

Reengineering Monitoring Water Conservation Area 2A (WCA-2A) Pilot Project Background and Recommendations

Peter Rawlik Sr. Environmental Scientist TOC Meeting March 24, 2009

vor burge

Why Reengineer?

- SFER Peer Review Panel request
- Senior Management request
- Recognized inefficiencies and redundancies
- Technological forces
- Cost

Reengineering Approach

- Select pilot project area (WCA-2A)
- Review mandates/permits (letter and spirit) and determine fundamental management/scientific questions
- Define monitoring objectives and information needs

Reengineering Approach (cont.)

- Design and rebuild the monitoring network to fulfill objectives and information needs:
 - Develop parameter sets based on logistics, utility and justifiable need
 - Develop frequencies that are logical with respect to environmental variability and data needs
 - Rebuild structure and marsh station sets
 - Evaluate and integrate new technology
 - Logistical considerations
 - Review historical data
 - Prioritize critical stations
 - Give preference to stations with history

WCA-2A Structures Overview

Monitoring at WCA-2A Structures Required for:

- Settlement Agreement
- Everglades Forever Act
 - Non Everglades Construction Project (Non-ECP) Permit
 - Stormwater Treatment Area (STA) ECP Permits
- NPDES Permits
 - EAA Rule 40E-63
- Hypothesis-driven Research
- Modeling support
- Agency's Mission

WCA-2A Structure Mandates

Structure	Settlement Agreement CAMB	Settlement Agreement New Delivery	Non- ECP Permit	STA 2 Permits	STA 3/4 Permits	EAA Rule	Everglades Regulation Support
\$39	х		х				
\$10A	х						
\$10C	x						
\$10D	х						
NSID1	х						х
\$6	Y			х		Х	
G338		Z		Х			
G339		z		Х			
G336A-F		Z		Z			
G336G and degraded levee		z		Z			
\$7	x				Х		
G371					Х	Х	
\$150	x						
\$11C	х						
\$11B	х						
\$11A	х		W2				
S143	Х		W1				
S144	W1		х				
\$145	W2		х				
\$146	W1		х				
S38	Х		х				

X= monitoring required by this mandate

W1= monitoring for this station uses a surrogate

W2= surrogate station triggered off of one or more structures

Y= applicability of this mandate is open to interpretation

Z= station is subject to this mandate but no monitoring has been propagated

Current Structure Monitoring

- The primary objective of monitoring is to ensure that discharges meet water quality standards and nutrient loads are quantified
- Currently samples are collected when flow is observed or at monthly defaults
- Some structure data used to support marsh modeling and research

Is the current sampling design capturing all the needed data?

- 50% of all flows through the S10s are sampled within 7 days of initiation of discharge
- 20% of all flows are collected between
 7 and 14 days of initiation of discharge
- 30% of all flows are not sampled within two weeks

Proposed structure monitoring strategy: Recorded Flow

- Suggest changing from direct observationbased collection to telemetry-based collection using electronic databases to screen stations before staff deployment
 - Supports monitoring of discharges for compliance
 - A quantum step in efficiency and increased useful data collection

Recorded Flow (RF)

- On the day of collection,
 - If no flow has occurred in the last two weeks, then the station is not visited
 - If flow has occurred, then the station is visited and samples collected
- At a review frequency of biweekly, this process will actually increase the number of useful samples collected, but has the potential to decrease the number of station visits

At what frequency should databases be checked?

- For stations with autosamplers the frequency should be weekly to meet maintenance requirements
- For other stations, staff and travel logistics were analyzed
 - Monthly created the potential for too many stations in too few trips
 - Weekly created the potential for too many trips with too few stations
 - Biweekly appears optimal and allows trips and staff to be staggered

How will flow be discerned?

- Actual or provisional flow data may not be available in real-time or even within two weeks
- Pumping or structure opening combined with headwater and tailwater readings can be used to determine structure openings and flow
- Any flow event will trigger a sampling regardless of magnitude
 Protective of the system

How would recorded flow improve data collection (theoretically)?

