Quality Assessment Report for Water Quality Monitoring

April – June 2009

Submitted to the Technical Oversight Committee October 12, 2009

Revisions were made to this document on October 12, 2009: See Table 1, pages 2 – 4. Original document published on 9/5/09

Zdzislaw Kolasinski (zkolasin@sfwmd.gov)

Water Quality Analysis Division
Environmental Resource Assessment Department
South Florida Water Management District
West Palm Beach, Florida 33406
INTRODUCTION

This report is an assessment of the South Florida Water Management District (SFWMD or District) laboratory analysis and field sampling for total phosphorus (TP) monitoring, primarily for the following projects and their associated stations from April 1, 2009, through June 30, 2009:

- Everglades National Park Inflow East (PIE): S332DX, S18C, DS2, DS4, and Berm B3
- Everglades Protection Area (EVPA): LOX3 through LOX16

Because field quality control (QC) samples are collected for trips that include multiple project samples for the stations of interest, the report may also cover information on stations or projects other than those in the above list.

The District’s Field Sampling Quality Manual\(^1\) provides the minimum requirements followed in field sample collection. The Chemistry Laboratory Quality Manual\(^2\) provides the minimum requirements followed in preparing and analyzing laboratory samples, as well as data verification and validation. The Field Sampling Quality Assessment and Laboratory Analysis Quality Assessment sections in this report provide the field and laboratory QC results during this quarter. The SFWMD’s Laboratory Information Management System provided the data used in this report. These data are considered preliminary until release into the District’s DBHYDRO database.

Additionally, this report includes an analysis of the District laboratory’s performance on the split (EVPA) and inter-laboratory studies with the Florida Department of Environmental Protection (FDEP) for a one-year period. The report also includes the results of the National Proficiency Testing Program, which is designed to evaluate the laboratory’s performance through analysis of unknown samples provided by an external source. Proficiency testing is one of the essential elements of the National Environmental Laboratory Accreditation Program (NELAP) accreditation process.

FIELD SAMPLING QUALITY ASSESSMENT

PROCEDURE UPDATES

This period had no major procedural updates related to TP sample collection.

MISSING DATA

Table 1 presents the list of missing data for this reporting period. Eighty data points were missing (not collected) due to lack of flow or shallow water depth.

<table>
<thead>
<tr>
<th>Project</th>
<th>Collection Date</th>
<th>Station</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVPA</td>
<td>06-Apr-09</td>
<td>LOX3</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>EVPA</td>
<td>06-Apr-09</td>
<td>LOX4</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>EVPA</td>
<td>06-Apr-09</td>
<td>LOX5</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>EVPA</td>
<td>07-Apr-09</td>
<td>LOX6</td>
<td>Total depth less than 0.10 m. No sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>06-Apr-09</td>
<td>LOX9</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>EVPA</td>
<td>06-Apr-09</td>
<td>LOX10</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>PIN</td>
<td>08-Apr-09</td>
<td>S12B</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>PIE</td>
<td>08-Apr-09</td>
<td>S12B</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>08-Apr-09</td>
<td>S12C</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>08-Apr-09</td>
<td>S12D</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>14-Apr-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>14-Apr-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>14-Apr-09</td>
<td>S12D</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>14-Apr-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>14-Apr-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIE</td>
<td>20-Apr-09</td>
<td>BERMB3</td>
<td>Total depth = 0.0 m. No water available to sample</td>
</tr>
<tr>
<td>PIN</td>
<td>21-Apr-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>21-Apr-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>21-Apr-09</td>
<td>S12D</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>21-Apr-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>21-Apr-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>28-Apr-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>28-Apr-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>28-Apr-09</td>
<td>S12D</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>28-Apr-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>28-Apr-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>5-May-09</td>
<td>LOX3</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>EVPA</td>
<td>5-May-09</td>
<td>LOX4</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>EVPA</td>
<td>5-May-09</td>
<td>LOX5</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>EVPA</td>
<td>5-May-09</td>
<td>LOX7</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>5-May-09</td>
<td>LOX9</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>5-May-09</td>
<td>LOX10</td>
<td>Total depth = 0.0 m. No water available to sample.</td>
</tr>
<tr>
<td>Project</td>
<td>Collection Date</td>
<td>Station</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>PIN</td>
<td>5-May-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>5-May-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>5-May-09</td>
<td>S12D</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>6-May-09</td>
<td>LOX6</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>6-May-09</td>
<td>LOX11</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>6-May-09</td>
<td>LOX13</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>6-May-09</td>
<td>LOX14</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>6-May-09</td>
<td>LOX15</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>6-May-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>6-May-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>6-May-09</td>
<td>S12D</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>6-May-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>6-May-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIE</td>
<td>18-May-09</td>
<td>BERMB3</td>
<td>Site dry, no sample collected</td>
</tr>
<tr>
<td>EVPA</td>
<td>12-May-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>12-May-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>12-May-09</td>
<td>S12D</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>12-May-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>12-May-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIE</td>
<td>18-May-09</td>
<td>BERMB3</td>
<td>Site dry, no sample collected</td>
</tr>
<tr>
<td>PIN</td>
<td>19-May-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>19-May-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>19-May-09</td>
<td>S12D</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>19-May-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>19-May-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>27-May-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>27-May-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>27-May-09</td>
<td>S12D</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>27-May-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>27-May-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>1-Jun-09</td>
<td>LOX3</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>EVPA</td>
<td>1-Jun-09</td>
<td>LOX5</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>PIE</td>
<td>1-Jun-09</td>
<td>BERMB3</td>
<td>Total depth < 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>PIE</td>
<td>15-Jun-09</td>
<td>BERMB3</td>
<td>Total depth ~ 0.1 m. No sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>16-Jun-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>16-Jun-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>16-Jun-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>16-Jun-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>23-Jun-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>23-Jun-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>23-Jun-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>23-Jun-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
</tbody>
</table>
April – June 2009
Quality Assessment Report for Water Quality Monitoring

