2.891

Lab Sample Humber: 0011676 2 Client Sample Humber: 965 Sample Description: GROWD H20

Date Sampled: 11/28/00 Sample Matrix: CROUND MATER

					Reporting	0	Date	
Nethod	Analyte	Repuit	٥	Unito	Limit	Analyst	Analyzed	Prepared
	DW MISC. SOC'S - EMDOTRACE							
548.1	ENDOTHALL	9.0	12	ug/L	9.0	NDM	12/06/00	11/30/00
	DW MISC. SOC'S - DOZURT							
549.1	DOQUAT	0.40	12	ug/L	0.40	R36A	12/04/00	11/30/03
	DW CROOP I UNNECULATED OC PERIICINES							
\$25.2	ALDRIN	0.10	Ω.	ug/L	0.10	2308	12/07/00	12/01/00
525.2	DIELDRIN	0.13	12	ug/s	0.13	783.	12/07/00	12/01/00
525.2	PROPACIELOR	0.21	u.	ug/L	0.20	733.	12/07/00	12/01/00
	IN GROUP I UNREGULATED-CARBANATED							
531.1	ALDICARB (TEMIX)	2.4	Ŧ	ug/t	2.0	F.342.	12/05/00	12/94/00
\$31.1	ALDICARD SULTONE	2.4	Ψ.	ug/L	2.0	8364	12/05/00	12/64/00
531.1	ALDICARB SULPOXIDE	2.0	7	ug/1L	2.0	2.505	12/05/00	12/04/00
531.1	CRABARYL	2.8	Ψ.	ug/L	2.0	8392.	12/05/00	12/04/00
531.1	3 - HYDROXYCARROFURAN	2.0	w	ug/L	2.0	KHA	12/05/00	12/04/00
531.1	NETHIOCARB	2.0	Ψ.	ug/L	2.0	E39A	12/05/00	15/04/05
531.1	PETHONIL	2.1	Ξ.	ug/L	2.0	K304	12/05/00	12/04/07
	DW BRG AND UNRED VOLATILE ORDAVICS							
502.2	BENZENZ	0.58	Ψ.	ug/L	0.50	RHS	11/30/00	
502.2	BRCHCBROCCODE:	0.50	Ŧ	ug/1	0.50	RM2	11/30/00	
502.2	BROHOD I CHELOROHSTMANE	0.50	υ.	10g/L	0.50	AND:	11/80/00	
502.2	BRONDFORM	0.50	υ	ug/L	0.50	RME	11/30/00	
502.2	BROHOMETTISAHS	0.50	v	ug/s	6.50	RME.	11/30/00	
902.2	CARBON TETRACHLORIDE	0.50	υ	ug/L	0.50	RME	11/30/90	
502.2	CHEOROETHANE	0.50	\overline{v}	ug/%	0.50	RME	31/30/00	
502.2	CHELDROFORM	0.50	v	ug/L	0.50	RME	11/10/00	
502.2	CHLOROMETHANE	0.50	U.	49/5-	0.50	RNE	31/30/00	
502.2	2 - CHLOROTOLUENE	0.50	v	ug/L	0.50	RME	11/10/00	
502.2	4 - CHEOROTOLUENE	0.50	U	ug/L	0.50	RMC	11/30/00	
902.2	DISKONOCILOROMETRANE	0.50	U	ug/L	0.50	RME	11/50/09	
582.2	DIDROHOMETHANE	0.50	U	ug/L	0.50	204R	11/30/00	
902.2	1,2-DICHLOROBENZENE	0.50	12	ug/L	0.50	RMD	11/38/99	
542.2	1.3-DECHLOBORENTEINC	0.50	U	ug/L	0.50	RME	11/31/00	

RE. LINDA CHEAN SOUTH FLORIDA WATER MONT.DLET. HENN BELVELENE RD. MEST DRLM DEACH, PL 33411

AMALYTICAL APPORT

Page 12

Date

Submission Number: 11836676 Date Received: 11/29/33 Date Reported: 01/05/31 Client's P.D. Number: Cli9049009 Project Number: Project Name: LNC Elab Report Name: Finalnew->Final2.891

Date Sampled: 11/28/00

Sample Matrix: decime marge

Reporting

Lab Sample Womber: 0011474 2 Client Sample Womber: 955 Sample Description: 080080 825