- In 2004, S10A and S10C were sampled BWF
 - 26 trips,52 station visits, 13 samples
 - 25% result to effort ratio
- If we apply a BWRF protocol
 - 10 trips, 19 station visits, 19 samples
 - 100% result to effort ratio
- 46% increase in useful data
- 62% decrease in sampling trips
- 63% decrease in station visits

How does recorded flow impact monitoring requirements?

- Virtually guarantees a sample within two weeks of a flow event
- Meets the primary objective of monitoring to meet standards
- Should eliminate the need for monthly default monitoring
- Monthly monitoring for other purposes should be considered on a case by case basis

Develop Parameter Set for all Stations

Considerations:

- Justifiable need
 - Utility
 - Logistical considerations
 - Should the parameter set be standardized or variable?

Develop Parameter Set for all Stations

- Staff believe that parameter sets that vary greatly from station to station create confusion and potential errors
- Parameter costs are relatively low in comparison to sampling costs
- Standardized parameter sets are more efficient
- Standardizing parameters into two sets may help reduce error
 - Compliance Set for flow events
 - Modeling Set for select stations in models that need routine data

Compliance Set

- Field Measurements
 - Depth
 - Specific Conductivity
 - Temperature
 - pH
 - DO

- Nutrients
 - TPO4
 - TDPO4
 - OPO4
 - TKN
 - TDKN
 - NOx
 - NH4 – TOC
 - DOC

Other

lons

– Ca

– Mg

– Na

- SO4

- SiO2

-CI

– K

- TSS
- Alkalinity
- Fe (Q)

Modeling Set

- Field
 Measurements
 - Depth
 - Specific
 Conductivity
 - Temperature
 - pH
 - DO

- Nutrients
 - TPO4
 - OPO4
 - TKN
 - NOX

- Ions
 - SO4
 - Cl

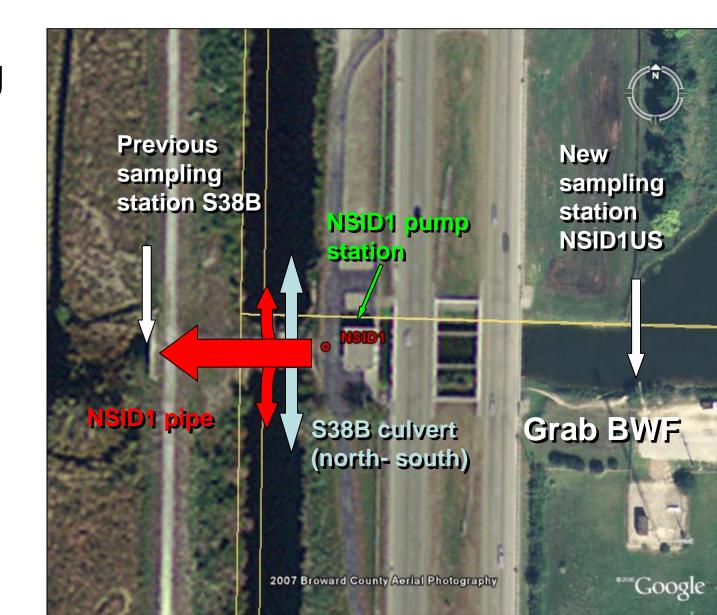
Reengineering Structure Monitoring

Consider

- Local conditions
- Historical data
- Impact of Adjacent Stations
- Logistical Issues
- Monitoring Objectives