<table>
<thead>
<tr>
<th>Project</th>
<th>Collection Date</th>
<th>Station</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td>30-Jun-09</td>
<td>S12B</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>30-Jun-09</td>
<td>S12C</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>30-Jun-09</td>
<td>S355A</td>
<td>No flow, no sample collected.</td>
</tr>
<tr>
<td>PIN</td>
<td>30-Jun-09</td>
<td>S355B</td>
<td>No flow, no sample collected.</td>
</tr>
</tbody>
</table>

Note: The following changes (italicized above) were made to Table 1 on 10/12/09:
Total flow < 0.1 m replaced with total depth for project EVPA, collected 5-May-09, station LOX8
No flow replaced with total depth < 0.1 m for project PIE, collected 15-Jun-09, station BERMB3

FIELD QUALITY CONTROL

Field QC measures consist of equipment blanks (EB), field-cleaned equipment blanks (FCEB), split samples (SS), and replicate samples (RS). Table 2 summarizes EB and FCEB results for projects of interest to the Technical Oversight Committee (TOC), as referenced in the table footnotes below. Table 3 summarizes the field precision results and shows that the field sampling precision was acceptable for all three projects.

Table 2. Field and equipment blank results

<table>
<thead>
<tr>
<th>Type of Blank</th>
<th>Project</th>
<th>Number of Blanks Collected</th>
<th>Number of Detected Blanks</th>
<th>% < 0.002 mg/L</th>
<th>% ≥ 0.002 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td>EVPA</td>
<td>3</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PIE</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PIN</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>FCEB</td>
<td>EVPA</td>
<td>9</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PIE</td>
<td>14</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PIN</td>
<td>12</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

* Only blanks for sampling events from samples collected at stations listed in the Introduction are included in this analysis.
* Blanks for TP, which were associated with a short-term auto-sampler project at some TOC stations, are not included in this analysis.
* FCEB and EB acceptance criteria must be less than the method detection limit (MDL).
* When sample concentrations are less than ten times the resulting blank values, “J9” is added.
Table 3. Field precision summary

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Number of Triplicates</th>
<th>Date Collected</th>
<th>% RSD</th>
<th>Average Value (mg/L)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td>1</td>
<td>8-Apr-2009</td>
<td>3.6</td>
<td>0.028</td>
<td>Precision criteria were met</td>
</tr>
<tr>
<td>PIE</td>
<td>1</td>
<td>6-Apr-2009</td>
<td>12.4</td>
<td>0.005</td>
<td>Precision criteria were met</td>
</tr>
<tr>
<td>EVPA</td>
<td>1</td>
<td>1-Jun-2009</td>
<td>5.6</td>
<td>0.010</td>
<td>Precision criteria were met</td>
</tr>
</tbody>
</table>

- Only replicates for sampling events from samples collected at stations listed in the Introduction are included in this analysis.
- The District’s chemistry laboratory conducted all TP analyses.
- Field precision acceptance criterion must be ≤ 20%. The laboratory applied this criterion only if sample values were greater than the practical quantitation limit (PQL), which is four times the MDL.

