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1. Introduction 

General 

It is my hope that this document is more exciting than its title. It has been written with this 

intent, though in the eyes of many it will no doubt fail in this regard. After all, it is not a 

detective story, nor even a history of a journey of discovery. 

Yet, in some respects it is both of these.  

Part of the aim of this document is to help modellers, and those who make decisions on the 

basis of modelling, to look at modelling through fresh eyes. It is written against a background 

of what the author sees as frequent and expensive misuse of what is fundamentally a very 

useful technology. Sadly, the costs of this misuse can be high. These costs include human 

resources that are wasted on expensive yet fruitless modelling exercises that do not provide 

the insights into the future that was promised as justification for their construction. However 

even greater costs are incurred by making decisions on the basis of model outcomes that are 

thought to provide robust insights into the future but that, in fact, provide no such thing.  

Let us briefly look at the context in which most environmental modelling takes place. A 

decision of some importance must be made. The outcome of this decision is that someone 

may invest a great deal of money in a venture that has the potential to cause damage to 

someone else’s investment, with this damage being propagated through environmental 

pathways. Or damage may be inflicted on the environment itself. Alternatively, someone may 

be denied the opportunity to make such an investment because it judged that the 

consequences of this investment will be damage inflicted on other parties, or on the 

environment. The costs of modelling are normally small compared with those associated with 

the projects whose implementation and design are based on modelling outcomes. This is 

where the real cost of less-than-optimal modelling is incurred. And that cost may be very 

large indeed. In recognition of this, the topic of model predictive uncertainty analysis is 

gaining increasing interest at a rapid rate.  

The subject of model uncertainty has never been absent from the modelling literature. 

However it is also fair to say that it has never been a ―headline topic‖. It has always 

maintained the interest of some, but has never received the cult status that some other topics 

seem to have received from time to time.  Even a casual inspection of the academic literature 

reveals large differences in the means through which model predictive uncertainty is explored 

by different groups of researchers. In some cases there is considerable overlap between these 

approaches. In other cases different approaches appear to have very little in common. 

Nowhere does the divide appear to be greater than between approaches taken by groundwater 

and surface water modellers; even the vocabularies used by these groups are different. And 

just to add to the confusion, the mathematics of uncertainty often appears complicated. 

Where this is superimposed on the mathematics of simulation and published as a paper in an 

academic journal, that paper is sure to be given a wide berth by all except the most learned 

spectators. 

Lately, however, much of the growth in interest of this topic appears to be coming from 

outside of the academic community. It appears to be coming from those who must make 

decisions, or who must convince others of the benefits of decisions that have already been 

taken. Inevitably, a model has formed part of the decision-making process; these days, that is 

almost inescapable. Almost inevitably, the decision will be challenged by individuals or 
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groups who see themselves as disadvantaged by the decision. In mounting the challenge, the 

focus of attack will almost certainly be the model. The model must therefore be ―defensible‖. 

In the author’s opinion very few models are ―defensible‖ - at least not in the way that they are 

traditionally defended. This is an outcome of the fact that in most cases there is no 

mathematical reason why environmental models can live up to the expectations that are 

placed upon them. Nevertheless a model will often survive the onslaughts of its detractors 

either because the instrument of attack is an equally indefensible model, or because no better 

alternative is available for scientifically-based decision-support. In the heat of battle the 

rhetoric of modelling rather than the science of modelling often decides the contest. This is 

partly due to the fact that there is no metric by which to independently judge the worth of a 

model, or the superior worth of one model over another. Where metrics are put forward by 

proponents of one side of an argument they are often spurious, with explicit reliance often 

being placed on whether one model is ―better calibrated‖ than another model, and implicit 

reliance often being placed on the aesthetic appeal with which model outcomes are presented. 

In recognition of this unsatisfactory state of affairs, battle-hardened decision-makers and 

managers are rightly turning their attention to the concept of model uncertainty. In part this, 

like all other human behaviour, has its roots in self interest; where models are built to support 

the making of expensive and controversial decisions, the state of defensibility of the primary 

mechanism for decision-support must be known. So too must the vulnerabilities of the  

models that are used to attack it. In part, however, it also arises from a growing feeling, born 

of witnessing too many occasions on which reality has recklessly gone its own way 

independently of model predictions, that managers are being ―sold a lemon‖ when they agree 

to pay for an expensive model. There is a growing realization that models are not quite the 

predictive wonders that they are often made out to be. 

So who is to blame for this situation? No-one in my opinion. Decisions-makers have wanted 

predictive certainty since decision-makers first existed. In the past they grasped the straws 

that were available to them at the time - oracles, signs, astrology, and other tools of the 

mystical trade. Today those straws are models. And modellers have been eager to please 

managers, or have evolved through natural selection to be eager to please managers, by 

presenting them with oracles; for career extinction awaits those who did not. 

However the times, they are rapidly changing. As an industry, we are on the threshold of a 

paradigm shift in the way we build and use models. It is the growing recognition, born of 

painful experience, that model predictions may be seriously wrong that has led us to this 

point. This presents us with many dilemmas, the first of which is, of course, how to calculate 

the potential for wrongness that is associated with predictions made by a model. However as 

soon as this problem is addressed, an even greater dilemma awaits us. It is how to use models 

as a basis for decision-making when it is openly admitted that they cannot be construed as 

instruments for divining the future. 

While it is the intention of this document to address the first of these issues rather than the 

second, neither of them can be addressed in isolation. Hence, instead of looking at the issue 

of uncertainty as yet another layer that must be superimposed on the existing conceptual 

edifice that has formed the basis for model deployment up until now, this document begins by 

briefly discussing the place that models occupy in the decision-making process. This forms 

the context in which they must be used. It is thus the context to which their performance must 

be tuned, and the context in which their imperfections must be recognized. This is also the 

context in which uncertainty must be embraced as an inevitable part of looking into the 

future, and as an inseparable aspect of any decision-making process. 
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This Document 

This document is not meant to serve as a comprehensive review of work that has been carried 

out to date in the field of model predictive uncertainty analysis, in spite of the fact that 

reference is made to some of it. Nor does it purport to provide a comprehensive mathematical 

treatment of model predictive uncertainty analysis, despite the fact that some equations are 

presented. Instead, it intends to achieve the following. 

 Provide an overview of impediments to our ability to predict the environmental 

future; 

 Show that while we cannot be certain about the future, the magnitude of our 

uncertainty is, at to at least some extent, quantifiable; 

 Show how uncertainty can be reduced through appropriate use of simulation software 

in partnership with software that facilitates the flow of information and ideas from 

environmental data and user expertise to these simulators; 

 Illustrate that, while there is a theoretical lower limit to the uncertainty associated 

with predictions of different types at a specific study site, that limit may be difficult to 

attain because of model imperfections and practical computing requirements; 

 Identify strategies that can be used to approach the theoretical lower limit of 

uncertainty for a particular prediction at a particular site. 

Practical demonstrations of concepts discussed herein will be provided. Many of the 

following chapters conclude with worked examples based on two simple models used in 

conjunction with programs of the PEST suite of software. Files for these exercises are 

supplied. Hence, in addition to the above roles, this document also provides a tutorial on use 

of PEST-suite programs in analysing model predictive uncertainty. 

It is important to point out, however, that an over-riding consideration in writing this 

document has been that it be easy to read by both experts and non-experts alike. As stated 

above, while some equations are presented, the use of mathematics is kept to a minimum. 

Where equations are presented, it is not essential that they be understood - only that the 

principles that underlie them be understood.  

Similar considerations hold for the practical exercises. A reader of this document may ignore 

them altogether if he/she wishes, and nevertheless learn much about approaches to model 

predictive uncertainty analysis that are encapsulated in the PEST suite of software. 

Alternatively, a reader may wish to increase his/her understanding of PEST-suite software by 

simply reading the example descriptions and glancing at the files to which these descriptions 

pertain. Or a reader may wish to follow all of the instructions provided through the examples, 

thereby acquiring maximum knowledge of the workings of PEST and its ancillary support 

software in the uncertainty analysis context. 

This document is organised as follows. 

The remainder of this chapter provides a brief description of the two models on which 

practical examples used throughout this text are based.  

Chapter 2 attempts to set the context for the discussions that follow by examining what is 

required of a model when it is used as a basis for environmental decision-making. It attempts 

to take a somewhat different view of modelling from that which often explicitly or implicitly 

accompanies model usage at the present time. In particular, the role of a model when used in 

conjunction with appropriate support software as an instrument through which scientific 
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hypotheses-testing can be implemented is emphasized. An incapacity to reject the hypothesis 

that a particular management strategy may have unwelcome consequences may constitute 

grounds for making the decision to implement an alternative management strategy. 

Chapter 3 looks at what simulation of environmental processes as they operate at a particular 

study site can achieve. It makes the point that a model can never promise a prediction that is 

correct. However what it can aspire to do is guarantee that the correct prediction will lie 

within the interval of predictive uncertainty that it provides, and that this uncertainty 

approaches its theoretical lower limit given currently available information. Unfortunately, 

however, this lower limit may not be attainable because of the imperfect and simplistic nature 

of models as simulators of environmental processes. Model imperfections result in 

misdirection of information that is resident in historical system datasets. This, in turn, can 

lead to an increased penchant for model predictive error that must be accounted for when 

using a model to calculate predictive confidence intervals. 

Chapter 4 explores the concept of model calibration. It is demonstrated that calibration does 

not endow a model with an ability to provide the ―the right answer‖ when it is used to make a 

prediction of future environmental behaviour. It may, however, reduce the potential for error 

associated with one or a number of model predictions; alternatively it may not. In either case, 

calibration provides a pathway through which information can flow from data gathered at a 

study site to a simulator of environmental processes for that site. It is demonstrated that 

calibration also provides insights into model inadequacies, and the effects of these 

inadequacies on the model’s ability to reproduce past and future environmental behaviour. A 

distinction is made between model predictive uncertainty analysis and model predictive error 

analysis. While the two are often used interchangeably, the potential for predictive error is 

usually higher than the innate uncertainty of a prediction; uncertainty is an outcome of 

information inadequacy while potential for error includes both uncertainty and the effects on 

model predictions of its flawed capacity to simulate environmental processes.  

Chapter 5 discusses linear analysis of model predictive uncertainty and error. It is shown that 

while linear analysis can only be approximate because the relationship between model 

outcomes and model parameters is in fact nonlinear, linear analysis can nevertheless provide 

some useful insights. In particular, a modeller can rapidly assess the extent to which data 

inadequacy and model imperfections detract from a model’s ability to predict future 

environmental behaviour. In addition to this, the worth of existing or yet-to-be acquired data 

can be assessed in terms of its ability (or otherwise) to reduce the uncertainty associated with 

specific model predictions. Such analysis can therefore provide a sound basis for investment 

in acquisition of further data at a particular study site. 

Chapter 6 treats nonlinear predictive uncertainty analysis. While far more general than linear 

analysis as it does not require an assumption of linear model behaviour, this generality 

sometimes comes with a heavy computational cost. Nevertheless, through the use of 

methodologies such as the null space Monte Carlo scheme provided by PEST, the uncertainty 

associated with model predictions can be explored with reasonable levels of computational 

efficiency, even where parameter variability is subject to calibration constraints, and even 

where the number of parameters attributed to a model is made purposefully large in order to 

preclude underestimation of the extent of predictive variability. 

Chapter 7 explores in detail one particular form of nonlinear uncertainty analysis that 

implements more-or-less directly the type of hypothesis-testing that forms the heart of the 

scientific method. Furthermore, it does this in a way that makes enough information available 

to the modeller for him/her to be capable of exercising necessarily subjective (though 

informed) expert judgement when assessing the likelihood or otherwise of a particular future 
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environmental occurrence. As such this methodology may find a useful role in contexts of 

collaborative decision-making that are becoming more and more widespread as attempts are 

made to reconcile the interests of different stakeholder groups when deciding on ways to 

manage the environment in a manner that maximises its benefit to all. 

Chapter 8 provides a short conclusion. 

Case Studies  

General 

Two cases are provided to illustrate use of PEST-suite software in analysis of predictive 

uncertainty. Most chapters of this document conclude with a description of how to run 

pertinent PEST utilities in conjunction with these cases. All required files are supplied so that 

the reader can run these programs him/herself, or simply inspect pertinent input and output 

files, if he/she wishes. Descriptions are necessarily brief; more comprehensive tutorials on 

use of PEST and its utility support software are available through PEST courses. 

Both of the example cases discussed herein are characterised by models that run quickly. 

Hence the exercises provided in this document can be implemented with minimal 

computation effort. The first is a surface water modelling example, while the second is a 

groundwater modelling example. The first represents a well-posed inverse problem whereas 

the second represents an ill-posed inverse problem. As will be discussed, the well- or ill-

posedness of the inverse problem that characterises model calibration has a profound effect 

on the ways in which predictive error/uncertainty arises, and on the manner in which it must 

be explored. 

If a reader is not interested in gaining hands-on PEST experience based on the examples 

provided, pertinent sections of this document can remain unread with no deleterious impact 

on the flow of ideas that this document attempts to provide. 

All files for the first of these examples have been placed in a folder named sw (for ―surface 

water‖), whereas all files for the second of these examples have been placed in a folder 

named gw (for ―groundwater‖). To save the trouble of installation, all executable programs 

required for the exercises are also provided in each of these folders. 

Surface Water Model 

General 

This model is similar to that described by Gallagher and Doherty (2006) and Moore et al. 

(2010). Flow of water within a watershed is simulated using the Hydrologic Simulation 

Program FORTRAN (HSPF) model. This model is widely used in water quality studies; 

however in the present case only those aspects of its functionality that are related to the 

quantity, rather than quality, of water are employed. The HSPF model is fully described by 

Bicknell et al. (2001). 

As is apparent from the HSPF input file example.uci the model runs for three years, this 

covering the period 1
st
 January 1984 to 31

st
 December 1986. However the first year of the 

simulation is used for warm-up while calibration is effected by matching modelled and 

observed flows over 1985. The model is then used to predict flows in 1986. The maximum 

flow occurring over a particular four day period during 1986 is treated as a prediction of 

interest whose uncertainty is analysed. Partial assessment of each uncertainty analysis 

methodology discussed herein is achieved through testing whether the maximum flow that 

was actually measured over that period lies within computed uncertainty limits. 
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Figure 1.1 shows observed flows at the pour point of the watershed over 1985 and 1986, 

together with rainfall over that same two-year period. An arrow signifies 20th August 1986. 

This is the day for which predicted flow will form the focus of uncertainty analysis. 

(Actually, in making the prediction, we will look at the maximum flow over a four day period 

which encompasses this day to ensure that we capture the small peak associated with this 

event, as the magnitude of the peak is the aspect of flow that is of greatest interest to us.) The 

recorded flow of 27.25 m
3
/sec on that day constitutes a minor peak preceding a much larger 

flow event. What makes prediction of the magnitude of this minor peak difficult is the fact 

that rainfall that gave rise to the peak followed a lengthy dry period. The magnitude of the 

consequential flow event is therefore heavily dependent on the status of landscape water 

storages - especially those that are close to the stream. Given the lumped nature of 

representation of these storages in HSPF (and other lumped-parameter regional rainfall-

runoff models), this is thus a prediction that is particularly prone to the deleterious effects of 

model structural defects. As will be shown in later sections, notwithstanding its calibrated 

status, the model gets this prediction very wrong. This does not constitute grounds for 

condemnation of the model however, for it is wrong to expect that a model should get a 

prediction right. What does incriminate the model is that the correct prediction does not lie 

within the model’s predictive uncertainty interval. 
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Figure 1.1 Rainfall and river flow over the years 1985 and 1986; the arrow depicts an 

event on 20th August 1986. 
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Model Parameters 

A single PERLND (pervious land area) and a single RCHRES (reach reservoir unit) are used 

to simulate hydrologic processes within the watershed. Only parameters pertaining to the 

former are calibrated; these are listed in Table 1.1. The third column of this table lists bounds 

on parameter values imposed through the parameter estimation and predictive analysis 

processes described below; these were taken from USEPA (2000). Note that HSPF employs 

many parameters in addition to those listed in Table 1.1; however parameter estimation was 

limited to this group of parameters based on the importance of these parameters in 

streamflow calculation. With the inverse problem of model calibration restricted to the 

estimation of only these seven parameters, the resulting problem is well-posed. 

Parameter Name Parameter Function Bounds 

LZSN Lower zone nominal storage 50 - 380 mm 

UZSN Upper zone nominal storage 1.3 – 51.0 mm 

INFILT 
Related to the infiltration capacity of the 
soil 

0.25 – 12.7 mm/hr 

BASETP 
The fraction of potential ET that can be 
sought from baseflow 

10
-5

 – 0.2 

INTFW Interflow inflow parameter 1.0 – 10 

IRC Interflow recession parameter 0.001 - 0.85 d
-1 

AGWRC Groundwater recession parameter 0.001 - 0.999 d
-1

 

Table 1.1. Estimated HSPF parameters. Parameter bounds are taken from USEPA 

(2000). 

Extreme nonlinearity in the relationship between parameter values and model outputs is 

avoided by transforming the interflow and groundwater recession parameters listed in Table 

1.1. Parameter estimation and uncertainty analysis is actually undertaken with respect to 

parameters IRCTRANS and AGWRCTRANS rather than IRC and AGWRC. Relationships 

between the native and transformed HSPF parameters are as follows:- 

IRCTRANS=IRC/(1-IRC)      (1.1) 

AGWRCTRANS = AGWRC/(1-AGWRC)    (1.2) 

These transformed parameters approach infinity as the native parameters approach 1. This 

same transformation was employed by Doherty and Johnston (2003). 

Model Files 

An executable version of HSPF is supplied; it is named hspf.exe. A file named hspfmsg.wdm 

must reside in the directory from which this is run. This ―watershed data management‖ (i.e. 

wdm) file stores all messages that HSPF may need to write to the screen and to its output files 

as execution proceeds. 

The input file for the current model is named example.uci. (uci stands for ―users control 

input‖.) An inspection of this file reveals the presence of ―~‖ characters on certain lines. 

These direct hspf.exe to read these lines of data from a so-called ―supplementary file‖, in this 

case named example.sup. Rigid uci file protocols prevent the use of maximum precision in 
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recording numbers on these files. This presents a problem to finite-difference derivatives 

calculation where parameter preprocessing is undertaken (as is required in the present case to 

implement the transformations described by equations 1.1 and 1.2), as integrity of finite-

difference derivatives calculation demands that full precision be retained when passing 

numbers between executables comprising the links in a model chain. No such restrictions are 

placed on numbers recorded on a supplementary input file however. 

Run HSPF by typing the command: 

 hspf 

at the screen prompt. Respond to its prompts in the manner shown below. 

 Enter the name of your input file: example.uci 

 Enter name of HSPF supplementary input file: example.sup 

The model writes nothing to the screen as it runs. However an inspection of file example.ech 

produced by HSPF when run on the basis of the example.uci input file (ech stands for ―echo‖) 

reveals that HSPF runs satisfactory. Model-computed time series are written in binary format 

to file output.wdm. Observed flows are recorded in file observ.wdm; we will read these later. 

HSPF obtains rainfall and other climatic quantities from another wdm file named input.wdm. 

A Groundwater Model 

The second example is a groundwater model. In contrast to the previous example, this is a 

synthetic case. It was specially designed to present a challenge to the process of predictive 

uncertainty analysis as the prediction whose uncertainty will be analyzed is one of relatively 

low (but nevertheless finite) likelihood; calculated uncertainty intervals must be wide enough 

to encapsulate this prediction. This case also differs from the above example in that the 

inverse problem through which the model is calibrated is an ill-posed one. Furthermore, the 

prediction whose uncertainty is analyzed is particularly sensitive to parameter components 

that lie within the calibration null space; hence calibration of the model imposes little 

constraint on this prediction.  

The model is the same as that described by Moore and Doherty (2005; 2006), Tonkin et al. 

(2007),  Tonkin and Doherty (2009) and Moore et al. (2010). Groundwater flow is simulated 

using the MODFLOW-2000 model (Harbaugh et al, 2000); movement of a particle within the 

flow field is simulated using the ADV2 process of MODFLOW-2000 (Anderman and Hill, 

2001). 

Figure 1.2 shows a rectangular model domain with dimension of 500m × 800m. 

Superimposed on this is a finite difference grid comprised of 4000 cells, each 10m × 10m. 

The hydraulic conductivity field which represents ―reality‖ within the model domain was 

generated stochastically on the basis of a log exponential variogram with a sill of 0.2 and an 

effective range (three times the divisor of distance in the exponent of the variogram equation) 

of 600m. The average log hydraulic conductivity is 0.0, this corresponding to a native 

hydraulic conductivity value of 1.0m/day. 



Introduction  9 

 

Figure 1.2 Distribution of log hydraulic conductivity within the rectangular model 

domain. Darker colours represent lower hydraulic conductivity. Hydraulic conductivity 

ranges between 0.133 and 18.1 m/day. 

Water enters the system along the northern boundary of the model domain at a spatially 

uniform rate of 0.1m
3
/day per metre of boundary. Fixed heads of 0.0 m comprise the southern 

boundary of the model domain. There is no recharge within the model domain itself. The 

simulated aquifer is confined and conditions are steady state.  A single particle is released 

near the northern boundary of the model domain. Its trajectory, together with contours of 

model-calculated piezometric heads, are shown in Figure 1.3. The time taken by the particle 

to travel from its release point to the bottom fixed-head boundary is 3256 days. This 

comprises the prediction whose uncertainty is the focus of our attention. 
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Figure 1.3. Piezometric heads (in metres) and particle trajectory. 

Model Parameters 

The model is calibrated by matching model-generated heads with ―observed‖ heads at the 

sites of the 12 wells depicted in Figure 1.4. Independent Gaussian noise with a standard 

deviation of 0.1m was added to model-calculated heads to produce this calibration dataset. 

Pilot points are employed as a spatial parameterization device. Pilot point locations (of which 

there are 104) are also shown in Figure 1.4.  
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Figure 1.4. Locations of observation wells (circles) and pilot points (diamonds). 

Model Files 

The ―name file‖ for the MODFLOW model is rect_model.nam. The names of other input 

files required by MODFLOW-2000 appear in this file. Although not used in the calibration 

process, the MODFLOW observation process must be activated to allow generation of the 

ADV2 outputs that constitute the prediction of interest.  

A salient feature of the MODFLOW input dataset is that arrays holding hydraulic 

conductivity, porosity and cell activity (the former two are real arrays while the latter is an 

integer array) reside in external files; these are named hk.ref, por.ref and ibound.inf 

respectively. MODFLOW is directed to these files through OPEN/CLOSE statements 

residing at pertinent locations within its main package input files. 

The hydraulic conductivity distribution featured in Figure 1.2 is stored in a file named 

reality.ref. Copy this to hk.ref using the command: 

 copy reality.ref hk.ref 

Now run MODFLOW-2000 by typing: 

 mf2k 

at the screen prompt. Inform it of the name file for the current model (i.e. rect_model.nam) 

when prompted for this. After the model has finished running, heads are recorded in binary 

format in file heads.dat. The particle path is recorded in ASCII format in file path.dat. While 

the time and location of particle emergence can be read from this file, it is more easily read if 

extracted from this file using a small utility program named FINALTIME whose executable 

file is named finaltime.exe. Run FINALTIME by typing its name at the screen prompt. Then 

respond to its prompts as follows: 

 Enter name of ADV output file: path.dat 

 Enter name for this program's output file: time.dat 

Inspect time.dat. The time and location of particle emergence are recorded in this file. 
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It will be shown in later sections that if this model is calibrated against heads recorded in the 

12 wells depicted in Figure 1.4, it over-predicts particle travel time by a factor of two 

notwithstanding a good fit being achieved with these heads. As stated above for the surface 

water model, this in itself does not justify condemnation of the model, or of the calibration 

process. In fact the hydraulic conductivity field of Figure 1.2 was especially selected to create 

this situation; in moving through the model domain, the particle exploits high conductivity 

pathways whose presence and disposition are quite compatible with the stochasticity of the 

hydraulic conductivity field but which are undetectable through the calibration process. This 

presents a challenge to the process of model predictive uncertainty analysis, for this process 

must encapsulate the correct value of the prediction even if the model makes this prediction 

with considerable error when using the hydraulic conductivity field that emerges from the 

calibration process. 
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2. What will happen if...? 

Introduction 

The purpose of this chapter is to set the scene for chapters that follow. It provides a brief 

description of the decision-making context in which many models operate. It is only after 

examining this context that optimal usage of models in this context can be pursued. 

Before proceeding, however, it must be acknowledged that models are built for many 

reasons. Sometimes they are built for research purposes where their primary role is to allow a 

scientist to experience things that may otherwise be invisible, and to thereby gain a greater 

understanding of the interplay of the many different, and often competing, processes that 

determine the environmental future. The focus of the present document is not on this type of 

modelling. Rather the present focus is on models that underpin environmental management, 

and on which basis important management decisions must be made. This is not to say that 

complex process models have no place in decision-making; obviously, the better that a 

practitioner understands environmental processes as they are presumed to operate at his/her 

study site, the better is his/her ability to discern good management practice from bad 

management practice at that site. However in this document the focus is on models whose 

outcomes provide direct and quantitative inputs to a decision-making process. Such models 

are therefore built as a means for predicting the future behaviour of a specific system under 

existing, or yet-to-be-tested, management strategies. 

Making a Decision 

Making a decision would be easy if the repercussions of that decision were perfectly known. 

This, of course, entails the existence of some means of looking into the future - as it would 

unfold under existing management strategies and as it would exist under altered management 

strategies.  

Decision-making, as it is implemented in the political and economic world, recognizes that 

the future cannot be perfectly known. However through careful analysis of all available data, 

combined with an understanding of the workings of a system, a course of action can often be 

chosen that maximizes the probability of some good thing happening, or minimizes the 

probability of some bad thing happen. These are really the same thing when it is considered 

that failure to maximize a good thing constitutes an opportunity cost that should ideally be 

minimized. 

Unfortunately, environmental decision-making is often seen as a process that has more in 

common with engineering design than it does with notions of minimization of risk in the 

context of a system that is poorly understood. Engineering design is often based on the 

premise that perfect predictions of future system behaviour can in fact be made based on a 

complete mathematical characterisation of the system. System performance measures can be 

proposed; design is then targeted at satisfying those measures.  

Even where a system is well understood however, good design often requires compromise - 

for example between cost and performance, or between this aspect of performance and that 

aspect of performance. Where compromises must be made, optimality must be defined, or at 

least explored. Of the continuum of designs that may allow a system to work to the 

satisfaction of all concerned, the one that is eventually chosen is that which achieves the 

highest level of satisfaction from as many points of view as possible, some of which may be 

conflicting, and many of which may include subjective considerations. 
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This illustrates an important point. Even when used in a laboratory setting where a great deal 

is known about system processes and about the properties of materials on which they operate, 

models are rarely used on their own in contexts of engineering design. Mostly they are 

employed in conjunction with other software that optimizes design, taking into account 

system knowledge as it is encapsulated in the model. It does this by reconciling conflicting 

design requirements in the most satisfactory way possible. The model thus forms part of a 

more complex software environment, part of which functions as a kind of ―model supervisor‖ 

which employs the outcomes of many model runs to formulate designs that attempt to 

achieve optimality, in whatever way this is defined. 

Environmental Management 

While environmental management may sometimes be seen as closely related to engineering 

design, it probably has more in common with civic and economic management (see, for 

example, Orrell, 2007). This is because it is rarely, if ever, possible to construct a model that 

can predict the environmental future at a given site, either under management practices which 

prevail at present, or under those which may be proposed for the future. Reasons for this 

include the following. 

 The complexity of environmental processes is virtually unbounded. Consider for 

example the plethora of chemical reactions that affect many contaminants, especially 

those of agricultural origin, as they make their way to and through underground and 

surface waterways.  

 The properties of materials from which environmental systems are built are often 

poorly known.  

 These properties may vary by several orders of magnitude over short distances (rock 

and soil permeabilities being a case in point). 

 Important components of system geometry can often be inferred only vaguely. This 

applies particularly to the disposition of geological layering, and of fractures and 

shear zones that may intersect and offset this layering. 

 While it may be possible to mathematically characterise environmental processes that 

are operative at a point or through a column, mathematical characterisation of these 

processes as they operate over larger areas that are the focus of management decisions 

is often impossible. Though considerable attention has been given to it in the 

academic literature, the problem of upscaling is far from solved; many questions, and 

much debate, still attends the manner in which this should be done. Issues include the 

following. 

o Should point-scale equations be applied to large areas (as they are in many so-

called ―physically-based‖ models)? 

o If so, how should hydraulic properties as they pertain to highly nonlinear 

processes be averaged over a large area? 

o If not, how should hydraulic properties be represented in modified equations? 

o In either case, what relevance (if any) do point measurements of system 

properties have to those used by a large-scale model? 

 Measurements of system state from which system properties can be inferred through 

calibration are often scarce. For example wells in which groundwater head 

measurements are made often tap shallow layers rather than deep layers, and are often 
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concentrated in some parts of a model domain while being sparse in other parts. 

Rivers and streams are gauged at only a small number of locations. Water quality 

measurements in both contexts are often sporadic, and often exhibit a high degree of 

temporal variability. 

 Historical land and water use is often only approximately known. Nevertheless such 

usage figures are often required by models during their calibration phase. 

 Other important system inputs, both historical and present-day, are often only 

approximately known. This applies in particular to the spatial disposition of rainfall 

throughout a watershed 

 Contaminant source strengths and locations, both industrial and agricultural, are 

extremely uncertain. 

 Numerical problems often attend the simulation of complex environmental processes. 

In general, the greater the degree to which a numerical model attempts to be 

―physically based‖ - the greater will its run time be, and the greater will be the degree 

to which it may fall prey to numerical instability. Both of these reduce a model’s 

ability to be used in conjunction with software that facilitates calibration and 

uncertainty analysis on the one hand, and system design optimisation on the other 

hand. 

The last of the above points deserves further consideration. In a typical engineering design 

scenario system properties are well known. In the environmental modelling context the areal 

distribution of system properties must be inferred from scarce point measurements of some of 

them, and/or back-calculated from historical measurements of system state. Thus solution of 

an ill-posed inverse problem is a fundamental aspect of environmental model usage. The 

extreme heterogeneity of most earth systems makes it very unlikely that exact values of 

system properties can be inferred throughout the system. Furthermore as the properties and 

processes represented within a model are often ―lumped‖ or averaged analogues of their real-

world counterparts, the salience of point measurements of system properties to parameters 

that represent these properties in a model is often questionable. Repercussions of this include 

the following. 

 An environmental model must serve more than one purpose. While being used to 

make predictions on which environmental management must be based, it must also be 

used to extract as much information as possible from historical site data. If this is to 

be done with maximum efficacy, it requires software support. Hence, as stated above, 

a model must be capable of being deployed in partnership with other software that 

runs it repeatedly as part of a data extraction process. 

 The complexity of real-world systems is such that even large calibration datasets 

cannot hope to provide unique estimates of all system properties at all places within a 

model domain. In general, estimates of averaged properties, or combinations of 

properties, will be available through solution of what may be a complex and ill-posed 

inverse problem. 

 Even estimates of broad scale system properties will be degraded through:  

o lack of complete knowledge of current and historical system inputs; 

o inadequacies in a model’s ability to provide precise simulation of 

environmental processes; and 
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o the fact that measurements of system state on which basis system properties 

are inferred, are accompanied by measurement error. 

From all of this it is obvious that it is not possible to construct a model that will provide 

accurate predictions of future system behaviour. Furthermore, the greater the extent to which 

a prediction is sensitive to non-inferable system properties, the lower will be the reliability of 

that prediction. In general, non-inferable properties will pertain to system detail, and/or to 

aspects of system behaviour that are rarely observed - or perhaps may never have been 

observed if contemplated changes to a system are likely to take it to places where it has never 

been before. 

Unfortunately, these are the very types of prediction that are often of most interest from a 

management point of view. For example water quality, including the nature and disposition 

of surface or subsurface contaminants, is often dependent on process and property details that 

can only be vaguely measured or inferred. The response of a system to extreme events (for 

example the height of a flood peak) is, by definition, sensitive to aspects of the system that 

have rarely been observed in the past and whose measurement is subject to a high degree of 

uncertainty. The response of the system to sets of inputs that arise out of development, or to 

management plans that are put in place to ameliorate the deleterious effects of development, 

is dependent on aspects of system behaviour that may never have been experienced before. 

It is obvious, therefore, that an environmental model cannot be employed as an engineering 

design tool through which the means to achieve some agreed-upon management outcome is 

optimised, with achievement of the outcome never in doubt and only the efficiency of its 

achievement being the chief design consideration. If an environmental model tells us 

anything, it tells us that the future cannot be exactly known. Use of a model in the decision-

making context, and the very design of the decision-making context itself, must be based on 

recognition of this fact. 

Risk  

An environmental model cannot predict the future. However this does not render it useless. 

While it cannot be used to predict what will happen because of data and model inadequacies, 

it can often be used to discriminate between what can happen and what cannot  happen. As 

the line between the two is most unlikely to be sharp, it may also be able to provide some 

indication of diminishing likelihood as the value of a prediction changes.  

Many, if not most, environmental decisions are made in order to avoid an unwanted 

occurrence. Examples of unwanted occurrences include the following. 

 Where groundwater cleanup is undertaken, a remediation strategy must be such as to 

ensure that the concentration of a contaminant at management boundaries will not 

exceed a certain threshold. 

 Assurances must be provided to the public that the height of an imminent flood will 

be no greater than a level that is compatible with current evacuation boundaries. 

 Water allocated to irrigators at the start of a water year must be such as to guarantee 

that no water deficit occurs during the water year. 

 Alterations to land management practices must be such as to ensure that the 

concentrations of agricultural contaminants during periods of high or low flow 

(depending on the contaminant) do not rise above regulatory thresholds. 

Obviously, the likelihood of an unwanted occurrence can be minimized by taking extreme 

measures to avoid it. However such measures may not be acceptable because the associated 
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costs may be too great. These must be balanced against the cost of an unwanted occurrence, 

together with the risk of its occurrence. Thus if the cost of the occurrence is high, only a low 

occurrence likelihood is tolerable. Conversely, if its cost is not too great a higher risk of its 

occurrence can be tolerated.  

In a series of landmark papers (Freeze et al, 1990; Massmann et al, 1991; Sperling et al, 

1992; Freeze et al, 1992), Freeze and his co-workers presented theory and examples in 

support of a suggested methodology for model-based decision analysis. At the heart of their 

methodology is an objective function defined as: 
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where: 

 Φj  = the objective function associated with alternative j in dollars; 

 Bj(t)  = benefits of alternative j in year t in dollars; 

 Cj(t)  = costs of alternative j in year t in dollars; 

 Rj(t)  = risk of alternative j in year t in dollars; 

 
T  = time horizon in years; 

 i  = discount rate as a decimal fraction. 

Risk is defined through the equation: 

 R(t) = Pf(t)Cf(t)γ(Cf)        (2.2) 

where: 

 Pf(t) = probability of failure in year t (decimal fraction); 

 Cf(t) = costs associated with failure in year t (dollars); 

 γ(Cf) = normalized utility function related to risk aversion (decimal fraction ≥ 1). 

The optimal decision is that corresponding to the maximum of the above objective function. 

Other decision strategies are also discussed in these papers. For example the ―maximin‖ 

decision criterion seeks to identify the least desirable consequence for each alternative under 

consideration and then selects the alternative that leads to the best of these least desirable 

consequences. Alternatively, the ―minimax‖ regret strategy selects that alternative whose 

maximum regret is smallest, where ―regret‖ is defined as the price that must be paid for 

selecting the non-optimal alternative given perfect knowledge of system properties.  

The above authors point out that a model’s contribution to the objective function of equation 

(2.1) is expressed only through the risk term. This then defines the role of the model in the 

decision-making process. 

Whether decision-making is based on formal analysis such as that presented in the above 

equation, or whether it is based on more subjective considerations, the role of an 

environmental model as a means of assessing the probability of an unwanted occurrence is 

the same. It is not reasonable to ask a model to predict the future, for it cannot do this. The 

fact that all predictions of future environmental behaviour can only be made with uncertainty 

must be embraced. If it is to provide a scientific foundation to the decision-making process, 

all that can be asked of a model is that it be used to assess probability and hence risk. Or to 

put it another way, a model must be used to explore whether, if a certain management action 
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is taken, an unwanted occurrence can be avoided, or that its occurrence is associated with a 

probability that is suitably low. 

In some circumstances it may be possible to extend the role of models in the decision-making 

process a little beyond this. If a model exposes the possibility of a bad thing happening, then 

it may also be able to show how that bad thing can happen. This may promulgate the design 

of a suitable monitoring strategy for early detection of the untoward event. Implementation of 

that strategy may add to the cost of a certain management plan, while reducing the risk of that 

plan going awry. These terms can be incorporated formally or informally into the above 

decision equation. 

Hypothesis-Testing  

Two important roles played by environmental modelling when used in a decision-making 

framework emerge from the above discussion. The first is its role in assessing the probability 

of a future untoward occurrence, this being a probabilistic description of the confidence with 

which it can be said that a certain event will or will not happen. The second is its role in 

extracting information from existing site data, thereby reducing the range of possible 

predictive occurrences below that which would prevail in the absence of this data.  

A model is able to provide these services because, ideally, it carries within it the entirety of 

our knowledge of a study site. This knowledge is encapsulated in the processes that it 

simulates, the boundary conditions that it implements, various aspects of system geometry 

that it features, and the range of parameter values that we allow it possess.  

These aspects of model construction and usage can be related to the terms that appear in 

Bayes equation. Bayes equation can be written as: 

      kkhhk PPP ||         (2.3) 

where P(k) describes the prior probability of model parameters, P(h|k) is a likelihood 

function calculated from the fit that a model provides to measurements of system state, and 

P(k|h) describes the posterior probability of model parameters. As the container for all of our 

expert knowledge, the model can be represented as the P(k) term of Bayes equation. The 

model’s role in extracting information from site data is represented by the P(h|k) likelihood 

term. Its role in providing risk analysis in support of the decision-making process is 

represented by the posterior probability term P(k|h). This represents the probability 

distribution of parameters after all information has been taken into account. The probability 

distribution of any prediction, and consequentially the risk associated with any untoward 

occurrence, is calculated from this term. This matter will be examined in greater detail in 

later chapters. 

For the moment, however, we will look at the role that a model plays in the decision-making 

process in a slightly more qualitative way. As we shall see, however, the more qualitative 

nature of this description does not degrade its validity, as in most cases of model deployment, 

qualitative assessment of the likelihood or otherwise of a future event is all that is available to 

us anyway. 

An environmental model can be considered to be a type of scientific instrument. As such, it 

can be used to test the hypothesis that the occurrence of a certain future event is consistent 

with all that is known about a system. ―All that is known about a system‖ is encapsulated in 

the design of a model of that system, in the range of parameters we allow that model to 

possess, and in the constraints on those ranges that emerge from the necessity that the model 

reproduce historical system behaviour, all of this being in accordance with Bayes equation. 
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The hypothesis that a future event will occur given a certain management practice can be 

rejected if, at a certain confidence level, the occurrence of that event is inconsistent with 

some or all of this knowledge. Inconsistency is exhibited by an inability on the model’s part 

to make this prediction unless it employs parameters that, in our view, are unrealistic (at a 

certain level of confidence), or that incur an unlikely (at a certain level of confidence) amount 

of misfit with historical observations of system state when the model is driven by historical 

stresses. 

Using a model to test hypotheses is a conceptually straightforward undertaking. It is also an 

undertaking that is pivotal to its role in decision support. In practice however, it is an 

undertaking that is more easily said than done. Reasons for this include the following. 

 The capacity of a model to encapsulate our knowledge often erodes its capacity to 

reduce posterior uncertainty through extracting information from historical datasets. 