Station Subsets

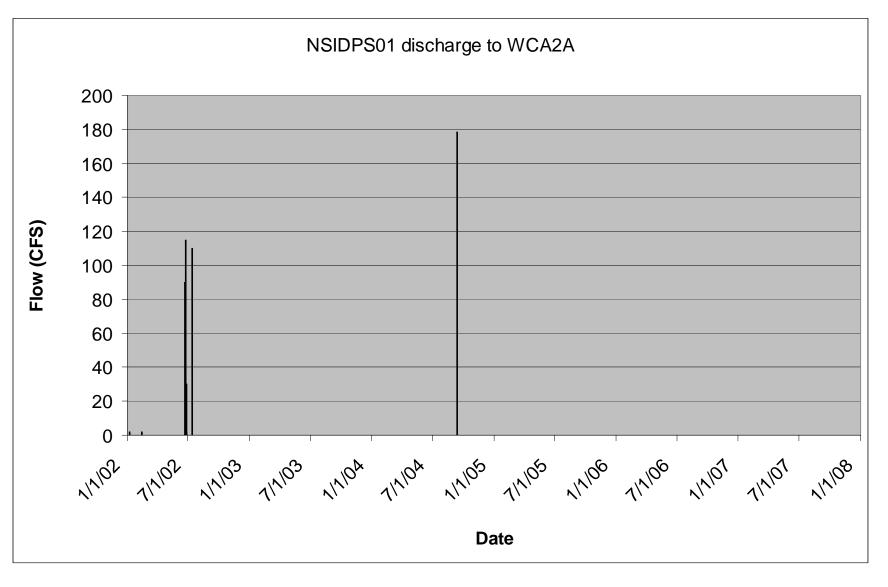
- Inflows
 - From WCA1
 - S10s
 - Related structure \$39
 - From EAA/STAs
 - S7, S6, and S336s
 - Related structures G371 and S150
 - From Suburban Areas
 NSID1


Outflows

-To WCA3A •S11s -To WCA2B •S144, S145, S146 -To Suburban •S38

TOPSONTER

•S143


NSID1 Existing Monitoring

NSID1 Discussion Points

- NSID1 is a minor pump station that occasionally discharges from suburban area into WCA-2A
- Sampling challenges due to configuration of infrastructure
- Biweekly grab sample required by Settlement Agreement when flowing from discharge pipe
- Since structure is owned by NSID, data not readily available in District Database (60 day lag)

Limited Discharges to WCA2A

Recommended Actions

Change frequency to BWRF
 Direct phone call to NSID
 Sample only when discharging to WCA-2A

NSID1 Proposed Monitoring

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

L35B Area Existing Monitoring

BWF

C 2006

S146 1-95b

S38C

* Samples are collected at S145 if S144, S145, or S146 are flowing.

S144

BWF/M*

S145

2004-05 SFWMD Aerial Photography

Discussion Points

- L-35B levee begins at S38 and ends at S11A
 - one lane with little space for turnaround
- S145 serves as a surrogate for S144 and S146
- S38 is a discharge from the Everglades Protection Area

Recommended Actions

Sample S38 and S145 (as a surrogate for S144 and S146) BWRF using the compliance set

L35B Area Proposed Monitoring

* Samples are collected at S145 if either S144, S145, or S146 are flowing.

2004-05 SFWMD Aerial Photography

© 2006

S11 Area Existing Monitoring

BWF

S11B

BWF/M*

S143

11A

* Samples are collected at S11A if either S11A or S143 are flowing, otherwise monthly

BWF/M

G64 G110

2004-05 SFWMD Aerial Photography

S11A/S143 Discussion Points

- S11s serve as inflows to WCA-3A
- Average TP during 2000-2006
 - S11C 29 ug/L
 - S11B 22 ug/L
 - S11A 24 ug/L
- S11A (BWF) currently serves as a surrogate for S143 which is BWF/M (Non-ECP)
- S143 is a discharge from the EPA

Recommended Actions

 Use S11A as a surrogate for S143
 Sample S11A, B and C BWRF using the compliance set