FIELD AUDIT

During the second quarter, no field audits were conducted related to the TOC water quality stations.
LABORATORY ANALYSIS QUALITY ASSESSMENT

PROCEDURE UPDATES

The TP analytical procedure did not change during this reporting period.

LABORATORY QUALITY CONTROL

Routine laboratory QC samples include QC checks, matrix spikes, and precision checks. Figures 1 through 4 show the TP recoveries from various types and levels of QC samples at the District laboratory from April 1, 2009, through June 30, 2009.

Figure 1. QC (laboratory control sample) recoveries for TP analysis.

Figure 2. QC (laboratory control sample) recoveries for TP analysis.
Figure 3. QC (continuing calibration verification) sample recoveries for TP analysis.

Figure 4. QC5 (Method Detection Limit check) sample recoveries for TP analysis.
Tables 4 and 5 present the precision and matrix spike recoveries for TP analyses during the reporting period. If QC recoveries are outside the set limits, then the District’s laboratory usually rejects the analytical batch. If any deficiencies are noted, the samples have exceeded the required holding times, and the laboratory cannot re-analyze the data, then the sample is qualified accordingly.

Table 4. TP Precision (%) Data.

<table>
<thead>
<tr>
<th>Acceptance Limit</th>
<th><10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Range: 0.002-0.400 mg/L</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>9.2</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.6</td>
</tr>
<tr>
<td>3xSD</td>
<td>4.9</td>
</tr>
<tr>
<td>UCL</td>
<td>6.5</td>
</tr>
<tr>
<td>n</td>
<td>254</td>
</tr>
</tbody>
</table>

Table 5. TP Spike Recovery (%) Data.

<table>
<thead>
<tr>
<th>Acceptance Limit</th>
<th>90 – 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Range: 0.002-0.400 mg/L</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>90</td>
</tr>
<tr>
<td>Maximum</td>
<td>110</td>
</tr>
<tr>
<td>Mean</td>
<td>99.6</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>3.7</td>
</tr>
<tr>
<td>3xSD</td>
<td>11.0</td>
</tr>
<tr>
<td>LCL</td>
<td>89</td>
</tr>
<tr>
<td>UCL</td>
<td>111</td>
</tr>
<tr>
<td>n</td>
<td>255</td>
</tr>
</tbody>
</table>

Recoveries for the QC samples are within ±10 percent from the true value, which is acceptable. The Method Detection Limit (MDL) check (QC5), with a true value of 0.004 mg/L, had mean recoveries of 103.4 percent. The daily MDL check results indicate that the laboratory has consistently achieved the established MDL of 0.002 mg/L. An organic check is a solution prepared from phytic acid, which is a stable form of organic phosphate used to prepare matrix spikes, the mean recovery for which was 99.6 percent.
ESTIMATION OF ANALYTICAL MEASUREMENT UNCERTAINTY

The estimated analytical uncertainty for total phosphorus conducted by the District laboratory for the last quarter was determined to be 3.7 percent (with a 95 percent confidence level). This result applies to the analytical process and does not include uncertainty attributed to field sampling activities (e.g., sample collection and sample location effects). Figure 5 is presented to clarify the concept of MDL and Practical Quantitation Limit (PQL) of a measurement process.

![Uncertainty of Measurement Close to the Limit of Detection](image)

Figure 5. Uncertainty of TP measurement close to the detection limit.

METHOD DETECTION LIMIT AND PRACTICAL QUANTITATION LIMIT

MDL checks are routinely analyzed with each analytical run. From April 1 to June 30, 2009, 125 results for MDL checks were reported for total phosphorus measurements. The calculated MDL from these results was determined to be 1.0 µg/L, using the procedure described in 40 CFR 136 Appendix B and the calculated PQL for this period was 4.0 µg/L. At this concentration, the relative uncertainty in the measured value is estimated to be ±30 percent at the 95 percent confidence level. The reported values between the MDL and PQL are assigned the “I” qualifier, indicating the uncertainty is sufficiently high that the reported values should be considered an estimate of the actual concentration.