Hethod	Analyte	Result	0	Weite	Gámá t	Analyst	Analyzed	Prepared
	TH AND AND THERE VOLATING DESEMICS							
902.2	1, 4-DICHLONOBINIENE	0.50	U	ug/L	0.50	8946	11/30/00	
502.2	DCCRLOROD1PLUORORETKAME	0.50	u	ug/L	0.50	RME	11/30/00	
502.2	1, 1-DICHLOROFTHANE	0.50	U	ug/L	0.50	RME	11/30/08	
502.2	1, 2-DICKLORORTHANE	0.50	U	ug/1.	0.50	RMS	11/30/00	
502.2	1, 1-DOCKLORONTHENE	9.50	U	ug/L	0.50	RME	11/30/00	
502.2	cis-1.2-DICHLOROFTNENE	0.50	υ	ug/L	1.10	EME	11/30/00	
502.2	trans-1,2-DICMLORDETRENE	0.90	2	40/%	8-50	RHE	11/30/00	
502.2	DECREGROMETHANK	0.51	υ.	ug/L	0.50	RMC	11/30/00	
502.2	L, 2-DECELOROPROPARE	0.53		49.7L	0.50	1.HE	11/30/00	
502.2	1,3-DECKLOBORNOPARK	0.50		US/L	0.50	RMD.	11/30/00	
502.2	2.2-DICHLOBOFROPAME	0.50	α.	ug/L	0.55	BAE:	11/30/00	
502.2	1,1-DICHLOBOPROFEDE	0.50	u .	100/L	0.50	8.40	11/30/00	
502.2	1.3-DICHLOROPROPENE	0.50	u .	ug/L	0.50	8.7.2	11/30/00	
502.2	ETHYLIRIDEEDER	0.50	u	wg/L	0.50	3.42	11/30/00	
502.2	METRYL TERT-BUTYL-ETHER OWEBED	0.50	σ	up/L	0.50	3018	11/30/80	
502.2	MONOCHLOROGENEENE	0.50	U.	wg/L	0.93	2945	11/30/00	
502.2	BTYREMS	0.50	U	wg/L	0.50	RMZ	11/30/00	
902.2	3.3.3.3.TETRACHLOROETHAME	0.50	U	ug/L	0.50	RME	11/30/00	
502.2	1, 1, 2, 2 - TETRACHLOROETHINK	0.50	U	ug/L	0.50	RMD	11/39/00	
502.2	TETRACHLOROSTHEME	8.50	U	ug/L	0.50	RME	11/10/00	
502.2	TOLIENE	0.50	U	ug/tL	0.50	RME	11/30/00	
502.2	1.2.4-TRICHLOROBINIENE	0.50	ν	ug/L	0.50	RME	11/80/00	
502.2	L, L, L-TRICKLORORTHANE	0.50	υ	ug/s	0.50	RHS	11/30/00	
502.2	1.1.2 - TRICKLOROETHAKE	0.51	ν	ug/L	0.50	RME:	11/30/00	
502.2	TRICKLORDETNENE	0.51	v	ug/L	0.50	RHE	11/30/00	
502.2	TRECKLOROFLUDROHETHAKE	0.51	τ.	ug/Ta	0.50	RNE	11/30/00	
502.2	1,2,3-TRICKLOROPROPANE	0.51	τ.	ug/L	0.50	RME.	11/30/00	
502.2	ADART CHTORIDE	0.51	*	ug/L	0.50	876	55/30/00	
5.02.2	NYLENES, TOTAL	0.58	π.	սց/Ն	0.50	1.1E	11/30/00	
	ON ADDRAFES, PRIMALATES, AND PAS'S							
525.2	BENZO (A) FERENE	0.10	π.	ug/L	0.10	TER.	12/07/00	12/01/00

K. LINDA CREAM
SOUTH FLORIDA WATER MONT.DIST.
8354 DELVEDERE ED.
WEST FALM NEACH, FL 31411

Page 11

AMALYTICAL ARPORT

Rubmission Number: 11000676 Date Received: 11/29/00 Date Reported: 01/05/01 Client's P.G. Mumber: ClipsePOOp Project Number: Project Name: LHC Eleb Propert Name: Finalnew-sPinals.NPt

Lab Rample Number: 0011676 2 Client Sample Number: 945 Rample Description: GROUND H20

Date Sampled: 11/28/00 Sample Matrix: GBOUND NATES

sample Desor.	igtion: GROUND H20							
					Reporting		Date	
Method	Analyte	Result	0	Galte	Limit	Analyst	Analyzed	Prepare
	ON ADIPATED, PHILALATES, AND PAR							
525.2	DI (2-ETRYLHEXYL) PHIMALATE	2.0	υ	ug/L	2.0	TKA	12/07/00	12/01/0
\$25.2	DI (2 - EDVYLHEXYL) AD ERVER	1.6	U	199.71	1.6	TKA	12/07/00	12/01/0
110.2	COLOR	10		UNIT	5.0	MNO	11/29/00	16-12
130.1	SPIRIFIC CONDUCTANCE	5370		unbos/on	1.0	MRO	11/29/00	
\$HQ3308	LANGLEER EXTURATION INDEE	0.25				RFE	12/07/08	
140.1	CECH	6.0		228	8.0	NRD	11/29/00	16:17
180.1	płi	T.65		UNIT		MRD	11/29/00	16120
160.1	TOTAL DISSOLVED SOLIDS (TDS)	2800		mg/L	5.0	NEC	11/29/00	
180.1	TURDIDITY	25		NTU .	0.10	180	11/29/00	16:07
109.2	ASBERTOR	0.20	σ	HFL ·	0.20	EMEL	12/13/00	12/01/0
335.2	CERMIDE - TOTAL	0.010	11	mg/L	0.018	775	12/04/00	
590/051-2	ORDANIC MITROOMN (as N)	0.50	U	mg/L	0.50	TPE	11/30/00	
151.2	TOTAL RJELDAM, NITHOGEN (ap N)	0.66		mg/L	0.90	TPS	11/30/00	
365.4	TOTAL PROSPHORES	0.13	U	mg/L	0.10	TPE	11/33/00	
150.1	AMMONTA STTROGEN (as H)	0.55		mg/L	0.053	TPE	11/28/00	
105.1	800 5-day	2.9		mg/1.	2.0	HHA	11/29/00	
425.1	SURFACTANTE (MBAR)	0.14		mg/%	0.10	109.	11/29/00	
960.0	OROSIS ALPHA	9.1+/-5.3	π.	pC1/L	9.1+/-5.3	NUN	12/12/00	
0.004	CROSS BETA	26.8+/-4.7		pci/L		N/N	12/12/00	
SHTSOORIA	RADIUM 226	3.2+/-0.3		pCL/L		HUN .	12/14/00	
0475208.a	RADIUM 228	2.1+/-0.8		pC1/1.		15.75	12/14/00	
008.0	CHLORIDE	1400		mg/L	12	XPE	11/29/00	
00.0	FLUGRIDE	2.0		mg/t.	1.2	878	11/29/00	
100.0	ATTRATE MITROGEN (as S)	1.3	U	mg/L	1.2	KF8	11/29/00	17:44
100.0	STERITE SITROOM (as N)	1.3	17	mg/1.	1.2	XFE	11/28/00	17:44
100.a	ALTROGEN - MOJ/MO2 (MOS)	1.2	U	mg/L	1.2	KFIE .	11/29/00	
100.0	ORTHOPHOSPHATE - P	2.5	U	mg/L	2.5	K78	11/29/00	17.44
0.001	SULFATE	423		100.11	12	KPE	11/29/00	
104.2	ANTINONY (DOTAL)	3.0	υ	ug/L ·	3.0	310	12/04/08	
421	LEAD (TOTAL)	1.0	U	09/1	1.0	1271	12/01/08	
4 TO	MERCURY	0.28	v	ua/L	0.20	DH.	12/04/08	