S11 Area Existing Monitoring

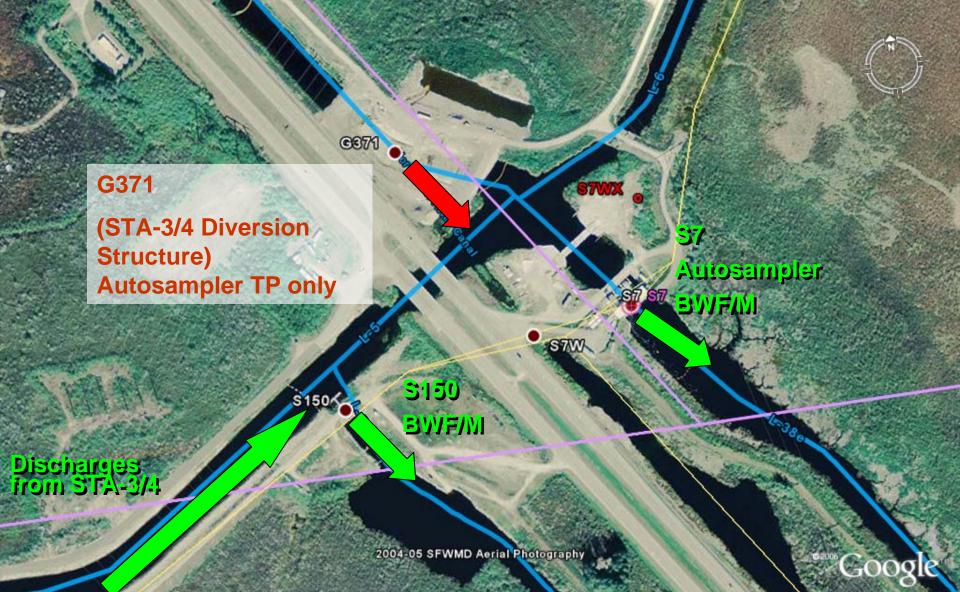
BWRF

BWRF*

S143

11A

* Samples are collected at S11A if either S11A or S143 are flowing, otherwise monthly


BWRF

G64 G110

2004-05 SFWMD Aerial Photography

SIIB

S7 Area Existing Monitoring

Discussion Points

- Recently modified infrastructure and drought means little information on how the current system functions
 - S7 and S150
 - Sourced either from STA-3/4 or G371
 - Flows from STA-3/4 to S7 must pass S150
 - Grabs collected BWF/M
 - S7 autosampler (TP & TN)
 - G371
 - Not under the Settlement Agreement
 - Diversion operations for STA-3/4 (limited use)
 - EAA Rule autosampler (TP) requires weekly maintenance
 - District staff are working to modify the requirement for an autosampler

1 Colomness

S7 TP Data

- S7 TP samples collected within 14 days of a flow event (median = 33.0 ug/L) are significantly different and higher than nonflowing samples (25.5) and all samples (29.0)
- Suggests there is no first flush effect
- Suggests that going to monitoring within14 days of a flow event will be closer to peaks than non-flowing data

Recommended Actions

🗸 At G371

- Add TN to autosampler
- Search for short term fix to autosampler maintenance requirements
- Develop long-term plan to revise autosampler monitoring requirements of infrequently used structures
- Retain autosampler at S7

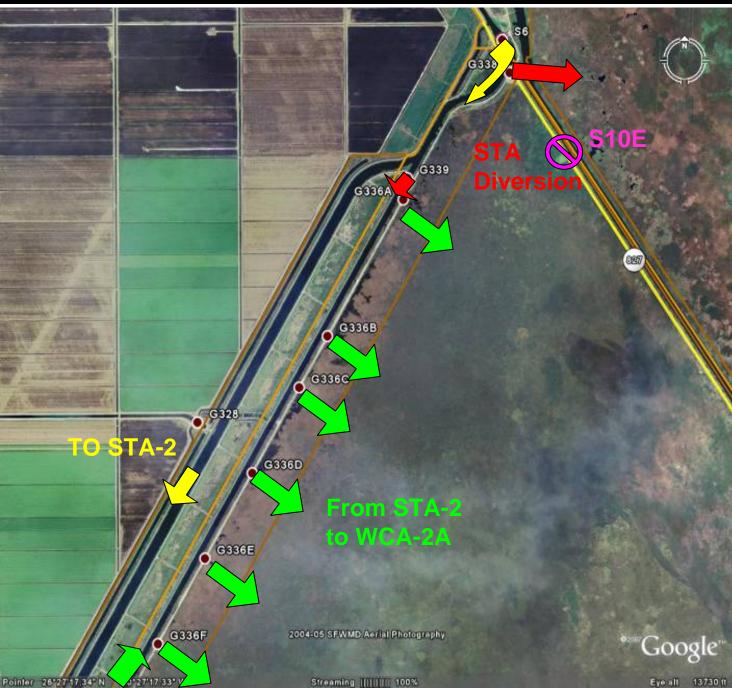
Change S7 and S150 to WRF using compliance set Review collected data every two years to see how S7 and S150 compare and how they respond to normal STA operations