INTER-LABORATORY QUALITY-CONTROL ASSESSMENT

Split Studies with FDEP Laboratory

To continuously assess comparability of results, the District routinely sends split samples to other laboratories. The EVPA Quarterly Splits conducted between the FDEP and the District’s laboratory from June 2008 to June 2009 (see Appendix A) provided the data used in this analysis. Figures 6 presents regression analysis of all data, and Table 6 presents summary statistics for the data pairs.

ALL DATA

Figure 6 shows that the intercept is not statistically different from zero and the slope is not statistically different from one for all TP data from both laboratories. The r^2 value (Rsquare) is 0.335. The intercept of the regression is not statistically different from zero since the 95 percent confidence interval for intercept contains zero. The slope of the regression is not different from one statistically since the 95 percent confidence interval for slope contains one.

Table 6 shows that the mean difference (-0.0004 mg/L) and median difference (0.000 mg/L) was statistically insignificant. The paired t-test and signed-rank test yielded p-values of 0.551 and 0.613, respectively.

![Figure 6. Regression analysis for all TP data.](image-url)
TP ≥ 0.020 mg/L

There was only one data pair in this range where the TP ≥ 0.020 mg/L. The comparison of concentration at this level is not possible.

TP < 0.020 mg/L

All results for this analysis fell into the TP < 0.020 mg/L range. The results for all “All Data” range are comparisons of concentration at this level.

In summary, the differences for all TP levels were below the MDL for both laboratories and the difference was statistically insignificant in both; the sign-rank test (p>0.05) for non-normally distributed paired data and linear regression.

Table 6. Comparison of District and FDEP split TP samples.

<table>
<thead>
<tr>
<th>Lab</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDEP</td>
<td>18</td>
<td>0.010</td>
<td>0.008</td>
</tr>
<tr>
<td>District</td>
<td>18</td>
<td>0.009</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Statistical Test of Hypotheses

<table>
<thead>
<tr>
<th>Summary of Paired Differences</th>
<th>Hypothesis</th>
<th>Test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of Differences</td>
<td>Mean of Differences = 0</td>
<td>Student's t</td>
<td>0.613</td>
</tr>
<tr>
<td>Median of Differences</td>
<td>Median of Differences = 0</td>
<td>Signed Rank</td>
<td>0.551</td>
</tr>
</tbody>
</table>

Notes:

- Differences calculated as District TP minus FDEP TP. The mean and median differences for all concentration levels are at or below the MDL.
- Data were not used if FDEP value was below FDEP’s detection limit (0.004 mg/L).
National Proficiency Testing Program

As a requirement for laboratory certification, the District’s laboratory performs proficiency testing on environmental samples on a semiannual basis. The results for the District’s laboratory from the most recent proficiency testing study (April to May 2009) are shown in Table 8.

Table 8. Proficiency testing WP-171 study for TP

<table>
<thead>
<tr>
<th>Assigned Value</th>
<th>3.97 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported Value</td>
<td>4.08 mg/L</td>
</tr>
<tr>
<td>Acceptance Limits</td>
<td>3.24 – 4.75 mg/L</td>
</tr>
<tr>
<td>Performance Evaluation</td>
<td>Acceptable</td>
</tr>
</tbody>
</table>
GLOSSARY

Accuracy. The agreement between the actual obtained result and the expected result. QC-check samples, having known or “true” values, are used to test for the accuracy of a measurement system.

Equipment Blank (EB). A general terminology used for analyte-free water that is processed onsite through all sampling equipment used in routine sample processing. May be an assessment of effectiveness of laboratory decontamination or on-site (field) decontamination (FCEB).

Field Blank (FB). Analyte-free water that is poured directly into the sample container on site during routine collection, preserved and kept open until sample collection is completed for the routine sample at that site. FB values are indicative of environmental contamination on site.

Field Cleaned Equipment Blank (FCEB). Analyte-free water that is processed on-site, after the first sampling site, through all sampling equipment used in routine sample processing. EB values are indicative of the effectiveness of the decontamination process.

Method Detection Limit (MDL). The smallest concentration of an analyte of interest that can be measured and reported with 99 percent confidence that the concentration is greater than zero. The MDLs are determined from the analysis of a sample in a given matrix, using accepted sampling and analytical preparation procedures, containing the analyte at a specified level. The MDL is determined by the protocol defined in section 40 CFR, Part 136, Appendix B, as established by the U.S. Environmental Protection Agency.