Complex physically-based models are often employed because they provide 

appropriate receptacles for expert knowledge of processes and parameters, for they try 

to simulate, as well as possible, reality as we know it based on system properties that 

we can measure. However such complex models often have (extremely) long run 

times, and a high penchant for numerical instability. Both of these make their use with 

high-end parameter estimation software difficult or impossible. 

 While complex models may allow us to represent the prior probability distribution of 

certain system properties with some degree of integrity, they make it almost 

impossible for us to represent other important aspects of prior uncertainty. For 

example, numerical grids are often designed specifically to accommodate the nuances 

of what we imagine to be the complex geology of three-dimensional systems, 

including the disposition of geological layers and faults, and the offsetting of layering 

and faults by other faults. While the locations of geological features that may be 

critical to the movement of underground water and contaminants may be only poorly 

known, making alterations to the disposition of these features to reflect their unknown 

status is often impossible without expensive and time-consuming redesign of the 

model grid or mesh. Practical difficulties can also be encountered in varying the 

geometric and hydraulic descriptors of certain boundary conditions (for example those 

related to rivers, streams and canals), and in introducing variability to factors affecting 

recharge processes (for example the location and timing of local ponding, temporal 

and spatial variations in diffuse vs. macropore recharge, etc). 

 Parameters employed by a model cannot be represented with the same level of 

heterogeneity as that of hydraulic property variability in the real world. A lower limit 

is placed on model parameter variability by the model grid or element size in the case 

of discrete-element models. The algorithmic lumping of processes in many land use 

and surface water models places a lower limit on the spatial and temporal hydraulic 

property variability that can be represented in those kinds of models; at the same time 

it makes encapsulation of prior knowledge difficult because of the abstract nature of 

parameters employed by these kinds of models when compared with the measureable 

hydraulic properties that they purport to represent. Even where a physically-based 

model allows representation of heterogeneity at a cell-by-cell or element-by-element 

level, there are practical difficulties associated with this endeavour, especially where 

these parameters are subjected to adjustment through the model calibration process. 

Complex process models are often endowed with simplistic parameter fields to 

facilitate their calibration. However the use of a few parameters that represent average 

properties over many cells, or even a moderate number of parameters based on 
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devices such as pilot points, erodes the capacity of the model to represent fine-scale 

heterogeneity. Model outputs under both historical and predictive conditions may be 

compromised because of this. Avenues for representation of prior system knowledge 

acquired through point measurements of system properties are also partially blocked 

because of this. 

 No model is perfect. All outputs of all models bear the imprints of model 

imperfections. When assessing parameter likelihood through history-matching, this 

must be taken into account as we will almost certainly need to tolerate a greater level 

of model-to-measurement misfit than that which would be suggested on the basis of 

measurement noise alone. But how much greater? This is something that can only be 

assessed subjectively. Alternatively, it may be possible to achieve a very good fit 

between model outputs and historical measurements of system state. But in achieving 

this fit, some parameters may need to assume unlikely values to compensate for 

model inadequacies. But if a model parameter has an abstract side to its nature for 

reasons discussed above, how is ―unlikely‖ defined for such a parameter? 

Furthermore, is parameter compensation for model inadequacies always a bad thing? 

If compensatory behaviour on the part of one parameter enhances a model’s ability to 

replicate the past, may it not also enhance its ability to predict the future? By keeping 

parameters strictly ―realistic‖ could we be shutting the door on information that would 

otherwise flow to a model and that would therefore make it a better predictor of (at 

least some aspects of) future system behaviour? Doherty and Welter (2010) show that 

the frustrating answer to this question is ―sometimes yes and sometimes no, and it will 

often not be possible to discriminate between the two‖. 

 Even if every parameter employed by a model could be magically provided with its 

―correct‖ value (notwithstanding the abstract nature of many of them), its predictions 

would still be flawed because of the imperfect nature of a model’s capacity to 

simulate every nuance of future system behaviour. The extent to which a prediction of 

decision-making interest is flawed will depend on many things. Generally its 

proclivity for error will rise with the extent to which it depends on small-scale or 

extreme features of system behaviour, as these are the aspects of system behaviour 

that model imperfections are most likely to affect. 

These considerations leave us in a position that is not altogether satisfying. Having dispensed 

with the illusion that a model can be used to predict the future, and replaced it with the 

assertion that a model can be used to assign confidence levels to various occurrences that are 

salient to management decisions, we must now conclude that the confidence with which we 

can assign a confidence level is frustratingly small. Or, to put it another way, the confidence 

with which we can assert that a future untoward event will not occur is lower than that which 

exists ―in theory‖, because we simply cannot process all of the data that are available to us 

using the cumbersome scientific instrument that is an environmental model. The widths of 

predictive confidence intervals on which decision-making is based must therefore be 

augmented to take into account the bluntness of our scientific instrument. However the 

magnitudes of these augmentations are almost impossible to calculate, so that their 

assessment will necessarily be somewhat subjective. Obviously they must be reduced as 

much as possible. 

Reducing Model Augmentations to Uncertainty  

Strictly speaking the term ―model-added uncertainty‖ has no meaning. A better term may be 

―penchant for error‖, or some similar phrase that would almost certainly include the word 
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―error‖. This would reserve the word ―uncertainty‖ for unambiguous use in describing the 

―purer‖ concepts that appear in Bayes equation that are characteristics of the system itself (as 

described by our expert knowledge), and of the information contained in measurements of 

that system. The fact that our prior knowledge must be housed in a flawed receptacle, and 

that information must be extracted from historical measurements of system state through a 

flawed vehicle that compromises this information, could then be described using other 

terminology. To some extent we will keep the terms ―error‖ and ―uncertainty‖ separate 

throughout this document, and will calculate them in different ways. However it must not be 

forgotten that the two become inseparably mixed in practice when we use a numerical model 

to assess whether, and at what confidence level, the occurrence of an untoward event can be 

rejected. 

Meanwhile it must be remembered that, however it is characterized, the penchant for a model 

prediction to be wrong, even after steps have been taken to minimize its potential for 

predictive wrongness, is an outcome of two factors. The first is the inherent uncertainty of 

any prediction that it is required to make as it is described by Bayes equation. The second is 

the fact that information that is pertinent to the making of that prediction must be extracted 

from historical data using a flawed instrument, and that predictions of future system 

behaviour are made with the same flawed instrument.  

The situation is made even more complex however, when it is recognized that a model’s 

flawed status may compromise some predictions but not others. Furthermore, as Doherty and 

Welter (2010) show, some model predictions may benefit from having some of a model’s 

flaws ―calibrated out‖, while the making of other predictions may suffer from such an 

exercise. Furthermore, the ―prediction-tuning‖ process may be different for different 

predictions. It follows that a model should not be built and calibrated in isolation from the 

predictions that are required of it, and that environmental processes at the same site may need 

to be simulated in different ways to provide optimal bases for different management 

decisions. 

Model-building can, in some ways, be seen as an optimisation process. At one end of a 

continuum of approaches to environmental modelling are complex, physically-based models 

that attempt to provide ―realistic‖ simulation of all aspects of a system’s behaviour. This 

approach is seen by many as that which entails the highest level of scientific integrity because 

it purports to provide suitable receptacles for all aspects of expert knowledge. This line of 

argument leads to the conclusion that a single complex model of a study area can be 

employed to make a plethora of predictions of many different types with as high a level of 

integrity as current expert knowledge and hard data allows. Hence it can provide a universal 

basis for decision-making at a particular study site. In fact, as has been discussed, such a 

model may provide a worthy repository for expert knowledge (including the uncertainties 

associated therewith), and thus encapsulate the prior knowledge term of Bayes equation. As 

such it can provide a basis for analysis of the uncertainty of any system prediction based 

solely on expert knowledge (and lack thereof), while ignoring the likelihood term of Bayes 

equation. Presumably, such quantification of pre-calibration uncertainty would entail running 

the model countless times in order to undertake Monte-Carlo analysis based on variation of 

all of the myriad of parameters that such a complex model can employ. As such a model 

would probably have a high run time, parallelisation of this process would be essential. 

Unfortunately, a complex model may be a far-from-optimal device for extracting information 

from an historical dataset because its inevitably high run time and penchant for numerical 

instability may render its use in conjunction with high-end inversion software impossible. 

Hence the second term of Bayes equation may be higher than it needs to be. Thus the 
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capacity for prior predictive uncertainty intervals to be reduced through history-matching 

may be reduced to almost zero, in spite of the fact that a wealth of information may reside in 

historical datasets. Predictive confidence intervals will therefore be wider than they need to 

be. The risk associated with untoward events may therefore be assessed as unnecessarily 

high, this leading to unnecessarily conservative management.  

An alternative to use of a very complex model is use of a model that attempts to retain as 

much complexity as possible that is salient to the making of a prediction of interest, at the 

same time as it attempts to abandon non-salient complexity in the hope of decreasing model 

run time and increasing numerical stability. Unfortunately, such a model may not provide an 

optimal receptacle for expert knowledge. If prior uncertainty of model parameters is 

appropriately increased to accommodate their limited capacity to be informed by expert 

knowledge, this may then inflate predictive uncertainty. However if the historical dataset is 

rich in information - information that can now be extracted from it - reduction of the 

likelihood term of Bayes equation may more than compensate for increase of the prior 

information term. Caution must be exercised, of course, as some of the information that is 

extracted from the historical dataset may be misdirected to parameters that play 

compensatory roles for model defects. If a critical model prediction is sensitive to parameters 

that are misinformed in this manner, it may inherit this error. On the other hand if, as Doherty 

and Welter (2010) show, the prediction depends on the same parameter combinations as do 

model outputs used in the history-matching process, information that is resident in historical 

system measurements is probably directed to prediction-informative repositories; this will 

occur even though the parameters that constitute these repositories may not have as direct a 

relationship with the system properties after which they are named as a modeller would like, 

and hence cannot be as well informed by a modeller’s expert knowledge as he/she would 

wish. However if information that is resident in expert knowledge is small compared with 

that residing in the historical dataset, then this may not matter because more will have been 

gained in terms of reduction of predictive uncertainty through reduction of the likelihood 

term than has been lost through raising of the prior probability term. 

Of course if a model is too simple then fits between model outputs and field measurements 

will be poor and the likelihood term will be high. In addition to this, the likelihood term will 

be difficult or impossible to calculate because of the unknown stochastic characteristics of 

model-imperfection-induced misfit (often described by the term ―structural noise‖). 

Meanwhile the prior probability term will also be high because the abstract parameters 

employed by a simple model provide poor receptacles for expert knowledge. 

It is apparent from the above considerations that design of a model to underpin environmental 

decision-making requires conceptual solution of an optimisation problem that has at its heart 

the interplay between the two terms constituting the right side of Bayes equation. The 

solution to this problem can only be context-specific. It must entail extraction of maximum 

prediction-specific information from both user expertise and site data. Furthermore, it is not a 

foregone conclusion that a strategy that minimizes uncertainty for one prediction constitutes 

an optimal strategy for minimizing the uncertainty of another prediction. In particular, where 

a prediction is similar in nature and location to historical measurements of system state, a 

modelling approach that maximizes transfer of information from the measurement dataset to 

model parameters (even if some of these parameters must assume surrogate roles in the 

information-extraction process) will probably be optimal. On the other hand, where a 

prediction is of a distinctly different kind from those comprising the historical site dataset, it 

may be sensitive to aspects of the system that are ill-informed by that dataset. In this case the 

uncertainty of that prediction may have a direct dependence on the prior probability term of 

Bayes equation. A model will therefore be maximally effective in reducing the uncertainty of 
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that prediction when it provides optimal receptacles for expert knowledge, and has a strong 

physical basis. It therefore follows that the attempted use of a single model to make all 

predictions of all kinds within a study area will probably result in a failure to reduce the 

uncertainty of any one prediction to anything like its theoretical lower limit. It may also make 

the analysis of posterior predictive uncertainty very difficult, this possibly resulting in 

underestimation of that uncertainty and therefore a failure to properly assess the probability 

of occurrence of unwanted events. 

The Scientific Method  

Ultimately, those who use models to provide as sound a basis for scientific environmental 

management as possible should aspire to implement the scientific method. After all, to what 

other goal should they aspire? As will be discussed in later chapters, at its most basic level 

implementation of the scientific method comprises the proposal of hypotheses together with 

subsequent attempts to reject them based on all information at hand. In the environmental 

management context a hypothesis comprises the conjecture that something bad will happen, 

this being a management outcome that it is desirable to avoid. The information on which it 

may, or may not, be possible to reject this hypothesis is composed of both expert knowledge 

and of information that resides in historical measurements of the state of the system that are 

available for the study area.  

The history of scientific achievement is replete with stories of scientists who devised brilliant 

experiments to test their hypotheses and thereby provide hitherto unavailable insights into the 

natural world. Most of these experiments were targeted at the testing of individual hypotheses 

- not at the testing of all hypotheses. Their laboratory instruments were often ―blunt‖ and 

cumbersome compared to the phenomenon being explored, particularly where these pertained 

to the nature of matter and of the atom. However through tuning these instruments to the 

problem at hand, and through focussing data acquisition and data processing so that it was 

maximally effective in falsifying, or failing to falsify, the particular hypothesis being tested, 

great advances in human knowledge were achieved. 

In many respects, scientific inquiry into the nature of an environmental system is little 

different. Our best tools are often models. Despite the fact that their numerical inadequacies 

can make them blunt instruments, and despite the fact that data availability at a particular site 

may be scarce, it is nevertheless often possible to undertake incisive, prediction-specific 

inquiries of that data using a model - inquiries that may yield conclusions on which sound 

management can be based. This has a far greater chance of happening, however, if the design 

of the modelling instrument, and the manner in which it is used to extract information from 

available data, is optimized in relation to a specific management problem, and is thereby 

deployed with as much skill as the scientist can bring to bear. 

Summary 

The discussion of this chapter can be summarized as follows. 

 Environmental decision-making, as does all decision-making, rests on an assessment 

of the risk associated with the happening of unwanted and costly events. It is the task 

of modelling to assess this risk. 

 Informed model usage constitutes an implementation of Bayes equation. The end 

product of informed model usage can only be the definition of a posterior confidence 

interval associated with a prediction of interest. For maximum relevance to the 

decision-making process, this must be expressed as a level of confidence that an 

unwanted event will not occur. 
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 Complex models provide optimal receptacles for expert knowledge. However as 

scientific instruments they may be far from optimal as they may provide impediments 

to the flow of information from environmental datasets. Because of this, post-

calibration predictive uncertainty may at best be higher than it needs to be, and at 

worst unquantifiable. 

 Simple models provide poor receptacles for expert knowledge. Furthermore history-

matching based on these models may require that some of their parameters assume 

compensatory roles for model inadequacies. If a prediction resembles observations 

used in the history-matching process, reductions in predictive uncertainty may 

nevertheless be achieved through embracing these compensatory roles. If it does not, 

the uncertainty of a prediction may be increased through use of a simple model, at the 

same time as it is rendered virtually unquantifiable. 

 Model construction and deployment may therefore need to be prediction-specific. The 

idea that a single system simulator can provide the basis for all management decisions 

at a particular site or study area has no foundation in either common sense or theory. 
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3. Models, Simulation and Uncertainty 

Expert Knowledge  

The role of models in the decision-making process was discussed in the previous chapter. 

There it was pointed out that physically-based models that attempt to simulate as many 

details as possible of the behaviour of natural systems have advantages and disadvantages. 

Their main advantage is that they comprise a suitable repository for expert knowledge. 

However their main disadvantage is that detailed simulation of natural processes, and 

representation within a model of the heterogeneous nature of system properties on which 

natural processes depend, is a computationally demanding exercise. Use of such a model 

therefore makes it very difficult for a modeller to extract information from historical datasets, 

thereby devaluing the cost of such data. Even when used outside of the calibration context, 

design rigidities may be such as to make it difficult for a modeller to encapsulate his/her 

expert knowledge in a complex model to the extent that he/she would like. 

At this stage it is worth pausing for a moment to ponder the question of what expert 

knowledge actually is. Expert knowledge is in fact a probabilistic form of knowledge. A 

hydrogeologist cannot say what the hydraulic properties of the subsurface are at every point 

within a (necessarily three-dimensional) groundwater flow domain. Nor can he/she know the 

disposition of rock boundaries throughout that domain, nor the variation in weathering 

depths, nor the changes in lithology along the strike of any sedimentary or structural feature, 

nor the paths of ancient meandering streams, nor the variations in fracture density throughout 

a model domain. Similarly, a surface water hydrologist cannot know infiltration properties 

pertaining to all soil types at all locations under all land use conditions throughout a study 

area at all times of the year. Nor can he/she know with certainty how land uses have changed 

over what may be a lengthy calibration period. 

Conceptually, expert knowledge must be expressed stochastically (i.e. probabilistically), as it 

is rarely definitive. As has already been stated, probability distributions that arise from expert 

knowledge are in fact the prior probabilities that feature in Bayes equation. In theory, the use 

of a complex model allows us to expose this knowledge for what it is - a range of possibilities 

that hopefully encompass the true state of the system, whatever that may be. 

What a Model can Provide  

Given that expert knowledge is probabilistic in nature, it immediately follows that so too are 

predictions that are made by a model whose parameterization is based on expert knowledge 

alone. These predictions must therefore be expressed as probability distributions. The better 

is expert knowledge, the narrower will these probability distributions be. 

Bayes equation shows that predictions made by models that have been ―calibrated‖ must also 

be probabilistic in nature. Actually, the term ―calibration‖ has no place in Bayes equation. To 

the extent that it has any meaning in the environmental modelling context at all, that meaning 

will be examined in the next chapter. Bayes equation shows that what history-matching can 

achieve is a narrowing of the uncertainty associated with some model parameters, for their 

propensity to vary is no longer limited by expert knowledge alone. Their propensity for 

variability is now also constrained by the necessity for the model to reproduce historical 

system behaviour as measured at certain points in space and time. Obviously, the less data 

that is available, and the greater the measurement noise that is associated with that data, the 

fewer will be the parameters that are constrained by this data, and the looser will be the 
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constraints on them that this data exerts. Greater amounts of data can lead to tighter 

constraints on some parameters - but not necessarily on all parameters - and not necessarily 

on the parameters to which a prediction of interest is most sensitive. Hence (as the synthetic 

groundwater model that forms one of the practical exercises associated with this document 

demonstrates), the process of model ―calibration‖ may, or may not, lead to an enhanced 

ability on the part of the model to make predictions which are of most interest to us. This will 

depend entirely on the nature of the predictions we seek, and on the information content of 

existing site data.  

These considerations lead us to the point where we can define what a modelling exercise can 

aspire to achieve. 

 For a prediction of interest, a range of possible values which the prediction may take, 

all of which are compatible with all that is known of a system; collectively these 

define the uncertainty range of the prediction. 

 A guarantee that the correct prediction lies within the uncertainty limits so defined (at 

a specified level of confidence). 

 A modelling strategy which ensures that the range of predictive uncertainty calculated 

by a model is no wider than it needs to be, given the prevailing level of expert 

knowledge and the information content of site data. Thus the probability of 

occurrence of an untoward event will not be over-estimated. 

 An uncertainty assessment strategy which ensures that calculated predictive 

uncertainty margins are no narrower than they should be through failure to account 

for all contributors to possible model predictive error, some of these arising from data 

inadequacy and some of them arising from model structural defects. Thus the risk 

associated with the occurrence of an untoward event will not be under-estimated. 

These then define the aspirations of any modelling exercise. Unfortunately, for reasons 

already discussed, the meeting of these goals may not be straightforward. Furthermore 

compromise will always be required as attempts to reduce one aspect of uncertainty may lead 

to inflation of another aspect of uncertainty by an unknown amount. 

What an Uncalibrated Model can Provide 

Here, and in later sections of this document, the term ―uncalibrated model‖ will refer to a 

model whose parameters are not constrained by history-matching. Hence it is a model that 

can represent only the prior probability term of Bayes equation. As such it is a model that is 

capable of defining the range of predictive probabilities that exist where no historical 

measurements of system state are available to constrain the uncertainty that arises from 

limitations in expert knowledge. 

Probabilistic analysis is easy for an uncalibrated model. Conceptually it is most readily 

implemented using a Monte Carlo methodology. Using this methodology random parameter 

sets are generated on the basis of a prior parameter probability distribution which expresses 

expert knowledge (at the same time as it expresses expert ignorance due to its probabilistic 

nature). The model is run on the basis of each of these parameter sets in order to calculate the 

value of a prediction of interest. By collecting prediction values computed on the basis of all 

such parameter sets, an empirical probability density function can be built for the prediction. 

This probability density function can then be used to define the risk associated with the 

occurrence of prediction values that are considered to be unwelcome. 
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In practice, even the uncalibrated model can only approximately attain the goals to which 

modelling must aspire (assuming that justification for its uncalibrated status lies in the 

absence of any data to calibrate it against). Reasons for this include the following. 

 Even the most complex model can only be an abstract reflection of reality, for not 

only are the parameters associated with environmental processes uncertain, but the 

equations that describe these processes are also often uncertain. 

 Many environmental processes, and the system properties on which they rely, are 

difficult to characterise where they must be averaged over a model element or cell. 

 Where a model domain is large (for example the domain of a regional ground or 

surface water model), the level of parameterization complexity that is required to 

characterize the degree of system property complexity that exists in the real world is 

far too large to handle in either probabilistic or deterministic analysis. 

 Many important aspects of environmental uncertainty simply cannot be 

accommodated in uncertainty analysis based on numerical models. As has already 

been stated, this includes uncertainties in the disposition of geological layering, 

bedding and faulting. 

 Even where it is numerically feasible to run a model many times based on different 

realisations of system properties, a suitable stochastic descriptor for variability of 

those properties may not be available. Instead simplistic (and often over-constraining) 

assumptions such as that of multi-normality and stationarity are used as a basis for 

random parameter set generation. 

 It is simply not possible for numerical complexity to mimic the complexity of the real 

world. The numerical grids employed by groundwater models must be finite if these 

models are to have finite run times. Regional rainfall-runoff models must represent 

complex processes in lumped form despite the intricacies of surface water movement 

over the hundreds of different land use and soil types that prevail in large watersheds. 

It is thus apparent that even the most ―physically-based‖ uncalibrated model is compromised,  

as its construction and deployment requires medium to high levels of abstraction. Abstraction 

obviously comes at a cost. But against what must this cost be debited? Obviously it must be 

debited against what a model can promise. The latter is discussed in the previous subsection 

of this document. The cost is therefore paid through a decrease in quality of the predictive 

probability distributions that are the only scientifically based outcomes of environmental 

modelling.  

How can model imperfections detract from model-calculated predictive probability 

distributions? There is no answer to this question that is universally applicable. However the 

following considerations are salient. 

 In some cases they will create bias, thereby shifting a predictive probability 

distribution to one side. Certain unwanted environmental occurrences that, using a 

perfect model, may be assessed as having low but finite predictive likelihood, may be 

considered as impossible when their likelihood is assessed using a flawed model. On 

the other hand, at the other end of the shifted predictive probability distribution, 

events whose likelihood is in fact very low, may be considered to possess moderate to 

high likelihood of occurrence. 

 Simplification and abstraction involves removal of detail. For predictions that are 

sensitive to detail, certain mechanisms that lead to low, but nevertheless finite, 
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predictive possibilities will become unavailable. Hence there is a risk that, for 

predictions of these types, model-calculated predictive probability distributions will 

be narrower than those which in fact prevail. 

As both of the above phenomena may lead to under-estimation of risk certain steps can be 

taken to ameliorate a model’s performance as a risk assessment tool. These steps are based on 

the assumption that it is better to over-estimate risk than to under-estimate it. They also 

presume that concluding that an unwanted event cannot occur when in fact it is entirely 

possible that it can occur must be avoided at all costs. These steps include the following. 

 To the extent that predictive bias is introduced through the model construction 

process, the details of model construction should be such as to bias predictions toward 

pessimism rather than optimism. 

 Some model parameters may need to be endowed with wider prior probability 

distributions than they would possess based on expert knowledge alone. This applies 

particularly to parameters whose more extreme values may provide surrogates for 

missing or defective simulated processes. 

 A random ―predictive noise‖ term may be added to model outcomes of interest in 

order to endow these noise-enhanced predictions with a wider range of variability 

than they would otherwise possess. 

 Predictive probability distributions computed on the basis of model outcomes may be 

―stretched‖ in order to provide a suitable ―engineering safety margin‖. 

All of the above strategies are necessarily heuristic and subjective. However subjectivity 

must be placed in its proper context. A great deal of expert knowledge is subjective, 

including definition of prior parameter probability distributions. The ―art‖ of prediction-

specific model abstraction and/or of definition of an appropriate engineering safety margin to 

employ when basing important decisions on model-computed predictive probability 

distributions is no less a form of expert knowledge, and no greater a form of expert 

judgement, than that which is required in all other phases of the model construction process. 

Linear Analysis  

In this subsection some concepts underpinning linear analysis, as it applies to an uncalibrated 

model, are introduced. In later sections this type of analysis will be expanded to 

accommodate the imposition of calibration constraints. As discussed in Chapter 1, 

mathematical presentations provided herein are brief. It is not necessary that the equations 

presented below be understood - only that the concepts behind them be understood. 

Let the vector k represent all parameters used by a model. Notionally, elements of k can 

include any imperfectly known value that is used by a model, irrespective of whether the 

quantity to which this value is assigned is a system property, a boundary condition, or an 

aspect of the model’s geometry.  

Let the covariance matrix of k be denoted as C(k). If the vector k has m elements, then C(k) 

is an m × m matrix. As a covariance matrix, C(k) provides a summary of the stochasticity of 

k. Hence it expresses both the pre-calibration knowledge, and the pre-calibration ignorance of 

the modeller. The diagonal terms of C(k) are perhaps the best expression of the modeller’s 

ignorance. The i’th diagonal term expresses the variance of the i’th element of k. Variance is 

the square of standard deviation. Hence the diagonal terms of C(k) denote a modeller’s 

inability to say exactly what the value of a particular system property is at a certain point 

within the model domain. However the fact that these diagonal elements are of finite 
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magnitude portrays a certain state of knowledge (or conversely, they portray boundaries to 

the modeller’s ignorance). 

Off-diagonal terms of C(k) denote statistical interrelatedness between parameters of the same 

type, or even of different types. Zero-valued off-diagonal terms portray no statistical 

relationship at all. Thus if the element at row i and column j of C(k) is zero, then ki and kj 

(these being the i’th and j’th elements of k) are statistically independent. However if this term 

is non-zero, it signifies that if one of these parameters is higher than average, the other will 

tend to be either higher than average (if Ci,j(k) is positive) or lower than average (if Ci,j(k) is 

negative). This implies expert knowledge. Examples include the following. 

 Subsurface hydraulic properties do not show completely random spatial variability. In 

most cases there is a tendency for some degree of spatial continuity in hydraulic 

properties to exist. Furthermore the length over which such statistical interrelatedness 

prevails may be longer in one direction than in others, this implying anisotropy of 

hydraulic properties.  

 A soil with a high sand content is likely to allow greater infiltration of water than a 

soil with a high clay content. Its capacity to store water may also be greater, at the 

same time as its propensity to lose water through drainage may also be enhanced. All 

of these hydraulic characteristics of a particular soil may be represented by different 

model parameters; these parameters obviously possess a high degree of statistical 

correlation. 

Let s (a scalar) denote a prediction. Let the n×1 vector y denote the sensitivity of this 

prediction to all of the elements of k. In a linear system, the following relationship then 

applies. 

 s - s0 = y
t
(k - k0)        (3.1) 

where the superscript ―t‖ designates the matrix transpose operation, and s0 and k0 are 

reference values. For simplicity (and without loss of generality) these reference values will be 

omitted from future equations (implying that s  and k are defined as perturbations from these 

reference values), so that (3.1) becomes: 

 s = y
t
k          (3.2) 

We now introduce a basic matrix identity. Suppose that: 

 u = Av          (3.3) 

where u and v are random vectors (i.e. vectors whose elements are random numbers) and A is 

a matrix. As v is a random vector it possesses a covariance matrix. Let C(v) denote the 

covariance matrix of v. It is easily shown (see, for example, Koch, 1997 ) that: 

 C(u) = AC(v)A
t
        (3.4) 

where C(u) is the covariance matrix of u. If this is applied to equation (3.2), while bearing in 

mind that the covariance matrix of a scalar (which can be considered to be a 1 × 1 matrix) is 

the variance (square of standard deviation) of that scalar, the following equation results. 

 ζ
2

s = y
t
C(k)y         (3.5) 

where ζ
2

s is the variance of the prediction s. Thus, for a linear model, a statistical 

characterization of model parameters leads immediately to statistical characterization of 

predictive uncertainty. 
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Exercises  

General 

As has already been stated, it is not the intention of this document to provide a 

comprehensive tutorial on PEST usage, and/or of usage of its utility support software. It is its 

intention, however, to provide some examples of the use of PEST and its utility support 

software as it pertains to model predictive uncertainty analysis.  

All files referenced in the exercises provided in this and other chapters of this document are 

provided. Hence a user can reproduce the results that are reported herein him/herself. In some 

cases reference is made to other PEST-supported methodologies and software that are used 

for input dataset construction and for undertaking more advanced analyses. Comprehensive 

coverage of all of these is provided in PEST documentation. In addition to this, a suite of 

comprehensive tutorial exercises supplied to PEST course attendees provides many more 

examples of PEST usage than those discussed herein. 

Surface Water Model 

PEST Input Dataset 

A PEST control file named precal.pst is provided. An inspection of this file, and files cited 

therein, reveals the following. 

 The NOPTMAX variable in the ―control data‖ section of the precal.pst PEST control 

file is set to 0. Therefore PEST is asked to run the model only once. (NOPTMAX is 

the first variable on the ninth line of a PEST control file.) 

 Parameters cited in Table 1.1 are listed in the ―parameter data‖ section of precal.pst. 

So are three others. However these extra variables are fixed; meanwhile those cited in 

Table 1.1 are variable and are declared as log-transformed. 

 The precal.pst PEST control file features the transformed HSPF parameters 

AGWRCTRANS and IRCTRANS. Their non-transformed counterparts are calculated 

by the PEST PAR2PAR utility that is run as part of the  model. (PAR2PAR stands for 

―parameter to parameter transformation‖.) 

 Suitable bounds are supplied for all parameters; these bounds account for the 

transformed state of the AGWRCTRANS and IRCTRANS parameters. 

 Only one observation appears in the ―observation data‖ section of precal.pst. This is, 

in fact, not an observation at all. It is the value of maximum model-predicted flow 

over the period 19
th

 August 1986 to 23
rd

 August 1986 (this being outside of the model 

calibration period that is discussed in the next chapter). It is given a weight of 0.0 and 

a (completely arbitrary) observed value of 0.0. This is referred to as ―the prediction‖ 

below, and in subsequent chapters of this document where discussion of this example 

continues. 

 The model run by PEST is actually a batch file named model_predict.bat. An 

inspection of this file reveals that it does the following. 

o First it deletes the PAR2PAR output file example.sup which is actually the 

HSPF supplementary input file. This is done as a precautionary measure to 

ensure that if PAR2PAR fails to run, then HSPF will not read an input file 

written during a previous PAR2PAR run. 
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o Next it runs PAR2PAR. 

o It then runs the HSPF simulator. 

o Finally it runs a program named TSPROC. TSPROC stands for ―time series 

processor‖. This is the flagship of the PEST Surface Water Utility suite. It was 

built specifically to facilitate PEST usage in conjunction with models, such as 

surface water models and land use models, that produce lengthy time series 

and whose calibration requires that these time series be compared with 

observed counterparts. 

 An inspection of the TSPROC input file tsproc_predict.dat reveals that TSPROC is 

asked to obtain observed and modelled time series from the WDM files observ.wdm 

and output.wdm respectively. It then evaluates the maximum observed flow for both 

of these over the period spanning 19
th

 to 23
rd

 August, 1986. 

 The instruction file tsproc_predict.ins reads the maximum flow over the above time 

period from the TSPROC output file tsproc_predict.out. Note that, upon completion 

of PEST execution, this maximum flow value is recorded in both the PEST run record 

file precal.rec and the PEST residuals file precal.res. 

Run PEST using the command: 

 pest precal 

Then inspect precal.res. It should be apparent that the value of the prediction calculated for 

the set of parameter values provided in the ―parameter data‖ section of the PEST control file 

precal.pst is 196.954 m
3
/sec. 

Generating Random Parameter Values 

―Initial values‖ for parameters provided in the fourth column of the ―parameter data‖ section 

of file precal.pst are considered to be reasonable pre-calibration values for these parameters. 

They were chosen on the basis of expert knowledge of conditions in the simulated watershed. 

As such, they are values of minimum error variance, a concept that will be discussed in 

greater detail in the next chapter. For the moment they can be considered to be those that 

approach highest probability when assessed in terms of the prior parameter probability 

distribution, the same distribution that is featured on the right side of Bayes equation. It is not 

expected that these will lead to correct predictions of system behaviour, for we know that 

expert knowledge is accompanied by a high degree of expert ignorance. As an outcome of 

this ignorance we recognise that the ―true‖ watershed parameter values may be significantly 

different from those which appear in the fourth column of the ―parameter data‖ section of file 

precal.pst. In fact, we recognise that they may each vary between lower and upper bounds 

supplied in the 5th and 6th columns of this section. Let us assume that expert knowledge 

informs us that pre-calibration parameter probabilities diminish as these bounds are 

approached, and that these probabilities peak at the supplied initial parameter values. Thus 

we decree that the pre-calibration probability distribution is more likely to resemble a multi-

normal distribution (centred on initial parameter values), rather than a uniform distribution. 

File param.unc is a ―parameter uncertainty file‖.  As is explained in PEST documentation, 

this file can take many forms. In the present case it simply provides the standard deviation of 

each parameter. Actually, it provides the standard deviation of the log (to base 10) of each 

parameter, this being necessary because all non-fixed (and hence variable) parameters are 

declared as log-transformed in the PEST control file precal.pst. Standard deviations recorded 

in param.unc were calculated as the difference between the logs of respective parameter 
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upper and lower bounds divided by 4.0. This rough calculation is based on the premise that if 

the parameters are log-normally distributed, and if the intervals between respective parameter 

bounds correspond roughly to 95% pre-calibration parameter confidence intervals, then the 

differences between these bounds correspond to approximately 4 parameter standard 

deviations. By providing only standard deviations in file param.unc we decree that pre-

calibration inter-parameter statistical correlation is zero. 

We will now generate 100 sets of random parameter values. Run the RANDPAR utility by 

typing its name at the screen prompt. Respond to its prompts in the manner shown below. 

 Enter name of existing PEST control file: precal.pst 

 - 10 parameters read from file precal.pst. 

 - 7 of these are adjustable. 

 

 Use (log)normal or (log)uniform distrib for param generation? [n/u]: n 

 Compute means as existing param values or range midpoints? [e/m]: e 

 Respect parameter ranges? [y/n]: y 

 

 Enter name of parameter uncertainty file: param.unc 

 - parameter uncertainty file param.unc read ok. 

 

 Enter name of parameter ordering file (<Enter> if none): <Enter> 

 

 Enter filename base for parameter value files: random 

 How many of these files do you wish to generate? 100 

 

 Enter integer random number seed (<Enter> if default): <Enter> 

RANDPAR writes random parameter sets to files randomN.par where the integers 1 to 100 

are substituted for N. These are recorded in ―parameter value file‖ format. Use of this format 

allows easy manipulation of these parameter sets by PEST utilities. Note that parameters 

whose values are declared as fixed in the PEST control file are not randomized in these 

parameter value files; instead their values are maintained at those supplied in the PEST 

control file. 

Examining Predictive Uncertainty 

Our next task is to run the model many times using a different one of these random parameter 

sets on each occasion. This can be accomplished using the batch file precal_runs.bat. This 

file is reproduced below. 

for /L %%i in (1,1,100) do ( 

del temp.pst 

del temp.res 

parrep random%%i.par precal.pst temp.pst 

pest temp 

copy temp.res temp.res.%%i) 

Figure 3.1 The batch file precal_runs.bat stored in the sw folder. 

Run this batch file by typing its name at the screen prompt. It will run PEST many times as 

part of a processing loop in which the same set of commands is issued 100 times. This 

command sequence is comprised of the following. 

 First, to guard against reading old files when expected new ones are not re-written, 

files produced by programs that are run during the processing loop are deleted. 

 The PARREP utility (―PARREP‖ stands for ―parameter replacement‖) is used to build 

a PEST control file named temp.pst that is identical to precal.pst except for the fact 
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that initial parameter values in this new file are the same as those recorded in the 

parameter value file randomN.par where N is the current loop index. 

 PEST is run. As NOPTMAX is set to 0 in precal.pst it is also set to 0 in temp.pst. 

Hence PEST runs the model once and then ceases execution. 

 The residuals file temp.res written by PEST when it was run on the basis of the 

temp.pst PEST control file is copied to a file named temp.res.N where N is the same 

index as that assigned to the parameter value file on which basis the predicted 

maximum flow value contained in the residuals file was calculated. 

Once the batch process depicted in Figure 3.1 is complete, we have at our disposal 100 

predictions made on the basis of 100 parameter sets. However these predictions are 

inconveniently stored in 100 separate files. They can be collected into a single file using the 

RDMULRES utility. (RDMULRES stands for ―read multiple results‖.) But first an 

RDMULRES input file must be prepared which tells RDMULRES what files to read, and 

what numbers to read from those files. Such a file is rdmulres_precal.in. It is reproduced in 

Figure 3.2. 

* observations 

qmax_sim 

* instruction file 

resfile.ins 

* model output file 

temp.res.* 

* integer list 

1 - 100 

* rdmulres output file 

rdmulres_precal.out 

Figure 3.2 The RDMULRES input file rdmulres_precal.in stored in the sw folder. 

rdmulres_precal.in instructs RDMULRES to read the sequence of files temp.res.1 to 

temp.res.100. It tells it to read just one number from each of these files; the instructions to 

read this number are provided in the instruction file resfile.ins. The quantity which is read is 

assigned the name qmax_sim. The 100 instances of qmax_sim are recorded in file 

rdmulres_precal.out. To generate rdmulres_precal.out, run RDMULRES using the 

command: 

 rdmulres rdmulres_precal.in 

As an inspection will readily reveal, 100 values of the qmax_sim prediction generated on the 

basis of our 100 random parameter sets are now listed one after the other in file 

rdmulres_precal.out. If these are imported into a scientific plotting package, a plot such as 

that depicted in Figure 3.3 can be produced. 
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Figure 3.3 Histogram of model-predicted maximum flow calculated using 100 random 

parameter sets. 

Linear Analysis 

The PEST control file precal1.pst is identical to precal.pst except for the fact that 

NOPTMAX is set to -2 rather than to 0 in this file. Hence when PEST is run it will calculate 

the Jacobian matrix (i.e. the sensitivity matrix) for the current case, and then cease execution. 

As 7 adjustable parameters are cited in precal1.pst it will run the model 8 times - once on the 

basis of initial parameters and once with each parameter incrementally varied. As there is 

only one model output that PEST actually reads (this being the maximum flow over the 

period 19
th

 to 23
rd

 August 1986), the Jacobian matrix will have only one row. This row will 

be comprised of the sensitivities of this single model output to all 7 adjustable parameters. As 

such, it will comprise the y vector of equation 3.1.  

Run PEST using the command: 

 pest precal1 

When PEST has finished execution, a file named precal1.jco will be present in the model 

working directory. This is a binary file, and hence is not fit for human consumption. The 

PEST suite offers a variety of mechanisms for conversion of this file to ASCII format; these 

include the JACWRIT and JCO2MAT utilities. For the moment however, the JROW2VEC 

utility will be employed. (JROW2VEC stands for ―Jacobian row to vector‖.) This utility 

extracts a single row from the Jacobian matrix and writes it as a vector in PEST matrix file 

format. Run JROW2VEC using the command: 

 jrow2vec precal1.jco qmax_sim qmax_sim_precal.vec 

to record the extracted vector in file qmax_sim_precal.vec. (Note that if you forget the 

command-line protocol required to run any PEST utility, simply type its name at the screen 

prompt and the utility will inform you how to run it.) 
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Now run PREDUNC1 responding to its prompts as follows. (PREDUNC1 stands for 

―predictive uncertainty #1‖.) PREDUNC1 was actually written to assess post-calibration 

predictive uncertainty. However in the process of doing this it also assesses pre-calibration 

predictive uncertainty. Furthermore, when all observation weights are zero in a PEST control 

file, pre- and post-calibration predictive uncertainty are the same.  