S7 Area Proposed Monitoring

Autosampler TP and TN

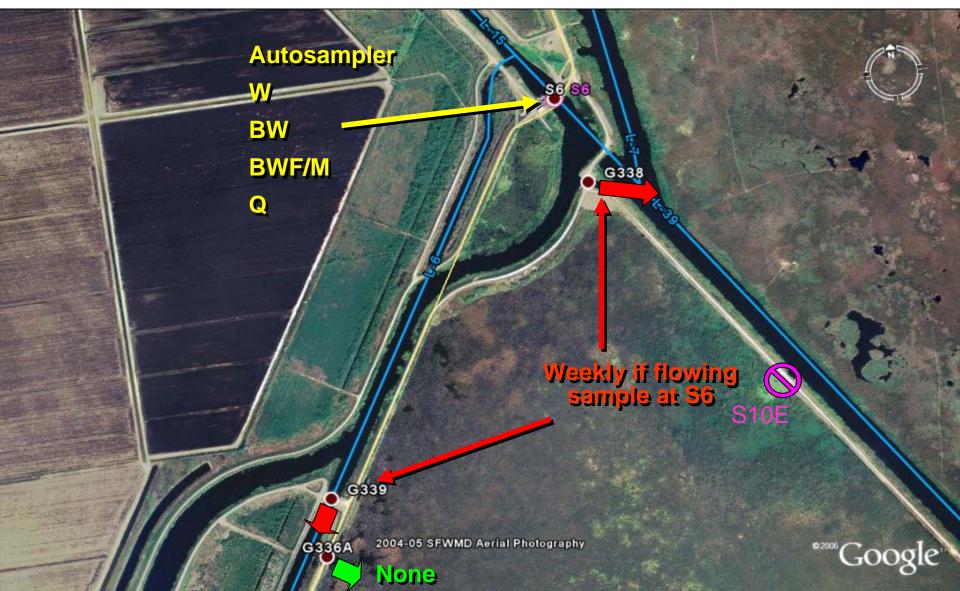
Search for means of reduction

> Autosampler WRF


S150

C37

2004-05 SFWMD Aerial Photography


WRF

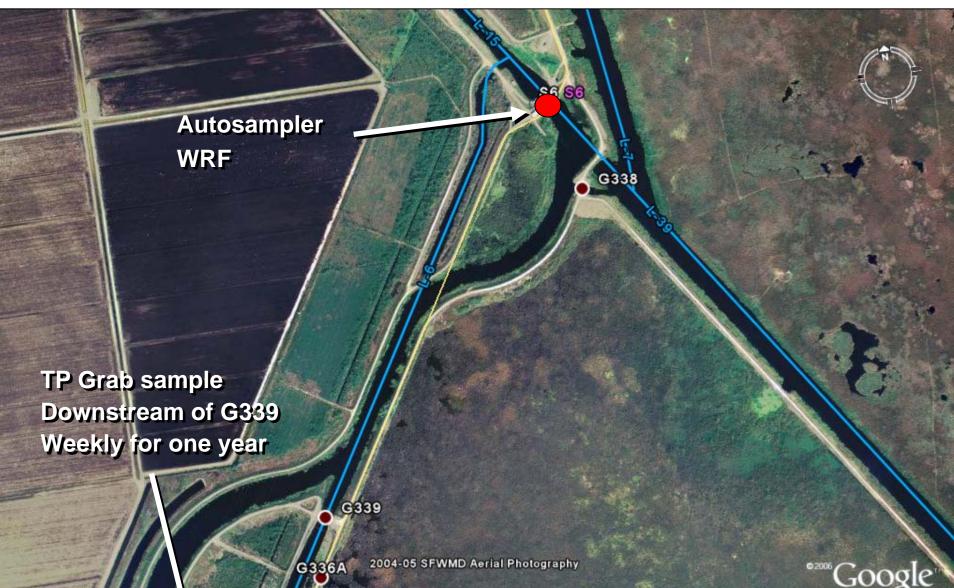
SOUTH FLORIDA WATER MANAGEMENT DISTRICT

S6 Area Overview

S6 Area Existing Monitoring

Discussion Points

- Data associated with flows at S6 is needed for calculating loads to STA-2 and Everglades Agricultural Area (EAA) Rule (autosampler required)
- S6 part of CAMB in 1991 so was part of Settlement Agreement, but modified and no longer directly discharges to Everglades Protection Area (EPA)
- G336s, G338 and G339 are direct discharges to the EPA so technically under the purview of the Settlement
 Agreement
- If G338 and G339 are used the STA-2 NPDES permit requires weekly TP monitoring at S6 which can be combined with flow at G338 and G339 to determine loads to the EPA
- G336s not directly monitored, discharges from STA-2 (or if under diversion S6) used as surrogates


Recommended Actions

Retain S6 autosampler

- At S6 eliminate W, BW, BWF/M, Q monitoring sets and switch to a WRF compliance set
- Begin sampling downstream of G339 for TP only for at least one year, validate that STA-2 discharges are representative of what is reaching G336s


S6 Area Proposed Monitoring

G336 Proposed Monitoring

S10 Area Existing Monitoring

S10 Discussion Points

- Data associated with flows is needed for calculating loads to WCA-2A
- Data associated with non-flowing conditions is used for modeling
- It has been suggested that failure to collect non-flowing data may compromise estimates of loading because of missing first-flush effect