Practical Quantitation Limit (PQL). The smallest concentration of an analyte of interest that can be quantitatively reported with a specific degree of confidence. Generally, the PQL is 12 times the standard deviation that is derived from the procedure used to determine the MDL, or can be assumed to be four times the MDL.

Precision. The agreement or closeness between two or more results and is an indication that the measurement system is operating consistently and is a quantifiable indication of variations introduced by the analytical systems over a given time and field sampling period.

Relative Percent Difference (RPD). A measure of precision, used when comparing two values. It is calculated as %RPD = |Value1–Value2|/Mean*100.

Relative Standard Deviation (RSD). A measurement of precision, used when comparing more than two results. It is calculated as %RSD = [Std. Deviation/Mean]*100.

Replicate Sample (RS). A second sample collected from the same source as the routine sample, using the same sampling equipment. RS data are compared to routine sample to evaluate sampling precision.

Split Sample (SS). A second sample collected from the same sample obtained from the same sampling device. Results for SS are compared with routine sample results; agreement between these two results is mostly an indication of laboratory precision.

Z-Value. A measure of the deviation of the result (Xi) from the assigned value (X) for that determinant (calculated as \(z = \frac{(Xi–X)}{\sigma} \), where \(\sigma \) is a standard deviation) (EURACHEM).
APPENDIX A

Results of TP split studies between the District and FDEP laboratories, EVPA Project, and Everglades Round Robin, June 2008–June 2009.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
<th>District</th>
<th>FDEP</th>
<th>%RPD/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVPA</td>
<td>11-Jun-08</td>
<td>0.010</td>
<td>0.012</td>
<td>18.2</td>
</tr>
<tr>
<td>EVPA</td>
<td>12-Jun-08</td>
<td>0.008</td>
<td>0.017</td>
<td>72.0</td>
</tr>
<tr>
<td>EVPA</td>
<td>12-Jun-08</td>
<td>0.006 (I)</td>
<td>0.006 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>12-Jun-08</td>
<td>0.010</td>
<td>0.008 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>18-Sep-08</td>
<td>0.007 (I)</td>
<td>0.007 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>18-Sep-08</td>
<td>0.008</td>
<td>0.008 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>18-Sep-08</td>
<td>0.008</td>
<td>0.008 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>18-Sep-08</td>
<td>0.008</td>
<td>0.008 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>09-Dec-08</td>
<td>0.007 (I)</td>
<td>0.005 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>09-Dec-08</td>
<td>0.009</td>
<td>0.007 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>09-Dec-08</td>
<td>0.007 (I)</td>
<td>0.005 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>09-Dec-08</td>
<td>0.004 (I)</td>
<td><0.004 (U)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>09-Mar-09</td>
<td>0.005* (I)</td>
<td>0.012* Y</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>09-Mar-09</td>
<td>0.006 (I)</td>
<td>0.014</td>
<td>80.0</td>
</tr>
<tr>
<td>EVPA</td>
<td>09-Mar-09</td>
<td>0.006 (I)</td>
<td>0.007 (I)</td>
<td><PQL</td>
</tr>
<tr>
<td>EVPA</td>
<td>10-Mar-09</td>
<td>0.011</td>
<td>0.012</td>
<td>8.7</td>
</tr>
<tr>
<td>EVPA</td>
<td>02-Jun-09</td>
<td>0.020</td>
<td>0.019</td>
<td>5.1</td>
</tr>
<tr>
<td>EVPA</td>
<td>02-Jun-09</td>
<td>0.012</td>
<td>0.010</td>
<td>18.2</td>
</tr>
<tr>
<td>EVPA</td>
<td>02-Jun-09</td>
<td>0.012</td>
<td>0.011</td>
<td>8.7</td>
</tr>
<tr>
<td>EVPA</td>
<td>02-Jun-09</td>
<td>0.010</td>
<td>0.008 (I)</td>
<td><PQL</td>
</tr>
</tbody>
</table>

*Result not included in the statistical evaluation due to improper sample preservation (qualifier code “Y”)

Qualifier codes:

I: indicates that the reported value is greater than or equal to the MDL but less than PQL

U: indicates that the compound was analyzed for but not detected

SFWMD: Actual MDL = 0.002 mg/L and PQL = 0.008 mg/L
FDEP: Actual MDL = 0.004 mg/L and PQL = 0.010 mg/L