PREDUNC1 screen prompts and responses are as follows. 

 Enter name of PEST control file: precal1.pst 

 Enter observation reference variance: 1 

 

 Enter name of parameter uncertainty file: param.unc 

 Enter name of predictive sensitivity matrix file: qmax_sim_precal.vec 

 

 Use which version of linear predictive uncertainty equation:- 

     if version optimized for small number of parameters   - enter 1 

     if version optimized for small number of observations - enter 2 

 Enter your choice: 1 

 

 - reading PEST control file precal1.pst.... 

 - file precal1.pst read ok. 

 

 - reading Jacobian matrix file precal1.jco.... 

 - file precal1.jco read ok. 

 

 - reading predictive sensitivity matrix file qmax_sim_precal.vec.... 

 - file qmax_sim_precal.vec read ok. 

 

 - reading parameter uncertainty file param.unc.... 

 - parameter uncertainty file param.unc read ok. 

 

 - computing pre-calibration predictive uncertainty.... 

 - forming XtC-1(e)X matrix.... 

 - inverting C(p) matrix.... 

 - inverting [XtC-1(e)X + C-1(p)] matrix.... 

 - calculating post-calibration predictive uncertainty.... 

 

 

         ************************************************************* 

         *                                                           * 

         *                                                           * 

         *    Pre-cal predictive uncertainty  =   149.6789           * 

         *    Post-cal predictive uncertainty =   149.6789           * 

         *                                                           * 

         *                                                           * 

         ************************************************************* 

The ―predictive uncertainty‖ listed by PREDUNC1 is the standard deviation of predictive 

uncertainty. This actually compares very well with that computed empirically on the basis of 

the figures provided in the second column of rdmulres_precal.out, this being 152.33. Hence, 

in this case at least, the outcomes of linear and nonlinear analysis are very similar. However 

linear analysis requires far fewer model runs. 

Groundwater Model  

Cell-By-Cell Variability 

To examine pre-calibration predictive uncertainty for our groundwater model we could 

follow an identical path to that outlined above for the surface water model. That is, we could 
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provide a statistical descriptor of pre-calibration uncertainty for the pilot point parameters 

used by that model, generate many different realisations for those parameters on the basis of 

this probability distribution, and then examine the variability of results using RDMULRES. 

However in this case we will introduce cell-by-cell variability to the model domain instead of 

parameter-by-parameter variability, this providing a better representation of the type of 

aquifer variability that exists in the real world. This will be done using the FIELDGEN 

utility. (FIELDGEN stands for ―stochastic field generator‖.) This utility program is a member 

of the PEST Groundwater Data Utilities suite; its inner workings are based on software 

supplied with the GSLIB geostatistical suite (Deutsch and Journel; 1998). 

Before FIELDGEN can be run we need a ―structure file‖. This provides FIELDGEN with a 

statistical descriptor of heterogeneity within the model domain. This is supplied as a 

variogram (from which a covariance matrix can be easily derived as is demonstrated later in 

this document). File struct.dat is such a file. The format for this type of file is described in 

documentation for the PEST Groundwater Data Utility suite. File struct.dat informs us that, 

in the present instance, the entire model domain is characterized by a single geostatistical 

structure comprised of just one variogram. This is an isotropic exponential variogram having 

a range of 200m; this variogram describes variability of the log of hydraulic conductivity 

rather than of hydraulic conductivity itself. This same variogram (in conjunction with 

FIELDGEN) was used to generate the ―reality field‖ of Figure 1.2. 

Run FIELDGEN, responding to its prompts as follows. 

 Enter name of grid specification file: rect_model.spc 

  - grid specifications read from file model.spc 

 Enter name of conditioning pilot points file (<Enter> if none): <Enter> 

 

 Enter name of zonal integer array file: all1.inf 

  - integer array read from file all1.inf 

 Enter name of structure file: struct.dat 

 

 The following zones have been detected in the integer array:- 

 

    For zone characterised by integer value of 1:- 

    Enter structure name (blank if no field generation for this zone): structure1 

    Use simple or ordinary kriging [s/o] in field generation: s 

    Enter maximum number of previously simulated nodes to use: 20 

 

 How many realizations do you wish to generate? 100 

 Enter filename base for real array files: randcond 

 Write formatted or unformatted files? [f/u]: f 

 

 Mean field values within each zone are now requested. 

 

    Enter mean field value in zone with integer value 1: 1.0 

 

 Enter integer seed for random number generator [324853]: <Enter> 

The following points will help to explain what you have just done. For further details see 

documentation for the PEST Groundwater Data Utilities suite. 

 A ―grid specification file‖ is a small ASCII file that provides dimensions and 

geographical specifications for a MODFLOW grid. See documentation for the 

Groundwater Data Utilities suite for details. 

 Model-compatible integer arrays can be used to define zonation within a model 

domain. FIELDGEN allows different variograms to be employed within different 

zones. In the present case the model domain contains only one zone, this being 

associated with an integer index of 1. Thus all elements of the integer array contained 

in file all1.inf are 1. 
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 The outcomes of FIELDGEN execution are 100 model-compatible real arrays, these 

being stored in files named rancondN.ref where N ranges from 1 to 100. They all look 

a little like the heterogeneous field pictured in Figure 1.2 Any one of these could be 

imported into a MODFLOW graphical user-interface for user-inspection. 

Alternatively, with the help of programs such as LOGARRAY, REAL2MIF and 

REAL2SRF from the Groundwater Data Utilities suite, any one of them could be 

imported into a GIS or mapping package. 

Exploring Predictive Uncertainty 

An inspection of the MODFLOW layer property flow package input file lpf.dat reveals that 

MODFLOW reads hydraulic conductivity from a file named hk.ref. Hence if we wish to run 

MODFLOW many different times using all of the different random parameter fields that we 

have generated, each of them must, in turn, be substituted for hk.ref. This is accomplished 

using the batch file precal_runs.bat stored in the gw folder. It is reproduced below. 

for /L %%i in (1,1,100) do ( 

del path.dat 

del time.dat 

copy randcond%%i.ref hk.ref 

mf2k < mf2k.in 

finaltime < finaltime.in 

copy time.dat time%%i.dat) 

Figure 3.4 The batch file precal_runs.bat stored in the gw folder. 

An inspection of file precal_runs.bat reveals the following. 

 As a precaution against model failure, files written by one model component and read 

by another model component are deleted at the beginning of each pass of the 

processing loop provided in this file. 

 Keyboard response to the MF2K and FINALTIME programs are supplied through 

files mf2k.in and finaltime.in; MF2K and FINALTIME are directed to look to these 

files for keyboard input (rather than to the keyboard) using the ―<‖ symbol. 

 When the entire batch process has reached completion, predicted travel times are 

stored in files time1.dat to time100.dat. 

Initiate this batch process by typing: 

 precal_runs.bat 

at the screen prompt. Once the batch process is complete particle travel times computed using 

the 100 different random hydraulic conductivity fields can be accumulated using the 

RDMULRES utility. An appropriate RDMULRES input file is depicted in Figure 3.5. 

* observations 

part_time 

* instruction file 

timefile.ins 

* model output file 

time*.dat 

* integer list 

1 - 100 

* rdmulres output file 

rdmulres_precal.out 

Figure 3.5 The RDMULRES input file rdmulres_precal.in stored in the gw folder. 
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Run RDMULRES using the command: 

 rdmulres rdmulres_precal.in 

to collect results into a single file named rdmulres_precal.out. The frequency distribution of 

travel times is shown in Figure 3.6. 
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Figure 3.6 Histogram of model-predicted particle travel times based on 100 random 

parameter fields. 

The skewness of the distribution depicted in Figure 3.6 is an outcome of the nonlinearity of 

the model. This, in turn, is an outcome of the dependence of the prediction of interest on 

hydraulic property heterogeneity as it exists at a fine scale. 

With slightly (but not much) more trouble, stochastic variability of other aquifer properties 

such as porosity, and of other model characteristics such as the strength of inflow into the 

northern model boundary, could be included in our analysis in a similar fashion. 
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4. Getting Information out of Data 

History-matching  

The process of adjusting model parameters until a good fit between model outputs and field 

measurements is obtained is often referred to as ―calibration‖. A model whose parameters 

have been adjusted in this fashion is often referred to as a ―calibrated model‖. There is a 

certain sense of finality in that term, some of this inherited from the fact that the word 

―calibration‖ is commonly associated with finely-tuned laboratory instruments. 

Unfortunately, however, when applied to environmental modelling, the term can be 

misleading, both in its direct and implied sense.  

History-matching is a vital part of preparing a model for use in decision support. However the 

outcomes of the history-matching process must be viewed in a way that is in harmony with:  

 a mathematical description of what history-matching can actually achieve, and  

 the practicalities of what history-matching can achieve when applied to a model 

which is a defective simulator of real-world environmental processes. 

History-matching is normally implemented through minimizing a so-called ―objective 

function‖. This can be defined in many ways. A common way is as the sum of weighted 

squared differences between model outputs and field measurements. Ideally greater weights 

should be given to measurements which are thought to be less contaminated by errors that are 

incurred in the actual making of those measurements (often referred to as ―noise). However 

in practice, as will be discussed below, weighting strategies may need to be more flexible 

than this in order to accommodate the fact that model-to-measurement misfit is usually 

dominated by so-called structural noise rather than measurement noise. 

Bayes Equation 

In the Bayesian context the fit between model outputs and historical field observations 

determines the magnitude of the likelihood term, this being the first term on the right of 

equation 2.3. Parameters which give rise to a better fit result in a greater likelihood function. 

In Bayes equation ―better‖ is defined in a statistical sense, for model-to-measurement misfit 

is assumed to be an outcome of the fact that measurements of system state are accompanied 

by random error. Betterment of fit, and hence increase in parameter likelihood, is calculated 

using the probability distribution that is associated with this error. 

Two immediate outcomes of this are as follows. 

 Bayes equation makes no inference of parameter uniqueness. Where parameters are 

many and data is scarce, it is not hard to imagine that many different combinations of 

parameters will provide the same or similar level of fit. The ranking, in terms of 

posterior probability, of different parameters sets which yield the same likelihood 

function must then take place on the basis of the prior probability of those parameter 

sets. 

 The statistics of measurement noise are assumed to be known - or ―almost known‖. In 

practice, some aspects of the statistical distribution of measurement noise (mainly its 

overall magnitude) can be estimated through the history-matching process, while 

others (mainly variables that govern its shape) are assumed to be known because their 

estimation is difficult or impossible. In doing this it must be realised, however, that 
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assumptions regarding the statistical properties of measurement noise can have a large 

influence on what parameter sets are construed to be ―better‖ than others, and hence 

on the nature of the inferred posterior parameter probability distribution. 

From the posterior parameter probability distribution inferred through Bayesian analysis the 

posterior distribution of any model prediction can be calculated. Parameters of which field 

measurements are informative may have a significantly narrower posterior distribution than 

prior distribution. Likewise, predictions that are sensitive to parameters (and parameter 

combinations) of which the measurement dataset is informative may also have a significantly 

narrower posterior probability distribution than prior probability distribution. This is 

illustrated in Figure 4.1. 

prior expected 
value

posterior expected 
value

history matching

 

Figure 4.1 Schematic representation of Bayesian analysis. 

Figure 4.1 attempts to illustrate a fact that has been emphasized in previous sections of this 

document. When using an environmental model to inquire into future system behaviour, all 

that can be expected is a probability distribution at best, or a range of predictive possibilities 

at worst. The latter is narrower than the range of prior predictive possibilities as all 

information has been taken into account through supplementing expert knowledge with the 

information that resides in measurements of system state.  

Calibration 

Unfortunately, direct manipulation of parameter and predictive probability distributions is a 

numerically burdensome procedure. To be sure, software is available which can do this. In 

particular, Markov chain Monte Carlo (MCMC) analysis allows a modeller to define the 

posterior parameter distribution by directly sampling from it. As such it may be considered to 

represent the ―purest‖ way to use a model as it constitutes a direct implementation of Bayes 

equation. A problem with the method, however, is that sampling of the posterior parameter 

distribution requires many model runs. Furthermore, as the number of parameters used in the 

analysis increases, the number of model runs required to implement the analysis tends to rise 

dramatically, especially if the inverse problem that defines the history-matching process is 

characterised by a high or even moderately-dimensioned null space (see below). Furthermore, 
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attempts to reduce the number of parameters involved in the analysis through devices such as 

lumping, fixing, tying and averaging often erode the capacity of MCMC analysis to achieve 

what it sets out to achieve, for a wide posterior predictive uncertainty distribution is often a 

direct outcome of the fact that many parameters are ill-informed by measurements of system 

state.  

Other approaches to Bayesian-based history-matching include formulation of equations that 

directly encapsulate prior and posterior probability distributions, and direct solution for the 

parameters that govern these distributions. This can be a more fruitful approach than MCMC 

analysis where model run times are high. However it requires considerable model-specific 

programming and hence specialized software. Furthermore it often requires the making of 

assumptions pertaining to the nature, type and size of parameter variability that may further 

reduce the generality of its application. 

For these reasons, and for cultural reasons, most history-matching is undertaken as part of the 

process of ―model calibration‖. In the environmental modelling context, this is an almost 

mystical term whose hidden meaning has more strength than its actual meaning. To the non-

specialist the term ―calibrated model‖ has overtones of predictive certainty which, in the 

environmental sphere, few if any models can lay claim to. Given that the term has no place in 

Bayesian analysis, and given that Bayesian analysis alone provides a complete mathematical 

characterization of what the history-matching process can and should achieve, it is hardly 

surprising that the term ―calibration‖ has found meanings which have little or no scientific 

basis. Unfortunately the term is well suited to advertising campaigns that bestow on existing, 

or yet-to-be-built, models predictive powers for which justification must be sought in wishful 

thinking rather than in mathematics. 

The word ―calibration‖ infers parameter uniqueness, for the calibration process purports to 

seek one set of parameters which the model will then employ for the making of predictions of 

future environmental behaviour. Numerically, it is much easier to find a single set of 

parameters than a suite of parameters on which basis a posterior probability distribution can 

be built. Hence the process of model calibration has a physical allure that compliments its 

metaphysical allure.  

If a single set of parameters is sought in lieu of a posterior parameter probability distribution, 

or a suite of parameters that sample the posterior parameter probability distribution, this 

raises some serious questions. In particular: 

 What properties should the single set of parameters possess? 

 How much propensity for error exists when using these parameters to make 

predictions of future environmental behaviour? 

If we are indeed going to select a single set of parameters for predictive model usage (this 

being the set of parameters which is deemed to ―calibrate‖ the model), it makes sense that 

these parameters should be ―as right as possible‖; that is, of all the parameter possibilities that 

we may employ, the values that we assign to them should be those of minimum error 

variance. If the posterior parameter probability distribution is symmetric, values assigned to 

parameters which bestow on them their ―calibrated‖ status should thus be their posterior 

―expected values‖ in the statistical sense. If the model provides a correct representation or 

reality, predictions based on these parameters will then be of minimum error variance.  

This then defines the goal of the model calibration process. That is, this process must seek 

parameter values of minimized error variance so that predictions that depend on these 

parameters may also be of minimized error variance. It is important to note, however, that 
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―minimized error variance‖ does not mean ―minimal error variance‖. It only means that 

calibrated parameter values lie somewhere near the centres of their posterior probability 

distributions, and that a prediction made on the basis of these parameter values lies 

somewhere near the centre of its posterior probability distribution. Thus the potential for error 

incurred by making a prediction on the basis of these parameter values is approximately 

symmetrical with respect to the prediction itself. This is what is responsible for its 

minimization.  

It is important to note that significant reduction of the width of the posterior predictive 

probability distribution below its prior width may or may not occur through the history-

matching process; this depends on the information content of the measurement dataset. The 

issue of how broad is the posterior predictive probability distribution is separate from that of 

acquiring, through the history-matching process, an ability to make a prediction which is 

centrally located with respect to this distribution. 

Nevertheless, the potential for predictive error must be quantified if model-based decision-

making is to have integrity for reasons that have already been outlined. Ideally, the post-

calibration potential for error in a prediction should be the same as the inherent posterior 

uncertainty of that prediction as calculated from the posterior predictive probability 

distribution of that prediction achieved through Bayesian analysis applied to a model which is 

a perfect simulator of environmental behaviour. In practice the potential for predictive error 

will be somewhat greater than this as an outcome of numerical imperfections that attend both 

of the processes of model calibration and model simulation. Both of these increase the 

potential for error in predictions made by a calibrated model; hence both of these must be 

taken into account when assessing that potential. This, unfortunately, entails an irremovable 

element of subjectivity. 

The Null Space  

The process of calculating a single parameter set with a special set of properties from a set of 

field measurement is often referred to as ―inversion‖. The problem itself is often referred to 

as ―the inverse problem‖. Inverse problems are often difficult to solve, the reason being that 

they are often characterised as being, in mathematical parlance, ―ill-posed‖. 

Inverse problem ill-posedness arises from the fact that if a model is endowed with 

parameterization complexity that reflects the complexity and heterogeneity of reality, then 

rarely, if ever, can these parameters be estimated uniquely on the basis of measurements of 

system state alone. Linear algebra provides a useful vehicle for analysing this problem. 

As in the previous chapter, let model parameters be represented by the vector k. We will 

suppose that the elements of k represent system properties at a level of complexity that is 

salient to the modelling task at hand. Ultimately ―salience‖ is determined by the fact that 

critical model predictions may be sensitive to those parameters. Let the matrix Z represent 

the action of the model under calibration conditions, and let the elements of the vector h 

comprise the set of measurements of system state that comprise the calibration dataset. Then 

the action of the model when supplied with historical system drivers can be written as: 

 h = Zk + ε         (4.1) 

where ε is an (unknown) vector whose elements represent noise associated with the elements 

of h. For simplicity, let us assume for the moment that measurement noise is zero. Then: 

 h = Zk          (4.2) 
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From the above equations it is apparent that each row of the matrix Z contains the 

sensitivities of a given model output (for which there is a corresponding field measurement) 

to all of the parameters k. If, because of the level of parameterization complexity represented 

by k, there are fewer elements of h than of k, then Z is rectangular with its long direction 

horizontal. If this is the case, it can be shown that there exist non-zero vectors δk for which: 

 0 = Zδk         (4.3) 

By adding (4.2) to (4.3) it is easily seen that if k satisfies (4.2) then so does (k+δk). Hence 

inference of k from h is nonunique. 

Nonuniqueness of the inverse problem is the rule rather than the exception. It can readily 

occur even where there are more observations than parameters, though it is not guaranteed to 

occur under these conditions as it is when there are less observations than parameters. If 

equation (4.3) is satisfied by even one non-zero vector δk, then the matrix Z is said to possess 

a null space. The number of dimensions in parameter space occupied by the null space is at 

least equal to column-over-row surplus (if one exists). However it is generally much larger 

than this. 

It follows that parameter space can be subdivided into two subspaces - a null space and a so-

called ―solution space‖, the latter being the orthogonal compliment of the former. A unique k 

can be calculated from the h of equation (4.2) if the search for k is restricted to the solution 

space of the matrix Z. Unfortunately however, it is unlikely that the real parameter set k falls 

within the solution space of Z. In finding k, all that we in fact find is the projection of k onto 

the solution space. Because the orthogonal complement of the solution space, i.e. the null 

space, contains inestimable system property detail it follows intuitively that the projection of 

reality onto the solution space constitutes a simplified solution to the inverse problem of 

model calibration. It can however be shown that, under the right circumstances, it is also the 

solution to the inverse problem of minimum error variance. This can be verified by intuition, 

for as soon as we venture from the solution space into the null space we increase our potential 

for wrongness as we run the risk of venturing into the null space in the wrong direction (for 

example up rather than down in Figure 4.2). 
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Figure 4.2 Schematic of parameter space showing solution and null spaces. k represents 

the true parameter set. All that can be estimated through the calibration process is its 

projection into the solution space. 

In practice, in calibrating a real-world model, the null space needs to have more dimensions 

than those which strictly satisfy (4.3), for it also needs to include parameter sets δk for which 

h is very low, and not just zero. This is because, as Moore and Doherty (2005) show, 

attempts to estimate parameter sets δk for which δh is nearly zero will lead to a propensity 

for estimation error that is greater than the pre-calibration uncertainty of these parameter sets.  

The partitioning of parameter space into solution and null spaces rarely takes place along neat 

parameter boundaries. To be sure, some parameters are entirely inestimable and hence lie 

within the null space. These are parameters to which all model outputs corresponding to field 

observations are insensitive. In other cases a parameter may lie partly within the solution 

space and partly within the null space. This indicates that the calibration dataset provides 

some information pertaining to that parameter - but that this information must be shared with 

at least one other parameter. The individual parameters amongst which this information is 

shared therefore show a high or infinite amount of statistical correlation in the posterior 

parameter probability distribution. This is because the information contained within the 

calibration dataset is sufficient only for estimation of a combination of these parameters, 

rather than all of them individually.  

Figure 4.3 attempts to illustrate this situation. Doherty and Hunt (2009) define the direction 

cosine between an individual parameter and its projection into the solution space as its 

―identifiability‖. This ranges between 1 for a parameter that lies entirely within the solution 

space, and 0 for a parameter that lies entirely within the null space. 
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Figure 4.3. Vectors k1, k2 and k3 point along parameter axes. These are different from 

the vectors v1, v2 and v3 which define orthogonal axes through which parameter space 

can be partitioned into solution and null spaces. The cosine of θ is defined as the 

identifiability of parameter k1. Identifiability is defined in the same way for other 

parameters. 

As stated above, restriction of the search for a solution to the inverse problem of model 

calibration to parameter combinations that lie within the solution space effectively restricts 

that search to the simplest set of parameters which allow the model to effectively reproduce 

historical system behaviour. This accords with the much-repeated precept offered by many 

calibration sages that the calibration process should pursue the principle of parsimony. It is 

important to note, however, that parsimony is desirable not as an end in itself, but because it 

is a means of achieving the only thing that is worth achieving through the calibration process, 

that is the solution to the inverse problem that is of minimum error variance. As we shall see 

shortly, too much simplicity, or inappropriately defined simplicity, can act as a barrier to 

achieving this goal. 

Singular value decomposition (SVD) provides a means of subdividing parameter space into 

solution and null spaces. It can be shown that any matrix Z can be decomposed according to 

the formula: 

 Z = USV
t
         (4.4) 

where the columns of the matrix U are orthogonal unit vectors which span the range space of 

Z, the columns of V are orthogonal unit vectors which span the domain of Z (parameter 

space in our case), and S is a diagonal matrix composed of positive or zero diagonal elements 

arranged from highest to lowest. The columns of V as they pertain to a three-dimensional 

parameter space are actually depicted in Figures 4.2 and 4.3 as the vectors v1, v2 and v3. 

Columns of V corresponding to zero-valued singular values span the null space; in practice, 

columns associated with weakly estimable parameter combinations for which singular values 

are near zero are also assigned to the null space, this providing a safeguard against 

amplification of parameter error though over-fitting.  
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Regularisation 

General 

―Model calibration‖ is the search for a unique parameter set. From the above discussion it is 

apparent that this unique parameter set cannot be the ―reality‖ parameter set, for the latter 

contains details that are simply not inferable on the basis of the measurement dataset. Nor are 

they inferable on the basis of expert knowledge which, as we have seen, is characterized by a 

prior parameter probability distribution (possibly conditioned by point measurements of 

system properties) rather than by parameter certainty. We have also seen that while the 

calibrated parameter field will almost certainly be incorrect, it can nevertheless be ―optimal‖ 

in the sense that its potential for wrongness, though it may be considerable, is minimized. So 

far in this document we have discussed what this means from both a Bayesian framework 

(where ―optimal‖ is characterized as leading to predictions of minimized error variance), and 

from a parameter subspace framework (where ―optimal‖ is characterized as absence of null 

space components). It can be shown that as measurement noise approaches zero these lead to 

exactly the same parameter set (Albert, 1972). In practice they can lead to parameter 

estimates which are slightly different. However these differences are normally small 

compared with the potential for error which exists in either. 

The process of finding a unique solution to an ill-posed inverse problem, and of thereby 

achieving a parameter set which is deemed to calibrate a model, is called ―regularisation‖. 

The ways in which regularisation is most commonly implemented are now briefly discussed. 

Tikhonov Regularization 

In its simplest form, Tikhonov regularization attempts to guide solution of the inverse 

problem towards parameter estimates which can be considered to be expected values (in the 

statistical sense) of the posterior parameter probability distribution (and hence constitute 

parameter estimates that approach minimum error variance). The modeller must supply a 

default value for all parameters, and/or default values for relationships between parameters; 

an example of the latter are default differences of zero between neighbouring spatial 

parameters - this implying a default condition of parameter field homogeneity. Collectively 

these parameter values and/or parameter relationships define expectations (in the statistical 

sense) from the prior parameter probability distribution. Hence they define parameter 

estimates of minimum error variance based on expert knowledge alone. When using PEST 

for solution of the inverse problem of model calibration, preferred parameter values and/or 

conditions can be supplied through the ―prior information‖ mechanism, or as more complex 

nonlinear ―regularisation observations‖. 

The parameter estimation process is also provided with a suite of measurements of system 

state. The inverse problem of model calibration is then formulated as a constrained 

optimisation problem in which a suitable, user-defined value for the target ―measurement 

objective function‖ (defined through model-to-measurement misfit) is sought subject to the 

constraint that the ―regularisation objective function‖ (defined as departures of parameters 

from their default values or preferred condition) is minimized. The target measurement 

objective function is assigned a value that reflects what is considered to be the ambient level 

of measurement noise. By seeking (but not exceeding) this level of model-to-measurement fit 

subject to the constraint that departures from pre-calibration optimality are minimized, the 

calibration goal of minimized propensity for parameter and predictive error is formally 

sought. 
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Tikhonov regularisation has many attractive features, the most obvious of which is that it 

provides receptacles for information that is forthcoming from both the user and from the 

calibration dataset. Its chief disadvantage is that it tends to suffer from numerical instability 

as parameter optimality is approached. Behind the scenes a trade-off is implemented between 

fitting the data on the one hand and fitting a user’s preconceptions as they apply to all 

parameters involved in the parameter estimation process on the other hand. Numerically, this 

trade-off is sometimes difficult to apply. It is made no less difficult by the fact that misfit is 

often dominated by structural noise whose statistical properties are unknown, but whose 

variance is much higher than that of measurement noise. Avoidance of over-fitting may thus 

become a trial and error process in which the Tikhonov-based inversion process is repeated 

with different values assigned to the target measurement objective function. Determination of 

the relative strengths with which Tikhonov constraints must be applied to different types of 

parameters can also be problematic. However PEST provides some help with this process; 

see PEST documentation of the IREGADJ regularization control variable.  

Subspace Regularization 

As described above, Tikhonov regularization achieves uniqueness by supplementing 

information within the calibration dataset with information that is born of expert knowledge. 

Subspace regularisation (of which the flagship is so-called ―truncated singular value 

decomposition) takes the opposite approach. It identifies parameter combinations which are 

inestimable on the basis of the current calibration dataset, and removes them from the 

parameter estimation process altogether. These are identified as those that are associated with 

zero and low singular values, and thus occupy the calibration null space. The solution to the 

inverse problem is thus comprised entirely of estimable combinations of parameters which, 

by definition, belong to the calibration solution space. As has been discussed above, these 

estimable combinations of parameters normally correspond to broad-scale features of a 

model’s parameterization.  

When implementing subspace regularisation, a modeller should ensure that initial parameter 

values which are provided to the parameter estimation process are in fact preferred parameter 

values from an expert knowledge point of view. Behind the scenes, it is actually departures 

from these initial values that are estimated. Because departures from these values which 

occupy the null space are not estimated, the only departures from initial parameter values that 

are tolerated are those that are supported by the data. For those that are not supported by the 

data, the user’s initial choice prevails. If initial parameter values thus embody user expert 

knowledge, and therefore constitute pre-calibration minimum error variance parameter 

estimates, the solution to the inverse problem formulated in this way approaches that of post-

calibration minimum parameter error variance status. This is an outcome of the fact that only 

those parameter combinations whose estimates achieve reduced error variance through the 

calibration process are adjusted through this process, while those that that do not remain 

unchanged.  

Calibration implemented through subspace regularization is unconditionally numerically 

stable. This is ensured because, by definition, the solution space is comprised only of 

parameter combinations which are indeed uniquely estimable. The truncated singular value 

decomposition (SVD) process through which parameter estimation is most easily achieved by 

this means simply refuses to estimate parameter combinations corresponding to singular 

values which are below a certain threshold, and hence are not robustly estimable. 

Unfortunately, however, truncated SVD as a mechanism for solution of the inverse problem 

of model calibration suffers from two significant shortcomings. The first is that it is difficult 
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to link the singular value truncation threshold to the expected level of measurement/structural 

noise. Hence while unconditional numerical stability is achieved, prevention of over-fitting is 

less easily achieved as it is not part of the formal definition of the inverse problem as it is for 

Tikhonov regularisation. Secondly, because expert knowledge is an implicit rather than 

explicit part of the inversion process (being provided only through parameter initial values 

rather than in the form of a possibly complex suite of linear and/or nonlinear parameter 

relationships), the parameter fields that emerge from the truncated SVD process rarely have 

the same aesthetic appeal as those which emerge from a calibration process that is 

implemented using Tikhonov regularization. 

Hybrid Regularization  

Both Tikhonov and subspace regularization have strengths and weaknesses. These tend to 

complement each other. Hence when used together, the outcome is an inversion scheme that 

makes best use of the benefits of each of them at the same time as it mitigates the deleterious 

effects of their weaknesses. 

PEST allows a user to estimate parameters using truncated SVD as a solution device to the 

inverse problem of model calibration while allowing this problem to be formulated as a 

constrained optimization problem, with constraints supplied as linear or nonlinear parameter 

relationships in accordance with the Tikhonov approach outlined above. Experience has 

demonstrated on many occasions that this approach provides pleasing parameter fields at the 

same time as it maintains numerically stability while simultaneously preventing over-fitting. 

Significant gains in computational efficiency can be had through undertaking singular value 

decomposition of the global sensitivity matrix only intermittently, and on this basis defining a 

limited number of ―super parameters‖ equal in number to the dimensionality of the 

calibration solution space. These new super parameters are in fact the projections of the 

solution to the inverse problem onto the parameter axes which span the calibration solution 

space. Through estimation of these projections alone, a solution to the inverse problem of 

model calibration is achieved. Estimation thus takes place on the basis of an often vastly 

reduced parameter set, this decreasing the numerical burden of the parameter estimation 

process enormously. At the same time, Tikhonov constraints are exercised on native 

parameters, thereby ensuring optimal use of expert knowledge in the parameter estimation 

process. See PEST’s ―SVD-Assist‖ methodology for further details. 

Manual Regularization 

Despite the ability that PEST provides for implementing highly parameterized inversion 

using the techniques discussed above, many models are still regularized manually. Thus, 

prior to initiating the calibration process, the modeller must reduce the number of parameters 

which he/she estimates by fixing certain parameters at pre-calibration preferred values and 

amalgamating others into a smaller parameter set. Through examining the nature of model-to-

measurement misfit achieved through the parameter estimation process based on this reduced 

parameter set, and by inspecting statistics that are produced as an outcome of the calibration 

process, the modeller then assesses whether more or less parameter reduction needs to occur, 

and/or if parameter reduction needs to take place in different ways. 

In some ways, manual regularisation attempts to achieve the same thing as truncated SVD in 

that the dimensionality of the inversion problem is reduced to that which is estimable. 

Meanwhile, though it is not referred to as such, parameters that occupy the null space are 

assigned fixed values, while parameter combinations that are inestimable (these normally 

expressing fine parameterization detail) are hidden from the purview of the parameter 
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estimation process through parameter amalgamation. In the spatial parameterization context, 

parameter amalgamation often takes place through definition of a small number of zones of 

assumed parameter constancy.  

If enough care is taken in implementing manual regularization something approaching the 

minimum error variance solution to the inverse problem of model calibration can indeed be 

achieved. However, in the author’s opinion, the disadvantages of this approach tend to 

outweigh its ―advantages‖. In fact, in the author’s experience, the main ―advantage‖ to be 

gained through implementing this kind of regularisation lies in the ability (welcomed by 

some modellers) to defer the need to learn the details of a superior approach. 

Disadvantages of manual regularisation include the following. 

 In a spatial setting characterized by system property heterogeneity, it is better to 

define many rather than few parameters throughout the model domain. This provides 

the parameter estimation process with a license to introduce heterogeneity to the 

model domain wherever it needs to, to the extent that it needs to, and in the way that it 

needs to, rather than having to respect pre-defined (and often inappropriate) 

mechanisms for expression of heterogeneity that may seriously compromise such 

expression. 

 A considerable amount of trial and error is often required in determining how many 

parameters can be estimated on the basis of a given calibration dataset. If too few 

parameters are estimated, less information is obtained from the calibration dataset 

than it contains. If an attempt is made to estimate too many parameters, over-fitting 

occurs. In neither case is parameter optimality achieved. 

 Proper implementation of either or both of Tikhonov and subspace regularization 

provides a mathematical guarantee that something approaching parameters of 

minimized error variance will be achieved through the parameter estimation process. 

No such guarantee is afforded through manual regularisation. 

 Less than optimal definition of spatial parameter variability through use of 

cumbersome and unrealistic parameterization devices such as zones of piecewise 

constancy can introduce structural noise to model outputs. This erodes the capacity of 

the parameter estimation process to obtain information from the calibration dataset, 

thereby incurring an increased propensity for parameter and predictive error. At the 

same time, the magnitude of this error is difficult to quantify. 

 Where parameterization complexity complements model process complexity at the 

same time as it represents system property heterogeneity that is salient to predictive 

variability, it is mandatory that regularization be implemented mathematically rather 

than manually, for the inverse problem of model calibration is otherwise unsolvable. 

As a by-product of implementing mathematical regularisation a definition of the null 

space is achieved (or something approaching the null space in the case of Tikhonov 

regularization). This is the (unavoidable) source of most parameter and predictive 

uncertainty on most occasions. Hence use of mathematical regularization based on an 

underlying parameter field comprised of many parameters provides a far better 

foundation for post-calibration uncertainty analysis than does manual regularization 

employing few parameters. 
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Structural Regularization 

Regularization is built into the design of many models by virtue of the lumped nature of their 

parameters. Implicit in the design of many lumped-parameter models is the fact that they are 

―made to be calibrated‖ against measurement datasets comprised of one or many data types 

gathered at one or many locations over many years. Model design is often specifically aimed 

at endowing a model with a parsimonious set of parameters that is uniquely estimable on the 

basis of commonly-available datasets, at the same time as it provides optimal receptacles for 

the information content of these datasets. As such, model design of this type implicitly 

attempts to achieve a similar outcome to the use of subspace methods in solving the inverse 

problem of model calibration (or perhaps an even better outcome as it may provide superior 

accommodation of the nonlinear relationship between model outputs and model parameters). 

Calibration of models of this type may therefore indeed achieve parameter values of 

minimized error variance. A problem arises, however, where post-calibration predictive 

uncertainty is explored, for while failure to represent parameterization detail comprising the 

null space may not compromise optimality of the calibration process, it will probably 

compromise the ability of the uncertainty analysis process to properly define post-calibration 

predictive variability as it pertains to predictions of system behaviour under extreme 

conditions. Also, representation of parameters in a lumped manner may detract from a 

modeller’s ability to explore the effects of certain proposed environmental management 

strategies on future environmental behaviour. For example it may not be possible to represent 

land use changes at a farm or sub-regional level in such a parsimonious model as 

parameterization density is simply too broad to support definition of proposed changes. 

To overcome the latter problem, regional lumped-parameter surface water and land use 

models are often constructed from many submodels that seek to simulate hydrologic 

processes that are operative at the land management scale. If this is done, some form of 

(mathematical or manual) regularisation must then be implemented during the calibration 

process. With the introduction of a higher parameterization density in this manner also comes 

the ability to conduct post-calibration parameter and predictive uncertainty analysis with 

greater integrity. 

Some Equations  

The following equations are presented for completion. They are not derived. Nor is it 

necessary that they be understood. 

We take equation (4.1) as our starting point. When calibrating a model, a vector k of 

―calibrated parameter values‖ is calculated according to: 

 k = Gh            (4.5) 

where G is a matrix that depends on the regularization method employed in the calibration 

process. If the measurement dataset contains no noise and if parameters are normalized with 

respect to their innate variability, then ideally G should be the Moore-Penrose pseudo inverse 

of Z, this leading to a parameter set of minimum norm and hence (if norm is defined in an 

appropriate way) the parameter set of minimum error variance. Where there is noise in the 

calibration dataset, use of a generalized inverse of Z (whether this is the Moore-Penrose 

pseudo inverse or some other generalized inverse) to calculate k would lead to over-fitting. 

Hence G must be derived through other means - any one of these requiring definition of some 

kind of regularisation. Formulas for G differ according to the type of regularisation 

employed. Ideally, however, they should converge to the same formula as the noise 

associated with h decreases to zero (as do truncated SVD and properly-designed Tikhonov-

based inversion).  
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For truncated SVD: 

 G = V1S
-1

1U
t
1         (4.6a) 

while for Tikhonov regularization: 

 G = (Z
t
QZ + β

2
T

t
WT)

-1
Z

t
Q       (4.6b) 

where: 

Q  is a measurement weighting matrix, ideally proportional to C
-1

(ε), where C(ε) is 

the covariance matrix of measurement noise; 

U, V and S are obtained through singular value decomposition of Q
1/2

Z, the subscript 

of ―1‖ on these matrices indicating use of pre-truncation (and hence non-zero) 

singular values; 

T  is a matrix which expresses Tikhonov constraints; 

W  is a weighting matrix for Tikhonov constraints; ideally if T provides preferred 

pre-calibration values for the parameters k then W should be proportional to C
-

1
(k) where C(k) is the pre-calibration covariance matrix of innate parameter 

variability; 

β
2
  is a factor adjusted during the regularized inversion process; it is equivalent to a 

Lagrange multiplier employed in the constrained optimisation process described 

above through which Tikhonov regularization is implemented.  

For manual regularization, G can be expressed as: 

 G = L(X
t
QX)

-1
X

t
Q        (4.6c) 

where: 

L  is a matrix through which elements of k are computed from a reduced parameter 

set p; elements of p are few enough for their estimation to formulate a well-posed 

inverse problem; and 

X  expresses the means through which the model-generated counterparts to the 

measurement dataset h are calculated from the reduced parameter set p; it is 

related to the model matrix Z through the equation: 

 X = ZL         (4.6d) 

Substitution of (4.1) into (4.5) leads to the equation: 

 k = GZk + Gε         (4.7a) 

That is: 

 k = Rk + Gε         (4.7b) 

where: 

 R = GZ          (4.8) 

R is the well-known ―resolution matrix‖. Where measurement noise is zero it expresses the 

relationship between estimated parameters k and their real world counterparts k (which are 

never known). Where regularization is implemented through truncated SVD, R is a projection 

operator as indicated in Figure 4.2. Irrespective of the regularization methodology employed, 

each row of the matrix R specifies the averaging relationship through which each element of 

k is derived from the entirety of elements of k. Thus it defines the parameter simplification 
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process that was required for achievement of a unique solution to the inverse problem of 

model calibration. 