Is there any evidence of a first flush effect?

• S10D

TP samples collected within 14 days of a flow event (median = 64.5 ug/L) are significantly different and higher than non-flowing samples (43.0) and all samples (47.5)

- Suggest no first flush effect

 Suggests that going to monitoring within
 14 days of a flow event will be closer to peaks than non-flowing data

Recommended Actions

 Sample for compliance at S39 and S10A, C and D BWRF

 Sample for modeling parameters otherwise monthly

S10 Area Proposed Monitoring

Implementation

- TOC approval is just one step
- Modifications to permits (ECP and NECP) required
- May take three months to a year to fully implement
- Will keep TOC updated on progress and problems

How will this design impact sampling effort and data collection?

- Excluding autosampler sites S6 and S7
 - In 2004, all other WCA-2A structures
 - 286 station visits, 127 samples
 - 44% result to effort ratio
 - Approximate collection costs \$20K
 - If we apply the suggested design
 - 156 station visits, 156 samples (estimated)
 - 100% result to effort ratio
 - 23% increase in data
 - 46% decrease in station visits
 - Approximate collection cost savings \$15K

Summary

- The District seeks approval to modify monitoring of structures around WCA-2A
 No changes to autosamplers at S6 and S7
 WRF
 - S6, S7, S150
 - BWRF (compliance set)
 - NSID1, S38, S11A(S143), S11B, S11C, S145(S144,S146)
 - BWRF/M (compliance/modeling sets)
 - S38, S39, S10A, S10C, S10D
 - Weekly for at least one year at a suitable station near the G336 culverts
 - Maintain compliance sampling, generate more data, while at the same time lowering costs

Discussion