ME. LEMDA CREAS SOUTH FLORIDA MATER MONT.DIST. REPA RELATORNE RD. MEDT PALM REACH.F5 33411

AMALYTICAL ASPOST

Page 14

Bubwission Number: 11000676 Date Received: 11/29/00 Date Reported: 61/05/01 Client's P.G. Number: Clipsewice Project Humber: Project Name: 100 Eleb Report Hume: Finalnew--Final2.8P1

Lab Sample Number: 0011676 3 Client Sample Number: 965 Sample Description: 080000 920

Date Sampled: 11/28/00 Sample Matrix- GROUND MATER

					Reportin	÷.	Date	
Rethod	Analyte	Result	Q	Unita	Limst	Analyst	Analyzed	Prepare:
7760	SELENCER (TOTAL)	2.0	υ	ug/1	2.0	EN.	12/06/00	
7041	THALLIUM (TOTAL)	1.0	w.	09/5	1.0	21/2	12/04/08	
200.7	ALUMENTER (TOTAL)	100	U.	ug/L	1.0.0	D4	11/30/00	
200.7	ARISENDC (DOTAL)	5.0	u	wg/L	5.4	201	11/30/00	
200.7	DARIUM (TOTAL)	13		ng/L	10	224	11/30/00	
200.7	BERYLLIUM (TOTAL)	1.0	U	ug/L	1.0	EM .	11/30/00	
201.7	CREMIUM (TOTAL)	1.1	12	wg/L	1.0	874	11/30/00	
200.7	CRECKLUN (TOTAL)	5.0	υ	ug/L	8.0	EH.	11/30/00	
200.7	COFFER (TOTAL)	1.0	υ.	09/5	1.0	8.7	11/31/11	
200.7	INON (TOTAL)	92		ug/L	40	18	11/32/00	
200.7	MANGANESE (TOTAL)	6.7		wg/L	5.4	324	11/50/00	
200.7	MICKEL (TOTAL)	10	U	ug/L	10	824	11/30/00	
280.7	#JLMER (TOTAL)	10	U	ug/t.	10	534	11/30/00	
201.7	SODCUM (TOTAL)	760		mg/L	5.0	385	12/04/00	
200.7	EINC (TOTAL)	23	υ	ug/1	20	EM .	11/30/00	

Data Qualifier Code Ney:

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Client Hamp Rample Desc	Number: 0011676 3 10 Number: 966 ription: meriotate sample	Date Samp Sample Ma	led: trix	11/20/00 CROUND N	VTER.			
Rectod	Analyze	Result	a	Unite	Reporting	9 Analyst	Dete Analyzed	Prepared
16138	DIGGIN (2,3,7,8-TCDO) PRIORITY POLITANT B/M/A EXTRACTABLES	0.77	U	py/L	0.77	SVL.	12/21/00	12/07/00
625	ACEDIR/HITHRON	5.0	v	úg/1	. 5.0	VG	12/10/00	12/01/00
625	ACENADATIVITADE	5.0	υ	ug/s	5-0	W0	12/18/88	12/01/00
625	ANTRARCENE	5.0		095/15	5.4	10	12/12/22	12/03/00

REPLICATE SAMPLE

EXW-1 (1,015 TO 1,225 FEET BPL) NE. LINDA CREAN SOUTH FLORIDA WATER MONT.DIST. 8894 DELVEDERE RD. WEST DWIM BEACK.FL 33411

AMALYTICAL REPORT

Page 15

Submission Number: 11000576 Date Received: 11/29/00 Date Reported: 01/05/01 Client's P.D. Number: CliPOLNOD9 Project Number: Project Name: 180 Elab Report Name: Finalnew->Final2.8P1

Lab Sample Number: 0011676 3 Cliest Sample Number: 946 Sample Description: REPLICATE SAMPLE Date Earpled: 11/28/00 Gample Matrix: GROUND WATER