The difference between estimated parameters and their real world counterparts is parameter 

error. From (4.7) this can be formulated as: 

 k - k = -(I - R)k + Gε        (4.9) 

The first term on the right side of (4.9) is the ―cost of uniqueness‖ discussed extensively by 

Moore and Doherty (2005; 2006). It is the contribution made to parameter error arising out of 

the fact that the calibration process can estimate only a simplified form of reality. The second 

term of equation (4.9) arises from the fact that the estimated parameter set is calculated from 

a calibration dataset which is contaminated by noise. Where regularisation is implemented 

using truncated SVD, the first and second terms of equation (4.9) lie within the null and 

solution spaces respectively, and are orthogonal to each other. This is illustrated in Figure 

4.4. 

v1

v2

v3

k

Null space
“Cost of uniqueness”

component of 
parameter error

Measurement 
noise component 

of parameter errorTotal parameter 
error

 

Figure 4.4. The two components of parameter error expressed by the two terms on the 

right side of equation (4.9). 

Unfortunately parameter error cannot be calculated, for neither the real parameters k nor 

noise ε associated with the measurement dataset are known. However, using equation (3.4), 

the covariance matrix of parameter error can be calculated from the stochastic 

characterization of pre-calibration parameter variability C(k) and from that of measurement 

noise C(ε) as:  

 C(k - k) = (I - R)C(k)(I - R)
t
 + GC(ε)G

t
     (4.10) 

Equation (4.10) acquires a particularly simple but instructive form when the following 

conditions are met: 

 Regularisation is implemented using truncated SVD; 

 C(k) can be expressed as: 

 C(k) = ζ
2

kI        (4.11) 
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where I is the identity matrix; and 

 C(ε) can be expressed as: 

  C(ε) = ζ
2

εI        (4.12) 

In this case (4.10) becomes: 

 C(k - k) = ζ
2

kV2V
t
2 + ζ

2
εV1S

-2
1V

t
1      (4.13) 

where the columns of V2 contain orthogonal unit vectors which span the calibration null 

space and the columns of V1 contain orthogonal unit vectors which span the calibration 

solution space; both of these are obtained through partitioning of the V matrix of equation 

(4.4). As the number of dimensions of the calibration solution space grows, and the null space 

therefore shrinks, the first contributor to parameter error variance (i.e. the ―cost of 

uniqueness‖ term) falls, as less and less simplification is being undertaken in an attempt to 

calibrate the model. However the second term of equation (4.13) rises; furthermore it rises 

very fast as the magnitudes of singular values fall, until ultimately it becomes infinity as 

singular values fall to zero. Total parameter error variance therefore falls and then rises as 

simplification is at first too great, and at last too little (and over-fitting occurs). Minimized 

total parameter error variance occurs at an intermediate number of singular values; so too 

does minimized predictive error variance, as will be discussed in the next chapter.  

Parameter and predictive error cannot be known. If they could be known, an appropriate 

correction term could be applied. Thanks to equations (4.10) and (4.13) however, the 

propensity for parameter error (and, as we will see shortly, for predictive error as well) can be 

known. Furthermore, to the extent that C(k) and C(ε) are known or can be surmised, 

optimality of solution of the inverse problem of model calibration can be achieved through 

minimizing the propensity for parameter and predictive error. 

We finish this subsection with a nice property of singular value decomposition; this property 

will be demonstrated using one of the exercises provided later in this chapter. 

From equations (4.1) and (4.4) with measurement noise ignored: 

 h = USV
t
k         (4.14a) 

After removal of zero-valued singular values, this becomes: 

 h = US1V1
t
k         (4.14b) 

S1 is, by definition, a diagonal matrix with non-zero elements. Hence it has an inverse. From 

(4.14b) and the fact that, because U is an orthogonal unit matrix: 

 U
t
U = I         (4.15) 

It follows that: 

 S
-1

1U
t
h = V

t
1k         (4.16) 

This formula states that certain linear combinations of parameters are solely and uniquely 

informed by certain, partnered, linear combination of observations. The number of such 

partnerships is equal to the number of diagonal elements of S1 and hence the number of 

singular values employed in the inversion process. The sequence of informative linear 

combinations of observations (which capture the entire information content of the calibration 

dataset) form an orthogonal set of axes in observation space. The corresponding sequence of 

informed linear combinations of parameters (which comprise a complete set of receptacles 

for the information content of the calibration dataset) form an orthogonal set of axes in 

parameter space; these axes span the calibration solution subspace. The former are given by: 
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 u1u
t
1, u2u

t
2, u3u

t
3, etc        (4.17a) 

where ui is the i’th column of the U matrix. The latter are given by: 

 v1v
t
1, v2v

t
2, v3v

t
3 etc        (4.17b) 

where vi is the i’th column of the V matrix. The former are referred to as ―super 

observations‖ in PEST parlance, whereas the latter are referred to as ―super parameters’. 

Structural Noise  

Unfortunately, models are not perfect simulators of system behaviour. This may manifest 

itself in an inability to achieve a good fit between model outcomes and field measurements 

during the calibration process. Alternatively, or as well, it may result in parameters being 

assigned incorrect values as partial compensation for unrepresented processes, this allowing 

the model to fit the historical data well in spite of the fact that some of the environmental 

processes that gave rise to that data are not simulated by the model. In addition to this, 

structural defects may compromise the model’s ability to make a desired prediction with 

integrity, as not all processes on which the prediction depends are represented in the model. If 

this prediction is of a different type from data comprising the calibration dataset, the model’s 

inadequacies in this regard will not have been detected during the calibration process. 

Doherty and Welter (2010) attempt to introduce some rigor to the manner in which structural 

noise is accommodated in the model calibration and predictive processes. They begin their 

analysis by stating that equation (4.1) can be used as the basis for analysis of calibration 

optimality and predictive uncertainty only if the model (represented by the Z matrix in that 

equation) is a perfect simulator of environmental reality. In fact, the action of the model is 

better described by the following equation: 

 h = Z1k1 + Z2k2 + ε        (4.18) 

where Z1 and k1 represent the model and parameters used by the model respectively, while k2 

represents corrections to the model that would allow it to simulate reality perfectly while Z2 

represents the sensitivity of model outputs to these corrections. Both of Z2 and k2 are 

unknown.  

Doherty and Welter (2010) draw the following conclusions through mathematical analyses 

based on this equation. 

 Model structural inadequacies can express themselves through model-to-measurement 

misfit under calibration conditions that can greatly exceed that which arises from 

measurement noise. However treating that misfit as an additive term to measurement 

noise (this being commonly referred to as ―structural noise‖) for the purpose of 

determining an optimal level of misfit to achieve during the calibration process, and in 

calculating the penchant for parameter error that arises from that misfit, is fraught 

with conceptual difficulties. This follows from the fact that the covariance matrix of 

―structural noise‖ is unknown, and probably singular. 

 Unless the singular nature of the covariance matrix of structural noise is taken into 

account, post-calibration propensity for parameter error may be seriously 

underestimated. If historical measurements of system state were contaminated only by 

measurement noise of non-singular covariance matrix, the potential for error 

associated with parameter value estimates should decrease as the size of the 

calibration dataset increases (in accordance with Bayes equation). This is not the case, 

however, where the model-generated counterparts to field measurements are 

contaminated with noise of structural origin.  
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 Calibration strategies can be devised which mitigate the deleterious effects of model 

structural defects on estimation of at least some parameters. In particular, it is often 

possible to formulate a multi-component objective function in which different 

objective function components inform different combinations of parameters. Through 

ensuring equal visibility of each of these components in the overall objective function, 

the damage inflicted by the presence of structural noise on at least some parameter 

estimates can be greatly reduced. Strategies for formulation of a suitable multi-

component objective function include the following: 

o use of inter-layer head differences and temporal head differences when 

calibrating a groundwater model; 

o use of log-transformed flows, together with baseflow-filtered flows, as 

well as event-based or monthly volumes, when calibrating a surface water 

model. 

 When a defective model is calibrated against a real-world dataset, it is almost certain 

that some parameters will be assigned values that compensate for model structural 

defects. This may or may not increase the error variance of model predictions. For 

predictions that resemble observations used in the calibration process, parameter 

compensation may reduce the propensity for model predictive error. For predictions 

that differ in type and location from observations used in the calibration process, 

parameter compensation may increase the propensity for model predictive error. In 

either case, the link between parameter optimality and predictive optimality is broken. 

 The fact that some estimated parameters can ―soak up‖ the ―information that has no 

other place to go‖ that is structural noise may, or may not, benefit the calibration 

process. As stated above, this depends in part on the extent to which predictions 

required of a model resemble observations used in the calibration process. To the 

extent that ―parameter surrogacy‖ is judged to be advantageous to the making of some 

predictions, it may be worthwhile ensuring that observations that most resemble 

predictions of interest are well fit during the calibration process by endowing them 

with weights that are great enough to allow this to happen. This raises the spectre of 

―prediction-specific calibration‖. 

Doherty and Welter (2010) demonstrate that the presence of model structural defects requires 

that a modeller make many informed, but necessarily subjective, decisions during both the 

calibration and predictive phases of model deployment. Their subjective nature arises from 

the fact that model structural defects, the magnitude and characteristics of structural noise 

that they incur, and the degree to which parameters may assume advantageous and 

disadvantageous compensatory roles during their estimation as an outcome of these defects, 

are all unknown.  

It will often be possible to obtain a very good fit between model outputs and field data when 

calibrating a flawed model. But when is ―a good fit‖ in fact ―too good a fit‖? ―Over-fitting‖ is 

often recognized as such when some awkward values are estimated for some parameters. 

However these values may have been incorrect long before they were recognized as being 

unrealistic, and hence long before recognition of a model’s ―over-fit‖ status required that the 

calibration process be repeated with higher levels of parameter simplification introduced in 

order to prevent such a good fit between model outcomes and field measurements from being 

obtained again. In many modelling circumstances however (as stated above) the surrogate 

role that some parameters play may actually benefit the predictive process, this depending on 

the predictions required of the model. In this case, sacrificing goodness of fit in order to 
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ensure that no parameter plays any surrogate role whatsoever may leave much important 

information that is contained in the calibration dataset untapped. Unfortunately, the best path 

to choose in any given calibration context is often unclear, for there are no universal rules 

pertaining to this situation (and little expert guidance available).  All that a modeller can do is 

to exercise informed creativity, taking full account of whatever theoretical help is available 

(including aspects of modelling theory that account for model structural defects). 

Nevertheless decisions made by a modeller will necessarily be subjective, and will almost 

certainly vary from modeller to modeller. 

Exercises 

Surface Water Model 

TSPROC 

The TSPROC utility was written specifically to expedite the use of PEST in surface water 

model calibration. TSPROC stands for ―time series processor‖. Its functionality includes the 

ability to: 

 read model output files written in a number of different formats; 

 read observation data files provided in a number of different formats; 

 undertake temporal interpolation from model outputs to the times of field 

measurements so that the two can be directly compared; 

 compute statistics pertaining to observed and simulated time series; 

 undertake digital filtering of observed and modelled time series; 

 accumulated total mass/volume over arbitrary time periods for modelled and observed 

time series; 

 undertake arbitrary mathematical manipulation of modelled and observed time series; 

 generate a PEST input dataset in which any or all of the above can feature as 

components of a multi-component objective function. 

As a time series processor, TSPROC is run after the simulator as part of a composite model 

calibrated by PEST. Commands to run the simulator followed by TSPROC are placed within 

a batch or script file. As a PEST input dataset constructor TSPROC is run by the user. Full 

documentation of TSPROC is provided in the manual to the PEST Surface Water Modelling 

Utility suite. 

Calibration Against Flows 

A TSPROC input file named tsproc_calib1.dat has been provided. The contents of this file 

can be inspected using any text editor. In accordance with TSPROC protocol, processing 

instructions within this file are contained within a series of blocks. The processing sequence 

is as follows. 

 Modelled and observed flows are read from files output.wdm and observ.wdm 

respectively.  Note that flows are read over the one year calibration time span 

comprising 1985, as well as over the following year. 

 Observed flows are converted to units of m
3
/sec as they are stored in units of ft

3
/sec. 
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 Maximum observed and simulated flows over the prediction interval (19
th

 to 23
rd

 

August 1986) are calculated. These are not used in the calibration process. However 

they are written to the PEST input dataset with a weight of zero for easy monitoring. 

 The time spans of observed and simulated flows stored within TSPROC’s memory are 

reduced to that of the calibration period. 

 The logarithms (to base 10) of all simulated and observed flows are computed; a small 

positive flow of 0.75 m
3
/sec is added before logarithmic transformation to guard 

against the presence of any zero flows (of which the log is the negative of infinity). 

 The logarithms of simulated flows are written to a file named model.out. So too is the 

prediction (i.e. the maximum flow over 19
th

 to 23
rd

 August 1986). 

 A PEST input dataset is generated in which the logs of simulated flows are matched 

against the logs of observed flows. All weights are 1.0. 

As recorded in the WRITE_PEST_FILES block, the model batch file is named 

model_calib1.bat; this must be prepared by the user An inspection of this file reveals that it 

includes the commands to run HSPF followed by TSPROC. The latter program writes data 

that PEST reads; the instruction file through which the TSPROC output file is read is 

generated by TSPROC itself as it implements the directives contained in the 

WRITE_PEST_FILES block. See the manual for the Surface Water Utilities suite for further 

details. 

Run TSPROC, responding to its prompts as follows. (Also respond with ―y‖ if/when asked if 

it is alright to over-write any existing files.) 

 Enter name of TSPROC input file: tsproc_calib1.dat 

 Enter name for TSPROC run record file: nul 

TSPROC echoes to the screen the directives that it reads from its input file. When it has 

implemented all directives, it records successful completion of execution to the screen. In 

complying with the directives provided in tsproc_calib1.dat it writes a PEST control file 

named calib1.pst, as well as an instruction file named tsproc_calib1.ins to read the TSPROC-

generated ―model output file‖ tsproc_calib1.out. You can check the integrity of the PEST 

input dataset generated by TSPROC using the following command. (Ignore PESTCHEK’s 

warnings; it is only trying to be helpful.) 

 pestchek calib1.pst 

Note that TSPROC instructs PEST to use truncated singular value decomposition as a 

solution mechanism for the inverse problem of model calibration. This is not strictly 

necessary in the present case as the inverse problem is well posed. However it provides a 

safeguard against the possible onset of ill-posedness as parameters change their values. (By 

the way, it is not hard to show that singular value decomposition provides an identical 

parameter estimation outcome as that provided by the traditional Gauss-Marquardt-

Levenberg method when an inverse problem is well posed; the two inversion methodologies 

are in fact equivalent under these conditions.) 

Now run PEST, using the following command. 

 pest calib1 

From an inspection of the results section of PEST’s run record file calib1.rec the following is 

apparent. 
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 PEST reduces the objective function from an initial value of 14.556 to a final value of 

8.042. 

 This requires 229 model runs. 

 The highest flow over the predictive period, calculated on the basis of optimized 

parameters, is 412 m
3
/sec. This compares very poorly with the observed highest flow 

over this period of 27.24 m
3
/sec. 

The logs of modelled and observed flows are depicted in Figure 4.5a, while native modelled 

and observed flows are compared in Figure 4.5b. The goodness of fit during 1985 (the 

calibration period) and the poorness of fit during 1986, are apparent from both of these plots 

(note that clipping occurs at a flow of 100m
3
/sec in the latter plot). 
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Figure 4.5a. Log of observed (dark line) and modelled (grey line) flows. Modelled flows 

were calculated using optimised parameters from the calib1 calibration exercise. 
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Figure 4.5b. Observed (dark line) and modelled (grey line) flows. Modelled flows were 

calculated using optimised parameters from the calib1 calibration exercise. Note that 

clipping occurs at 100 m
3
/sec; the simulated peak flow on 20th August 1986 is actually 

412 m
3
/sec. 

Optimized parameter values are recorded in the run record file calib1.rec. It is apparent that 

two parameters (namely IRCTRANS and INTFW) are at their bounds. Optimised parameters 

are also recorded in ―parameter value file‖ format in file calib1.par. It is often convenient to 

build a new PEST control file in which optimized parameters feature as initial parameters. 

This is easily done using the PARREP utility (which we have already encountered). Run 

PARREP using the command:  

 parrep calib1.par calib1.pst calib1_soln.pst 

Now alter the NOPTMAX variable in calib1_soln.pst (first variable on the 9th line of this 

file) to 0. If PEST execution is now initiated using the command: 

 pest calib1_soln 

PEST will run the model once on the basis of optimized parameters, compute the objective 

function, and then cease execution. 

Multi-Component Objective Function  

The TSPROC input file tsproc_calib2.dat is a little more complex than tsproc_calib1.dat. In 

addition to directing TSPROC to calculate the logs of observed and simulated flows, it also 

directs TSPROC to calculate the following quantities over the 1985 calibration period: 

 an approximation to baseflow using the digital filtering technique of Nathan and 

McMahon (1990); 

 accumulated monthly volumes; 

 exceedence times for various flow thresholds. 

In addition to this it directs TSPROC to build a PEST input dataset in which all of these 

processed flow components are featured. To build this dataset, run TSPROC by typing its 
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name at the screen prompt. Respond to its prompts as follows (overwriting files as necessary 

if prompted for permission). 

 Enter name of TSPROC input file: tsproc_calib2.dat 

 Enter name for TSPROC run record file: nul 

TSPROC builds a PEST control file named calib2.pst. In this file, items that contribute to 

different objective function components are assigned to different observation groups; see the 

―observation groups‖ and ―observation data‖ sections of calib2pst. The ―model command 

line‖ section of calib2.pst directs PEST to run a batch file named model_calib2.bat as the 

model. In this batch file (prepared by the user) the command to run TSPROC using file 

tsproc_calib2.dat as its input file follows the command to run HSPF.  

Set NOPTMAX (first variable on line 9 of file calib2.pst) to zero.  Next check that the PEST 

input dataset is correct, consistent and complete by running PESTCHEK using the command: 

 pestchek calib2 

Ignore warnings, and then run PEST using the command: 

 pest calib2 

PEST runs the model once, calculates the objective function pertaining to each observation 

group together with the total objective function. Then it ceases execution. Notice that the 

contribution to the total objective function by the prediction is zero, this following from the 

fact that this prediction has been given zero weight. 

As Doherty and Welter (2010) explain, where a multi-component objective function is 

formulated in order to promulgate visibility of different aspects of flow data in the overall 

objective function, it is important to ensure that none of these different flow components 

either dominate the inverse problem solution process, or are dominated by other flow 

components. This can be achieved by ensuring that they all contribute roughly the same 

amount to the initial objective function. An inspection of PEST screen output for case calib2 

reveals that this is not happening at present. Hence inter-group weights adjustment is 

required. This is most easily achieved using the PWTADJ1 (for ―PEST weight adjustment 

strategy 1) utility. Run PWTADJ1 as follows. 

 pwtadj1 calib2 calib2a 1000 

PWTADJ1 writes a new PEST control file in which weighting is such that each observation 

group contributes exactly 1000 to the overall initial objective function. Now calibrate the 

model by running PEST using the command: 

 pest calib2a 

PEST only requires 100 model runs to calibrate the model this time. As before, use the 

PARREP utility to create a new PEST control file in which initial parameter values are 

optimized parameter values. Use the command: 

 parrep calib2a.par calib2a.pst calib2_soln.pst 

to run PARREP. Set NOPTMAX to 0 in the newly-created calib2_soln.pst PEST control file 

and run PEST on the basis of this file to produce a set of model output files based on 

optimized parameters. Model outputs together with their observed counterparts are shown in 

Figures 4.6a-d.  

Unfortunately, at 405.6 m
3
/sec the predicted maximum flow over the period 19

th
 to 23

rd
 

August 1986 is still very much too high. 
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Figure 4.6a. Log of observed (dark line) and modelled (grey line) flows. Modelled flows 

were calculated using parameters achieved through the calib2 calibration exercise. 
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Figure 4.6b. Observed (dark line) and modelled (grey line) flows. Modelled flows were 

calculated using optimised parameters from the calib2 calibration exercise. Note that 

clipping occurs at 100 m
3
/sec; the simulated peak flow on 20th August 1986 is actually 

405.6 m
3
/sec. 
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Figure 4.6c Observed (dark) and modelled baseflow-filtered flows over calibration 

period. Modelled flows were calculated using parameters achieved through the calib2 

calibration exercise. 
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Figure 4.6d Observed (dark) and modelled (grey) monthly volumes over calibration 

period. Modelled volumes were calculated using parameters achieved through the calib2 

calibration exercise. 
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Figure 4.6e Observed (dark) and modelled (grey) exceedence fractions for various flow 

thresholds over the calibration period. Modelled exceedence fractions were calculated 

using parameters achieved through the calib2 calibration exercise. 

Super Observations 

We will now examine in more detail the flow time series that spans the one year calibration 

period. We will inquire into where the information content of this time series lies, and to what 

aspects of model parameterization this information pertains. This will be done through use of 

the super observation and super parameter concepts referred to in the preceding discussion. 

First we must obtain a Jacobian matrix corresponding to the calibrated parameter set. Open 

file calib1_soln.pst and set NOPTMAX (first variable on the ninth line of this file) to -1. 

With NOPTMAX set to -1 PEST is instructed to fill the Jacobian matrix, and to calculate 

some statistics based on the Jacobian matrix, and then cease execution.   

Run PEST using the command: 

 pest calib1_soln 

to initiate these calculations. 

The SUPOBSPREP utility builds a new PEST control file on the basis of an existing PEST 

control file. In this new PEST control file super observations replace existing observations. 

(SUPOBSPREP stands for ―super observations input dataset preparation‖.) In the present 

instance we do not actually want a new PEST control file (though we will obtain it anyway). 

What really interests us are pictures of the super observations and of the super parameters 

that they inform. 

Run SUPOBSPREP, responding to its prompts as follows. 

 Enter name of existing PEST control file: calib1_soln.pst 

 Enter number of super observations to build from this file: 3 

 

 Enter clipping-enforced pre-compression weights range (<Enter> if 1E6): <Enter> 

 Enable compression/expansion of super observation weights? (y/n): n 

 Enter minimum super-observation weight: 1 

 

 Enter name for new super pest control file: temp.pst 
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 Enter name for super observation matrix file (<Enter> if none): superobs.mat 

 

 Enter name for super parameter matrix file (<Enter> if none): superpar.mat 

The two SUPOBSPREP-generated files that interest us the most are superobs.mat and 

superpar.mat. These are recorded in PEST matrix file format; hence they are amenable to 

further processing by other PEST utilities.  

As was explained in the theory section of this chapter, super observations and super 

parameters are actually normalized orthogonal linear combinations of observations on the one 

hand and of parameters on the other hand. Each such linear combination of observations is 

entirely and uniquely informative of the corresponding combination of parameters; hence 

each super observation is uniquely linked to each super parameter. The magnitude of a 

normalized vector is unity; this must be born in mind when inspecting it. Each component of 

each super observation pertains to an actual observation. Hence, in the present case, the 

components of each super observation can be plotted against time so that the composition of 

each super observation may be more clearly seen. This is done in Figure 4.7a for the first 

three super observations; the modelled flow over the calibration period is also plotted so that 

the total flow can be compared with its partitioning into super observations. The composition 

of the corresponding first 3 super parameters is plotted in Figure 4.7b. Recall that each super 

observation contains the entirety of the information pertaining to its corresponding super 

parameter. As for super observations, super parameters are also normalized so that their 

magnitude is 1.0. The information used to make these plots was obtained from files 

superobs.mat and superpar.mat. 
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Figure 4.7a. The upper part of the figure shows total modelled flow over the calibration 

period. The lower part of the figure shows the decomposition of this flow into its first 

three super observations. The first super observation is plotted as a dark line, the 

second as a grey line and the third as a dashed line.  
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Figure 4.7b. Compositions of the first three super parameters.  

 

Groundwater Model  

The Model Batch File 

The batch file model_calib1 is reproduced as Figure 4.8. This is the file that PEST will run as 

―the model‖ as it adjusts hydraulic conductivity values assigned to pilot point parameters  in 

order to obtain a good fit between modelled and observed heads at observation wells.  

@echo off 

Rem ################################### 

Rem Some intermediate files are deleted. 

Rem ################################### 

 

del hk.ref > nul 

del heads.dat > nul 

 

Rem ################################### 

Rem Now the actual model is run 

Rem ################################### 

 

fac2real < fac2real.in > nul 

mf2k < mf2k.in > nul 

finaltime < finaltime.in > nul 

mod2obs < mod2obs.in > nul 

Figure 4.8 The model batch file model_calib1.bat. 

As was discussed in Chapter 1 of this document, hydraulic conductivity parameterization for 

our synthetic groundwater model takes place on the basis of 104 pilot points. Their locations 

are provided in Figure 1.4. PEST’s task in calibrating the model is to estimate values for the 

hydraulic conductivities that are associated with each of these 104 points. These conductivity 

values are listed in the final column of a file named hk.pts. The FAC2REAL utility (a 

member of the PEST Groundwater Data Utility suite) undertakes spatial interpolation from 

these points to the MODFLOW finite difference grid, writing the hydraulic conductivity real 

array file hk.ref in the process. (FAC2REAL stands for ―interpolation factors to real array‖.) 

It will be recalled that in the previous exercise this same real array file was written by the 

FIELDGEN random field utility. In contrast to FIELDGEN however, the use of pilot points 
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as a parameterization device does not allow representation of cell-by-cell heterogeneity, as 

hydraulic property variability is only allowed on a pilot-point-by-pilot-point basis. 

MODFLOW calculates the piezometric head at every active cell of the finite-difference grid. 

Spatial interpolation from MODFLOW-calculated heads arrays to the sites at which head 

measurements were actually taken is implemented using the MOD2OBS utility. (MOD2OBS 

stands for ―model to observations‖; like FAC2REAL it is also a member of the Groundwater 

Data Utility suite.) MOD2OBS reads the MODFLOW-generated binary heads file heads.dat 

and interpolates to wells whose coordinates are supplied in file wells.crd.  

The following points are also noteworthy. 

 FAC2REAL implements spatial interpolation using kriging. In the present case 

kriging factors are housed in a file named factors.dat which FAC2REAL reads in 

order to access these factors. factors.dat was written by another Groundwater Data 

Utility program named PPK2FAC. (PPK2FAC stands for pilot points to kriging 

factors‖.) 

 As is described in documentation to the PEST Groundwater Data Utilities suite, 

MOD2OBS not only undertakes spatial interpolation. Where a model is transient it 

also undertakes temporal interpolation to the times at which measurements were 

actually taken. Its task is to read a MODFLOW/MT3D/SEAWAT head or 

concentration file and to calculate the model-generated counterparts to an historical 

head or concentration dataset. In the present case of course, our ―field data‖ are 

synthetic. They are housed in a file named observ.smp. In accordance with user 

instructions provided in the re-directed keyboard input file mod2obs.in, MOD2OBS 

reads observ.smp shortly after its execution is initiated. 

 Many other programs that facilitate PEST usage with MODFLOW and other models 

are provided with the Groundwater Data Utility suite. Some of these facilitate 

automatic PEST input dataset construction. Others assist in formulation of a 

multicomponent objective function. Different objective function components can 

include heads, concentrations, budget terms, head and concentration ratios and 

differences, and other raw or processed data types.  

The PEST Control File 

A PEST control file named calib1.pst has been provided. This file was written by the 

PESTPREP1 utility from the Groundwater Data Utility suite. (PESTPREP1 stands for PEST 

input dataset preparation.) PESTPREP1 also wrote the instruction file model_smp.ins that is 

cited in calib1.pst. The instructions contained in model_smp.ins enable PEST to read the 

MOD2OBS output file model.smp. 

Inspection of file calib1.pst reveals the following. 

 PEST is asked to solve the inverse problem of model calibration using singular value 

decomposition. Truncation occurs at a singular value that guarantees that the square 

of the ratio of the lowest to highest singular value of the weighted Jacobian matrix 

that is retained in the inversion process is greater than 5×10
-7

. See the EIGTHRESH 

variable which is placed at the end of the second line of data within the ―singular 

value decomposition‖ section of this file. 

 The initial value of the Marquardt lambda (i.e. the RLAMBDA1 variable) is set to 

10.0. The Marquardt lambda adjustment factor RLAMFAC is set to -3.0. The latter 

setting allows rapid adjustment of the Marquardt lambda during the parameter 
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estimation process. RLAMBDA1 and RLAMFAC occupy the first and third positions 

on the sixth line of the PEST control file. 

 Although not part of the calibration process, two predictions of interest, namely the 

part_time and part_east predictions (these being the particle travel time to the 

southern model boundary and the easting of its point of emergence there) are included 

in the ―observation data‖ section of the PEST control file. Inclusion of these quantities 

in the PEST input dataset allows us to monitor them easily as parameter values 

change. As will be seen in the next chapter, inclusion of these predictions as 

―observations‖ (whose effect on the calibration process is nullified by endowing them 

with weights of zero) also allows us to easily obtain the sensitivities of these 

predictions to parameter values; this will be useful when carrying out linear 

uncertainty analysis. 

 Weights on all head observations are set to 10.0. This is the inverse of 0.1 m, the latter 

being the standard deviation of noise which is presumed to be associated with each 

head measurement. 

Tikhonov regularization will now be added to the PEST control file. This is most easily 

accomplished using the ADDREG1 utility. (ADDREG1 stands for ―add regularisation‖.) 

ADDREG1 writes a prior information equation for each parameter. This equation is recorded 

in the ―prior information‖ section of the PEST control file; ADDREG1 creates this section if 

it is not already present. In these equations the value of each parameter is matched to its 

initial value. (It is, of course, assumed that user-supplied initial values are pre-calibration 

preferred parameter values.) A weight of 1.0 is assigned to each new prior information 

equation. 

Run ADDREG1 as follows. 

 addreg1 calib1.pst calib1r.pst 

An inspection of the new PEST control file calib1r.pst reveals that it includes both a ―prior 

information‖ section and a ―regularisation‖ section. The first line of the ―regularisation‖ 

section is as follows: 

   1.000000E-10    1.050000E-10    0.1000000     

These are the regularisation control variables PHIMLIM, PHIMACCEPT and FRACPHIM. 

The first of these defines the target measurement objective function; the second should be set 

slightly above that. In the present case the expected value of each of the 12 residuals featured 

in the calibration process should be about 0.1 as this is the level of noise associated with each 

head measurement. (A ―residual‖ is the difference between an observation value and its 

model-generated counterpart.) With a weight of 10 supplied for each of these observations, 

the expected value of each weighted residual is thus 1.0, so that the expected value of the 

measurement objective function is about 12. So alter the first line of the ―regularisation‖ 

section of the PEST control file calib1r.pst so that it is as follows. 

   12.0    12.1   0.1000000     

Parameter Covariance Matrix 

As was discussed earlier in this document, the ―reality‖ hydraulic conductivity field is 

characterized by a variogram whose properties are recorded in the ―structure file‖ struct.dat. 

If we know something about the nature of parameter field variability, the Tikhonov 

regularization process can be improved through use of this knowledge. Before running PEST 

to calibrate the model, we will make this improvement. We will do the following. 
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 First we will build a covariance matrix of innate parameter variability (i.e. a C(k) 

matrix) using the variogram specifications in file struct.dat. 

 Then we will inform PEST that it must use this matrix when constraining pilot point 

parameter values to respect their preferred values. Thus if PEST must introduce 

heterogeneity to the pilot point parameter field in order to allow the model to replicate 

the heads measured in observation wells, this heterogeneity should arise in ways that 

are most geologically reasonable. 

The PPCOV Groundwater Data Utility (PPCOV stands for pilot points covariance matrix) 

can be used to build a covariance matrix for our pilot point parameters. Run this utility by 

typing its name at the screen prompt. Respond to PPCOV’s prompts as follows. 

 Enter name of pilot points file: hk.pts 

  - data for 104 pilot points read from pilot points file hk.pts 

 

 Enter minimum allowable separation for points in same zone: 0 

 

 Enter name of structure file: struct.dat 

 

 Enter structure to use for pilot point zone 1: structure1 

 

 Enter name for output matrix file: hk_cov.mat 

 Enter pilot point prefix for parameter name (<Enter> if none): k_ 

The covariance matrix recorded in file hk_cov.mat respects PEST matrix file format. To 

instruct PEST to use this matrix in conjunction with the prior information that ADDREG1 

provided for pilot point parameters, alter the ―observation groups‖ section of the PEST 

control file calib1r.pst so that it appears as below. The text which you must add to this 

section is shown bold and highlighted. 

* observation groups 

 heads 

 time 

 distance 

 regul_k  hk_cov.mat 

Now check your work with PESTCHEK by tying the command: 

 PESTCHEK calib1r 

and then run PEST using the command: 

PEST calib1r 

PEST ceases execution after completing 322 model runs (don’t worry if it is a little different 

on your machine); an inspection of screen output or the run record file calib1r.rec reveals that 

the desired measurement objective function of 12.0 has been obtained (or a number very 

close to it). The calibrated parameter field is depicted in Figure 4.9.  
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Figure 4.9 Calibrated parameter field. Also shown is the particle path calculated using 

the calibrated parameter field. The particle travel time is 6864 days. 

As usual, a PEST control file which features optimised parameters as initial parameters can 

be built using the PARREP utility. Run PARREP as follows.  

 parrep calib1r.par calib1r.pst calib1r_soln.pst 

If you wish, set NOPTMAX to 0 in this file and then run PEST, thereby undertaking one 

model run on the basis of optimized parameters in order to obtain model outputs calculated 

on the basis of these optimised parameters. An inspection of file calib1r_soln.rec (the run 

record file associated with this PEST control file) or calib1r_soln.res (the residuals file) will 

reveal that the calibrated model predicts a particle travel time of about 6864 days. Given that 

the real travel time is actually 3256 days, this prediction is terribly wrong. However this 

should not constitute grounds for condemnation of the model. As has already been discussed, 

and as will be discussed further in the next chapter, there is no mathematical reason why a 

calibrated model should provide the correct answer. This is especially so in the present case 

for, as will be seen, the information content of head measurements provides very few 

constraints on parameter combinations which determine particle movement. Recall that a 

model is only worthy of condemnation if the uncertainty intervals calculated using the model 

fail to encompass reality; an ability to predict reality is a property that should be expected of 

no model. 

Dimensions of Solution Space - the SUPCALC Utility 

Model calibration using the highly-efficient SVD-assist methodology will now be 

demonstrated. But first the PEST SUPCALC utility will be employed to suggest a 

dimensionality for the solution space. (SUPCALC stands for ―number of super parameters 

calculation‖.) When undertaking SVD-assisted parameter estimation, only as many super 

parameters need be estimated as there are dimensions in the solution space. (In practice more 

than this should be estimated if resources are available as protection against model 
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nonlinearity, with estimation of super parameters implemented using truncated SVD to 

maintain numerical stability.)  

SUPCALC uses a similar equation to (4.10) to estimate optimal solution space 

dimensionality. It obtains a C(k) matrix from the user, or optionally estimates C(k) itself 

from user-supplied parameter bounds. In the present case we will supply a C(k) matrix 

ourselves. It computes C(ε) from observation weights, in conjunction with the expected value 

of the measurement objective function. In doing so it uses the fact that the latter should 

approximately equal the number of non-zero-weighted observations if the weight associated 

with each observation is supplied as the inverse of the standard deviation of noise associated 

with that observation. SUPCALC calculates the pre- and post-calibration error variance of 

each new super parameter as the dimensionality of the solution space is increased. Pre-

calibration error variance is computed on the basis of C(k) alone using a formula similar to 

(3.5). The calibration solution space is deemed to be spanned only by those columns of the V 

matrix of equation (4.4) for which the post-calibration error variance of corresponding super 

parameters is smaller than their pre-calibration variance. SUPCALC also calculates an upper 

bound for solution space dimensionality as that which leads to a highest-to-lowest squared 

singular value ratio of about 5×10
7
. 

PEST provides the user with many means of supplying the C(k) matrix. In the present case 

the covariance matrix of pre-calibration parameter uncertainty has already been calculated 

using the PPCOV utility; recall that it is housed in file hk_cov.mat. In other modelling 

contexts there may be many types of parameters employed in the calibration process, each 

with a covariance matrix of its own. These can be collectively furnished to PEST through a 

―parameter uncertainty file‖.  File param.unc is a simple example of such a file. As there is 

only one parameter type featured in the present calibration process, it cites only one 

covariance matrix. In practice it may cite many of these. A parameter uncertainty file also 

allows the pre-calibration uncertainty of one or many parameters to be defined simply 

through provision of their individual standard deviations. 

Run SUPCALC as follows. 

 Enter name of PEST control file: calib1r.pst 

 Enter expected value of measurement objective function: 12 

 

 To conduct SVD on Q^(1/2)X  - enter 1 

 To conduct SVD on XtQX      - enter 2 

 Enter your choice: 1 

 

 Use uncertainty file or bounds to specify parameter variability?  [u/b]: u 

 Enter name of parameter uncertainty file: param.unc 

 

 Enter name for eigenvector gain/loss output file: temp.dat 

SUPCALC records a recommended usage of 12 super parameters to the screen. 

SVD-Assist 

The SVDAPREP utility is used to build a PEST input dataset based on super parameters. Run 

SVDAPREP, responding to its prompts in the manner shown below; most of the responses 

shown below are in fact acceptances of SVDAPREP defaults. 

 Enter name of existing PEST control file: calib1r.pst 

 Use pre-defined super-parameter file? [y/n]  (<Enter> if "no"): <Enter> 

 For computation of super parameters:- 

    if SVD on Q^(1/2)X                - enter 1 

    if SVD on XtQX                    - enter 2 

    if LSQR without orthogonalisation - enter 3 
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    if LSQR with orthogonalisation    - enter 4 

 Enter your choice (<Enter> if 1): 1 

 Enter number of super parameters to estimate: 12 

 Enter name for new super pest control file: calib1r_svda.pst 

 Enter offset for super parameters  (<Enter> if 10): <Enter> 

 Enter value for RELPARMAX (<Enter> if 0.1): <Enter> 

 Write multiple BPA, JCO, REI, none [b/j/r/n] files (<Enter> if "n")? <Enter> 

 Parameter scale adjustment [SVDA_SCALADJ] setting (<Enter> if 2): <Enter> 

 Make new model batch file silent or verbose?  [s/v] (<Enter> if "s") : <Enter> 

 Automatic calc. of 1st itn. super param. derivs?  [y/n] (<Enter> if "y") : <Enter> 

SVDAPREP writes a new PEST control file named calib1r_svda.pst based on super 

parameters. Model calibration can now be undertaken using the command: 

 pest calib1r_svda 

Monitor PEST’s screen output as it runs. It is apparent that the target measurement objective 

function is achieved in only 35 model runs! 

A before, the PARREP utility will be used to store optimized parameter values in a suitable 

PEST control file for safe-keeping. Run PARREP as follows. 

 parrep calib1r.bpa calib1r.pst calib1r_soln_svda.pst 

Notice that, even though PEST estimates super-parameters when undertaking SVD-assisted 

inversion, it still records optimized values of base parameters. These are recorded in 

parameter value file format in a file with an extension of ―.bpa‖. Now set NOPTMAX to zero 

in file calib1r_soln_svda.pst and run PEST to see the value of the travel time prediction. It is 

6889 days. The calibrated parameter field and particle track are very similar to those 

presented in Figure 4.9. 

See PEST documentation and other PEST workshops for a more complete description of 

PEST calibration techniques. 

Parameter Identifiability  

We will conclude this chapter by computing the identifiability of each of the 104 pilot point 

parameters involved in this groundwater model calibration exercise. Because the inverse 

problem of model calibration is ill-posed the dimensionality of the solution space is less than 

that of total parameter space. In fact the solution space has 12 dimensions, whereas parameter 

space has 104 dimensions. It follows that many, if not all, parameters will have an 

indentifiability of less than 1.0; some may have identifiabilities approaching zero. 

