TOC Briefing on STA-2 Mercury Anomaly

by
Larry Fink and Darren Rumbold
Environmental Monitoring and
Assessment Division
SFWMD

Acknowledgements

- The staff of the Water Quality Department of the Environmental Monitoring and Assessment Division, who collected the samples and managed the contracts for ultra-trace mercury analysis.
- Special thanks to Sharon Niemczyk, whose dedication and attention to detail made all the difference. We wish her well in her new job with FDEP.

TOC Briefing on STA-2 Mercury Anomaly

Part 1:Background Information

Part 2: Summary of Anomalous

Mercury Event

Part 3: Assessment of Ecological

Risks

Part 4: Conclusions

STA-2 Start-Up Mercury Studies

Part 1:Background Information

STA-2 Permit Mercury Conditions

- Stormwater Treatment Areas (STAs) created by flooding former farmland or drained remnant Everglades.
- FDEP/USEPA concerned about transient "first-flush" of inorganic mercury, Hg(II), and subsequent transient "first-flush" production of methylmercury following flooding.
- · Also concerned about long-term "reservoir effect."

STA-2 Permit Mercury Conditions

- Florida/Federal STA permits require biweekly mercury monitoring during pre-op. start-up.
- Unfiltered total mercury (U-THg) and methylmercury (U-MeHg) at inflow and representative interior site.
- When interior not significantly greater than inflow for U-THg and U-MeHg, discharge may commence.
- Begins stabilization period during which outflow concentrations can be greater than inflow.

STA-2 Permit Mercury Conditions

- Florida/Federal STA permits also require reporting anomalous mercury conditions during start-up or routine operation.
- Anomalous mercury condition is defined relative to Everglades Nutrient Removal (ENR) Project.
- Of all Everglades sites, ENR Project had lowest interior and outflow THg and MeHg in water; and
- ... lowest THg concentrations in mosquitofish, sunfish, and largemouth bass.

STA-2 Start-Up Mercury Studies

Part 2: Summary of Anomalous
Mercury Event

STA-2 Mercury Status Summary

- STA-2 construction began Jan '98.
- Each cell can be operated independently.
- Cell 3 former farm land; Cell 2 primarily and Cell 1 all remnant Everglades wildlife area.
- Soil elevation decreases in order Cells 1, 2, and 3.
- Cells 2 and 3 dewatering water pumped to Cell 1.
- Cell 1 dewatering water pumped to Cell 2.
- Start-up monitoring began Jul 20, '00.

STA-2 Mercury Status Summary

- Cells 3 and 2 met mercury start-up criteria on Sep 14 and Nov 9, '00, respectively.
- Cell 1 water methylmercury anomaly observed on Sep 28 '00.
- FDEP directed District to conduct 90-day followup study of water, sediment, and mosquitofish.

Why Cell 1 > Cell 2?

- · Cell 1 received dewater from other cells.
- Cell 1 has a higher average elevation than Cell 2 and likely dried out more than Cell 2 prior to and during construction.
- Cell 1 was dry in July '00 just before onset of heavy summer rains.
- In USGS/SFWMD "Post-Burn Study", postdryout reflooding caused up to 35-fold higher than ave. MeHg levels in soils and pore water at several sites.

STA-2 Start-Up Mercury Studies

Part 3: Assessment of Ecological Risks

Putting Cell 1 Methylmercury Risks into Perspective

- Cell 1 is similar to WCA-3A-15, the Everglades methylmercury "hot spot"
- Soil methylmercury averages ~ 5% of total.
- Soil bioaccumulation factor for mosquitofish is about 660 vs 800 for 3A-15.
- Mosquitofish >> 3A-15 ave. of 200 ug/Kg wet wt.
- Methylmercury pulse will move up food chain.
- Can use 3A-15 probabilistic ecological risk assessment by Rumbold et al. (2000) for Cell 1.

Location	Mosquitofish to Swrfish		Mosquit Bass E		Sunfish to Bass EHg(3)		
	1998	1999	1998	1999	1998	1999	
LOX4	3	0.9	9	3	3	3	
L39FI	NA	0.6	NA	3	NA	4	
L38FI	NA	0.4	NA	2	3	4	
Holey Land	1	0.3	9	2	7	6	
CA2U3	2	0.5	10	2	5	4	
L5F1	1	0.4	3	NA	5	NA	
CA3F1	7	0.9	NA	5	NA	5	
CA315	3	1.3	NA	4	NA	3	
CA3F2	4	1.2	NA	NA	NA	NA	
P33	6	2.0	NA	NA	NA	NA	
L67FI	NA	2.7	NA	NA	3	NA	
Mean	3	1	8	3	4	4	

Everglades Ecological Risk Benchmarks

	WCA-2A-U3					WCA-3A-15					
	NOAEL (I)		LOA	LOAEL(2)		NOAEL			LOAEL		
	50th	95th	50th	95th		 50th	95th		50th	95th	
Great Blue Heron	1.03	1.6	0.3	0.5		 3.2	4.9		1.5	1.6	
Great Egret	0.95	1.4	0.3	0.5		3.9	6.4		1.3	2.2	
Wood Stork	0.89	1.2	0.3	0.4		2.4	4		0.8	1.3	

⁽¹⁾ No Observable Adverse Effect Level est, from mallard duck NOAEL of 26 ug/kg bw-d from

STA-2 Start-Up Mercury Studies

Part 4: Conclusions

Conclusions

- Cell 1 risks to fish-eating wildlife not immediate threat but could adversely affect highly exposed, highly sensitive individuals if condition persists.
- Dryout and rewetting likely to put Cell 1 on same mercury trajectory as before.
- Holding wet-season rainwater could exacerbate anomaly.
- Initiating flow-through operation more likely to decrease than increase methylmercury production and bioaccumulation, but converse could occur.

·	 	

Heinz (1979)
(2) Lowest Observable Adverse Effect Level est, from mallard duck LOAEL of 78 ug/kg-day from