					Reporting	9	Date	
Hethod	Analyte	Result	9	United	Limit	Analyst	Analyzed	Prepared
	PRODRITY POLLUTARY B/H/A MUTRACTRREAM							
625	RENZIDING	25	U	ug/L	25	V2	12/10/00	12/03/08
625	BENZ (A) ANTHRACENE	5.0	U	ug/L	5.0	93	12/10/00	12/03/06
625	BENED I DI FLUORANTNENE	5.0	U	149./°L	5.0	7/3	12/10/00	12/03/06
625	BENZO (K) PLACKARTNENE	5.8	U	ug/L	5.0	95	12/10/00	12/03/04
625	BENZOIG, H. II PENYLENE	5.0	u	ug/1_	5.0	143	12/18/08	12/03/00
625	BENZO (A) PYRENE	5.8	U	ug/1_	5.0	70	12/14/00	12/03/00
625	BIS(2-CHLOROETHORY) NETHANS	8.4	U	ug/L	5.0	'93	12/18/00	12/03/01
625	BIB(2-CHLOROSTWYL) ETHER	5.0	U	ug/L	5.9	93	12/10/00	12/03/00
625	BIS(2-CHLORGISOPROPIL) ETHER	5.4	υ	ug/L	5.0	90	12/10/00	12/03/00
625	BESIG-ETHYLHEYYLI PETKALATE	5.9	U	ug/L	5.0	VG	12/10/00	12/03/00
625	4-BROMOUNDAYL PRENTL ETHER	5.0	v	ug/L	5.0	90	12/10/00	13/03/00
625	BUTYL DEMEYL PHTHALATE	5.0	w	ug/t	5.0	VO	12/10/00	12/03/00
625	2 - CHLOROMAPHTHALIENE	5.0	Ψ.	ug/L	5.0	VG	12/10/00	12/03/00
625	4 - CHLORO- 3 - HETHYLPHENOL	28	v.	ug/L	20	V0	12/10/00	13/03/03
625	2-CHLOROPHENOL	5.0	w.	ug/L	5.0	VG	12/10/00	12/03/07
625	4-CHLOROPHEINTL PHENTL ETHER	5.0	w.	ug/L	5.0	40	12/10/00	12/03/00
625	ORYSENE	5.0	Ω.	ug/t	5.0	VO	12/10/00	12/03/00
625	DIBENZO (A, K) ASTHRACENE	5.0	u -	ug/L	5.0	VG	12/10/00	12/03/00
625	01-n-BUTYLENTHALATE	5.0	u.	ug/L	5.0	VG	12/10/00	13/03/00
625	1,2-DICELOROBINISHE	5.0	U.	ug/L	5.0	VG	12/10/00	12/03/00
625	1.3-00CHL0R006H58H5	5.0	u.	ng/L	5.0	VO	12/10/00	13/01/00
625	1,4-DICKLORDERNIENE	5.0	U.	ug/L	5.0	VG	12/10/00	12/03/00
625	3.3'-GICHLOROBENZIDINE	2:0	U.	ug/L	20	VO	12/10/00	12/03/00
625	2,4-DECHLOROPHENOL	5.0	U.	wg/L	5.0	VG	12/10/00	12/03/00
625	DISTNELPHTNALATE	5.0	θ.	up/L	5.0	V0	12/10/00	12/03/00
635	2.4-DIMETHILPHING	5.0	u	ng/L	5.0	VO	12/10/00	12/01/00
625	DINSTRULPRIMALATE	5.0	U.	ug/L	5.0	40	12/10/00	12/03/00
615	4.6-DENETRO-2-METHYLPHENOL	20	U.	ug/L	20	VG	12/10/00	13/03/00
625	2.4-DESUTROPHENOL	2:0	u:	up/L	20	VO	12/10/00	12/03/00
625	2,4-05907907063688	5.0	u.	ug/L	5.0	VG	12/10/00	12/03/00
625	2.6-DESTIBOTOLISHS	5.0	U.	up/L	5.0	VO	12/10/00	12/03/00

HE. LEMEA CHEAN SOUTH FLORIDA WATER MONT.DEST. REPA BELVEDERE RD. WEST FALM DEACH.FL 33411

Page 16

AMASTTICAL REPORT

Submission Humber: 11000676 Date Received: 11/29/00 Date Reported: 61/65/01 Client's P.O. Sumber: Clipswoop Project Humber: Project Hume: 180 Elab Report Hume: Piralnew->Final2.RP1

Lab Sample Number: 0011676 3 Client Rample Number: 966 Sample Description: REPLICATE SAMPLE Date Sampled: 11/28/00 Sample Matrix: GBOUND WATER