Before computing identifiability we will compute a new Jacobian matrix for the present 

problem using optimized parameter values. Recall that these have been recorded as initial 

parameter values in the PEST control file calib1r_soln.pst. (Of course, another similar set has 

been recorded in file calib1r_soln_svda.pst. However we will use the former set; the choice is 

quite arbitrary really.) Open this file with a text editor, changing NOPTMAX (first variable 

on the 9th line) from 0 to -2. This NOPTMAX setting instructs PEST to terminate execution 

as soon as it has completed calculation of the Jacobian matrix based on initial parameter 

values. 

Once NOPTMAX has been changed to -2, run PEST using the command: 

 pest calib1r_soln 

The new Jacobian matrix is stored in binary format in file calib1r_soln.jco. If desired, it can 

be re-written in ASCII (i.e. text) format using either of the JACWRIT or JCO2MAT utilities. 

Sensitivities with respect to parameters of any observations (including the two dummy 



Getting Information out of Data  73 

part_time and part_east observations which are actually predictions) can be extracted from 

calib1r_soln.jco using the JROW2VEC utility. 

To compute parameter identifiability, run the IDENTPAR utility as follows. (IDENTPAR 

stands for ―parameter identifiability‖.) 

 identpar calib1r_soln 12 null null ident.dat 

File ident.dat lists the direction cosine of the projection of each parameter onto each of the 

columns of the V matrix which span the calibration solution space; recall that these columns 

are unit orthogonal vectors which are the axes of parameter solution space. In its second-to-

last column ident.dat also lists total parameter identifiability (which is the direction cosine 

between each parameter and its projection onto the entire solution space).  

Identifiability can be displayed in a number of different ways. In Figure 4.10a the 

identifiabilities of some parameters are displayed as a bar chart. 
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Figure 4.10a. Identifiabilities of some hydraulic conductivity pilot point parameters. 

Parameter names are derived from pilot point names through use of a “k_” prefix. Pilot 

point names and locations are provided in file hk.pts and plotted in Figure 4.10b. 
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Figure 4.10b. Names and locations of pilot points. 

Because pilot point parameters have a spatial setting, it is sometimes instructive to plot their 

identifiabilities in space. With a little cutting and pasting (pilot point coordinates are available 

in file hk.pts) followed by importation into SURFER for contouring, the following plot is 

easily produced. Note the enhanced parameter identifiability between measurement wells in 

the direction of groundwater flow, and between the most southern row of wells and the 

southern fixed head model boundary. 
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Figure 4.11 Identifiability as a function of position throughout the model domain. 

Darker coloration indicates greater identifiability, with a maximum of 0.58 occurring at 

the southern corners of the domain. Identifiability is reduced to almost zero north of the 

most northern row of measurement wells. 
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5. How Wrong Can a Prediction Be? Linear Analysis 

Error and Uncertainty  

Parameter and predictive uncertainty following imposition of constraints on parameter values 

imposed by the necessity for a model to reproduce historical system behaviour, is described 

by Bayes equation. It is repeated here (in a slightly different form from that presented in 

equation 2.3) for completeness. 

  
   

    kkkh

kkh
hk

d|

|
|

PP

PP
P


        (5.1) 

As before, the vector h represents measurements of system state (referred to herein as the 

―calibration dataset‖) while the vector k represents parameters. The symbol P() represents 

probability. P(k) represents the prior probability of parameters k while P(k|h) is the posterior 

probability of parameters k; the latter is the probability of parameters k conditional upon 

information encapsulated in h. Meanwhile P(h|k) represents the likelihood function, this 

increasing with the extent to which model-to-measurement misfit (defined in a way that 

accounts for the stochastic properties of measurement noise) decreases. The denominator of 

the right hand side of equation (5.1) is required for normalization so that the area under the 

posterior probability distribution is 1.0. In implementation of Bayes equation, the model is 

employed for calculation of the likelihood term. 

In everyday modelling practice direct use of Bayes equation is difficult. This arises from the 

numerical difficulties involved in handling probability distributions, especially where they do 

not have analytical formulations. Unfortunately, even if a prior probability distribution can be 

given an analytical formulation (such as multi-uniform or multi-normal) the nonlinear 

behaviour of most models will ensure that the posterior parameter probability distribution 

does not have an analytical formulation.  

Another problem that arises in assessing the uncertainty that is associated with the 

environmental future is that models are imperfect simulators of environmental system 

behaviour. An immediate repercussion of this is that a model’s calculation of the likelihood 

function is likely to be in error. This is inescapable in most calibration contexts, so that most 

model-to-measurement misfit on most occasions arises from model imperfections. To a 

limited extent the nature of misfit engendered by model imperfections can be assessed 

through the history-matching process and assimilated into Bayesian characterization of 

posterior parameter probabilities. However the effects of model imperfections on predictions 

of interest cannot be assessed in this way, unless those predictions are of identical character, 

and occur under identical conditions, to those which prevailed when measurements 

comprising the calibration dataset were made. Unfortunately, this facet of model structural 

error therefore affects predictive uncertainty in a manner that constitutes an often unknown 

term that must be added to any model prediction, and thus requires that the probability 

distribution of that prediction as assessed through Bayesian analysis be modified in an 

unknown way. 

Because of the numerical difficulties involved in working with probability distributions, 

particularly when these must be assessed using complex models with large run times, 

everyday model usage normally involves a two step process of calibration followed by 

parameter and predictive uncertainty analysis. Ideally, as has already been discussed, the 

calibration process should yield parameters that are the expected values (in the statistical 
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sense) of real-world parameters. Predictions should be the same. Pursuit of this goal normally 

requires a highly parameterized approach to inversion accompanied by the use of 

mathematical regularisation to achieve uniqueness of the calibrated parameter field. However 

there are numerical and computational limits on the number of parameters which can be 

included in the calibration process. Hence, in practice, even where calibration is implemented 

using regularized inversion, many of a model’s parameters will be, of necessity, lumped to at 

least some extent while others will be fixed by the user at reasonable values and remain 

unadjusted through the calibration process. In proportion to the extent to which reality 

remains unlumped, and that fixed parameters are set at incorrect values by the user, a model 

acquires defects. These defects are in addition to those which arise from the imperfect nature 

of the model as a simulator of real-world environmental processes. Ultimately, model defects 

induce errors in parameters estimated through the calibration process, and in predictions 

made by the model. Errors in the latter arise both from their dependencies on error-prone 

parameters, and from model defects as they directly affect these predictions. 

In light of the above, it is probably better to use the term ―error‖ rather than ―uncertainty‖ 

when discussing environmental modelling. Parameters estimated through the calibration 

process are in error by virtue of the fact that their estimation necessarily involves 

regularisation (i.e. simplification). The calibration process must then strive to achieve 

estimates of parameters which are of minimum error variance. As was discussed in the 

preceding chapter, where calibration is undertaken through the agency of highly 

parameterized inversion, the resolution matrix that describes the simplification that underpins 

the quest for parameter uniqueness is available as a by-product of the regularized inversion 

process. To some extent then, post calibration parameter error variance can be calculated, and 

indeed minimized. The same is not true where regularization is undertaken manually; an 

inability to calculate and minimize the potential for error arising from the necessity to 

simplify in order to achieve uniqueness is one of the principle drawbacks of its use. 

In practice the situation is more difficult than this. The imperfect nature of models engenders 

structural noise. This can add to the propensity for parameter error by: 

 decreasing the dimensionality of the solution space at which parameter error variance 

is minimized, thereby increasing the first term on the right of equation 4.10; 

 increasing the model-to-measurement misfit contribution to the potential for 

parameter error described by the second term on the right of equation 4.10. 

To make matters worse, the increased propensity for parameter error incurred by model 

structural defects is virtually impossible to quantify, though as Doherty and Welter (2010) 

point out, steps can be taken to reduce it through intelligent formulation of the calibration 

objective function. However what is at once disturbing and comforting is that this increased 

penchant for parameter error may or may not result in an increased propensity for predictive 

error (in fact the opposite may be the case), this depending entirely on the nature of the 

prediction and its dependencies on model parameters.  

Where predictions are similar in character to observations employed in the calibration 

process, and where the calibration process allows parameters to adopt values that compensate 

for model imperfections as they affect its ability to simulate those aspects of environmental 

behaviour that are recorded in measurements comprising the calibration dataset, the accrual 

of parameter error through the calibration process can be entirely beneficial to the making of 

those types of predictions. In other cases, however, particularly those where predictions are of 

a different character to observations comprising the calibration dataset, the accrual of 

parameter error in this way should be assiduously avoided in pursuit of the goal of 
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minimization of predictive error variance. However this variance will probably be inflated 

beyond its theoretical minimum as the prediction must then be made by a model whose 

parameters are less constrained by the calibration dataset than they would otherwise be, this 

being born of the necessity to eschew too low a level of calibration misfit in order to avoid 

any hint of parameter surrogacy. Total predictive error will, or course, include another term, 

this being that which describes the model’s imperfections in relation to this prediction. 

Neither this term, nor its stochastic distribution, will in general be known in contexts where a 

prediction is different in character from members of the calibration dataset, for the model’s 

integrity (or lack thereof) in making predictions of this type will not have been explored 

through the calibration process.  

This rather bleak picture does not provide sufficient grounds for giving up on attempts to 

evaluate model predictive uncertainty. However, it does suggest the following. 

 As stated above, it is probably better to employ the concept of error rather than 

uncertainty when working in the context of environmental models. Despite the fact 

that the two terms are often used interchangeably (including in the present document), 

the distinction should be born in mind. 

 The potential for error in a prediction made by an environmental model will always be 

greater than its inherent uncertainty. The latter is notionally calculable through 

implementing Bayesian analysis in conjunction with a perfect model. As real-world 

models are imperfect, their predictions have a potential for error that is greater than 

the inherent uncertainty of those predictions, this arising out of the necessity to make 

predictions, and to analyse their potential for wrongness, using an imperfect model. 

 Uncertain parameters lead to uncertain predictions. However errors in parameters that 

compensate for imperfections in a model’s simulation capabilities may or may not 

increase the potential for error in predictions made by that same model. Some models 

are explicitly designed for parameter compensation to work in a prediction’s favour, 

this normally requiring that predictions of interest resemble observations that 

comprise the dataset through which that model is calibrated. Other models are not 

designed in this way, being specified as ―physically based‖. However no ―physically 

based‖ model is perfect, and hence at least some degree of parameter compensation is 

unavoidable. This may or may not be a bad thing, as it may be possible to ―tune‖ a 

model to make good predictions of one type (while unavoidably de-tuning its ability 

to predictions of other types). This raises the spectre of prediction-specific calibration. 

 It will rarely, if ever, be possible to quantify either predictive uncertainty or predictive 

error variance with a high level of precision. Thus it will rarely, if ever, be possible to 

make statements such as ―these thresholds mark the 95% confidence interval of this 

prediction‖ or ―there is only a 5% chance that such an event will occur‖ in the 

environmental modelling context. Assessment of model predictive uncertainty/error 

necessarily involves a high degree of subjectivity. 

The Predictive Error Term  

As even a complex, physically-based model is an imperfect simulator of environmental 

reality, any prediction made by such a model will contain a component of error that reflects 

its imperfections. To some extent it may be possible to ―calibrate out‖ at least some model 

imperfections in some circumstances. As already discussed, with care this may be legitimate 

where predictions of interest resemble observations used in the calibration process. 

Alternatively, if model-to-measurement misfit cannot legitimately be reduced in this manner 
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through allowing some parameters to ―soak up‖ structural noise, the resulting level of model-

to-measurement misfit provides quantification of the penchant for error in model predictions 

that are similar in nature to model outputs used in the calibration process. However in cases 

where a prediction does not resemble model outputs used in the calibration process it is not 

possible to quantify the contribution that model imperfections make to predictive error. In 

this case, recognition of this contribution to model predictive error can only take the form of 

a judiciously-chosen ―engineering safety margin‖ added to other components of model 

predictive error potential that can be at least partially quantified. 

It is beyond the scope of this document to discuss the means through which a structurally-

induced model predictive error correction term should be formulated in different modelling 

contexts. Indeed, it is the author’s opinion that this is a problem that is yet to be properly 

addressed and is therefore deserving of research. For the moment however, it is 

recommended that this predictive structural error term be treated (notionally if not actually) 

as a parameter. There will be cases where this parameter is directly estimable through the 

calibration process. In other cases it will be subjectively inferable through studying 

calibration misfit as it pertains to different observation types at different locations. In still 

other cases its size will be purely a matter of educated guesswork. 

As a ―parameter‖ (and an uncertain one at that) the error term which must be added to a 

model prediction has an initial and ―estimated‖ value of zero, this being an outcome of the 

fact that it does not receive information in a formal way through the calibration process, and 

hence lies entirely in the null space. This parameter can be included in the existing set of 

parameters comprising the vector k. Its uncertainty (as inferred through the calibration 

process or assessed subjectively) is then included in the overall C(k) matrix of parameter 

uncertainty along with the other parameters on which a model prediction is dependent.  

If the above strategy is followed for accommodation of model predictive structural noise, no 

further modifications to any of the linear analysis methodologies presented in the present 

chapter, or to any of the nonlinear analysis methodologies presented in the following chapter 

are then required. The ―model‖ as it applies to the prediction is simply enhanced with this 

extra parameter - the value of this parameter being added to the model prediction with which 

it is associated.  

In setting up PEST input files for linear and nonlinear analysis, the predictive structural noise 

parameter can be included in the PEST control file as a parameter which no component of the 

model actually reads when the model is run under calibration conditions. In this way its 

uncertainty is propagated through to predictive uncertainty, unaffected by the calibration 

process. The parameter is only used under predictive conditions as an additive term to a 

prediction. Different parameters of this type can be used with different predictions. In certain 

applications they may be specified as showing statistical correlation with each other, or even 

with physically-based parameters, this being done through assignment of appropriate values 

to pertinent elements of the C(k) matrix of innate parameter variability supplied by the user. 

Linear Parameter and Predictive Uncertainty Analysis 

Parameter Uncertainty  

An uncertain variable is characterized by a probability distribution. The width of a probability 

distribution can be characterized by its variance, this being the square of its standard 

deviation. An uncertain vector represents a multiplicity of individual uncertain variables. The 

uncertainty of a vector is characterized by a multi-component probability distribution. The 

width of this distribution in any direction of parameter space, and the degree to which random 
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elements of the vector exhibit statistical inter-relatedness can be characterized by an m × m 

covariance matrix, where m is the dimension of the vector (i.e. the number of elements 

contained in the vector). To date in this document, covariance matrices C(k) and C(ε) have 

characterized the prior probability distribution of the vector of parameters k, and the 

probability distribution of the vector ε of noise associated with measurements comprising the 

calibration dataset h respectively.  

Let C'(k) denote the covariance matrix that is associated with the posterior parameter 

probability distribution. This is the probability distribution that appears on the left side of 

Bayes equation, sometimes referred to herein as the ―post-calibration‖ parameter probability 

distribution. Suppose also that the following conditions are met: 

 Model outputs are linear with respect to parameters so that the action of the model on 

its parameters can be represented by a matrix (which we denote as Z): 

 The prior parameter probability distribution is multiGaussian; 

 Measurement noise is also characterized by a multiGaussian distribution. 

It can be shown that under these circumstances C'(k) can be calculated using either of the 

following two formulas (which are mathematically equivalent). 

 C'(k) = [Z
t
C

-1
(ε)Z + C

-1
(k)]

-1
       (5.2a) 

 C'(k) = C(k) - C(k)Z
t
[ZC(k)Z

t
 + C(ε)]

-1
ZC(k)    (5.2b) 

Use of the first of these two formulas is more computationally efficient when the number of 

observations exceeds the number of parameters, whereas use of the second is more efficient 

when the opposite is the case. This follows from the dimensionality of the matrix which must 

be inverted in each case.  

Predictive Uncertainty 

Let s be a model prediction of interest. Let the elements of the vector y denote the 

sensitivities of this prediction to the elements of the parameter vector k. As was previously 

expressed as equation (3.5), the prior variance of predictive uncertainty (i.e. the square of the 

standard deviation of uncertainty associated with the prediction s) is given by:  

 ζ
2

s = y
t
C(k)y         (5.3a) 

Obviously the posterior variance of predictive uncertainty ζ'
2

s is expressed as: 

 ζ'
2

s = y
t
C'(k)y         (5.3b) 

From (5.2) it then follows that: 
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t
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C(k)Z
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[ZC(k)Z
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y+ C(ε)]

-1
ZC(k)y    (5.4b) 

These two equations are equivalent; however (5.4b) is particularly illustrative. The first term 

on the right of this equation is the prior uncertainty variance. The second term is the amount 

by which this term is reduced through the history-matching process. The matrix that appears 

between y
t
 and y in this second term can be shown to be positive semidefinite. Hence history-

matching can never lead to an increase in the uncertainty of a prediction. At worst it can lead 
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to zero reduction in prior predictive uncertainty; at best it can lead to a considerable reduction 

in this uncertainty. It all depends on the information content of the calibration dataset with 

respect to parameters to which the prediction is sensitive. (Note that, as we shall see, the 

same does not apply to post-calibration predictive error; it is indeed possible for predictive 

error to be higher after calibration than before calibration.) 

Equation (5.4) can be used to calculate the post-calibration uncertainty of an individual 

parameter if desired. In this case the y vector is comprised of zero-valued elements, except 

for the element pertaining to the parameter whose uncertainty is desired. This element is 

assigned a value of 1.0. 

Linear Parameter and Predictive Error Analysis 

Parameter Error 

Equation (4.10) depicts the covariance matrix of post-calibration parameter error. It is 

repeated below as equation (5.5). 

 C(k - k) = (I - R)C(k)(I - R)
t
 + GC(ε)G

t
     (5.5) 

Recall that G is the matrix which describes the means through which the calibrated 

parameters set k is computed from the observation dataset h while R is the resolution matrix. 

Both of these are ultimately functions of the model matrix Z. Hence equations (5.5) and (5.2) 

involve the same components; they are just manipulated in different ways. 

Predictive Error 

As before, let a prediction s be calculable from model parameters k through the linear 

relationship: 

 s=y
t
k          (5.6a) 

The prediction calculated using the calibrated model is given by: 

 s=y
t
k          (5.6b) 

where k is the calibrated parameter set. Predictive error is given by the difference between 

these two quantities. That is: 

 s-s=y
t
(k-k)         (5.7) 

Applying equation (3.4) to equation (5.5), predictive error variance is obtained as: 

 ζ
2

s-s = y
t
(I - R)C(k)(I - R)

t
y +y

t
GC(ε)G

t
y     (5.8) 

Pre-calibration predictive error variance can be formulated as a special case of equation (5.8). 

In this case both G and R are zero so that equation (5.8) becomes equation (5.3a). Thus pre-

calibration predictive error variance is the same as the pre-calibration variance of predictive 

uncertainty. 

Where a model is a perfect simulator of reality, it can be shown that post-calibration 

predictive error variance as calculated using equation (5.8) is always greater than post-

calibration predictive uncertainty variance, except in the special case where:  

 calibration is undertaken using Tikhonov regularization; 

 Tikhonov prior information equations specify that the preferred value of each 

parameter is equal to its pre-calibration value of minimum error variance; 
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 the weight matrix applied to Tikhonov prior information constraints is equal to C
-1

(k), 

where C(k) is the covariance matrix of the prior parameter distribution; and 

 the weight matrix applied to the calibration dataset is equal to C
-1

(ε) where C(ε) is the 

covariance matrix of measurement noise. 

These conditions will rarely be met in real-world modelling practice for a variety of reasons, 

including the following. 

 Neither C(k) nor C(ε) is perfectly known. 

 Numerical stability of the inversion process will normally require that singular value 

decomposition play some role in calculation of the parameter set which is deemed to 

calibrate a model; use of Tikhonov inversion alone does not provide the same 

unequivocal guarantee of numerical stability. 

 In all modelling contexts, at least some degree of regularisation is encompassed in the 

simplifications required to build a model and to furnish it with a useable 

parameterization scheme; no resolution matrix is available for this type of 

regularisation, though it may make a significant contribution to the potential for 

parameter and predictive error. 

It follows that predictive error variance will always be greater than predictive uncertainty 

variance. Nevertheless the goal of a well-implemented calibration strategy should be to 

minimize the difference between these two.  

For the special case where calibration is undertaken using truncated singular value 

decomposition, and where the covariance matrices of prior parameter uncertainty and 

measurement noise are given by equations (4.11) and (4.12), equation (5.8) becomes: 

 ζ
2

s-s = ζ
2
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t
V2V

t
2y + ζ

2
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t
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-2
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t
1y      (5.9) 

The first term of equation (5.9) falls as the number of singular values used in the inversion 

process increases, whereas the latter term rises. Where truncation occurs at zero singular 

values (which is equivalent to not calibrating at all) then ζ
2

s-s is equal to ζ
2

ky
t
y; this of course 

is the pre-calibration uncertainty of the prediction. Where too many singular values are 

employed in the inversion process the second term of (5.9) becomes very high, thereby 

showing the deleterious effects of over-fitting. If predictive error variance is plotted against 

number of singular values used in the calibration process, a graph such as the following 

should result. (As will be shown later in this chapter, this can be obtained using the PEST 

PREDVAR1 utility.) 
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Figure 5.1 Predictive error variance as a function of number of singular values used in 

the inversion process. 

Moore and Doherty (2005) show that graphs such as that depicted in Figure 5.1 can also be 

drawn to represent the effects on predictive error variance of varying the strength of 

application of regularization devices other than singular value decomposition. Irrespective of 

how a model is calibrated, a modeller is always faced with the decision on how strongly to 

apply his/her chosen regularisation scheme. The horizontal axis in Figure 5.1 can be 

considered to be the inverse of the strength of application of regularisation. When 

regularisation is ―total‖, and hence pre-calibration preferred parameter values are perfectly 

respected, the potential for predictive error is equal to pre-calibration predictive uncertainty. 

Where parameters are actually adjusted through the calibration process, but where a modeller 

is too heavy-handed in application of regularisation constraints, information extracted from 

the calibration dataset is less than the information that resides in it; the full potential of the 

calibration process to reduce predictive error variance is therefore not achieved. On the other 

hand, where too good a fit between model outputs and field measurements is sought, 

measurement noise is amplified in estimation of too many parameters - some of which should 

not be estimated at all because the information content of the calibration dataset with respect 

to these parameters is just too weak. In this case the potential for error in predictions made by 

the calibrated model may actually exceed the potential for error in predictions that would 

have been made if the model had not been calibrated at all!  

Obviously optimality of regularisation is achieved at the minimum of the error variance curve 

of Figure 5.1. 

Note that equations (5.8) and (5.9) can be used to calculate the error variance of an individual 

parameter if desired. In this case the y vector is composed of zero-valued elements, except for 

the element pertaining to the parameter whose uncertainty is desired; this element should be 

given a value of 1. 

Over-Determined Parameter Estimation 

Where the calibration problem is well-posed, parameters can be estimated using the standard 

equation for Gauss-Marquardt-Levenberg parameter estimation: 
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 k = (Z
t
QZ)

-1
Z

t
h        (5.10) 

It is easily shown that solution of the inverse problem through singular value decomposition 

leads to the same k; however no truncation is necessary under these circumstances. Parameter 

and predictive error variance are therefore calculable using equations (5.5) and (5.8) 

respectively with R equal to I. For the special case where Q is chosen to be the inverse of 

C(ε) (the covariance matrix of measurement noise) the formula for the post-calibration 

covariance matrix of parameter error becomes particularly simple: 

 C(k-k) = (Z
t
QZ)

-1
        (5.11) 

Where the noise associated with different measurements is statistically independent (as is 

often assumed to be the case) Q is diagonal. In this case use of a weighting matrix can be 

replaced by the use of individual measurement weights. If using PEST, a weighting strategy 

which assigns to each measurement a weight that is equal to the inverse of the standard 

deviation of noise associated with that measurement ensures a Q matrix which is the inverse 

of C(ε). 

Where prior information on parameter values is weak so that C(k) specifies large pre-

calibration uncertainties, equation (5.2a) becomes:  

 C'(k) = (Z
t
QZ)

-1
        (5.12) 

Hence under these circumstances post-calibration parameter and predictive uncertainty 

variance become equivalent to post-calibration parameter and predictive error variance.  

The covariance matrix appearing in equations (5.11) and (5.12) is recorded by PEST at the 

bottom of its run record file, and in its matrix (*.mtt) file when parameter estimation is 

implemented using the Gauss-Marquardt-Levenberg method and the inverse problem of 

model calibration is indeed well-posed. 

Derived Quantities 

General 

As already noted, both of equations (5.4) and (5.8) ultimately rely on the same matrices; the 

Z matrix which specifies the action of the model does not appear in (5.8) but is used in 

calculation of the R and G matrices featured in that equation. Where a model is nonlinear its 

action, of course, cannot be represented by a matrix. In that case the Jacobian matrix is used 

in place of Z. The Jacobian matrix mimics Z; its elements are comprised of the derivatives of 

all model outputs used in the calibration process with respect to all parameters adjusted 

through that process. Ideally calculation of the Jacobian matrix should be based on calibrated 

parameter values; supposedly these lie somewhere near the centre of the uncertainty/error 

interval that equations (5.4) and (5.8) seek to explore. The effect of model nonlinearity on 

estimates of parameter and predictive uncertainty/error is hopefully thereby diminished. 

In spite of the approximation that necessarily attends use of a linearity assumption in a 

nonlinear context, equations (5.4) and (5.8) can provide useful estimates of predictive 

uncertainty and predictive error variance. As will be now demonstrated, they can also provide 

estimates of related quantities. While calculation of these related quantities will also be 

subject to error, it is expected that the effects of the linearity assumption on these calculations 

will be somewhat diminished as the principle focus of these calculations is to provide a basis 

for comparing different quantities, rather than in obtaining absolute values. Where compared 

quantities are affected in similar ways by an erroneous assumption of model linearity, 

relativity of their values may nevertheless be preserved. 
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Parameter Contributions to Predictive Uncertainty and Error Variance 

The first of these derived quantities is referred to as ―the contribution that a particular 

parameter, or group of parameters, makes to the uncertainty or error variance of a 

prediction‖. This is defined as the fall in predictive uncertainty/error variance that is accrued 

when perfect knowledge of the parameter, or group of parameters, is gained. This is easily 

computed using either of equations (5.4) or (5.8) by simply modifying the C(k) matrix to 

respect acquisition of this perfect knowledge, and calculating the diminution in uncertainty or 

error variance so accrued. Parameter or parameter group contributions to pre-calibration 

predictive uncertainty can be computed in similar fashion using equation (5.3a).  

In general, it is better to use equation (5.4) rather than equation (5.8) in making calculations 

of this type. It is sometimes found that parameter contributions to predictive error variance 

(as distinct from predictive uncertainty variance) can be negative. This is an outcome of the 

non-Bayesian nature of error as opposed to uncertainty. It can also arise from the discrete 

nature of singular values in contexts where calibration is implemented using truncated 

singular value decomposition An outcome of the latter phenomenon is that the minimum of 

the predictive error variance curve may shift between singular values when the error variance 

is calculated on the basis of two very different C(k) matrices - one which reflects the true 

uncertainty of a particular parameter or parameter group, and another which infers that the 

parameter or parameter group is perfectly known. 

―Contribution to predictive uncertainty‖ analysis need not be restricted to parameters whose 

values are estimated during the calibration process. It is often fruitful to include in this 

analysis boundary conditions and system stresses which are fixed at assumed values during 

the calibration process. When building a model, many details of its construction are only 

poorly known. Hence a litany of ―reasonable assumptions‖ are made pertaining to various 

aspects of the model in order to allow model construction to proceed. In normal modelling 

practice, these ―reasonable assumptions‖ are then retained during both the calibration and 

predictive phases of model usage, in spite of the fact that they may be erroneous. This can 

cause errors in model predictions, these arising from: 

 the fact that certain parameters may assume erroneous values during the calibration 

process to compensate for the structural defects that are thus built into the model; and 

 the fact that some or many model predictions may be sensitive to features of the 

model which are subject to error. 

Features which are commonly fixed at ―reasonable values‖ during the model construction, 

calibration and deployment processes include the following: 

 inflow into some model boundary segments; 

 head, pressure and concentration values assigned to other boundaries; 

 historical pumping rates; 

 recharge under historical and present land uses; 

 elevations of the beds of rivers and streams; 

 many other aspects of model design. 

When undertaking linear predictive uncertainty/error analysis based on equations (5.4) and 

(5.8) these quantities can be awarded parameter status and thereby included in the analysis. 

Sometimes the unknown quantities themselves can be introduced as parameters into these 

equations. At other times ―surrogate parameters‖ will be required that can simulate the effects 
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of unknown quantities while not representing them directly. For example a spatial, pilot-

point-based multiplier field can be applied to recharge in order to include in the analysis a 

suite of parameters which represent the fact that the disposition of recharge over a model 

domain is only imperfectly known. Similarly, seasonal multipliers can be applied to historical 

rainfall to simulate the effect of limited rain gauge coverage on the integrity of parameters 

estimated for a rainfall/runoff model and of predictions which depend on these parameters. In 

all of these cases, the negative impact of having to make possibly erroneous assumptions on 

overall model predictive performance can be assessed by computing the contribution that 

parameters pertinent to these assumptions make to the uncertainty/error variance of critical 

model predictions. 

Figure 5.2 shows the outcomes of such an analysis when applied to a regional groundwater 

model; this is taken from Gallagher and Doherty (2007a). See James et al. (2009) for another 

example. 
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Post-Calibration

 

Figure 5.2. Pre-calibration (back row) and post-calibration (front row) contributions to 

the error variance of a prediction of interest made by different parameter and 

boundary condition types employed by a regional groundwater management model. 

It is sometimes found when computing pre- and post-calibration contributions to predictive 

uncertainty/error variance that the post-calibration contribution of a particular parameter to 

the uncertainty/error variance of a particular prediction exceeds its pre-calibration 

contribution. This seemingly contradictory conclusion arises from the definition of 

―contribution to predictive uncertainty/error variance‖ given above. If a prediction is not 

sensitive to a parameter, then acquisition of perfect knowledge of that parameter does not 

decrease the uncertainty of that prediction under pre-calibration conditions. However if that 

parameter can only be estimated in conjunction with another parameter during the model 

calibration process - one to which the prediction is indeed sensitive - then acquisition of 

perfect knowledge of the first parameter supplements the information available through the 

calibration dataset pertaining to the second parameter. Hence acquisition of perfect post-
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calibration knowledge of the first parameter reduces the uncertainty/error variance of the 

prediction. 

As will be demonstrated shortly, parameter contributions to predictive uncertainty and error 

variance can be calculated using the PREDUNC4 and PREDVAR4 utilities supplied with 

PEST. 

Data Worth 

Suppose that a particular prediction of future environmental behaviour is important to the 

management of that environment. The ―worth‖ of a particular item of data in relation to that 

prediction can be defined as ―the reduction in uncertainty of that prediction that is accrued 

through acquisition of that data‖. An immediate outcome of the ability to compute predictive 

uncertainty is therefore an ability to compute the utility of data in reducing that uncertainty, 

and hence the worth of that data. 

An extremely useful feature of equations (5.4) and (5.8) when used for assessment of data 

worth in this manner is that neither predictive uncertainty nor predictive error variance 

depends on the actual value of the measurements that comprise an observation dataset, nor on 

the actual values of parameters that populate the model. According to these equations, 

predictive uncertainty and error variance depend only on the stochastic characterization of 

parameter variability as expressed by C(k), the stochastic characterization of measurement 

noise as expressed by C(ε), and on the sensitivities of calibration and predictive model 

outputs to parameters as expressed by Z and y. (For a linear model both Z and y are 

independent of parameter values.) It follows that equations (5.4) and (5.8) can be used to 

calculate the reduction in uncertainty that would be accrued through acquisition of data that 

has not yet been gathered. All that is needed is the sensitivity of model outputs corresponding 

to the yet-to-be-acquired measurements to parameters employed by the model. Obviously 

these can be computed by the model irrespective of whether corresponding field 

measurements have actually been taken or not. 

When assessing data worth, use of equation (5.4) is preferable to that of equation (5.8) for the 

same reasons as those discussed above for assessment of parameter contributions to 

predictive uncertainty. That is, use of equation (5.8) can be compromised to some extent by 

the granular nature of singular values, and by the fact that predictive error is less of an 

intrinsic quality of a system and its data than is predictive uncertainty. 

When simulating the acquisition of data in order to assess its worth, the user must specify 

elements of the C(ε) matrix pertinent to the tested data. Where measurement noise is 

independent from one data element to the next, this requires specification only of the 

uncertainty associated with individual measurements, as the C(ε) matrix is diagonal under 

these circumstances. 

―Data‖ can include either measurements of system state, or direct measurements of system 

properties. The sensitivity of  data of the later type to model parameters (i.e. the rows of the Z 

matrix corresponding to such data) are zeros except for a 1 which corresponds to the 

parameter whose value is measured. The (normally diagonal) elements of the C(ε) matrix 

corresponding to these measurements are calculated on the basis of the expected propensity 

for error in making them. 

Data worth computation based on equation (5.4) is undertaken using the PEST PREDUNC5 

utility; data worth computation based on equation (5.8) is undertaken using the PEST 

PREDVAR5 utility. These utilities allow the worth of either individual data elements or of 
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suites of data to be assessed. In both cases ―worth‖ can be assessed in both of the following 

ways: 

 through the reduction in predictive uncertainty/error variance that is accrued if data 

were added to an existing dataset (including the null dataset); and 

 through the rise in predictive uncertainty that is incurred if data were lost. 

It is essential that data worth assessment take place in a highly parameterized context, 

particularly if assessing the worth of acquiring data at different places within a spatial model 

domain such as that of a groundwater model. If artificial constructs such as zones of 

piecewise constancy are employed for regularization purposes, it will be found that optimal 

locations for acquisition of new data will invariably lie at the boundaries of such zones. If 

real-world hydraulic properties are not, in fact, piecewise constant, the disinformation 

involved in the assumption of piecewise uniformity will create an artificial context for 

assessment of the worth of new data which does little more than reinforce this assumption. 

See Fienen et al. (2010) for a discussion of this topic.  

In most cases, data is of worth to the extent that it reduces the dimensionality of the null 

space, for the existence of this space is by definition an outcome of data insufficiency. The 

null space can only be explicitly or implicitly defined where a model is endowed with 

parameterization complexity that reflects real-world complexity. 

Exercises 

General 

The GENLINPRED Utility 

The PEST suite provides a number of tools that analyse predictive uncertainty/error, and that 

calculate ancillary quantities such as parameter contributions to predictive uncertainty/error 

variance and data worth. Those that are of most general use belong to the PREDUNC and 

PREDVAR suite of programs. ―PREDUNC‖ stands for ―predictive uncertainty‖ while 

―PREDVAR‖ stands for ―predictive error variance‖. In general, use of the former suite is to 

be preferred over use of the latter suite because uncertainty is more of an intrinsic quality of 

the system and data whereas ―error‖ includes recognition of the imperfect nature in which 

environmental data is necessarily processed using models. Because the PREDVAR suite 

bases error variance calculation on the use of truncated singular value decomposition as a 

calibration device, the potential for predictive error that is additional to that arising purely 

from uncertainty is reduced to a minimum. However it is not eliminated - especially in cases 

where pre-calibration uncertainty as expressed by the C(k) matrix of innate parameter 

variability shows a high degree of correlation between parameters of the same or different 

types. In some instances this, together with the non-continuous nature of singular values, can 

lead to spurious processing outcomes, such as negative contributions by certain parameter 

groups to predictive error variance. These effects are unlikely to be large. However it is best 

to avoid them altogether, as occurs when basing these analysis on PREDUNC-suite 

programs. 

The PEST suite provides a driver program named GENLINPRED which grants easy user 

access to members of the PREDUNC and PREDVAR utility suites. (GENLINPRED stands 

for ―general linear predictive analysis‖. Part of its ease of use springs from the fact that 

GENLINPRED provides default inputs for PREDUNC-suite and PREDVAR-suite programs 

when it runs them. The user should not forget, however, that greater flexibility of 
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PREDUNC-suite and PREDVAR-suite program usage is gained when they are run without 

the help of GENLINPRED, and the user can therefore tune them to his/her specific needs. 

Predictive Sensitivities 

The exercises below are made easy by the fact that one or more predictions of interest are 

―carried‖ in PEST control files that were used in calibrating the surface water and 

groundwater models that constitute our example cases. These predictions appear to PEST as 

―observations‖, but are given weights of zero so that they have no effect on the parameter 

estimation process. However their presence in the PEST control file forces PEST to calculate 

sensitivities of these predictions to all parameters. Thus the y vector that features in equations 

(5.4) and (5.8) is automatically calculated.  

In other contexts a special PEST run will be required for calculation of the elements of the y 

vector. The PEST control file on which this run is based will not instruct PEST to calibrate a 

model, for all of the entities that feature in its ―observation data‖ section will in fact be 

predictions. However it will feature the same set of parameters as those employed in a 

previous calibration exercise. NOPTMAX will be set to -1 or -2 in the ―control data‖ section 

of this PEST control file. Thus PEST will calculate a Jacobian matrix which contains the 

sensitivities of all predictions to all model parameters, and then cease execution. The y vector 

for any particular prediction will comprise a single row of this matrix. 

The C(k) and C(ε) Matrices 

Both of equations (5.4) and (5.8) require two covariance matrices, namely the C(k) matrix of 

innate parameter variability (i.e. the covariance matrix of the prior parameter probability 

distribution), and the C(ε) matrix of measurement noise. The former is normally supplied 

through a ―parameter uncertainty file‖. We have already had some experience in using this 

type of file. However GENLINPRED provides the user with an easy alternative option for 

obtaining this matrix. Under the assumption that all parameter are statistically independent 

(and hence that the C(k) matrix has no off-diagonal elements) GENLINPRED can calculate 

the standard deviation of each parameter as one quarter of the difference between its upper 

and lower bounds as supplied in a PEST control file. Where parameters are log-transformed 

this is taken into account in making this calculation. As is explained in PEST documentation, 

parameter variability as described by the C(k) matrix must pertain to the logs of parameters 

that are declared as log-transformed in PEST control file(s) on which predictive 

uncertainty/error analysis is based. 

To facilitate ease of input, PREDUNC-suite and PREDVAR-suite programs (and hence 

GENLINPRED) calculate the C(ε) matrix from measurement weights appearing in the PEST 

control file with which they are supplied. The user must bear this in mind when preparing this 

file. Weights associated with measurements are assumed to be proportional to the standard 

deviation of noise associated with respective measurements; the constant of proportionality 

(or a variable from which this can be calculated) is supplied to PREDUNC-suite or 

PREDVAR-suite programs, or to GENLINPRED, when these programs are run. (Note that 

the user has the option of providing a C(ε) matrix through the PEST control file if he/she 

desires; see PEST documentation for further details.) 

Formulation of a suitable C(ε) matrix for use in predictive uncertainty/error analysis is a 

problematical matter. As has already been discussed, most model-to-measurement misfit is an 

outcome of structural noise rather than measurement noise. Ideally, therefore, C(ε) should 

represent, at least to some degree, the covariance matrix of structural noise. However this is 

never known. Furthermore it is probably singular. Failing to take its singular nature into 
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account inevitably results in underestimation of predictive uncertainty. Unfortunately there is 

no way that it can be properly taken into account. Hence designation of a C(ε) matrix (and 

hence assignment of weights to observations appearing in the PEST control file) for use in 

linear uncertainty/error analysis will always be an approximate process. 

Fortunately, however, failure to properly characterize C(ε) affects only the solution space 

component of predictive uncertainty/error. As most uncertainty/error in many modelling 

contexts is dominated by parameter null space variability rather than solution space 

variability, an incapacity to characterize C(ε) exactly is often not as big an issue as it first 

appears. 

Predictive Noise 

The largest contributor to the uncertainty/error variance of predictions made by many surface 

water models, particularly those which employ only a few parameters, will ultimately be the 

predictive structural error term. As has already been discussed, this can be considered to be a 

random ―parameter‖ that is added to a model output in order to furnish the actual model 

prediction. (Note that in highly parameterized contexts this term is often of smaller 

importance than in contexts characterized by only a few parameters. This is because model 

structural error tends to be reduced by the use of many parameters, and because uncertainty 

will normally be dominated by null space variability.) 

Calibration datasets for surface water models tend to be very large, being comprised of daily 

or even hourly flow measurements taken over many years. The limited number of parameters 

that are often estimated in calibrating these types of models tend to look as if they are very 

well estimated, for their PEST-calculated uncertainty margins are often very small. This is 

often illusory, for uncertainty analysis cannot take account of the singular nature of the C(ε) 

covariance matrix, mainly because the exact nature of its singularly is unknown.  

It follows that where low uncertainties are attributed to estimated surface water model 

parameters this rarely means that they lack uncertainty. Even less does it mean that model 

predictions which depend on them lack uncertainty. It only means that the additive predictive 

structural noise term may become the dominant contributor to predictive uncertainty. Where 

a prediction resembles measurements used in the calibration process, this predictive noise 

term is partially quantified through the calibration process. It can then be formally included in 

the predictive uncertainty analysis process as a notional parameter as described previously 

(and as is demonstrated below). Alternatively an appropriate predictive ―engineering safety 

margin‖ can be employed when basing environmental management on model outcomes.  

Given the necessarily heuristic assessment of this important contributor to predictive 

uncertainty, this is often as good an approach to use as any other. The subjective nature of the 

process is highlighted by the fact that this noise term may be different for different types of 

prediction, and for predictions pertaining to different aspects of flow. This, in fact, suggests 

another advantage of the use of a multi-component objective function (with different 

components based on different aspects of the same flow time series) in calibrating models of 

this type. The noise associated with these different aspects of flow can be estimated as part of 

the parameter estimation process, and then included in the predictive uncertainty analysis 

process. 

The JCO2JCO Utility 

At the heart of linear uncertainty analysis is a Jacobian matrix. This resides in a binary file 

with an extension of *.jco after completion of a PEST run. If a model has a large run time, 

and if many parameters are employed in the uncertainty/error analysis process (as is 
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recommended so that the null space contribution to these quantities can be properly 

formulated), acquisition of a Jacobian matrix can be a computationally expensive procedure. 

Once acquired, a Jacobian matrix is therefore precious.  

A user does not want to have to calculate a new Jacobian matrix if he/she alters a PEST 

control file in a small way. The JCO2JCO utility allows a user to compute a Jacobian matrix 

for a new PEST control file based on the Jacobian matrix for an existing PEST control file, if 

the alterations that were required in making the new PEST control file from the existing one 

are restricted to the following. 

 removal, fixing and/or tying of parameters; 

 changing the transformation status of parameters; 

 changing the SCALE and OFFSET applied to parameters; 

 removal of observations; 

 alterations to weights assigned to observations; 

 addition or removal of prior information. 

See PEST documentation for further details. 

Surface Water Model  

Which Case to Use? 

So far we have calibrated our surface water model twice. On one occasion we used a single 

objective function comprised only of the logarithms of flows. On the other occasion we used 

a multi-component objective function in which weights were uniform within each 

observation group, but in which inter-group weighting was adjusted so that the contribution 

to the initial objective function made by each objective function component was about the 

same.  

Which one of these should be used as a basis for post-calibration uncertainty analysis? 

Because calibration of this model constitutes a well-posed inverse problem (there is no null 

space), all parameter and predictive uncertainty is theoretically ultimately attributable to 

measurement noise (which is mostly structural noise). So the C(ε) matrix is important. 

However it is also unknown. Implicit in the two definitions of the objective function through 

which calibration of the model previously took place are two assumptions of the nature of 

structural noise. Neither assumption is valid; so the choice between the two is necessarily 

subjective. However, in light of considerations presented by Doherty and Welter (2010), the 

PEST control file in which calibration was achieved through use of a multi-component 

objective function is chosen as the basis for the linear uncertainty analysis that follows. 

The pertinent PEST control file is calib2.pst. However recall that we made a version of this 

named calib2_soln.pst which contains best-fit parameters.  

Re-weighting 

Inspect file calib2_soln.pst. Set NOPTMAX to 0 in this file (if it is not already set to this 

value). Recall that NOPTMAX is the first variable on the 9th line of a PEST control file. 

Hence if PEST is now run on the basis of calib2_soln.pst it will run the model once, calculate 

the objective function (and contributions to the objective function made by different 

observation groups) and then cease execution. 
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Run PEST using the command: 

 pest calib2_soln 

PEST’s screen output should list the total objective function, and contributions to the total 

objective function made by different observation groups, as follows. 

   Sum of squared weighted residuals (ie phi)               =   2019.7 

   Contribution to phi from observation group "lsim_flow"   =   594.32 

   Contribution to phi from observation group "bsim_flow"   =   644.62 

   Contribution to phi from observation group "qmax_sim"    =   0.0000 

   Contribution to phi from observation group "sim_vol"     =   674.68 

   Contribution to phi from observation group "sim_ex"      =   106.05 

Recall that the contribution from the group qmax_sim is zero because this group contains a 

single ―observation‖ which is actually the prediction which is of interest to us. This 

―observation‖ is assigned a weight of zero. 

Use of  PREDUNC-suite and PREDVAR-suite programs is predicated on the assumption that 

observation weighting is inversely proportional to the standard deviation of 

measurement/structural noise as it affects the different observations used in the model 

calibration process. These standard deviations are normally impossible to know. Nevertheless 

we could, if we wished, attempt to conform to this precept by adjusting observation weights 

at this stage if we wished. 

Options for inter-observation-group weights adjustment are provided by the PWTADJ1 or 

PWTADJ2 utilities supplied with PEST. (PWTADJ stands for ―PEST weight adjustment‖.) 

The first equalizes contributions to the objective function by different observation groups; we 

have already used this utility. The second performs inter-group weights adjustment in an 

effort to have weighting reflect measurement noise as it is suggested by a preceding 

calibration process; see PEST documentation for further details. However PWTADJ2 does 

not take account of the fact that a greater number of observations does not necessarily carry a 

greater amount of information when C(ε) is singular (as it is when structural noise is 

accounted for). Hence we will leave relative inter-group weighting as it is. Nevertheless, as 

will be shown shortly, a global weighting factor will nevertheless be applied in order to 

harmonize overall weighting with model-to-measurement fit achieved through the previous 

calibration exercise. 

Calculating the Jacobian Matrix 

Set NOPTMAX to -1 in calib2_soln.pst and re-run PEST to calculate the Jacobian matrix. 

This forms the basis for the linear uncertainty analysis that we will now undertake. 

GENLINPRED 

Run GENLINPRED, responding to its prompts as follows. 

 Enter name for response file (<Enter> if none): <none> 

 Use abbreviated or full input? [a/f] (<Enter> if "f"): a 

 

 Enter name of PEST control file: calib2_soln.pst 

 

 - reading PEST control file calib2_soln.pst.... 

 - file calib2_soln.pst read ok. 

 

 Use bounds or uncert file for param uncertainties  [b/u] <Enter> if "b": <Enter> 

 

 Are weights the inverse of measurement uncertainty?  [y/n] <Enter> if "y": n 

 Enter factor for weights to make this so: 0.609 
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 Enter name for output file <Enter> if genlinpred.out: <Enter> 

 

 Perform comprehensive analysis of a prediction/param? [y/n] <Enter> if "y": y 

 Provide pertinent information:- 

 

     Enter name of prediction/parameter to analyze: qmax_sim_max 

     Enter file to read its sensitivities ["p" if a parameter]: calib2_soln.jco 

 

     Compute predictive uncertainty? [y/n] <Enter> if "y": <Enter> 

 

     Compute parameter contributions to uncertainty? [y/n] <Enter> if "y": <Enter> 

     For indiv parameters or for parameter groups? [i/g] <Enter> if "g": <Enter> 

 

     Compute observation worth wrt uncertainty? [y/n] <Enter> if "y": <Enter> 

     For indiv observations or for observation groups? [i/g] <Enter> if "g":<Enter> 

As is apparent, default responses are provided to most of GENLINPRED’s prompts. The 

following should also be noted. 

 Correct setting of observation weights implies that the objective function pertaining to 

the calibrated model should be roughly equal to the number of observations featured 

in the calibration dataset. Under these circumstances squared weighted residuals 

would have an average value of 1.0 because the weight associated with each 

observation would be equal to the standard deviation of noise associated with that 

observation. As stated above, the situation is, of course, terribly compromised by the 

presence of structural noise. However some effort should be made to adjust weights 

so that they are at least in the right ball park. The objective function for the calibrated 

model is 2019.7. The total number of observations is 750 (actually 751 but one of 

these is a prediction with a weight of zero). If all weights were multiplied by a factor 

equal to the square root of 750 divided by 2019.7 (i.e. 0.609), the objective function 

would then be equal to 750. This is the basis for the selection of this factor in response 

to the pertinent GENLINPRED prompt. 

 The prediction of interest is named qmax_sim_max in the PEST control file 

calib2_soln.pst; TSPROC gave it this name. Recall that this is the maximum flow 

over the period spanning 19
th

 to 23
rd

 August 1986. As has already been discussed, 

sensitivities of this prediction to all parameters are computed by PEST when it 

computes sensitivities for all calibration-specific model outputs to these parameters as 

this prediction is ―carried‖ in the PEST control file. Hence the sensitivity of this 

prediction to all model parameters resides in the Jacobian matrix file which we have 

just calculated. 

 Because each parameter belongs to its own parameter group in the PEST control file 

calib2_soln.pst, calculation of the contribution of each parameter to total predictive 

uncertainty is the same as calculation of the contribution of each parameter group to 

total predictive uncertainty. 

Predictive uncertainty 

When run as above, GENLINPRED runs programs of the PREDUNC suite behind the 

scenes. The outcomes of these calculations are recorded in the GENLINPRED output file 

named, in this case, genlinpred.out. 

As is apparent from genlinpred.out, GENLINPRED calculates pre- and post-calibration 

uncertainty standard deviations of 432 m
3
/sec and 56 m

3
/sec respectively for the predicted 

maximum flow over the period 19
th

 to 23
rd

 August 1986. The former is much higher than the 

pre-calibration uncertainty calculated in Chapter 3. This is an outcome of model nonlinearity, 
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and consequential changes in sensitivities of model outputs to parameter values as the latter 

vary throughout their range. 

Despite the obviously approximate nature of linear uncertainty analysis when applied to a 

nonlinear model, the assessment of post-calibration predictive uncertainty as being 

significantly lower than pre-calibration uncertainty is probably robust. GENLINPRED 

reports that the post-calibration uncertainty standard deviation of the maximum flow 

prediction is about 56 m
3
/sec. Actually, in light of the considerable error which is in fact 

associated with the prediction made by the calibrated model, this may not be a bad 

assessment. (Recall that for a normal distribution, an interval of 1 standard deviation on either 

side of the mean corresponds to a confidence interval of about 67%, 2 standard deviations 

correspond to a confidence interval of about 95%, and 3 standard deviations correspond to a 

confidence interval of about 99.7%). 

Parameter Contributions to Predictive Uncertainty 

Pre- and post-calibration contributions to predictive uncertainty variance by the different 

parameters employed by the model are tabulated by GENLINPRED following its listing of 

total pre- and post-calibration uncertainty. Note that: 

 variance is the square of standard deviation; 

 contributions to variance rather than standard deviation are calculated because 

contributions to variance are additive in the pre-calibration context whereas 

contributions to standard deviation are not. 

These contributions are plotted below. All contributions have been normalized with respect to 

the pre-calibration uncertainty variance of the maximum flow prediction in this graph. 
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Figure 5.3 Normalized parameter contributions to pre- and post-calibration uncertainty 

variance of predicted flow over the period 19
th

 to 23
rd

 August 1986. 

Data Worth 

GENLINPRED was asked to assess the worth of different observation groups to the 

prediction of interest. In the present instance these groups are comprised of the same data 

processed in different ways. However ideally such processing should be such as to attempt to 

―distil‖ from the calibration dataset information that is salient to different groups of 
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parameters. If a prediction of interest is sensitive to only one of these parameter groups, then 

this may result in some of these processing outcomes providing information that is 

particularly salient to that prediction while others may not. 

GENLINPRED provides two different bases for data worth assessment. Firstly it calculates 

the rise in predictive uncertainty variance that is incurred if each observation group is 

successively removed from the calibration dataset. This provides a measure of the extent to 

which information pertaining to the prediction of interest resides exclusively in each group. 

Secondly it assesses the fall in uncertainty variance from its pre-calibration level that is 

accrued as each observation group in turn comprises the sole member of the calibration 

dataset. This indicates the absolute information content of each observation group in relation 

to the prediction of interest. 

GENLINPRED’s output tables are graphed in Figure 5.4. As for the previous figure, 

uncertainty variance is normalized with respect to pre-calibration uncertainty variance. 
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Figure 5.4a Rise in relative (to pre-calibration uncertainty variance) post-calibration 

predictive uncertainty variance incurred by omission of each observation group from 

the calibration dataset. 
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Figure 5.4b. Fall in relative (to pre-calibration uncertainty variance) of uncertainty 

variance accrued with inclusion of each observation group as the sole member of the 

calibration dataset. 

Figure 5.4 is not very exciting; nevertheless it is informative. It states that information 

pertaining to the prediction of interest is repeated in the different observation groups, and that 

use of any one of these groups in the calibration process would achieve about the same 

reduction in predictive uncertainty from its pre-calibration level as use of any other. 

Nevertheless the following points are of some interest. 

 The information content of exceedence times is very high given the small population 

of this observation group. 

 Baseflow contains a little prediction-pertinent information that is not repeated in other 

groups. 

Groundwater Model  

Preparing for GENLINPRED 

As an outcome of work we have done previously in calibrating the groundwater model, best-

fit parameter values are represented as initial parameter values in the PEST control file 

calib1r_soln.pst. Recall also that we obtained a Jacobian matrix corresponding to this file; 

this matrix is recorded in binary format in file calib1r_soln.jco. 

GENLINPRED insists that the PEST control file which it reads does not direct PEST to run 

in ―regularisation‖ mode. This avoids confusion between expert knowledge supplied through 

regularization constraints, and that supplied through the pre-calibration covariance matrix 

C(k); all such information must be supplied through the latter vehicle. 

A stripped-down PEST control file named calib2.pst can be made from calib1r_soln.pst 

using the SUBREG1 utility; SUBREG1 stands for ―subtract regularisation‖. To achieve this, 

run SUBREG1 as follows: 

 subreg1 calib1r_soln calib2 
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Now we need a Jacobian matrix file corresponding to calib2.pst. This can be obtained from 

the Jacobian matrix file that was previously calculated for calib1r_soln using the command: 

 jco2jco calib1r_soln calib2 

Run this command to obtain the new Jacobian matrix file. 

Running GENLINPRED 

Run GENLINPRED, responding to its prompts as follows. If you make any errors, simply 

respond to the next prompt with ―e‖ followed by <Enter>; GENLINPRED will then 

backtrack to its previous prompt. 

 Enter name for response file (<Enter> if none): <Enter> 

 Use abbreviated or full input? [a/f] (<Enter> if "f"): f 

 

 Enter name of PEST control file: calib2.pst 

 

 - reading PEST control file calib2.pst.... 

 - file calib2.pst read ok. 

 

 Use bounds or uncert file for param uncertainties  [b/u] <Enter> if "b": u 

 Enter name of parameter uncertainty file: param.unc 

 

 Are weights the inverse of measurement uncertainty?  [y/n] <Enter> if "y": y 

 

 Enter name for output file <Enter> if genlinpred.out: <Enter> 

 

 Perform global parameter estimability analysis? [y/n] <Enter> if "n": y 

 Provide pertinent information:- 

 

     Compute parameter identifiabilities? [y/n] <Enter> if "y": y 

     Compute relative parameter error reduction? [y/n] <Enter> if "n": y 

     Use SUPCALC to estimate soln space dimensions? [y/n] <Enter> if "y": y 

     Compute relative parameter uncertainty reduction? [y/n] <Enter> if "n": y 

 

 Perform comprehensive analysis of a prediction/param? [y/n] <Enter> if "y": y 

 Provide pertinent information:- 

 

     Enter name of prediction/parameter to analyze: part_time 

     Enter file to read its sensitivities ["p" if a parameter]: calib2.jco 

 

     Compute soln/null space contribs to predict error? [y/n] <Enter> if "n": y 

     Compute predictive uncertainty? [y/n] <Enter> if "y": y 

 

     Compute parameter contributions to error? [y/n] <Enter> if "n": y 

     Compute parameter contributions to uncertainty? [y/n] <Enter> if "y": y 

     For indiv parameters or for parameter groups? [i/g] <Enter> if "g": i 

 

     Compute observation worth wrt error? [y/n] <Enter> if "n": y 

     Compute observation worth wrt uncertainty? [y/n] <Enter> if "y": y 

     For indiv observations or for observation groups? [i/g] <Enter> if "g": i 

 

 - running SCALEPAR to build scaled PEST input dataset... 

 - program SCALEPAR run ok. 

 

 - running SUPCALC to compute dimensions of solution space... 

 - program SUPCALC run ok. 

 

 SUPCALC has recommended the use of 12 solution space dimensions 

 for computation of parameter identifiability and relative 

 error reduction. 

 

 Do you wish to over-ride this? [y/n] <Enter> if "n": n 

Because full, rather than abbreviated, GENLINPRED input was requested, GENLINPRED 

issues many prompts. However in order to ease the burden of running it on subsequent 
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occasions, GENLINPRED provides the user with the option of recording a response file. This 

can then be supplied to it on subsequent runs. See GENLINPRED documentation for further 

details. 

The GENLINPRED output file genlinpred.out provides a wealth of information. Some of this 

will now be reviewed. 

Parameter Identifiability and Relative Uncertainty/Error Reduction 

Parameter identifiability has already been discussed. Relative uncertainty and error variance 

reduction are similar statistics; these are described in detail by Doherty and Hunt (2010). Like 

identifiability they can be plotted in the same spatial disposition as the parameters to which 

they pertain if this proves useful; see file hk.pts for pilot point, and hence parameter, 

coordinates. If this is done plots similar to Figure 4.12 result. 

Note the occurrence of some negative values for relative parameter error variance reduction. 

These are an outcome of the nature of error as discussed above; negative values for relative 

parameter uncertainty variance reduction are impossible. 

Predictive Uncertainty 

The outcomes of predictive uncertainty and error variance calculations are provided in the 

next part of the GENLINPRED output file. The following are noteworthy. 

Statistic Value 

Pre-calibration uncertainty 2753 

Post-calibration uncertainty standard deviation 1723 

Post-calibration error standard deviation 1902 

Table 5.1. Pre- and post-calibration uncertainty and error statistics computed by 

GENLINPRED. 

As is expected, post-calibration error standard deviation is higher than post-calibration 

uncertainty standard deviation, the latter being the aspirational goal of the former.  It is 

apparent that the uncertainty associated with the prediction of particle travel time is still 

disturbingly high, despite the fact that the model has been ―calibrated‖ against head 

measurements in the 12 observation wells. 

Data forthcoming from GENLINPRED’s running of PREDVAR1 allows us to explore this 

issue. This data allows us to produce a plot similar in type to that shown in Figure 5.1. 

Unfortunately the data provided by GENLINPRED in this case does not provide graphs with 

the same aesthetic appeal as those schematized in Figure 5.1. Nevertheless these data do 

provide some powerful insights. These include the following. 

 The variance of predictive uncertainty is dominated by the null space term. In other 

words, head measurements simply do not carry enough information to allow accurate 

predictions of travel time to be made, for the latter is sensitive to hydraulic property 

details that are not available to us through calibration based on heads. 

 The solution space term rises to infinity at the thirteenth singular value. As there are 

only 12 observations, this marks the point at which the null space must begin. In 

everyday modelling practice the point at which predictive error variance is minimized 

(and at which the null space is decreed to begin for that particular calibration 
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exercise) often occurs at a much smaller number of singular values than there are 

observations in the calibration dataset. 

Parameter Contributions to Predictive Uncertainty 

Parameter contributions to the pre- and post-calibration uncertainty of predicted particle 

travel time can be visualized through a bar chart as in Figure 5.2. In the present case, however 

the latter are plotted at respective pilot point locations; see Figure 5.5. These contributions are 

normalized with respect to pre-calibration uncertainty variance. 

 

Figure 5.5 Post-calibration contributions by different pilot point parameters to the 

uncertainty of predicted travel time predictions. Darker shading indicates higher 

contributions The maximum value is 0.42 (relative to pre-calibration uncertainty 

variance) while the minimum value is 0.0. The particle path calculated by the calibrated 

model is also shown. 

Recall the definition of ―parameter contribution to predictive uncertainty‖. It is the reduction 

in predictive uncertainty that would be accrued if perfect knowledge were gained of a 

particular parameter; the same definition can be applied to groups of parameters. It is hardly 

surprising that acquisition of knowledge of hydraulic conductivity in the centre of the model 

domain, in the vicinity of the particle trajectory, would achieve greater decreases in particle 

travel time predictive uncertainty than parameter knowledge acquired elsewhere. 

Furthermore, the reductions in predictive uncertainty so accrued would be significant. 

Data Worth 

The head data that presently comprises the calibration dataset does not promulgate a very 

large reduction in travel time predictive uncertainty. However it is nevertheless worth 

something, for the above analysis shows that the uncertainty of this prediction is lowered to 

some extent through the calibration process. If the worth of different head measurements is 

plotted at respective measurement well locations, the following figures emerge. 
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Figure 5.6a. Uncertainty variance gain (relative to pre-calibration uncertainty) of 

predicted travel time incurred through loss of an individual head measurement from 

the calibration dataset. Highest value is 0.028 while lowest value is 2×10
-4

. 

 

 

 

Figure 5.6b. Uncertainty variance loss (relative to pre-calibration uncertainty) of 

predicted travel time incurred through calibration using a single head measurement at 

each of the individual well locations. Highest value is 0.55 while lowest value is 0.17. 
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The back row of wells figures prominently in Figure 5.6b. This is because the head difference 

between any one of the wells in this row and the lower model boundary says much about the 

average hydraulic conductivity within a large part of the model domain. However Figure 5.6a 

shows that the most informative of these is that in the centre of this row. 
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6. How Wrong can a Prediction Be? Nonlinear Analysis 

Error and Uncertainty 

Bayes equation makes it clear that a model’s parameters retain uncertainty even after they 

have been subjected to the history-matching process. That is, a model’s parameters are still 

free to ―wiggle‖, even though a model has been calibrated. However their post-calibration 

variability is subject to constraints. Obviously one of these constraints is that the parameters 

remain realistic, thereby respecting expert knowledge. This constraint is embodied in the 

prior probability distribution of parameters which is an integral part of Bayes equation. 

However a second constraint is imposed through the history-matching process. This 

constraint further restricts ―parameter wiggle room‖; it maintains that as model parameters 

wiggle, they must wiggle in such a way that model-to-measurement misfit (as embodied in 

the likelihood term of Bayes equation) does not rise unduly. 

The same notions are expressed in equations (4.10) and (4.13) which focus on error rather 

than on uncertainty. Post-calibration variability is again subject to two constraints. If 

regularisation is achieved using singular value decomposition, these constraints on 

parameters are orthogonal to each other in parameter space. One set of constraints restricts 

solution space parameter variability to that which allows the model to retain its calibrated 

state. However parameter combinations that are orthogonal to this, and hence lie within the 

calibration null space, are given much greater freedom of movement for, by definition, their 

variation has no effect on model outputs for which there are complimentary field 

measurements comprising the calibration dataset. Mathematically, for a linear model, their 

variability has no limits. It is only expert knowledge that imposes limits on their variability. 

As has been discussed, while Bayesian analysis provides a complete conceptual framework 

for assessment of parameter and predictive uncertainty, modelling practicalities normally 

require a two step process of calibration followed by analysis of potential for parameter and 

predictive error. Not only is the latter approach generally more computationally tractable than 

Bayesian analysis. It also acknowledges the fact that sources of error in model predictions 

include not only information deficits in expert knowledge and hard site data; they also arise 

from the imperfect nature of a model as a simulator of environmental behaviour. Ideally, as 

has been stated, the potential for error in model predictions of interest should be reduced to 

their theoretical lower bounds through the model construction and calibration processes, these 

lower bounds being the inherent uncertainties of those predictions. Paradoxically, the role 

played by parameters of a necessarily defective model during the history-matching process is 

such that the presence of these defects may either help or hinder the attainment of this 

minimum. However the ability to quantify the potential for predictive error diminishes as the 

model’s relationship with the reality that it purports to simulate becomes less physically-

based, even though the potential for predictive error may actually be reduced. This, 

unfortunately, is the murky world in which we work as modellers.  

It is worth repeating here a point that has been made earlier in this document, and which is 

salient to this chapter and to the next. It is this. 

There should be no expectation that a model can provide a correct prediction. However one 

model, or modelling approach, can be assessed as technically superior to another when, for 

predictions of interest: 

 it can guarantee that correct predictions are within computed error limits; and 
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 these error limits approach the inherent uncertainty limits of these predictions, and 

hence approach optimality.  

From this it is apparent that quantification and minimization of predictive uncertainty/error 

limits should ideally be the focus of a modelling enterprise. Because of the numerical and 

practical difficulties associated with this endeavour, informal approaches must often be taken. 

One such approach - that of using a model as a basis for scientific hypothesis-testing – is 

examined in the following chapter. In this chapter we focus on post-calibration predictive 

error analysis, keeping in mind the desirability of reducing a model’s propensity for 

predictive error to that of predictive uncertainty as conceptually provided by Bayes equation. 

Constraints 

The process of post-calibration predictive error analysis involves exploration of parameter 

variability subject to two constraints. These are that: 

 the model ―remains calibrated‖; and  

 that parameters ―retain believability‖.  

Loss of calibration status and loss of parameter credibility will, of course, happen by 

degrees. A reduction in either of these engenders lower probabilities for predictions that are 

calculated on the basis of these parameters. The range of predictive values associated with 

finite probabilities defines a predictive confidence region. Ideally a number should be 

associated with this region. For example it would be nice to be able to say that ―there is a 

95% probability that the true value of the prediction lies between an upper limit of x and a 

lower limit of y‖. Unfortunately, given the imperfect nature of models, it will rarely be 

possible to say this. Sadly, there is a high degree of uncertainty associated with our 

assessment of uncertainty. 

At the heart of the first term of equation (5.8) is the C(k) matrix of innate parameter 

variability. At the heart of the second term of equation (5.8) is the C(ε) matrix of 

measurement noise. Each of these is associated with an explicit or implicit probability 

distribution (implicit in most modelling studies). These are the ―reference distributions‖ 

through which diminishing parameter, and hence predictive, probability are assessed as 

parameters are varied from values that are deemed to ―calibrate‖ the model to those that are 

required if a specified predictive value is to occur. That is to say, if a number is to be 

associated with any predictive confidence interval, this number must ultimately arise from 

these two probability distributions collectively, as these provide the metrics through which 

parameter credibility (or lack thereof) on the one hand, and acceptability of model-to-

measurement misfit (or lack thereof) are assigned numbers from which confidence intervals 

can be calculated. 

Unfortunately the probability distributions which C(k) and C(ε) represent are often complex 

beyond measure. While simplified geostatistical models are often used to calculate C(k), 

assumptions such as stationarity make little sense when applied over the disparate and 

interconnected but non-continuous, fractured and faulted geological materials that comprise 

the domain of any regional groundwater model, or the patchwork of changing land uses and 

heterogeneous soil types spread over the uneven topography that comprises the domain of 

any surface water or land systems model. The situation for C(ε) is no less complicated, for 

model-to-measurement misfit is an outcome of far more than measurement noise. It owes its 

origins to model structural defects that are as complex as the natural system of which the 

model is a necessarily imperfect simulator. The probability distribution of structural noise as 
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it affects different types of measurements made at different locations within a complex model 

domain is therefore virtually impossible to quantify, and is probably singular. 

Nevertheless, some attempt must be made to limit the range of predictive possibilities to 

those that are compatible with expert knowledge as it resides in C(k), and with information 

available to us through historical measurements of system state, the integrity of which is 

characterized by C(ε). 

The situation is depicted in Figure 6.1, which builds on Figure 4.4. We do not know the 

reality parameter field k. However we know something of its projection onto the parameter 

solution space. Our knowledge of this, however, is compromised by the fact that estimation 

of this projection takes place on the basis of a calibration dataset that is contaminated by 

measurement and structural noise. Hence there is some ―wiggle room‖ in our assessment of 

this projection, the size of this wiggle room being set by the amount and nature of 

(measurement and structural) noise ε associated with this data, that is by C(ε). Any parameter 

set that projects onto that part of the solution space that is identified in this way as being 

feasible, and which can be assessed as having non-zero probability in terms C(k), is a 

contender to be the real parameter field. It moves out of contention when either it is deemed 

to be unrealistic on the basis of C(k), or is deemed to provide a misfit with the calibration 

dataset which cannot be explained by measurement/structural noise as characterized by C(ε).  

v1

v2

v3

Null space

Variability 
constrained by C(ε)

Variability 
constrained by C(k)

 

Figure 6.1. Post-calibration parameter variability. All of the parameter sets represented 

by dark arrows can legitimately be used by the model in exploring post-calibration 

predictive uncertainty as they are all realistic as assessed in terms of C(k) and they all 

provide an adequate fit with the calibration dataset as assessed in terms of C(ε). 
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Well-Posed Inverse Problems 

General 

The surface water model calibration problem which comprises one of the exercises provided 

with this document constitutes an over-determined, or well-posed, inverse problem because 

all parameters are estimable on the basis of the calibration dataset. As has already been 

discussed, this is an outcome of the fact that regularisation is done: 

 manually through estimating only a few of the many parameters offered by the HSPF 

model; and  

 structurally through the fact that complex environmental process are simulated in a 

lumped and averaged way. 

In cases like this only the second term of equation (5.8) is used to calculate post-calibration 

predictive variability as the first term is zero. Linear analysis based on this term was 

described in the previous chapter. Two methods that are available through the PEST suite for 

implementing over-determined nonlinear analysis are now described. A third will be 

discussed in the following chapter. It should be noted however that if model run times are 

small, well-posed inverse problems constitute useful candidates for Markov chain Monte 

Carlo analysis of parameter and predictive uncertainty. Software to implement this analysis is 

not presently available through the PEST suite. 

Constrained Maximization/Minimization 

The processes of determining the margin of predictive variability associated with a particular 

confidence level can be formulated as a constrained maximization/minimization problem. 

This problem is more easily formulated in the over-determined context than in the under-

determined context as only one set of constraints must be applied to parameters in this 

context, namely those that pertain to model-to-measurement misfit. The methodology is 

described by Cooley and Vecchia (1987), Vecchia and Cooley (1987), Cooley (2004) and 

Christensen and Cooley (2006). It is implemented by PEST when run in ―predictive analysis‖ 

mode. 

Suppose that the objective function achieved through the calibration process is Φmin and that 

weights used in definition of the objective function are correct in a relative sense, in that they 

properly reflect the propensity of each measurement to be degraded by measurement error 

(and structural error to the extent that this is possible). Let s be a prediction of interest. 

Suppose that we want to determine the 95% confidence interval of this prediction. To do this 

we must carry out two optimization exercises. First we must maximize the prediction subject 

to the constraint that the objective function Φ rises no higher than a value which we denote as 

Φ95%; then we must minimize the prediction subject to the same constraint.  

More generally, suppose that we wish to determine the two-sided 1-α confidence interval of a 

prediction. Then we must maximize and minimize that prediction subject to the constraint 

that the objective function rises no higher than Φ0, where Φ0 is given by the first of the 

following two equations if the so-called simultaneous confidence interval of the prediction is 

explored, and by the second of the following two equations if the so-called ―individual‖ 

confidence interval of the prediction is explored. The latter provides a narrower, and 

theoretically more correct statistical bound, though there is a certain level of approximation 

involved in its usage. 
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In the first of these equations ―F(m,n-m)‖ refers to the F distribution with (m,n-m) degrees of 

freedom; in the second equation t(n-m) signifies a t distribution with (n-m) degrees of 

freedom.  

The constrained maximization/minimization procedure can include the effects of predictive 

noise if: 

 the noise term is added to the prediction as part of the model; 

 the noise term is treated as a parameter; 

 the noise term is also treated as an observation whose ―observed‖ value is zero and 

whose weight is the inverse of its uncertainty. 

These are done internally by PEST if the user requests it (see the example at the end of this 

chapter). Meanwhile the objective function threshold associated with a given confidence 

interval is still given by (6.2) where the ―individual‖ predictive confidence interval is sought. 

However equation (6.1) must be replaced by the following equation where the simultaneous 

predictive confidence interval is sought: 
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Conceptually, the constrained maximization/minimization process is an efficient method for 

determination of the confidence band of a prediction of interest. As Gallagher and Doherty 

(2006) demonstrate, where the uncertainty band of only a single prediction must be explored 

its model run requirements are much more parsimonious that those of Markov chain Monte 

Carlo analysis. However in real-world modelling its use incurs some difficulties. These 

include the following. 

 As has already been discussed, the statistical structure of model-to-measurement 

misfit induced by model imperfections is unknown; furthermore the greater the extent 

to which simplifications have been introduced to a model to formulate a well-posed 

inverse problem, the greater is the magnitude of structural noise likely to be. 

Unfortunately the veracity of equations (6.1) to (6.3) is dependent on implementation 

of a weighting scheme which properly compliments the statistical structure of 

measurement/structural noise in ways already described. 

 Unless a prediction is very similar to measurements used in the calibration process, 

the stochastic character of the predictive noise term will not be known. 

 Numerical performance of the constrained predictive maximization/minimization 

process degrades rapidly with the introduction of even a small amount of model 

numerical malperformance. Though the deleterious effects of model output 

granularity on calculation of finite-difference derivatives can be mitigated to some 

extent through use of appropriate PEST derivative control settings, and through 

implementation of a line search option as part of the constrained predictive 

maximization/minimization process, these measures all increase the run-time burden 

of this process considerably. 
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Notwithstanding these problems, this procedure can provide a means of rapid assessment of 

―predictive wiggle room‖ in many modelling contexts. 

Calibration-Constrained Monte Carlo  

Equation (5.11) provides the covariance matrix of post-calibration parameter error for a linear 

model. In an over-determined inversion context it also provides the covariance matrix of the 

posterior parameter probability distribution, as equation (5.12) shows. This matrix is 

calculated and recorded by PEST whenever it undertakes over-determined parameter 

estimation. Conceptually this matrix could be used as a basis for random parameter set 

generation. If predictive model runs were then undertaken using all such random parameter 

sets, the post-calibration error/uncertainty distribution of that prediction could thereby be 

explored. In many circumstances this would provide a more efficient means of post-

calibration random parameter set generation for a linear model than that provided by Markov 

chain Monte Carlo as subsequent parameter sets could be very different from each other, and 

no parameter sets would be rejected (neither of which holds true when sampling the posterior 

parameter distribution using the Markov chain Monte Carlo methodology). Further model run 

efficiencies could be gained through using this matrix as a basis for implementation of 

targeted sampling methodologies such as Latin-hypercube. 

Where a model is nonlinear, the covariance matrix of equations (5.11) and (5.12) does not 

provide a true descriptor of post-calibration parameter variability. Exploration of parameter 

and predictive uncertainty through random parameter set generation based on this matrix can 

only therefore be approximate at best. Nevertheless the integrity of such a sampling scheme 

can be improved if random parameter sets that are generated on the basis of this matrix are 

subjected to re-calibration. If the model is not too nonlinear, the computational effort required 

for adjustment of parameters in order to reduce model-to-measurement misfit to a suitable 

threshold, for example the objective function value described by equations (6.1) and (6.2), 

will not be large. In most cases this efficiency can be dramatically increased by re-use of a 

single Jacobian matrix when undertaking parameter adjustment, as is demonstrated in the 

worked example discussed later in this chapter.  

Ill-Posed Inverse Problems 

General  

Ill-posed inverse problems are those for which parameters cannot be estimated uniquely 

because of the existence of a null space. While the existence of a null space may make the 

inverse problem of model calibration a little more difficult to solve than for a well-posed 

inverse problem, recognition of its presence is often essential to the integrity of model 

predictive uncertainty analysis.  

In the past it has often been recommended that when calibrating an environmental model the 

principle of parameter parsimony should be respected. It was shown earlier in this document 

that this precept should not be an end in itself, but may be a logical outcome of the pursuit of 

a calibrated parameter field of minimum error variance. Parsimonization is an inherent part of 

the model calibration process. If calibration is based on highly-parameterized inversion, 

parsimonization is achieved mathematically (and hopefully optimally) as part of the inversion 

process itself. 

Parsimonious parameterization of a model that simulates complex processes in a 

heterogeneous environment can constitute a profound obstacle to the integrity of predictive 

uncertainty analysis, however. If parameterization complexity cannot be estimated on the 
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basis of a given calibration dataset because of a paucity of information within this dataset, 

this does not make that complexity go away. In fact it makes the need for its inclusion in the 

uncertainty analysis process even stronger, for to the extent that a prediction is sensitive to 

parameters, or to parameter combinations, that are inestimable through the calibration 

process, the uncertainty of that prediction is not diminished through calibration. It is the 

author’s experience that the uncertainty associated with many predictions in many contexts is 

dominated by the null-space term. 

Where the predictions required of a model are similar to measurements used in calibration of 

that model, a simplified parameter set that emerges from manual and/or structural 

regularization may provide an adequate basis for post-calibration uncertainty analysis. By 

definition, in these circumstances the prediction is sensitive mainly to those parameters to 

which model outputs used in the calibration process are sensitive (provided that conditions 

that will prevail when a prediction is required are not too different from those which 

prevailed when calibration was effected). Furthermore, if parameter simplification engenders 

structural noise, the nature and extent of this noise as if affects model outcomes used for 

calibration (and hence for predictive) purposes can be determined. Alternatively, if model 

structural defects require that parameters assume compensatory roles to allow a good fit 

between model outputs and members of the calibration dataset to be obtained, this same 

compensatory role is likely to provide a beneficial effect on the ability of the model to make 

predictions of the same type at the same locations. 

However many modelling contexts are very different from this. Models are often built 

precisely because conditions are about to be changed, or because predictions must be made of 

a quantity, or at a location, for which little historical hard information is available. It is 

precisely for this reason that a physically-based model is chosen for environmental 

simulation, and that a considerable level of numerical complexity may be devoted to the 

simulation of environmental processes encapsulated in the model. In fact an important design 

consideration for many models is that a process should not be excluded from the model if a 

prediction of interest may be sensitive to it. Given that the uncertainty associated with the 

making of that prediction will probably be high, the same logic must apply to the 

parameterisation that is associated with prediction-salient processes (and the heterogeneity 

thereof) if the uncertainty associated with the prediction is to be properly explored. As has 

been stated, this (and not an illusion of predictive certainty) must then form the basis for the 

making of decisions to which the prediction pertains. 

Highly-parameterized, nonlinear, post-calibration predictive uncertainty analysis is therefore 

a topic that must be at the heart of modern model usage. Two methods are discussed below. 

The first is generally impractical, but is an extension of a methodology that was discussed 

above for use in the over-determined context. The second is more practical. It can (and has) 

been applied in modelling contexts of considerable parameter and process complexity. A 

third methodology will be discussed in the next chapter. 

Constrained Predictive Maximization/Minimization 

In principle, and in practice, PEST can be used in ―predictive analysis‖ mode to undertake 

constrained predictive maximization/minimization in the highly-parameterized context. In 

doing this two constraints must be enforced. The first is on model-to-measurement misfit, 

while the second is on null-space projected parameter departures from their calibrated values. 