sample Descr	ISTICAL REPLICATE BARRY							
				Reporting Date				
Method	Analyte	Result	0	UNITS	Limit	Analyst	Analyzed	Prepare
	PRIORITY POLLUCANT B/H/A RETRACTANCED							
625	1, 3-DIPRENTLHIDRAEINE	5.0	U.	wg/L	5.0	V0	12/30/00	12/03/0
525	D1-1-OCTYLFHTBALATE	5.0	u.	ug/L	5.0	VG	12/18/00	12/03/0
625	DODKIN (2,3,7,8-TCDD) (SCREEN)	100	U.	ng/L	100	V0	12/11/00	12/03/0
525	FLUCKANTHENE	5.0	U.	wg/L	5.0	VD	12/18/00	12/03/0
625	PLUCKENE	5.0	U.	ug/L	8.0	VD	12/11/00	12/03/9
525	REEACHLOROBERZENE	5.0	U.	ug/L	5.0	VG	12/10/00	12/03/0
625	REDACHLOROBUTADCENT	5.0	u.	wg/L	5.0	VD	12/11/00	12/03/9
525	RESALCHLOROCUCLO PENTADI SNE	5.0	U	ug/L	5.0	VG.	12/10/00	12/03/0
625	REBACHLOROFTHAST	5.0	u	ug/L	5.0	V9	12/18/00	12/03/0
625	INDEND(1,2,3-CD) PYRENE	5.0	U	wg/L	5.0	V0	12/10/00	12/43/4
625	E SOFRORIORE	5.0	U	ug/L	5.0	VD	12/18/00	12/03/0
625	NAPHTHALEHE	5.0	LI .	ug/L	5.0	VD	12/50/00	12/03/0
625	NTTROBUSCIONS	5.0	U	wg/L	5.0	VG	12/10/00	12/10/1
525	2 -NUTROPHENOL	5.0	u	ug/L	5.0	- V9	12/18/09	12/03/0
625	5-BTTROP62801	20	U	'88/L	2.0	VC .	12/10/00	12/13/9
625	S-STROCODIMETRYLANINE	5.0	U	ug/L	5.0	V5	12/18/00	\$2/63/V
625	N-NTTROSOD19489YLAMINE	5.0	U	'ug/1.	8.0	112	12/12/00	12/03/0
625	S-STTROSODI-n-PROPYLANING	5.0	U	ug/L	5.0	V5	12/18/08	12/03/9
625	PENTACHLOROPHENOL	2.0	U	ug/t	28	1/2	12/10/00	12/01/0
625	PRENANTHRIDIC	5.0	U	ug/L	5.0	W2	12/10/00	12/03/0
625	PRENCL	5.0	U	ug/L	5.0	9/3	12/10/00	12/03/0
62%	PERENE	5.0	U	149./L	5.0	¥3	12/10/00	15/01/0
625	1.2.4 -TRICHLOROBENZENE	5.0	U	ug/L	5.0	90	12/10/00	12/03/0
625	2, 4, 6-TRICHLOROPHENOL	5.0	U	ug/L	5.0	V3	13/10/00	13/01/0
	IN CRECKINATED PROTICIDES & PCB							
505	ALACKLOR	1.5	U	ug/t	1.5	TCE	12/02/00	12/01/0
505	ATBAZINE	2.5	U	ug/L	2.5	TCE	12/02/00	12/01/0
505	g-BHC (LINDARE)	0.010	U	49/1	0.010	TCS	12/02/00	12/01/0
505	CNLORDAME	0.020	U	ug/L	0.020	TCS	12/02/00	12/01/0
505	832815	0.010	U.	ug/L	0.010	TCS	12/02/00	12/01/0
505	REPTACHLOR	0.030	u	ug/L	0.030	TCE	12/02/01	12/01/0

HE. LINEA CHEAN SOUTH FLORIDA WATER MONT.DIST. 8394 BELVEDERE RD. WEST PALM REACH, FL 33411

AMALYTICAL REPORT

Page 17

Submission Wumber: 11000676 Date Received: 11/29/00 Date Reported: 01/05/01 Client's F.G. Musker: Cli9048009 Froject Humber: Fesject Hume: IEC Elab Report Hume: Finalnew->Final2.891

Lab Sample Number: 0011676 3 Client Sample Number: 955 Sample Description: REPLICATE SAMPLE Date Sampled: 11/28/00 Sample Metrix: GROUND WATER

					Reportin	,	Date	
lethod 105 105 105 105 105 105 105 105	Analyte	. Result	0	Units	Limit	Analyst	Analyzed	Prepare
	De CHLORDSATED PROTECTERS & PCB							
505	REPTACHLOR EPORIDE	0.010	\overline{v}	ug/L	0.018	TCZ	12/02/00	12/01/0
505	NEXACIALOROBENZENES	0.10	υ.	ug/L	0.18	202	12/02/00	13/01/0
505	HEXACHLOROCTCLOPSINTAD LEVE	0.10	w	ug/L	0.10	902	12/02/00	12/01/0
505	METHOLOGICALOR.	0.050	v	ug/L	0.058	202	12/02/00	12/01/0
808	SIMARINE	1.5	v	ug/1	1.5	702	12/02/00	33/01/4
505	TOKAPHENE	0.10	U	ug/L	0.18	702	12/03/00	33/01/0
505	PCB 1016	0.10	υ	ug/L	0.18	708	12/02/00	13/01/0
505	PCB 1221	0.10	U	ug/L	0.10	TCZ.	12/02/00	18/91/9
505	PCB 1232	0.10	U.	ug/L	0.19	807	12/02/00	12/11/0
105	PCB 1242	0.10	U	ug/L	0.10	202	12/02/00	13/01/0
505	PCB 1245	0.10	∇	ug/L	0.10	702	12/02/00	18/11/3
505	PCB 1254	0.10	U.	ug/L	0.18	TCZ	12/02/00	13/11/0
595	PCB 1260	0.10	U.	ug/t	0.10	TCZ	12/02/00	12/41/4
\$05	TOTAL PCB'S	0.10	υ	ug/L	0.18	102	12/09/00	13/61/0
	DRIMKING WATER COMMAND: MERBICIDES							
\$15.1	2.4.0	0.10	υ.	ug/L	0.10	040	12/05/00	12/14/3
\$15.1	DALAPON	1.0	U	ug/L	1.0	GRO	12/05/00	13/14/0
515.1	DINOSES	0.20	υ.	ug/L	0.25	040	12/05/00	12/04/2
\$15.1	PENTACHLOROPHENOL	0.040	v.	ug/L	0.048	0.40	12/05/00	12/14/5
515.1	PICLONAM	0.10	U.	ug/L	0.10	GAO	12/05/00	13/04/0
\$15.1	2.4.5-TP (91LVDK)	0.20	υ.	ug/L	0.20	0.40	12/05/00	13/14/4
	DRINKING WATER ORGANIC CREBANATES							
\$31.1	CARBOFURAS	2.0	υ.	ug/L	2.0	833.	12/05/00	12/04/0
831.1	COMPACE (WIERTE)	2.0	v	ug/L	2.0	XXA.	12/05/00	13/04/3
	DM DISINFRCTANT BY-PRODUCTS							
504.1	1.3-0188090-3-09640980P83E	0.020	v	ug/t	0.028	GBO	12/05/00	12/04/3
504.1	STHYLENE DIDROWIDE	0.029	U	ug/L	0.028	040	12/05/00	12/04/0
	DN MISC. SOC'S - GLIFROGATE							
547	OLYP9CSATE	6.0	υ	ug/L	6.0	DRA/KIA	12/01/00	
	ON MESC. BOC'S - ENDOTRALS							
548.1	DEDOTRALL.	2.1	υ	V8/15	9.0	REAL	12/05/00	11/10/4

NG. LINGA CREAS SOUTH FLORIDA WRITE MONT.DEST. 8854 DELVEDERE RD. WEST FRAM BEACH, FL 33411

Page 18

AMALTICAL REPORT

Submission Mumber: 11000676 Date Received: 11/29/00 Date Reported: 01/05/01

Client's P.O. Number: Cli904W005 Project Number: Project Name: LBC Elab Report Name: Finalmew-srinal2.8F1

Lab Sample Mumber: 0011676 3 Client Sample Number: 966 Sample Description: SEPLICATE SAMPLE Date Sampled: 11/28/00 Sample Matrix: OSOND WATER

					Reporting	2	Date	
Method	Analyte	Regult	0	Units	Limit	Analyst	Analyzed	Preparet
	PM MIRC. SOC'S - DIDNAT							
549.1	BEQUAT	0.40	υ	ug/L	0.40	KHA	12/04/00	11/10/0
	DW GROUP I UNREGULATED OC PESTICIDES							
525.2	ALDRIM	0.10	υ	ug/L	0.10	TXA	12/07/00	12/01/0
525.2	DIELDRIN	0.13	U	ug/L	0.13	TKA	12/07/00	12/01/01
525-2	FROFACTELOR	0.29	U	ug/L	0.20	TIGA	12/47/04	12/01/00
	BW GROUP I UNREGULATED CAREARATER							
931.1	ALDICARB (TEMIX)	2.0	U	ug/L	2.0	KESA	12/05/00	12/04/01
531-1	ALDOCARD SULFORS	2.0	υ	ug/L	2.0	KSIA	12/05/00	12/04/03
\$91.1	ALDICARD SULFOXIDE	2.0	U.	149.1°L	2.0	826A	12/05/00	52/04/01
531-1	CARBARYL.	2.0	U	ug/L	2.0	KIBA	12/05/00	12/04/01
501.1	3-HYERODYCARDOFURAS	2.0	v	49/L	2.0	KHA	12/05/00	12/04/00
531-1	METHIOGANE	2.9	U.	ug/L	2.0	RISA	12/05/00	12/04/01
531.1	METHOMYL	2.0	υ	ug/L	2.0	KHA	12/05/00	12/04/07
	ON MED AND DERED VOLATILE ORGANICS							
502.2	DENZENE	0.50	Ψ.	ug/L	0.50	RME	11/30/00	
502.2	DROMOBENEEME	0.50	w	ug/L	0.90	3.ME	11/30/00	
502.2	BROHODO CHLOROMICTIAANE	0.58	Ψ.	ug/L	0.50	8.910	11/30/00	
502.2	BROMO PORM	0.90	w.	ug/L	0.50	RMR	11/30/00	
502.2	BACHORETRANK	0.50	φ.	09/%	0.50	8.HE	11/30/00	
502.2	CARDON TETRACHLORIDE	0.90		ug/L	0.50	RME	11/30/00	
502.2	CHLOROETRAFE	0.59	Ψ.	49/L	0.90	3ME	11/30/00	
502.2	CIELOROPORM	0.53	a.	սը/Ն	0.50	8.ME	11/10/00	
502.2	CHLOROPETRADE	0.50	u .	USL/L	0.90	8.ME	11/30/00	
502.2	2-CHLOROTOLUENE	0.50	u.	ug/L	0.50	2.12	11/30/00	
502.2	4-CHL08070LUENE	0.59	u.	ug/L	0.90	3.NE	11/30/00	
502.2	DIDROHOCKLOROMETHAKE	0.50	u.	ug/L	0.51	3.40	11/30/00	
502.2	DISKONGRETRANE	0.50	Ψ.	ug/5	0.90	AND	11/30/00	
502.2	1.2-DICHLOROBINIZHE	0.50	υ.	ug/L	0.50	RME	11/20/00	
502.2	1, 3-DICKLOROBENSENE	0.50	α.	ug/S	0.90	RMC	11/30/00	
502.2	1.4-DOCHLOROBENSENE	0.53	υ.	ug/L	0.50	RNE	11/10/00	
502.2	O LORLOROD S FLAGROM PTRAINE	0.53		ug/L	0.50	BMC	11/30/00	

HS. LINDA CREAS BOUTH FLORIDA WATER MCMT.DIST. 8354 BELVEDERE RD. WEST FALM MENCH, FL 33411

AMALYTICAL REPORT

Page 10

Submission Number: 11000076 Date Received: 11/29/00 Date Reported: 01/05/01 Client's P.O. Number: C11804R009 Project Number: Project Nume: LEC Elab Report Name: Finalmew->Final2.891