The PEST REGPRED utility (REGPRED stand for ―regularized predictive uncertainty 

analysis) automates construction of a PEST input dataset that can be used to implement this 

process. Tonkin et al. (2007) discuss this methodology and demonstrate its use.  
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While of theoretical interest, this process is unlikely to find much application in real-world 

modelling applications for at least the following reasons. 

 In spite of the fact that its efficiency can be increased through the use of ―predictive 

super parameters‖ as Tonkin et al. (2007) describe, it is a model-run-intensive 

numerical procedure. 

 As for its over-determined counterpart, the integrity and efficiency of the constrained 

maximization/minimization procedure is easily degraded where model numerical 

imperfections degrade the integrity of finite-difference derivatives calculations. 

 Separate constrained maximization/minimization processes must be undertaken to 

obtain prediction values corresponding to different confidence levels. Thus the 

attainment of a relationship between prediction value and confidence level requires 

that an inordinately large number of model runs be carried out. 

Null Space Monte Carlo 

The null space Monte Carlo (NSMC) procedure is unique to PEST. It provides a mechanism 

for rapid generation of diverse parameter fields which satisfy both the model-to-measurement 

misfit and reality constraints required for exploration of post-calibration parameter 

uncertainty. By making a model prediction using many such parameter sets, the calibration-

constrained variability of that prediction can be explored. 

The method is not Bayesian, for it has its roots in equation (5.5) rather than in Bayes 

equation. However Bayesian analysis is very difficult to implement where models are highly 

parameterized, nonlinear and possess long run times, Strictly speaking, NSMC provides a 

methodology for exploration of post-calibration parameter and predictive error rather than of 

post-calibration parameter and predictive uncertainty. However the outcomes of such an 

analysis are not expected to be significantly different from the outcomes of Bayesian 

analysis, and can be acquired with considerably less numerical difficulty. 

Another advantage of the NSMC method is that it can be easily adapted to a user’s computing 

circumstances. If certain compromises are made (these being explained below), the numerical 

efficiency of the method can be greatly increased. This may be necessary where model run 

times are high and/or where computing resources are limited. Though the need for such 

compromises may not always be welcomed, it must be remembered that compromise is a 

better alternative than doing nothing to explore post-calibration predictive uncertainty for, 

with the exception of the methodology that is discussed in the following chapter, there is 

simply no other practical methodology available for use in conjunction with highly 

parameterized models with long run times. 

The NSMC process takes its inspiration from Figure 6.1. It attempts to generate many 

different parameter fields which have the same solution space projection as that of the 

parameter field which calibrates the model. (Ideally the latter should have no null space 

projection at all, for it attempts to provide the most simple means to achieve a desired level of 

model-to-measurement fit; any attempts to wander off the hyper plane that constitutes the 

solution space into the null space are likely to increase the potential for predictive error as 

there is no guarantee that such a journey into the null space is in the right direction.) 

The NSMC process is implemented as follows. 

 Random parameter fields k are generated using the prior parameter probability 

distribution; the covariance matrix of the prior parameter probability distribution is, of 

course, C(k). 
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 The calibration parameter field k is subtracted from each of these random parameter 

fields to yield a random collection of k-k parameter difference fields. 

 In each case the difference field is projected onto the calibration null space. 

 The projected difference field is then added back to the calibration parameter field. If 

the model were linear, the process would end here, as the new parameter field would 

be guaranteed to calibrate the model. 

 The model is re-calibrated through adjustment of the new parameter field. However 

only solution space components of this field are adjusted. Hence re-calibration relies 

on adjustment of only a limited number of super parameters rather than all parameters 

used by the model. Further gains in efficiency are achieved through re-use of the same 

set of super parameter sensitivities for the first iteration of all random field re-

calibration exercises. Note that while the need to re-calibrate in this fashion may be 

seen as an undesirable consequence of model non-linearity, it does provide an 

opportunity to introduce necessary variability to solution space parameter 

components. 

The outcome of an NSMC exercise is a suite of parameter fields which can be used for the 

making of any prediction required of the model. The uncertainty associated with that 

prediction can thereby be assessed through construction of an empirical probability density 

function. 

Means by which the efficiency of this process can be further increased (with some sacrifice to 

the integrity of that process) include the following. 

 The random parameter field generation process based on C(k) can be centred on the 

calibrated parameter field rather than on the pre-calibration expected parameter field. 

 Parameter variability as encapsulated in C(k) can be reduced through use of a 

surrogate C(k) matrix with narrower probability intervals when generating random 

parameter fields. This reduces the extent to which different (null space projected) 

random parameter fields de-calibrate the model, and hence reduces the numerical 

effort required to achieve model re-calibration. 

 The objective function threshold at which a model is deemed to be ―recalibrated‖ can 

be made higher than that which would be considered to be statistically correct on the 

basis of the stochastic properties of measurement noise as encapsulated in C(ε). Given 

the unknown stochastic nature of structural noise which is, in most cases, the 

dominant contributor to calibration misfit, this is unlikely to introduce a significant 

loss of integrity to the NSMC process. 

As Tonkin and Doherty (2009) explain, the NSMC process can be made even more 

sophisticated when implemented in conjunction with groundwater and other spatial models 

by allowing calibration-constrained random heterogeneity to be represented on a cell-by-cell 

or element-by-element basis. To accomplish this, the NSMC process must be slightly 

modified as follows. 

 A spatial parameter field is generated using a cell-by-cell stochastic field generator 

such as the FIELDGEN utility supplied with the PEST Groundwater Data Utility 

suite. 

 That field is sampled at a discrete number of points. These samples comprise a 

random parameter set for a model parameterization scheme based on pilot points. 
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 A smooth field is interpolated between the pilot points; the difference between the 

smoothed, interpolated field and the stochastic field is calculated. 

 The null space projection operation discussed above is applied to the pilot point 

parameter field. 

 When super-parameter re-calibration is applied to the pilot point parameters the 

difference field obtained as above is added to the parameter field obtained through 

spatial interpolation between pilot points. 

See Tonkin and Doherty (2009) and the PPSAMP Groundwater Data Utility for further 

details. 

Exercises 

Surface Water Model 

Objective Function 

Our surface water model has been calibrated using two different formulations of the inverse 

problem, these leading to two different definitions of the objective function that was 

minimized through the calibration process. In the first case the objective function was 

composed of flows alone (actually the logarithms of flows). In the second case a multi-

component objective function was employed. Design and weighting of this multicomponent 

objective function was somewhat heuristic. However use of a strategy such as this can often 

benefit the inverse problem solution process as it makes visible to the inversion process 

information within the calibration dataset that may otherwise be hidden. If properly done, it 

can also help mitigate contamination of the inversion process by structural noise. In the 

previous chapter, linear analysis was employed to obtain some estimate of the uncertainty 

associated with maximum predicted flow over the period 19
th

 to 23
rd

 August 1986 based on 

this formulation of the inverse problem. 

In the present chapter we will change our tact slightly. In fact we will implement uncertainty 

analysis ―by the book‖, partly to demonstrate how this is done, and partly to demonstrate that 

while there is some comfort to be gained in seeking refuge in a safe theoretical harbour, this 

may not provide a sound basis for parameter and predictive uncertainty analysis where theory 

cannot accommodate the structural weaknesses of a model.  

We will therefore take as our starting point the PEST control file calib1_soln.pst which 

contains best-fit parameters achieved during a calibration process formulated on the basis of a 

single objective function comprised of log-transformed flows. As the PEST run record file 

calib1_soln.rec shows, the minimized objective function achieved during this calibration 

exercise was 8.042. 

Constrained Maximization/Minimization 

The PEST control file calib3a.pst is similar to calib1_soln.pst in that it employs the same 

initial parameter values as calib1_soln.pst. However it differs from calib1_soln.pst in that 

PEST is asked to run in ―predictive analysis‖ mode. In doing so it is asked to minimize the 

value of prediction qmax_sim_max, this being the maximum flow over the period 19
th

 August 

to 23
rd

 August 1986 (which actually occurs on 20
th

 August). This prediction is assigned to the 

observation group ―predict‖ which identifies it as the quantity to be maximized or minimized 

during the constrained optimisation process that is undertaken by PEST when run in 

―predictive analysis‖ mode. 
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Further inspection of file calib3a.pst reveals that it contains a ―predictive analysis‖ section. 

The NPREDMAXMIN variable on the first line of this section is set to -1, indicating that 

minimization, rather than maximization, of the prediction is required. The objective function 

constraint Φ0 (PEST variable PD0) is set to 8.19053 in accordance with equation (6.2) 

calculated for a two-sided confidence interval of 99%. This objective function is obviously 

only very slightly higher than the minimum obtained during the calibration process. It shows 

how little wiggle room parameters are granted where the calibration dataset is large and there 

is no null space. This is almost certain to result in an underestimation of parameter (and 

hence predictive) uncertainty. This is an outcome of the fact that the highly correlated nature 

of structural noise is ignored in setting the objective function limit in this manner; hence the 

assumed information content of the calibration dataset is artificially inflated.  

Note also that the ―singular value decomposition‖ section of the PEST control file has been 

removed, this being a PEST requirement when it is run in ―predictive analysis‖ mode. In the 

―predictive analysis‖ section, PEST is asked to enhance the performance of the constrained 

minimization process by implementing a line search as part of this process; see the third to 

fifth variables on the third line of this section. This will consume model runs, but will 

enhance the performance of the optimisation process. 

Run PEST using the command: 

 pest calib3a 

An inspection of screen output and the run record file reveals that PEST is able to lower the 

predicted flow for 20
th

 August 1986 from an initial value of 412.5 m
3
/sec (this being 

calculated using initial parameter values) to a value of 331.9 m
3
/sec. This is an impressive 

fall for such a tight objective function constraint. However while a high degree of predictive 

uncertainty has been exposed through this process, it not enough to encompass the observed 

flow on that day. 

Taking Predictive Noise into Account  

The PEST control file calib3b.pst is similar to calib3a.pst. However it differs from it in the 

following important respects. 

 The PREDNOISE variable in the ―predictive analysis‖ section of the PEST control 

file is set to 1; this follows NPREDMAXMIN as the second variable on the line 

immediately following the ―predictive analysis‖ section header. Hence PEST will add 

predictive noise to the model output that is identified as ―the prediction‖ on each 

occasion that it runs the model. 

 A weight of 1.0 is provided to the qmax_sim_max ―observation‖ which is, in fact, the 

prediction that is subject to constrained minimization. This informs PEST that the 

predictive noise that is added to this prediction has the same variance as that 

associated with model outputs used in calibrating the model. 

 PEST runs a model named model_calib1a.bat instead of model_calib1.bat. In this 

batch file, TSROC is provided with an input file named tsproc_calib1a.dat. In this 

TSPROC input file the log of the model output that is identified as ―the prediction‖, 

rather than the prediction itself, is calculated. This is because it is to the log of the 

prediction rather than to the native prediction that predictive noise must be added 

because it was with respect to the log of flows rather than native flows that the noise 

associated with model outputs/field measurements was assessed from model-to-

measurement misfit arising from the calibration process. Note that there is no need to 
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change the ―observed value‖ of this prediction in the ―observation data‖ section of the 

PEST control file, however, as this ―observed value‖ is ignored by PEST. 

Run PEST by typing the command: 

 pest calib3b 

PEST lowers the prediction to 2.21998. This is equivalent to a flow of 165.95m
3
/sec. While 

still not encompassing the correct flow, the substantial broadening of the predictive 

uncertainty margin is pleasing to see. 

Post-Calibration Parameter Covariance Matrix 

The PEST control file calib3c.pst is identical to calib1_soln.pst except for the fact that the 

―singular value decomposition‖ section is omitted from this file. Hence upon termination of 

execution, PEST will print out the post-calibration parameter covariance matrix; this is the 

matrix featured in both of equations (5.11) and (5.12). NOPTMAX is set to -1 in this PEST 

control file so that PEST will calculate a Jacobian matrix, calculate statistics on the basis of 

this matrix (including the post-calibration covariance matrix) and then cease execution. 

Actually the Jacobian matrix is already available in file calib1_soln.jco; recall that we 

previously ran PEST specifically to obtain this matrix. So we will save PEST the trouble of 

having to re-run the model once for each adjustable parameter in order to calculate it by finite 

differences, by providing this matrix to PEST ourselves. This is accomplished by starting 

PEST with the ―/i‖ switch - thereby instructing PEST to read this matrix from an existing 

*.jco file. 

Run PEST using the command: 

 pest calib3c /i 

Respond to the ensuing prompt as follows. 

 Enter name of JCO file for first iteration sensitivities: calib1_soln.jco 

Upon commencement of execution, PEST runs the model once to calculate the objective 

function. Then it reads calib1_soln.jco to obtain the pre-calculated Jacobian matrix. It then 

computes parameter statistics before ceasing execution. The post-calibration parameter 

covariance matrix is available in both the run record file calib3c.rec and the ―matrix file‖ 

calib3c.mtt. 

The post-calibration parameter covariance matrix can be re-written in PEST matrix file 

format using the PCOV2MAT utility. (PCOV2MAT stands for ―PEST covariance matrix to 

matrix file format.) Run PCOV2MAT as follows. 

 pcov2mat calib3c.mtt postcalparcov.mat 

A file named postcalparcov.unc has been supplied. This is a ―parameter uncertainty file‖; we 

have seen these before. postcalparcov.unc instructs any program which reads it to look to the 

covariance matrix housed in file postcalparcovf.mat that we have just written for a stochastic 

descriptor of parameter variability. This will now be used as a basis for random number 

generation.  

Obtaining Calibration Constrained Random Parameter Sets 

We will now use the RANDPAR utility to generate random parameter sets on the basis of the 

covariance matrix contained in file postcalparcov.mat. These parameter sets will be centred 

on the calibrated parameter set. Hence, if the model were linear, these random parameter sets 

should constitute samples of the posterior parameter probability distribution. As such they 
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could be used as a basis for exploring the uncertainty of any model prediction. This would be 

accomplished by running the model repeatedly using one of these random parameter sets on 

each occasion, collecting results, and building an empirical predictive probability distribution 

on the basis of these model run outcomes. 

Run RANDPAR, responding to its prompts as follows: 

Enter name of existing PEST control file: calib3c.pst 

 - 10 parameters read from file calib3c.pst. 

 - 7 of these are adjustable. 

 

 Use (log)normal or (log)uniform distrib for param generation? [n/u]: n 

 Compute means as existing param values or range midpoints? [e/m]: e 

 Respect parameter ranges? [y/n]: y 

 

 Enter name of parameter uncertainty file: postcalparcov.unc 

 - reading covariance matrix file postcalparcov.mat... 

 - covariance matrix file postcalparcov.mat read ok. 

 - parameter uncertainty file postcalparcov.unc read ok. 

 

 Enter name of parameter ordering file (<Enter> if none): <Enter> 

 

 Enter filename base for parameter value files: postcal_random 

 How many of these files do you wish to generate? 100 

 

 Enter integer random number seed (<Enter> if default): <Enter> 

RANDPAR generates 100 sets of parameters, storing these in files named 

postcal_randomN.par where N ranges from 1 to 100.  

Given that our model is in fact nonlinear, we may ask ―how well do these parameter fields 

respect calibration constraints‖? This question can be answered by running PEST 100 times, 

with NOPTMAX set to zero each time, so that PEST simply calculates the objective function 

on each occasion that it runs. Ideally, all of these objective functions should be reasonably 

close to the minimized objective function obtained during the previous calibration process. 

(Actually they should respect the statistical constraints set by equations (6.1) and 6.2)). A 

batch file which implements this procedure is postcal_runs.bat. It is reproduced below. 
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rem ########################################################### 

rem Delete an existing record file. 

rem ########################################################### 

 

del /P record_postcal.dat 

echo  > record_postcal.dat 

pause 

 

rem ########################################################### 

rem Do all the PEST runs. 

rem ########################################################### 

 

for /L %%i in (1,1,100) do ( 

del temp.pst 

del temp.rec 

parrep postcal_random%%i.par calib3d.pst temp.pst 

pest temp 

echo „ „  >> record_postcal.dat 

echo  PARAMETER SET %%i >> record_postcal.dat 

find /I “ie phi” temp.rec >> record_postcal.dat 

) 

Figure 6.2 The batch file postcal_runs.bat.  

Note the following features of this batch file. 

 The PEST control file calib3d.pst is identical to calib3c.pst except for the fact that 

NOPTMAX is set to zero in this file. 

 On each traversal of the processing loop contained within the batch file 

postcal_runs.bat, the PARREP utility is used to create a reproduction of the PEST 

control file calib3d.pst which contains each of the random parameter sets in turn; this 

file is named temp.pst on each occasion. Thus on each traversal through the loop 

PEST is asked to run the model only once, calculate the objective function based on 

pertinent model outputs, and then cease execution. 

 After each PEST run, the run record file temp.rec is searched for the string ―i.e. phi‖. 

The whole line containing this string is then appended to a file named 

record_postcal.dat. This string actually occurs twice within the run record file. On 

each occasion it is followed by the objective function. Thus when the 100 PEST runs 

are complete, file record_postcal.dat will contain a record of objective functions 

calculated on the basis of the random parameter sets stored in files 

postcal_random*.par. 

 File record_postcal.dat is deleted before anything is appended to it (with the user’s 

permission). This avoids confusion as it prevents the outcomes of the present batch 

process from being appended to an existing file of the same name. 

Run the batch process postcal_runs.bat by typing its name at the screen prompt. When the 

process is complete, inspect file record_postcal.dat. It appears that most of the parameter sets 

respect calibration constraints pretty well, as the objective function is not far above the 

minimized value of 8.0424 in all cases.  

Better Enforcement of Calibration Constraints 

The list of objective function values provided in file record_postcal.dat indicates a high 

degree of conformance to calibration constraints by the parameter sets contained in files 

postcal_random*.par. Although the objective functions are not as low as the value of 
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8.19053 provided by equation (6.2), in a real-world setting we would normally be happy with 

these objective functions as their extra variability provides room for the effects of structural 

noise. Nevertheless, we will now demonstrate a process through which these random 

parameter sets can undergo adjustment in order to enforce greater respect for calibration 

constraints. The outcome of this process will be another set of parameter value files. We will 

then make a model prediction on the basis of each member of this set, thereby exploring post-

calibration predictive uncertainty. 

Inspect file calib3e.pst. This is almost identical to calib3d.pst. However there are some 

important differences. These are now outlined. 

 NOPTMAX is set to 1 in file calib3e.pst. Thus PEST will devote one optimization 

iteration to improving parameter values. 

 A value of 8.3 has been provided for the optional PHISTOPTHRESH variable. This is 

the seventh variable on the 9th line of file calib3e.pst. PEST will not attempt to lower 

the objective function below this. Thus if the objective function calculated on the 

basis of initial parameter values is already lower than this, PEST will not undertake 

even one optimisation iteration. This is still a little higher than the value of 8.19053 

provided by equation (6.2). However it is selected in subjective recognition of the 

contribution that structural noise makes to model-to-measurement misfit under 

calibration conditions. 

The batch file postcal_recalib.bat supervises re-adjustment of the random parameter sets 

recorded in the postcal_random*.par parameter value files. It is reproduced below. 

 

rem ########################################################### 

rem Delete an existing record file. 

rem ########################################################### 

 

del /P record_recalib.dat 

echo  > record_recalib.dat 

pause 

 

rem ########################################################### 

rem Do all the PEST runs. 

rem ########################################################### 

 

for /L %%i in (1,1,100) do ( 

del temp.pst 

del temp.rec 

parrep postcal_random%%i.par calib3e.pst temp.pst 

pest temp /i < response_calib3e.in 

echo ' '  >> record_recalib.dat 

echo  PARAMETER SET %%i >> record_recalib.dat 

find /I "ie phi" temp.rec >> record_recalib.dat 

find /I "total model calls: " temp.rec >> record_recalib.dat 

copy temp.par postcal_random_adjusted%%i.par 

) 

Figure 6.3 The batch file postcal_recalib.bat. 

The following aspects of file postcal_recalib.bat are noteworthy. 

 Random parameter sets contained in files postcal_random*.par are PARREPed into 

the PEST control file calib3e.pst to produce a new PEST control file named temp.pst 

on each traversal of the processing loop contained in this batch file. On the basis of 
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temp.pst, PEST undertakes parameter re-adjustment for a maximum of 1 optimisation 

iteration as already discussed. 

 PEST is run using the ―/i‖ switch. An inspection of the re-directed keyboard input file 

response_calib3e.in supplied to PEST on each occasion that it runs, reveals that PEST 

is told to read its Jacobian matrix from file calib1_soln.jco. Because it is run with the 

―/i‖ switch, PEST does NOT undertake a model run for each parameter in calculating 

a finite-difference Jacobian. It simply reads the pre-recorded Jacobian matrix instead. 

Hence the computational burden of parameter re-adjustment is very light. 

 Adjusted parameters (if indeed adjustment is required) are recorded in parameter 

value files postcal_random_adjusted*.par. 

 The number of model runs that PEST undertakes on each occasion of its execution is 

recorded in file record_recalib.dat. So too are the initial and final objective function 

values (these being outcomes of two finds of the ―i.e. phi‖ string). 

Run the postcal_recalib.bat batch process by typing its name at the screen prompt. When this 

process is complete, the resulting parameter sets will reside in a suite of parameter value files 

named postcal_random_adjusted*.par. Note that all of these parameter sets could be 

collected into a single tabular data file using the MULPARTAB utility supplied with PEST if 

desired. 

Exploring Predictive Uncertainty 

The batch file postcal_adjusted_runs.bat is similar to precal_runs.bat which we used in 

Chapter 3 to explore pre-calibration predictive uncertainty. It runs the model 100 times - once 

for each of the parameter sets recorded in the parameter value file sequence 

postcal_random_adjusted*.par which we have just generated. Model outcomes 

corresponding to these random parameter sets are recorded in a series of PEST residuals files 

named temp.res.*. Run this batch process by typing: 

 postcal_adjusted_runs.bat 

at the screen prompt. Finally collect model predictions into a single table using the 

RDMULRES utility as was done previously when we undertook pre-calibration Monte Carlo 

analysis. Run RDMULRES using the following command: 

 rdmulres rdmulres_postcal_adjusted.in 

The RDMULRES input file rdmulres_postcal_adjusted.in instructs RDMULRES to 

accumulate predicted flows in file rdmulres_postcal_adjusted.out. A frequency histogram 

based on these flows is provided in Figure 6.4. 

 



How Wrong Can a Prediction Be? Nonlinear Analysis 118 

340 360 380 400 420 440 460 480 500 520 540 560

Flow (cubic metres per second)

0

10

20

30

N
u
m

b
e
r 

o
f 
s
a
m

p
le

s

 

Figure 6.4 Post-calibration predicted maximum flow over the period 19
th

 to 23
rd

 August, 

1986. No predictive noise has been added to model-predicted flow. 

Not even the lowest flow depicted in Figure 6.4 approaches the observed flow on 20
th

 August 

1986. The smaller-than-expected width of the probability distribution depicted in Figure 6.4 

is partly an outcome of the fact that a mere 100 samples provides an insufficient basis for 

identification of predictive extremes. However a bigger problem is that the above analysis did 

not take account of predictive noise. Hence the predictive variability depicted in Figure 6.4 is 

a function only of post-calibration parameter variability.  

This defect in our analysis could be rectified in a number of ways. Firstly the level of noise 

that is likely to be associated with the prediction must be evaluated. This could be done (as 

was done implicitly above when using PEST’s predictive analyser) by equating it to the noise 

encountered during the calibration process. This noise pertains to the log of flows rather than 

to flows themselves - partly because noise applied to flows log-transformed in this way is 

more likely to be homoscedastic than noise associated with native flows; hence (theoretically) 

it can be used in the future as well as in the past to characterise structural noise. This noise 

could then be formally included in Monte Carlo analysis as another random parameter, this 

being added to the log of predicted flow on each occasion that the model is run. As it happens 

we know this noise. In the PEST run record file calib1_soln.rec the ―standard error of 

weighted residuals‖ is recorded as 0.1497. As all logged flows used in the calibration process 

were provided with a weight of 1.0, this defines the noise associated with logged flows. This 

equates to a multiplier/divisor of 1.411 (obtained as 10 raised to the power 0.1497). If this is 

applied to the lowest predicted flow of 358.6 m
3
/sec obtained in the above Monte Carlo 

analysis (see file rdmulres_postcal_adjusted.out), a flow of about 254 m
3
/sec is obtained. 

This is still higher than that obtained using the constrained minimization process to explore 

the range of predictive uncertainty, this probably being attributable to insufficiency of 

sampling. 
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Alternatively, a more heuristic approach could be taken. As Gallagher and Doherty (2007b) 

show, structural noise is most unlikely to be homoscedastic under any kind of transformation. 

Instead it is likely to show event-similarity. A modeller may therefore inspect model-to-

measurement misfit over the calibration period as it pertains to peaks following dry periods, 

and thereby obtain an idea of an appropriate range of ―correction multipliers‖ to apply to 

these types of flows. These could be included either formally (as a random variable in Monte 

Carlo analysis) or informally (as a worst case correction term as was done above) in 

calculation of the predictive uncertainty range. 

The Groundwater Model  

General 

As has already been noted, calibration of the groundwater model used in our example 

constitutes an ill-posed inverse problem. As 104 parameters are estimated on the basis of only 

12 observations, the dimensionality of the null space must be at least 92. Recall that the 

SUPCALC utility estimated the dimensionality of the solution space to be 12 (this being 

equal to its recommended number of super parameters). It follows that its estimated null 

space dimensionality is 92. (On most occasions the dimensionality of the null space will be 

far greater than the observation-to-parameter deficit, this being its theoretical lower limit). 

As was stated above, use of constrained maximization/minimization for exploration of post-

calibration predictive uncertainty in under-determined calibration contexts is problematical. 

Hence that methodology will not be used here. Instead the null space Monte Carlo (NSMC) 

methodology will be employed. 

The NSMC methodology is flexible enough to allow hydraulic property heterogeneity right 

down to the cell-by-cell level to be included in calibration-constrained parameter fields. This 

will not be demonstrated here; the reader is referred to PEST documentation, and to 

documentation of the PEST Groundwater Data Utilities (particularly the PPSAMP utility) for 

further details. See also Tonkin and Doherty (2009) and Herckenrath et al. (2010) for a 

discussion of this issue. In the example presented below, heterogeneity will be 

accommodated at the pilot point level, this being the level at which parameters are estimated. 

PEST Control and Jacobian Matrix Files 

The NSMC process begins with a calibrated model. Our groundwater model has already been 

calibrated; optimised parameters are recorded as initial parameters in file calib1r_soln.pst. A 

corresponding Jacobian matrix file named calib1r_soln.jco was produced on the basis of 

these calibrated parameters in order to underpin the linear uncertainty analysis that was 

undertaken in the previous chapter. 

Our first task is to build a new PEST control file in which the same initial (and therefore 

optimized) parameter values are recorded, but from which regularization constraints are 

removed. Our task in random field generation is, after all, to introduce (reality-constrained) 

variability rather than to suppress it (as is the role of Tikhonov regularization). 

File calib3.pst.kp1 is a copy of calib1r_soln.pst with the appropriate adjustments made. To 

obtain a Jacobian matrix corresponding to this file we could set NOPTMAX to -2 in its 

―control data‖ section and then run PEST. However in order to save model runs, we will use 

the JCO2JCO utility to build a Jacobian matrix file corresponding to this PEST control file, 

for sensitivities of the same model outputs with respect to the same parameters have already 

been calculated and are recorded in file calib1r_soln.jco.  
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First copy calib3.pst.kp1 to calib3.pst using the command: 

 copy calib3.pst.kp1 calib3.pst 

so that its extension is in accordance with PEST control file protocol. (If your computer tells 

you that calib3.pst already exists, overwrite it.) Then run JCO2JCO as follows: 

 jco2jco calib1r_soln calib3 

to build the Jacobian matrix file calib3.jco. 

Random Parameter Set Generation  

The RANDPAR utility will now be used to generate random parameter sets centred on the 

initial values contained in file calib3.pst.  Run RANDPAR, responding to its prompts as 

follows: 

 Enter name of existing PEST control file: calib3.pst 

 - 104 parameters read from file calib3.pst. 

 - 104 of these are adjustable. 

 

 Use (log)normal or (log)uniform distrib for param generation? [n/u]: n 

 Compute means as existing param values or range midpoints? [e/m]: e 

 Respect parameter ranges? [y/n]: y 

 

 Enter name of parameter uncertainty file: param.unc 

 - reading covariance matrix file hk_cov.mat... 

 - covariance matrix file hk_cov.mat read ok. 

 - parameter uncertainty file param.unc read ok. 

 

 Enter name of parameter ordering file (<Enter> if none): <Enter> 

 

 Enter filename base for parameter value files: random 

 How many of these files do you wish to generate? 100 

 

 Enter integer random number seed (<Enter> if default): <Enter> 

Random parameter sets generated by RANDPAR are stored in the parameter value files 

randomN.par where N ranges from 1 to 100. 

Null Space Projection 

The random parameter sets that we have just generated pay no respect to calibration 

constraints. This will now be rectified by restricting parameter field departures from 

calibrated values to the null space. This is accomplished using the PNULPAR utility. Run 

PNULPAR, responding to its prompts as follows. 

 Enter name of PEST control file: calib3.pst 

 Does PEST control file contain calibrated parameter values? [y/n]: y 

 

 Enter number of dimensions of calibration solution space: 12 

 Would you like to store Q(1/2)X matrix in matrix file format? [y/n]: n 

 

 Enter filename base of existing parameter value files: random 

 Enter filename base for new parameter value files: ns_random 

The outcomes of PNULPAR’s deliberations are 100 parameter sets stored in the parameter 

value files ns_randomN.par where N ranges from 1 to 100. If the model were linear, all of 

these parameter fields would calibrate it; as it is not, they need adjustment. However only 

solution space components of parameter sets need to be adjusted to achieve this. Hence we 
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will build a PEST input dataset based on 12 super parameters; then we will automate 

adjustment of the 100 parameter sets stored in files ns_random*.par through a batch process. 

Before doing this however, a few moments will be taken to explore the efficacy of null space 

projection. 

Issue the following command. 

 parrep random1.par calib3.pst temp.pst 

Through this command we build a PEST control file named temp.pst whose initial values are 

the random parameter values contained in the parameter value file random1.par. Now edit 

temp.pst, setting NOPTMAX to zero in this file (first number on the ninth line). Then run 

PEST (with input file temp.pst) to calculate the objective function. It is 42120; the model is 

very ―uncalibrated‖. 

Now let us calculate the objective function using the null-space projected counterpart to the 

parameter set contained in file random1.par. Issue the command: 

 parrep ns_random1.par calib3.pst temp.pst 

Set NOPTMAX to zero in temp.pst and run PEST. The objective function is 56.4. The 

benefits of null-space projection in achieving an ―almost calibrated‖ random parameter field 

are readily apparent. 

Termination Criteria 

In a similar fashion to what was done in Chapter 4, the SVDAPREP utility will now be used 

to build a PEST input dataset in which only super parameters are adjusted. But before doing 

this, new termination criteria will be introduced to file calib3.pst. These will then be 

transferred to the new super parameter PEST control file that SVDAPREP writes. 

Inspect file calib3.pst. It should contain the following termination criteria. If it does not, then 

edit them to ensure that it does. 

 NOPTMAX (the first variable on the 9th line of calib3.pst) should be set to 2. Thus 

PEST is instructed to carry out, at most, two optimisation iterations. The first of these 

is undertaken at virtually no numerical cost, as PEST automatically calculates super 

parameter sensitivities from base parameter sensitivities in the first iteration of SVD-

assisted parameter estimation. Hence a numerical burden is incurred only if PEST 

must undertake more than one optimisation iteration in order to effect parameter 

improvement. However as this is being done using super parameters, only 12 model 

runs will be required for filling of the Jacobian matrix. 

 The PHISTOPTHRESH variable (seventh variable on the 9th line of the PEST control 

file) is set to 12.1. PEST will consider the model calibrated, and therefore cease 

execution, if the objective function falls below this value. If the objective function 

corresponding to initial parameter values is at or below PHISTOPTHRESH, no 

optimization iterations at all will be carried out. 

SVD-Assist 

Now run SVDAPREP, respond to its prompts as follows. 

 Enter name of existing PEST control file: calib3.pst 

 Use pre-defined super-parameter file? [y/n]  (<Enter> if "no"): <Enter> 

 For computation of super parameters:- 

    if SVD on Q^(1/2)X                - enter 1 

    if SVD on XtQX                    - enter 2 
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    if LSQR without orthogonalisation - enter 3 

    if LSQR with orthogonalisation    - enter 4 

 Enter your choice (<Enter> if 1): 1 

 Enter number of super parameters to estimate: 12 

 Enter name for new super pest control file: calib3_svda.pst 

 Enter offset for super parameters  (<Enter> if 10): <Enter> 

 Enter value for RELPARMAX (<Enter> if 0.1): <Enter> 

 Write multiple BPA, JCO, REI, none [b/j/r/n] files (<Enter> if "n")? <Enter> 

 Parameter scale adjustment [SVDA_SCALADJ] setting (<Enter> if 2): <Enter> 

 Make new model batch file silent or verbose?  [s/v] (<Enter> if "s") : <Enter> 

 Automatic calc. of 1st itn. super param. derivs?  [y/n] (<Enter> if "y") : <Enter> 

As instructed, SVDAPREP writes a PEST control file named calib3_svda.pst. 

Now, before doing anything else, make a copy of the base parameter PEST control file 

calib3.pst. Copy this to file calib3.pst.kp1. The reason for doing this will become apparent in 

a moment. (As calib3.pst.kp1 was provided, you don’t really have to do this.) 

The Batch Process 

Inspect file adjust_parameters.bat. It is reproduced below. 

rem ########################################################### 

rem Delete an existing record file. 

rem ########################################################### 

 

del /P record.dat 

echo  > record.dat 

pause 

 

rem ########################################################### 

rem Do all the PEST runs. 

rem ########################################################### 

 

for /L %%i in (1,1,100) do ( 

parrep ns_random%%i.par calib3.pst.kp1 calib3.pst 

pest calib3_svda 

find /I "ie phi" calib3_svda.rec >> record.dat 

copy calib3.bpa calib3.bpa.%%i) 

Figure 6.5 The batch file adjust_parameters.bat. 

As in many or our previous batch files, we make provision for keeping a record of initial and 

final objective function values through use of the ―find‖ command, with screen output from 

this command being re-directed to file record.dat. This file is deleted at the beginning of the 

batch process to ensure that these outcomes are not appended to an existing file of the same 

name, thereby creating confusion. 

A series of commands contained within a loop is repeated 100 times, once for each null-

space-projected random parameter set. First the parameter set is emplaced in a new calib3.pst 

file as initial values in this file. This is accomplished using the PARREP utility which uses 

file calib3.pst.kp1 (copied from the original calib3.pst) as its base. Next parameter estimation 

is undertaken on the basis of file calib3_svda.pst. When writing this file SVDAPREP 

instructed it to look to calib3.pst for its initial parameter values; hence it inherits null-space-

projected random parameter values as initial values in the parameter adjustment process. 

However, because the calib3_svda.pst PEST control file employs super parameters, only 

solution space parameter components are adjusted through the calibration process (and only 

12 of these). 

Once calibration is complete (either because 2 optimisation iterations have been completed or 

because the objective function has fallen below 12.1) the optimized parameter values stored 
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in file calib3.bpa are copied for safekeeping to another parameter value file named 

calib3.bpa.N where N is the index of the current parameter set. (Note that when PEST 

undertakes SVD-assisted parameter estimation the parameter value file that contains 

optimized base parameter values is named after the base parameter PEST control file, rather 

than the super parameter PEST control file, and has an extension of ―.bpa‖.) 

To implement the above process, type:  

 adjust_parameters.bat 

at the command-line. Watch the screen as this process progresses. You will note that rarely 

does PEST need to undertake a second optimisation iteration; hence the process is very fast. 

In fact there are many occasions when not even one optimisation iteration is required, as null-

space projection has resulted in a random parameter field which already calibrates the model. 

Exploring Predictive Uncertainty 

An inspection of record.dat reveals that all of the parameter fields contained in files 

calib3.bpa.* yield an objective function less than 12.1. So there is no need to winnow any of 

them out because of failure to satisfy calibration constraints. (This could be achieved using 

the COMFILNME utility supplied with PEST.) 

Inspect the postcal_runs.bat batch file. This instructs the model to run 100 times, using a 

different adjusted-null-space-projected random parameter field on each occasion. The model 

is run through the agency of PEST so that the PARREP command can be used to provide 

parameter values for each run. At the end of each run, the model prediction is copied to file 

timeN.dat where N is the parameter field index. Note that calib4.pst featured in this file is 

identical to calib3.pst.kp1 except for the fact that NOPTMAX is set to zero, thereby 

instructing PEST to undertake only one model run. 

Initiate the batch process by typing the command: 

 postcal_runs.bat 

at the command-line prompt. 

Now use the RDMULRES utility to collect all the predictions based on different calibration-

constrained random parameter sets into a single file, as we did previously when examining 

pre-calibration uncertainty. An appropriate RDMULRES input file named 

rdmulres_postcal.in has been prepared. Through this file, RDMULRES is asked to read all of 

the time*.dat files produced as an outcome of the previous set of model runs. It is asked to 

place them into a file named rdmulres_postcal.out.  

Run RDMULRES using the command: 

 rdmulres rdmulres_postcal.in 

If the predictions contained in file rdmulres_postcal.out are plotted as a histogram, the 

following graph is obtained. 
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Figure 6.6 Post-calibration uncertainty histogram of predicted travel time. 

The minimum prediction listed in file rdmulres_postcal.out is 4414 days. This is considerably 

higher than the true value of the prediction, this being 3256 days. As has already been stated, 

this example was chosen specifically to be hard; the correct travel time is indeed at the 

extreme end of the predictive confidence interval. If 2000 parameter sets, rather than a mere 

100 parameter sets, were used in the above analysis, this extreme value would have been 

approached. However another problem with the analysis is that it fails to take account of the 

effects of cell-by-cell hydraulic conductivity variability on the travel time of the particle. This 

could be accounted for either through addition of a small, random ―predictive noise‖ term to 

the prediction, or through using null-space-projection of FIELDGEN-generated parameter 

fields as a basis for null space Monte Carlo analysis. See documentation of the PPSAMP 

Groundwater Data Utility for further details. 
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7. Hypothesis-Testing and Pareto Methods 

Where are we at? 

Conceptually, Bayes equation provides a mechanism for synthesis of information contained 

in expert knowledge and in measurements of system state. Unfortunately, problems arise in 

applying Bayes equation in the environmental modelling context. These include the 

following. 

 Numerically, working directly with probability distributions is difficult, unless models 

are linear and/or probability distributions are amenable to simple analytical 

description. 

 Encapsulation of expert knowledge in a prior probability distribution is often a 

difficult matter. In the environmental modelling context expert knowledge of complex 

geological, environmental, land use and climatic systems is often slight. Furthermore, 

the variables that describe the nature of spatial and temporal heterogeneity as it 

applies to influential system properties are categorical rather than continuous, and 

mathematical simplifications such as stationarity or homoscedasticity are 

inappropriate. 

 Numerical models are defective simulators of environmental behaviour. This has a 

number of repercussions. It gives rise to significant structural noise under both 

calibration and predictive conditions. The stochastic character of this noise (which is 

needed for definition of the likelihood function in Bayes equation) is unknown. Many 

parameters that are adjusted through the history-matching process must assume, to at 

least some degree, surrogate roles to compensate for a model’s inadequacies in 

simulating past system behaviour. Depending on the type of prediction required of a 

model, these roles may either enhance or detract from its ability to make those 

predictions. In either case, the link between parameter optimality and predictive 

optimality is broken. 