Lab Hample Sumber: 0011676 3 Client Sample Humber: 966 Hample Description: NEPLICATE HAMPLE Date Sampled: 11/28/00 Sample Matrix: GROUND WATER

					seborred.		DWCR	
Method	Analyte	Result	0	Unita	Limit	Analyst	Analysed	Prepared
	DM MED AND COMMUNICATING COMMANDER							
5.02.2	1,1-DICHLORDETHANE	0.50	U	ug/L	0.50	RME	11/30/00	
502.2	1.2-DICHLORDETRAME	0.50	12	ug/L	0.50	355	11/30/00	
5.02.2	1.1-DICHLOROETHENE	0.50	U	ug/L	0.50	D/KE	11/30/00	
502.2	cis-1,2-DECHLOROETHENE	0.50	U	ug/L	0.50	3048	11/30/00	
102.2	Unano 1, 2 - DI CHLONORTHERE	0.80	LI .	ug/L	0.90	2048	11/30/00	
502.2	DI CHLOROMETSIANE	0.50	U		0.50	RME	11/30/00	
602.2	1,2-DICELOBOPROPAR	0.50	u	ug/L	0.50	SDEE	11/30/00	
5.02.2	1.3-DICHLOROPROPAME	0.50	U	- 100/12	0.50	2945	11/30/00	
502.2	2,2-DICHLOROPROPRME	0.50	U	ug/L	0.50	ROME	11/30/00	
502.2	1.1-DICHLOROPROPEND	0.90	U	49/2	0.90	RME	11/30/00	
582.3	1, 3-DICHLOROPROPENE	0.50	U	ug/L	0.50	2002	11/30/00	
922.2	ETHYL&IOLDHS	0.50	U	ug/L	0.50	RMS	11/30/00	
592.2	METROL TERT-BUTYL-ETHER (MTDE)	0.50	U	09/12	0.50	RME	11/31/99	
502.2	ROBOCHLOROBERZENE	0.50	U.	ug/L	0.50	RMK	11/38/08	
502.2	STYREME	0.50	υ	ug/G	0.90	RMS	11/38/99	
502.2	1, 1, 1, 3-TETRACHLOROETHANE	0.50	υ	ug/L	0.50	RME	11/28/08	
502.2	1, 1, 2, 2 - TETRACHLOROETHANK	0.51	v	ug/L	0.50	RME	11/34/08	
502.2	TETRACHLOROETHERE	0.59	Ψ.	1.99/Tz	0.50	3.96	11/38/08	
922.2	TOLITEME	0.58	υ.	ug/L	0.50	RME	11/30/08	
502.2	1.2.4-TRICHLOROBESZÜSE	0.50	Ŧ	ug/L	0.50	3,40	11/30/08	
502.2	1, 1, 1-TRICHLOROFTHANE	0.50	17	ug/L	0.50	RMC	11/30/00	
502.2	1.1.2-TRICHLOROETHASE	0.50	w.	ug/L	0.50	3ME	11/10/00	
502.2	TRICHLORDETHICK	0.50	w	ug/L	0.50	RME	11/30/00	
502.2	TRICKLOROFLUOROMETHANE	0.50	u .	ug/L	0.50	348	11/30/00	
502.2	1,2,3-TRICKLOROPROPARE	0.50	U	ug/L	0.50	9.52	11/30/00	
502.2	AINAF CRFOGIDE	0.90	u	ug/L	0.50	8.92	11/30/00	
502.2	KYLDIES, TOTAL	0.50	u –	ug/L	0.50	876	11/30/00	
	ON ADEPATHS, PHYMALATES, AND PAN'S							
525.2	BENZO (A) PTREME	0.10	U.	ng/L	0.10	TEA	12/07/00	12/01/00
525.2	DI (2 - ETRYLHEXYL) PHTHALATE	2.0	u.	up/L	2.0	TES.	12/07/00	12/01/00
\$25.2	DE (2 - ETRILHEXYL) AD EPATE	1.6	U.	wg/L	1.6	TRA.	12/07/00	12/01/00

Norido MS. LINCA CREAN Centrols SOUTH FLORIDA WRITER MONT.DIST. 0083079 SERVE DELVEDERS ED. WEST PALM BEACH, FL 33411 ELAB, Inc. AMALYTICAL ASPOST Page 20 Submission Humber: 11000676 Client's P.O. Humber: Clipo4MCOP Date Received: 11/29/00 Project Sumber: Date Reported: 01/05/01 Project Name: LKC Eleb Report Name: Finalnew->Final2.RFi Lob Sample Number: 0311676 3 Date Hampled: 11/28/00 Client Sample Musher: 965 Sample Matrix: GROUND HATER Sample Description: REFLICETE SAMPLE Reporting Date Method Analyte Result Q veita. Limit Analyst Analyzed Prepared 110.2 COLOR 10 UNIT 5.0 REC 11/39/00 16:10 120.1 EPECIFIC CONDUCTANCE 5380 KRO 11/29/00 unhos/cm 1.0 5HQ 330D LANGLIER SATURATION INCEN 0.28 878 12/01/00 140.1 ODOR т.р 1004 11/22/00 16:21 6.0 MB0 150.1 240 1.10 UNCT MRO 11/28/00 24-20 160.1 TOTAL DISSOUND SOLIDS (TDS) 3100 mg/L8.0 MIC 11/22/00 180.1 TURBICITY 2.2 NTU 8.10 MRO 11/23/01 16:14 100.2 ASSESTOS 0.20 U NPL. STAL. 12/01/01 0.20 12/11/00 CHRMIDE - TOTAL 335.2 0.018 U 0.010 $m_{\rm H}/k$ TPE 12/04/00 358/351.2 GROANIC NITROGEN (as NO 0.58 12 ma/1 0.60 TPK 11/30/00 TUTAL KINLDARL NUTROOFN [as N] 351.2 0.01 -1/20.50 TPE 11/30/00 345-4 TOTAL PHOSPHORUS 0.10 U ng/L 0.10 TPE 11/30/00 150.t APPORTA NITEOGEN (as N) 0.58 ng/t 0.050 775 11/29/00 405.1 800 5-day 3.2 2.0 11/29/00 ma/L 100. 425.1 SURFACENSES (MEAS) 0.14 mp/L 100. 11/20/00 0.10 900.0 CROSS ALPER. 8.61/15.3 0 pC1/2 8.5×/-5.3 KIN 12/12/00 900.0 GROSS BITA 26.8+/-4.7 pCi/L 14.55 12/12/00 \$H7500Ra RADIUM 226 2.1+/-0.3 pci/L 8.75 12/14/00 INTECORA RADIUM 228 1.8-/-0.6 U pCi/L 1.0+/-0.6 MJN 12/14/00 300.0 CHLORIDE 1400 m_2/L 12 KFS. 11/29/00 300.0 PLUORIDE 1.8 mg/L1.2 1072 11/23/08 100.0 NITRATE NITROGEN (as 10) 1.2 U ng/L 1.2 KPE 11/25/08 17:44 300.0 NUTRITE NITROGEN (as 10 1.2 U mg/L1.2K7E 11/28/08 17-44 310.0 NUTROOMN - NO3/NO2 (NOX) 1.2 U eg/L 1.2 KPR 11/29/00 1.7 ± 0.4 300.0 ORTHOPIOSPHATE - P 2.5 17 wart. KTC. 2.5 11/28/08 311.0 SULFATE 428 10.16 1.2 KNR. 11/28/00 204.2 ANTINONY (TOTAL) 3.0 12 ug/L 3.0 340 12/04/00 7421 LEAD ITOTALI $L : \mathbb{P}$ U 09/6 1.424 12/01/00 2428 REACTRY 0.25 v ug/L 0.20 54 12/04/00 SELENIUM ITOTALI 7748 2.0 U UB/G 2.0 204 12/06/00 2841 TRALLIUN (TOTAL) 1.0 U ug/L 1.0 345 12/04/00 201.7 ALUNIMUM (TOTAL) 100 U ug/L 1.00 24 11/30/00

NG. LINDA CREAN ROITH FLORIDA MATER MONT.DIST. 1074 BELVEDERE RD. MEDT FAIM BEACH,FL 33411

ANALYTICAL REPORT

Page 21

Submission Number: 11000676 Date Received: 11/29/00 Date Reported: 01/05/01 Client's P.C. Number: Clibowscop Project Number: Project Name: LEC Elab Report Name: Finalnew-ofinal2.891

Lob Sample Humber: 0011676 3 client Eample Mumber: 946 Sample Description: REPLICATE SAMPLE Date Sampled- 11/28/00 Sample Matrix: GROUND WATER

Sample Descr	ription: REPLICATE SAMPLE							
				Reporting			Date	
Hethod	Analyte	Result	0	Units	Limit	Analyst	Analyzed	Prepare
200.7	ARSENIC (TOTAL)	5.0		ug/L	5.0	£24	11/30/00	
200.7	BARIUN (TOTAL)	12		ug/L	10	EH	11/30/00	
200.7	BERYLLIUM (TOTAL)	1.0	∇	ug/t	1.0	624	11/31/10	
200.7	CADWILN (TOTAL)	1.0	υ.	ug/L	1.0	8M	11/30/00	
200.7	CREOKLUN LTOTAL	5.0	υ	ug/L	5.0	824	11/30/00	
200.7	COPPER [TOTAL]	10	U.	NUM L	1.0	824	11/30/00	
200.7	ERGN (TOTAL)	75		ug/L	4.0	EM .	11/30/00	
200.7	MANGAMERE (TOTAL)	6.4		10g/%	5.0	824	11/30/00	
200.7	NUCKEL ITOTALI	10	10	ug/L	1.0	124	11/30/00	
200.7	SILVER (TOTAL)	10	U	149/Ta	1.0	324	11/30/00	
200.T	BODGUN (TOTAL)	750		mp/L	5.0	JAS	12/04/00	
200.7	ZINC LIDTAL	23	υ	ug/S	20	124	11/30/00	

Data Qualifier Code Key:

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit-

CENTIFICATION: all analytical data reported above were obtained using the specified methods and were validated by our laboratory quality covered system. This laboratory follows an approved quality assurance program.

Respectfully submitted:

1av Paul H. Canevaro

Laboratory Director

APPENDIX G PACKER TEST DRAWDOWN AND RECOVERY DATA

Figure G-1. EXW-1 Packer Test 1 during Drawdown from 1,160 to 1,225 bpl

Figure G-2. EXW-1 Packer Test 1 during Recovery from 1,160 to 1,225 bpl

Figure G-3. EXW-1 Packer Test 2 during Drawdown from 1,015 to 1,150 bpl

Figure G-4. EXW-1 Packer Test 2 during Recovery from 1,015 to 1,150 bpl