Analysis of predictive uncertainty in the environmental modelling context will therefore be 

compromised. In fact quantitative exploration of uncertainty may be impossible, as many 

aspects of the analysis must be heuristic. This does not detract from the importance of 

assessing model predictive uncertainty. As has already been stated, such an assessment is 

fundamental to the making of important decisions - decisions that cannot be avoided and that 

must be made with as high a level of scientific integrity as possible. However it does raise the 

question of how to approach this matter and whether, given its necessarily subjective, but 

nevertheless numerically intensive nature, direct application of Bayes equation is the best 

way to go about it. 

A distinction has been made in this document between analysis of the potential for predictive 

error and analysis of predictive uncertainty. Error is what we, as modellers, carry; our goal is 

to reduce the potential for error associated with a given prediction to its theoretical lower 

limit, this being the inherent uncertainty of that prediction given the information that is 

presently at hand.  

Working with error rather than uncertainty allows us many conveniences that can help 

overcome the problems associated with direct application of Bayes equation. In particular, 

use of Bayes equation to estimate predictive uncertainty is replaced by a two step process of 

model calibration followed by post-calibration predictive error analysis. Despite its 
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convenience, this approach still leaves us with two major problems. As equation (5.8) 

demonstrates, formal assessment of model predictive error still requires that the user provide 

assessments of the stochastic character of pre-calibration parameter uncertainty, and of the 

stochastic character of measurement/structural noise In equation (5.8) these are represented 

by the C(k) and C(ε) covariance matrices respectively.  

The significance of model structural defects should not be underestimated. Defects arise 

because no model can provide perfect simulation of all aspects of environmental behaviour 

that are salient to a particular environmental outcome that we would like to predict. Their 

existence is not always a cause for concern however, as construction of the ―perfect model‖ 

may not be a fruitful pursuit anyway. As discussed earlier in this document, while a ―perfect 

model‖ may, in theory, provide the best mathematical repository for expert knowledge, it 

may make a very poor tool for extracting vital information from historical measurements of 

system state. To the extent that a prediction resembles historical measurements of system 

state, the importance of these measurements to the making of that prediction is increased. 

While a simplified model may provide receptacles for this kind of information that are only 

loosely linked to nameable system properties, at least these receptacles are accessible, thanks 

to manageable model run times and elimination of problematical numerical behaviour. 

However as model abstraction increases with increased model simplification, and as 

parameters increasingly assume roles that compensate for model inadequacies, their capacity 

to act as receptacles for information arising from expert knowledge is diminished. In many 

circumstances this may be a small price to pay for greatly enhanced predictive ability. In 

other circumstances, particularly those where predictions are of very different types, or must 

be made under very different circumstances, from those comprising the calibration dataset, 

even a small level of abstraction may incur significant and unquantifiable model predictive 

error. 

Where do we go from here? 

The above brief analysis suggests that there is no single path forward. Nevertheless the 

purpose of this chapter is to explain a methodology that, in the author’s opinion, has the 

potential to provide a useful basis for model usage in many decision-making frameworks. 

Underpinning its use are a number of assumptions that can be summarized as follows. 

 Models that are used as a basis for environmental decision-making are deployed in 

environments where data have been gathered for many years. History-matching is 

thus an important part of the model development process. 

 The capacity exists to build a model that, though not providing an exact replica of 

system processes, is nevertheless physically-based to a reasonably high degree.  

 Nevertheless, the model that is ultimately used as a basis for environmental 

management in any particular context will have many numerical imperfections. Some 

of these imperfections will arise because of the necessity to make assumptions 

pertaining to elements of the system that are imperfectly known, for example the 

disposition of geological layering and the nature of historical system stresses. Others 

will arise from model simplifications that are adopted to forestall numerical instability 

and/or excessive run times. 

 Though a considerable amount of expert knowledge exists over a study area at which 

an environmental model is employed, this knowledge is frustratingly inadequate - 

especially as it pertains to the degree and nature of heterogeneity that prevails in 
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subsurface hydraulic properties, the nature and magnitude of historical system 

stresses, the spatial and temporal variability of present and historical land uses, etc.  

Despite the difficulties that they present, these aspects of real-world environmental modelling 

do not erode the potential for numerical simulation to provide a sound basis for decision 

support. However its ability to achieve this potential will depend on the manner in which it is 

employed, and on the philosophical underpinnings of its use. 

The Scientific Method 

The basis of the so-called ―scientific method‖ (whose rigorous exposition is credited to the 

great philosopher of science Karl Popper) is this: an hypothesis is proposed; that hypothesis is 

then tested using an appropriate experiment. On the basis of outcomes of that experiment it 

may be possible to invalidate the hypothesis by demonstrating its inconsistency with data 

gathered and processed through the experiment. If the hypothesis cannot be invalidated, then 

it remains viable. It can never be validated however. Nevertheless it may achieve something 

approaching this status as competing hypotheses are successively invalidated through clever, 

targeted and incisive experiments that are designed to do so. 

As discussed earlier in this document, environmental decision-making is often based on 

avoidance of an unwanted event. Its unwanted status may emerge from the high monetary, 

social or environmental costs associated with its occurrence. Environmental managers are 

then charged with preventing its occurrence.  

The occurrence of an unwanted event can be considered a scientific hypothesis. Even after 

management practices are proposed whose intent is to prevent occurrence of the event, the 

hypothesis that it can nevertheless occur maintains its status until it is invalidated through 

scientific inquiry. The purpose of a modelling exercise in a management setting that is 

marked by avoidance of this event must be to provide a basis for rejection of the hypothesis 

that the event can occur if a certain management option is taken. This is achieved through 

processing all available information with the model - both expert knowledge and ―hard‖ data 

arising from measurements of system state. If such processing leads to rejection of the 

hypothesis that the unwanted event can occur despite the adoption of a proposed management 

practice, then model-based environmental data analysis has provided support to the decision-

making process that this process requires. 

In practice, the situation may not be quite as clear-cut as just outlined. For example the 

hypothesis to be rejected may need to be modified to that of ―event occurrence without early 

enough warning to take preventative action‖. Alternatively, while it may not be possible to 

eliminate the possibility that an untoward event can occur, it may be possible to ascribe such 

a low probability to its occurrence that society is willing to take the risk in order to receive 

the benefits of a proposed development that may have created the need to explore the 

hypothesis that a bad thing may happen in the first place. Notwithstanding these variations, 

the central premise remains. A modelling exercise should constitute an incisive numerical 

experiment that attempts to process data optimally in relation to a particular end - this being 

rejection of the hypothesis that an unwanted event will occur if a certain management 

practice is adopted.  

So on what grounds can a hypothesis be rejected? It can be rejected if its occurrence is 

incompatible with all available information. That information is composed of expert 

knowledge, measurements of system properties, and measurements of system state. Expert 

knowledge and direct measurements of system properties constitute the prior information 

term of Bayes equation and the C(k) matrix of innate parameter variability. Measurements of 

system state constitute the calibration dataset. The errors associated with these measurements, 
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together with model imperfections that impede flow of information from these measurements, 

form the basis for calculation of the likelihood term of Bayes equation and the C(ε) 

covariance matrix of measurement/structural noise. 

These concepts provide the philosophical basis for deployment of simulation technology as a 

scientific instrument through which modellers (as scientists) may be able to differentiate 

between events which can happen and those that cannot. This means of model usage can be 

summarized as follows. 

A model is deployed specifically to test the hypothesis that an unwanted event will occur. This 

is done by including system states corresponding to that event in the model’s calibration 

dataset, along with historical measurements of system state. The model is then calibrated 

against this composite dataset. The hypothesis that the proposed state can eventuate can be 

rejected if: 

 the model cannot replicate the occurrence of the event in the future while 

simultaneously respecting historical system behaviour; 

 the model can accommodate the simultaneous occurrence of the proposed and 

historical system states only  through use of parameters that are unrealistic. 

Failure to simulate historical conditions is assessed in terms of C(ε). Unacceptability of 

parameter fields is assessed in terms of C(k).  

The two probability distributions that these covariance matrices represent are (as always) of 

pivotal importance. However their utility in the decision-making context is enhanced if they 

are used in a way that is slightly different from that embodied in Bayes equation, or even in 

the error analysis equations presented in previous sections, as the imperfect nature of 

numerical models as simulators of environmental behaviour can then be better taken into 

account. 

The Role of Model Calibration 

Two calibration contexts are thus proposed. In one of these (which may in fact comprise 

many calibration exercises) the model is used in an hypothesis-testing capacity in order to 

assess the likelihood or otherwise of an unwanted future event, and to develop management 

plans which can forestall the occurrence of that event. However prior to this, the model is 

calibrated against historical data alone, this constituting model calibration in its traditional 

sense. The present subsection examines what traditional model calibration should hope to 

achieve in light of its role as a precursor to model calibration against a dataset which includes 

an hypothesized event in order to assess the likelihood or otherwise of that event’s 

occurrence. 

Calibration against an historical dataset is often a process of compromise, and one that 

involves a high degree of subjectivity. Where a highly-parameterized approach is taken to 

model calibration, the process of compromise can be given a more scientific foundation, and 

can assist in creation of a ―sharper instrument‖ through which hypotheses pertaining to future 

events can subsequently be tested. 

Ideally the degree of parameter complexity ascribed to a model should be commensurate with 

its process complexity. Presumably the decision to include representation of certain processes 

within an overall environmental simulation exercise is based on the fact that the model would 

lose its relevance to decision-making if these processes were omitted. The same logic dictates 

that if these processes are affected by heterogeneity of system properties that govern them, 

then this heterogeneity may have an effect on model outcomes on which decisions may rest. 
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Failure to represent a propensity for system property heterogeneity in a model-based 

hypothesis-testing procedure may result in the drawing of erroneous conclusions regarding 

the possibility or otherwise of hypothesised events.  

A problem with the inclusion of many parameters however is that their use can result in 

―over-fitting‖ of the model to historical system behaviour. In contrast, use of too few 

parameters can result in failure to sufficiently fit historical data - and therefore failure to 

extract from it all of the information that resides in it. Ideally, the intelligent use of 

mathematical regularization should provide the perfect compromise between these two 

extremes. Thus a model is endowed with parameterization density that is commensurate with 

the sensitivity of key model outcomes to system property heterogeneity; regularisation 

ensures that only as much heterogeneity is actually introduced to the model domain as can be 

supported by the data. Meanwhile, the calibration null space is sufficiently well populated for 

the range of possibilities associated with a particular model outcome to be assessed, with due 

recognition paid to the inability of the calibration process to constrain some (or perhaps 

many) of these outcomes. 

In practice, the determination of an appropriate level of regularisation to employ, even when 

regularisation is mathematically implemented, is often a matter of subjectivity. If 

regularisation is applied too strongly, model-to-measurement misfit is increased while the 

emergence of parameter heterogeneity within the model domain is suppressed. On many 

occasions a modeller will chose to do exactly this if he/she judges that emergent 

heterogeneity indicates the adoption by model parameters of surrogate roles that provide 

compensation for model inadequacies. Violation of an explicit or implicit C(k) matrix of 

acceptable parameter variability provides the modeller with the evidence that he/she needs to 

identify this occurrence, and hence to take remedial action through imposition of stronger 

regularisation constraints. Through doing this, he/she denies him/herself as good a fit 

between model outcomes and historical measurements of system state as he/she would 

otherwise like.  Thus respect for C(k) takes precedence over respect for C(ε), as a greater 

level of model-to-measurement misfit is tolerated than that which would be expected on the 

basis of measurement noise alone. 

On the other hand, a modeller may have a high degree of confidence that his/her model 

provides accurate simulation of system behaviour. Furthermore, as is often the case, he/she 

may have little idea of the innate variability of system properties, and of the propensity for 

local heterogeneity to prevail within certain parts of the model domain. Model calibration 

may provide a great deal of information in this regard, especially if it is implemented using a 

strategy based on highly parameterized inversion that provides the calibration process with 

the flexibility to introduce complexity to the model domain if and where it is needed. In a 

case such as this, respect for C(ε) may take precedence over respect for C(k), as a modeller 

may be loath to reject information pertaining to the existence of system property 

heterogeneity by ascribing the emergence of such heterogeneity to structural noise. 

There is thus a tension between C(k) and C(ε). The highly-parameterized model calibration 

process plays one against the other as model-to-measurement misfit is traded off against 

parameter field heterogeneity. This should not be construed as a disadvantage of the highly 

parameterized approach to model calibration. Rather it is a distinct advantage because it 

endows the modeller with the ability to apply his/her subjective judgment in a manner that is 

unimpeded by the necessity to employ parsimonious parameterization schemes in order to 

create a well-posed inverse problem where none actually exists, this being a requirement of 

older calibration methodologies.  
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It is thus apparent that an important outcome of the calibration process (an outcome whose 

importance has been insufficiently recognized to date) is a subjective reconciliation by the 

modeller of C(k) with C(ε). However this reconciliation is often implicit rather than explicit 

because rarely, in real-world modelling practices, is either of these matrices defined (or even 

needs to be defined). Rather, these matrices are implicit in the heterogeneity that a modeller 

is prepared to accept within the model domain on the one hand, and in the model-to-

measurement misfit that he/she is prepared to tolerate on the other hand. As we have seen, 

whether implicit or explicit, both of these matrices are crucial to the assessment of model 

predictive uncertainty, and hence to the hypothesis-testing procedure that constitutes the next 

stage of model deployment.  

It is thus apparent that the task of a properly orchestrated process of model calibration against 

historical measurements of system state is to provide a platform for the hypothesis-testing 

that will take place thereafter which, in turn, provides a platform for model-based decision-

making. The process of calibrating a model against a historical dataset thus has three 

important outcomes. These are: 

 a parameter field that can be considered to approach that of minimum error variance; 

 through this parameter field, an assessment of the degree of system property 

variability that may prevail within a model domain, this defining an implicit C(k) 

matrix; 

 an assessment of the degree of model-to-measurement misfit that accompanies 

simulation of environmental processes within a particular study area, this defining an 

implicit C(ε) matrix. 

When hypotheses pertaining to future system behaviour are tested, these will be rejected if 

simulation of their occurrence requires too great a departure from either the parameter field 

that emerged during the calibration process, or from the fit with historical data that was 

achieved during that process, or both. ―Too great a departure‖ will probably be the outcome 

of subjective assessment. However it will rest heavily on what was learned through the 

calibration process - this including the estimated parameter field itself, the tolerable level of 

heterogeneity that may exist in this field, and the tolerable inability of the model to exactly 

replicate past system behaviour. Introduction of excessive heterogeneity or excessive misfit 

as a necessary condition for allowing the model to replicate an hypothesised future event 

provides a basis for deeming that event to be of low likelihood. It is through calibrating the 

model against historical data alone as a precursor to testing hypotheses of future system 

behaviour that ―excessive‖ now has a metric, albeit probably a subjective one. 

It is important to note that recognition of model structural defects is an implicit part of the 

calibration and hypothesis-testing processes as thus described. Model-to-measurement misfit 

will almost certainly be greater than measurement noise. Parameter variability as it is 

introduced to the calibrated parameter field, may be greater than that which a modeller would 

ascribe to parameters based on expert knowledge alone. The former recognises the existence 

of structural noise; the second recognizes the fact that parameters may need to assume 

unusual values that compensate for a model’s defects and that this may actually enhance a 

model’s ability to simulate both past and future system behaviour. Both of these phenomena 

are unavoidable. Both of them operate under both calibration and predictive conditions. Their 

recognition and accommodation are an essential aspect of model deployment, and for 

identification of future events as unlikely or otherwise. 
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Pareto Concepts - Model Calibration 

The previous discussion shows that in calibrating a model against an historical system dataset 

there are too competing objectives. These objectives can be formally encapsulated in two 

different objective functions, as is done when implementing Tikhonov regularisation. One of 

these is the so-called ―regularisation objective function‖. This is zero when parameter values 

perfectly respect their pre-calibration preferred values or preferred relationships (depending 

on the way in which the modeller chooses to express his/her preferred parameter condition). 

The other is the so-called ―measurement objective function‖. This is zero when a perfect fit is 

obtained between field measurements and their model-generated counterparts. Between these 

two extremes lies a subjectively chosen optimal calibration outcome - this defining the 

parameter field which is accepted as giving rise to predictions of minimized error variance. 

At the same time the metrics for acceptability of model-to-measurement misfit and for 

acceptable parameter field variability are defined. Both of these metrics will be applied 

during future model-based hypothesis-testing. 

Whenever two or more objectives compete, a curve such as that shown in Figure 7.1 can be 

drawn. 
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Figure 7.1 The Pareto front as it applies to the model calibration process. 

Conceptually, any point to the right of the curve shown in Figure 7.1 is feasible. Parameters 

can readily be generated that introduce too much system property variability into a model 

domain at the same time as they provide a poor fit to the calibration dataset. Both the 

measurement and regularization objective functions associated with such a parameter set will 

therefore be high.  

Ideally the point A is unique. The regularization objective function is zero, implying total 

respect for regularization constraints. The parameter field that corresponds to point A should 

therefore be that of minimum pre-calibration error variance. However model-to-measurement 
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misfit associated with this parameter field may be high, and with it the measurement 

objective function. At point B the opposite occurs; model-to-measurement fit is as good as 

can be attained using the current model. It is probable that a multiplicity of parameter sets, all 

of equal likelihood from a pre-calibration point of view, can provide this level of fit; hence 

point B is not associated with a unique set of parameter values. But even if it were, we would 

not be too interested in these values because their departure from preferred pre-calibration 

values is probably too great, rendering them unrealistic from an expert knowledge point of 

view. 

The curve joining points A and B in Figure 7.1 is referred to as the ―Pareto front‖ if it defines 

the locus of points in objective function space (and implicitly in parameter space) for which it 

is not possible to improve both objective function components simultaneously. Hence a better 

fit with the calibration dataset can only be achieved through lowering parameter pre-

calibration likelihood, and vice versa. As a direct consequence of this definition, points 

cannot exist to the left of the Pareto front. Hence it defines a barrier in objective function 

space that cannot be crossed. 

The Pareto front can also be viewed as implicitly defining the locus of solutions to a set of 

constrained optimization problems. For any measurement objective function, a unique point 

on the Pareto front can be selected. The regularization objective function pertaining to that 

point is the lowest that can be achieved while maintaining the chosen measurement objective 

function. The parameter set corresponding to that point therefore defines the solution to the 

same constrained minimization problem as that which is sought through solution of the 

inverse problem of model calibration through application of Tikhonov regularisation.  

When PEST is run in ―regularisation‖ mode, the user must select a target measurement 

objective function in advance of the Tikhonov solution process. If he/she does not like the 

outcomes of the regularised inversion process because either the parameter field is too lumpy, 

or because the fit between model outcomes and historical measurements of system state is not 

good enough, the process must be repeated using a different target measurement objective 

function. Eventually a measurement objective function is selected that represents the best 

compromise between excessive parameter field lumpiness and excessive model-to-

measurement misfit. 

Conceptually, the process of choosing an optimum point of compromise between goodness of 

fit and parameter field lumpiness is the process of travelling along the Pareto front. It follows 

that if software can be designed to traverse this front, recording parameter sets as it does so, 

this should provide the modeller with all of the information that he/she needs to choose the 

optimal point of compromise that constitutes the outcomes of a properly-conducted 

calibration process. Furthermore, if passage along the front can be continuous rather than 

discrete, the modeller is provided with maximum flexibility in choosing this point. When run 

in ―Pareto‖ mode, PEST attempts to provide this outcome. 

When using PEST’s Pareto capabilities to calibrate a model, measurement and regularisation 

objective functions are defined in the usual way. PEST starts with a parameter set for which 

the regularisation objective function is zero. Weights applied to observations comprising the 

calibration dataset are then slowly increased. During the ensuing sequence of optimisation 

iterations PEST crawls along the Pareto front, with the measurement objective function 

slowly decreasing and the regularisation objective function slowly increasing as it does so. 

Meanwhile the user inspects the changing nature of model-to-measurement misfit on the one 

hand, and of parameter field variability on the other hand. Eventually he/she selects a point 

along the front that he/she deems to express the best compromise between the two. In doing 

so, as stated above, he/she explicitly chooses the parameter field of minimum error variance. 
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At the same time he/she implicitly selects metrics through which departures from this field 

will be judged when subsequently testing an hypothesised prediction, both in terms of what 

extra model-to-measurement misfit he/she will tolerate, and what extra level of heterogeneity 

he/she is willing to endure in attaining this prediction. 

Pareto Concepts - Model Prediction 

Not only the process of model calibration, but the process of model-based hypothesis-testing, 

can be formulated as that of seeking solutions to a series of constrained minimization 

problems. Formulation of the hypothesis-testing process in this way can take place either 

formally or informally. In either case, through traversal of a Pareto front, an optimal outcome 

of the hypothesis-testing process can be obtained, possibly aided by a high degree of 

subjective judgement based on information that becomes available to a modeller through 

traversal of the Pareto front. 

Suppose that a model is being used to explore the possibility that an untoward event will 

occur. Let that event be associated with a value of χ0 for a certain model outcome.  This 

outcome is then ―observed‖ to occur; hence it can be included in the objective function along 

with other observations that comprise the calibration dataset and still other observations 

and/or prior information equations that encapsulate the preferred system condition as applied 

through regularisation constraints. Let the hypothesised prediction be assigned to its own 

observation group, with its own objective function component. This is calculated as w
2
(χm-

χ0)
2
 where w is the weight associated with the prediction and χm is the model-calculated 

prediction. This objective function component will diminish as the prediction is approached. 

Meanwhile the other component of the objective function (comprising measurement and 

regularization constraints) will increase as calibration model-to-measurement misfit and/or 

departures of parameters from their calibrated values increase. At some point these departures 

may be considered to be too unlikely for the corresponding value of the prediction to have 

reasonable likelihood. Let the value of the model prediction corresponding to this point be 

denoted as χ'm. Hypotheses that predictive outcomes are closer to χ0 than χ'm can then be 

rejected. As stated earlier, this point may be formally selected on the basis of known or 

assumed C(k) and C(ε) matrices. In most cases however, it will be informally selected. In all 

cases, the previous calibration process, in which model outcomes are matched against 

historical measurements of system state alone, will have played a large part in determining 

the explicit or implicit C(k) and C(ε) matrices through which predictive credibility (or lack 

thereof) is assessed. 

Figure 7.2 depicts the Pareto front that is applicable to this aspect of model usage. 
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Figure 7.2 The Pareto front as it applies to model-based hypothesis-testing. 

Once again, traversal of the Pareto front commences at point A. At this point the ―calibration 

objective function‖ is that achieved through calibration. Meanwhile the calibration dataset 

has a new member - this being the prediction whose value is hypothesized. At point A this 

has a weight of zero. Slowly it is given a greater weight so that traversal of the Pareto front 

can occur. For a given calibration objective function, each point along the Pareto front 

represents the minimized prediction objective function for which that calibration objective 

function is capable of being attained. As such, it represents the maximum or minimum value 

of the prediction subject to the constraint that the calibration objective function is no higher 

than that which corresponds to that position on the Pareto front. Hence traversal of the Pareto 

front constitutes solution of a series of constrained maximization/minimization problems that 

are exactly equivalent to those solved by PEST when it runs in ―predictive analysis‖ mode. 

However because a series of problems is solved rather than an individual one, the modeller is 

able to associate likelihood or otherwise with a series of predictive outcomes instead of just 

one. Furthermore he/she is able to make subjective decisions pertaining to likelihood if he/she 

judges (as he/she mostly will) that exact mathematical characterization of pre-calibration 

parameter variability through an explicit C(k), and measurement/structural noise through an 

explicit C(ε) is impossible. 

Variations of the above theme are possible. For example the calibration objective function 

could be formulated in terms of differences between parameter fields and model outcomes 

necessary to achieve a certain prediction and those which were achieved at calibration. The 

initial calibration objective function would therefore be zero. If desired, parameter departures 

from their calibrated status could be decomposed into solution space and null space 

components, with likelihood of the latter formally assessed using a null-space projected C(k) 

matrix. Meanwhile, solution space parameter components would be limited by constraints on 
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model-to-measurement misfit that are incurred as a predictive model outcome approaches its 

hypothesised value. Such an exploration of predictive variability would be more in keeping 

with an analysis of potential for predictive error rather than with exploration of predictive 

uncertainty, and has its roots in equation (5.8). PEST setup for this exercise could be aided 

through use of the REGPRED and OBSREP utilities; see PEST documentation for further 

details. 

Pareto Methods - Some Final Words  

To date, practical experience in using PEST’s ―pareto‖ mode in real-world settings has 

proved very rewarding. The following points are noteworthy. 

 When using PEST’s ―pareto‖ mode to apply Tikhonov constraints, it has been found 

that it is generally possible to attain a lower regularisation objective function 

corresponding to a given measurement objective function than that which is attainable 

when PEST is run in ―regularisation‖ mode. Normally the outcome is a smoother 

parameter field. It seems that the process of moving slowly along the Pareto front 

provides a stronger defence against the appearance of unnecessary heterogeneity than 

that provided by direct solution of a constrained optimization problem pertaining to a 

given target measurement objective function. 

 The ability of Pareto constrainment of parameters to subjugate introduction of 

spurious heterogeneity is diminished somewhat when SVD-assisted parameter 

estimation takes place, this arising from the fact that the combinations of parameters 

that emerge from definition of super parameters may not necessarily be those required 

to preserve maximum parameter field smoothness. 

 When using the Pareto method to explore predictive possibilities that are compatible 

with an historical calibration dataset, it is sometimes found that the Pareto curve does 

not resemble that depicted in Figure 7.2. Instead, the curve may rise for a while from 

point A and then settle into a new minimum to the left of point A in that figure. Not 

only does this indicate significant nonlinearity of model predictive behaviour; it also 

appears to indicate the existence of at least two separate system ―states‖ whose 

likelihood is difficult to separate on the basis of currently available information. 

 Ideally, model parameters should change in a continuous fashion as the Pareto front is 

traversed. However it is often found that discontinuous parameter changes are 

encountered as traversal of the Pareto front causes parameters to cease congregating 

about one local objective function minimum and to start congregating about another. 

See Moore et al. (2010) and the following exercise for further details. 

Exercises 

Surface Water Model 

The Hypothesised Prediction 

We will continue to examine as our prediction of interest the maximum flow over the period 

19
th

 August to 23
rd

 August 1986 (which actually occurs on 20
th

 August). We will 

―hypothesize‖ that this maximum flow is low; in doing so, we will ―observe‖ its value to be 

20 m
3
/sec. The calibration dataset is thus supplemented with this ―observation‖. Note that in 

all PEST runs undertaken in previous exercises this prediction has been included in the 

calibration dataset. However up until now it has been given a weight of 0.0; furthermore its 

―observed‖ value has been ignored.  
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The PEST Control File 

To maintain compatibility with the analysis of predictive uncertainty that was undertaken in 

the previous chapter, and to maintain compatibility with the example presented in Moore et 

al. (2010), the calibration objective function will be computed on the basis of log-transformed 

flows alone. Thus we will not be employing other objective function components such as 

baseflow, monthly volumes and exceedence times that were used in a previous calibration 

exercise.  

File calib4.pst forms the basis of PEST usage in the current case. The following aspects of 

this file are salient. 

 The PESTMODE variable (the second item on line 3 of file calib4.pst) is set to 

―pareto‖. 

 The measured value of the qmax_sim_max ―observation‖ is set to 20 m
3
/sec. This 

observation is assigned a weight of 1.0. 

 A ―pareto‖ section appears at the end of the PEST control file.  

The ―pareto‖ section of file calib4.pst specifies that variable weighting be applied to the 

predict observation group (the sole member of which is the qmax_sim_max ―observation‖). 

The initial weight applied to this group is zero. However this weight will be increased in 30 

increments to a maximum value of 0.8; see descriptions of the PARETO_WTFAC_START 

PARETO_WTFAC_FIN and NUM_WTFAC_INC variables in PEST Pareto documentation. 

In practice, some trial and error may be required in selecting these settings. Exploration of the 

Pareto front is more detailed than necessary in this exercise; as will be seen however, we will 

be rewarded for our strong numerical commitment to this problem through having some of its 

difficulties exposed. 

It is also specified in the ―pareto‖ section of the PEST control file that the qmax_sim_max 

observation be monitored. Hence values computed for this particular model output will be 

recorded on the *.pod and *.ppd files written by PEST when it runs in ―pareto‖ mode. 

Running PEST 

Run PEST using the command: 

 pest calib4 

While PEST is running you may wish to monitor its traversal of the Pareto front by opening 

file calib4.pod. The objective function corresponding to each observation group is recorded 

in this file. In this case there are only two observation groups. As the predict observation 

group is given greater and greater weight (this happening behind the scenes) to promulgate 

movement along the Pareto front, the value of the prediction diminishes as time goes on. This 

value is recorded in the third column of file calib4.pod.  

The Pareto Front 

Data recorded in file calib4.pod is plotted in Figure 7.3. In this plot the value of the 

prediction (rather than the predictive objective function) is plotted against the value of the 

calibration objective function. The former is described by the vertical axis whereas the latter 

is depicted on the horizontal axis. The disposition of axes in Figure 7.3 is such that traversal 

of the Pareto front starts at the top left of the graph and continues down and to the right. 
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Figure 7.3 The Pareto front: predicted flow vs. calibration objective function. 

A number of interesting points emerge from an inspection of Figure 7.3 and of data contained 

in file calib4.pod. These include the following. 

 For very little change to the calibration objective function, the predicted maximum 

flow changes by over 250 m
3
/sec. This makes the prediction very uncertain indeed. It 

appears to have greater uncertainty than has been exposed in explorations of 

predictive uncertainty undertaken in previous exercises. 

 In its traversal of what appears to be a discontinuous Pareto front, PEST actually takes 

two detours, one at a calibration objective function of about 10 and the other at a 

calibration objective function of about 25. These are an outcome of the presence of 

local optima in the objective function surface. PEST initially encountered some 

difficulties in jumping between these optima (as would any method of predictive 

uncertainty analysis), but eventually made the jump when given sufficient incentive to 

do so. 

 The value of the prediction cannot be lowered beneath about 46 m
3
/sec (recall that the 

true value of the prediction is 27.24 m
3
/sec). This indicates either model structural 

defects, or the fact that insufficient parameters have been allowed to vary during the 

predictive analysis process (including perhaps a parameter that may need to have been 

employed to correct for unrepresentative estimation of catchment rainfall on the basis 

of a single rain gauge). The fact that so many adjustable parameters hit their bounds 

(as is evident from the run record file and from PEST’s screen output) evinces 

compensatory behaviour on the part of these parameters. This is a strong indication 

that while the precepts of parameter parsimony may sometimes be useful in model 

calibration; they are more likely to be a hindrance than a help in model predictive 

uncertainty analysis. Reasons for this have already been discussed. 
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The last point is particularly salient. The more that parameters need to assume roles that 

compensate for model structural inadequacies, or for lack of adjustability of parameters that 

should in fact be declared as adjustable, the more likely are they to encounter their bounds. 

This often requires that other parameters then move large distances in order to play the 

compensatory roles that are thrust upon them if a good fit between model outputs and field 

measurements is to be attained. These parameters may then encounter their bounds as well. 

This can create numerical difficulties, at the same time as it creates the need to explore a 

parameter space that is gradually losing its relationship with hydraulic property reality. 

Parameter Trajectories 

When PEST is run in ―pareto‖ mode it records the parameters pertaining to every point that it 

encounters along the Pareto front in a file whose filename base is the same as that of the 

PEST control file, but whose extension is ―.ppd‖. Data is stored in binary format as it can be 

voluminous in highly-parameterized contexts. The *.ppd file can be converted to ASCII 

format using the PPD2ASC utility. (PPD2ASC stands for ―Pareto parameter data to ASCII 

format.) Run PPD2ASC using the following command. 

 ppd2asc calib4.ppd calib4.dat 

Data contained in file calib4.dat can be used to inspect changes in parameter values with 

position along the Pareto front. See Figures 7.4a and 7.4b. 
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Figure 7.4a Movement of the infilt parameter as the Pareto front is traversed. Notice its 

repeated encounters with its upper bound. 
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Figure 7.4b Movement of the lzsn parameter as the Pareto front is traversed. Notice its 

encounters with both its lower and upper bounds. 

Selection of Parameters  

We will finish our analysis of the surface water model by extracting parameters pertaining to 

the 4
th

 point on the Pareto curve of Figure 7.3. This point is encountered just before a jump is 

made to another objective function minimum. At this point, according to calib4.pod, the 

objective function is still at a reasonably low value of 10.35. Meanwhile the predicted 

maximum flow is 119.9 m
3
/sec. Following from the logic presented earlier in this chapter, we 

cannot reject the hypothesis that peak flow forthcoming from rain which fell on and just 

before 20
th

 August 1986 will be as low as 119.9 m
3
/sec if the fit between model outputs and 

observed flows over the calibration period appears to be visibly good when calculated on the 

basis of the corresponding parameter set. 

The PPD2PAR utility can be used to extract the pertinent parameter set from the binary 

calib4.ppd file. (PPD2PAR stands for ―Pareto parameter data to parameter value file‖.) We 

will extract the parameter set with index 3. (Indices correspond to iteration numbers; they 

begin at 0, this corresponding to the initial parameter set.) Run PPD2PAR using the following 

command: 

 ppd2par calib4.ppd temp.par 3 

Now build a new PEST control file in which this parameter set is featured as the initial 

parameter set using the command: 

 parrep temp.par calib1.pst calib4_soln.pst 

Set NOPTMAX to 0 in calib4_soln.pst and then run PEST using the command: 

 pest calib4_soln 

Verify that the objective function is indeed 10.351. Figure 7.5 depicts modelled and measured 

flows over the 1985 calibration period, and then over the ensuing year. The fit over the 
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calibration period isn’t too bad at all. A predicted maximum flow that is as low as 119.9 

m
3
/sec over the period 19

th
 to 23

rd
 August 1986 is indeed compatible with the data. 
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Figure 7.5 Measured and modelled flows over the calibration and prediction periods. 

Parameters used for model simulation were chosen from the Pareto front. 

Groundwater Model  

The Hypothesized Prediction 

As for the surface water model discussed in the previous subsection, we have the luxury of 

knowing the value of the model prediction whose compatibility with existing soft and hard 

knowledge we now wish to explore. However in real life, not knowing the true value of the 

prediction does not present too much of a problem. In practice we would choose an extreme 

predictive value, or a value that has some regulatory significance. By traversing the Pareto 

front we have the ability to assess the likelihood of all predictive values between that 

calculated on the basis of the calibrated parameter set and that selected as a basis for 

hypothesis-testing. 

In the present case we will select a value of 3000 days for particle travel time to the bottom 

model boundary as our test value.  

The PEST Control File 

File calib5.pst is the PEST control file that will form the basis for our traversal of the 

predictive Pareto front. This is slightly modified from the PEST control file calib1r_soln.pst 

that contains optimized values obtained from Tikhonov-based inversion. The following 

features of this file are salient. 

 PEST is asked to run in ―pareto‖ mode, this being the setting of the PESTMODE 

variable on line 3 of this file. 
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 The part_time observation now has an ―observed value‖ of 3000. A weight of 0.004 is 

assigned to this ―observation‖. (It may require a little experimentation in order to find 

a suitable value for this weight, as well as for some of the variables appearing in the 

―pareto‖ section of the PEST control file.) 

 In the ―pareto‖ section of the PEST control file, PEST is told to adjust the weight 

factor applied to members of the observation group time. The part_time particle travel 

time prediction is the sole member of this group. 

 In the ―pareto‖ section of the PEST control file, PEST is asked to provide an initial 

weight factor of 0.0 to the time observation group, and to then increase this weight 

factor up to a maximum of 1.0 in 20 increments; see the PARETO_WTFAC_START, 

PARETO_WTFAC_FIN and NUM_WTFAC_INC control variables on the second 

line of this section. Two optimisation iterations are to be performed for each one of 

these increments (see the NUM_ITER_GEN control variable on the third line of the 

―pareto‖ section). Meanwhile the value of the part_time prediction will be made 

available for monitoring purposes while PEST is running. See PEST documentation 

for further Pareto setting details. 

Some explanation for other PEST settings is warranted. All observations in file calib5.pst are 

assigned a weight of 10.0 as this is the inverse of 0.1, the standard deviation of noise 

associated with head measurements. Parameter credibility is enshrined in prior information. 

Each prior information equation contained in file calib5.pst ascribes to one parameter a 

preferred value equal to its initial value. All prior information is collectively assigned a 

covariance matrix based on the known stochastic description of geological heterogeneity 

prevailing in the synthetic study area. (See Chapter 4.) Overall, this strategy ensures that 

observations and prior information equations are weighted correctly with respect to each 

other. Collectively these comprise the calibration objective function. These are played against 

the predictive objective function, this being calculated from the discrepancy between the 

model prediction and an ―observed‖ particle travel time of 3000 days, in order to create the 

conditions for existence of a Pareto front which is then traversed.  

In everyday modelling practice we do not know correct relative weighting between field data 

and regularisation constraints encapsulated in prior information equations. Theoretically, this 

can emerge from a regularized inversion process; PEST prints out its optimized regularisation 

weight factor at the end of this process. A new PEST control file could then be created in 

which all regularisation observations and regularisation prior information equations were 

provided with new weights obtained as old weights multiplied by this weight factor. 

Meanwhile all elements in covariance matrices assigned to prior information equations would 

be divided by the square of this weight factor. In practice this can be a troublesome procedure 

as PEST adjusts inter-regularisation group weighting during the Tikhonov inversion process 

if the IREGADJ regularisation control value is set to a positive number. This is recommended 

practice as it renders the inversion process much more numerically stable than it would 

otherwise be. In this case, final regularisation weights can be extracted from the ―residuals 

file‖ written by PEST upon termination of execution. These can simply be cut and pasted into 

the new PEST control file used for the running of PEST in ―pareto‖ mode. 

This, too, is a little cumbersome and may not be necessary. It is the author’s experience that 

regularisation constraints may not be required at all when using PEST in ―pareto‖ mode to 

test the credibility of hypothesized predictions. This is an outcome of the fact that 

regularisation is already implied to at least some extent in most of the parameterization 

devices that are used in groundwater models (including pilot point parameters) by virtue of 

the fact that numerical considerations limit the number of these parameters that can be used, 
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and by virtue of the fact that concepts such as stationarity on which a covariance matrix will 

probably be based are generally inapplicable. 

Another alternative is to use the ADDREG1 utility to provide new regularisation constraints 

in which preferred parameter values are re-assigned as calibrated values. Thus the new 

regularisation objective function is zero at the start of the Pareto process. Weights should 

then be assigned to these preferred values that are in harmony with what has been learned 

from the calibration process about spatial parameter variability. Alternatively, build a 

covariance matrix from what you think may be a suitable variogram using the PPCOV utility. 

For proper relativity, adjust weights applied to field measurements so that the total 

measurement objective function is roughly the same the total number of field measurements.  

In the end it matters little. Your task in using the Pareto method is to find out what it takes for 

a certain prediction to arise. The real world is seriously non-stationary. If an hypothesised 

prediction can be made to happen easily, then not much variability will need to be introduced 

to the calibrated parameter field to make it happen. In contrast, if the hypothesised prediction 

is improbable, then a high degree of local parameter variability will be required to make it 

happen. A modeller’s assessment of whether this is too much variability or not will almost 

certainly be based on visual inspection of the parameter field that is required for occurrence 

of the prediction, and not on a statistical test applied to the prior information component of 

the objective function. Perfection in defining prior probability constraints is therefore of 

secondary importance. Meanwhile devices such as anisotropic interpolation from pilot points 

to the model grid can help to guarantee that heterogeneity is introduced in ways that conform 

as much as possible to what is known of the prevailing geology when exploring the 

likelihood or otherwise of the prediction of interest. 

Running PEST 

Run PEST by typing the command: 

 pest calib5  

at the command-line prompt. While PEST is running you can monitor some of the details of 

its Pareto journey by inspecting file calib5.pod as these details are continually updated. This 

records the contribution to the objective function made by every observation group, as well as 

the value of the part_time prediction (as was requested in the ―pareto‖ section of the PEST 

control file). The total calibration objective function is obtained by adding together the 

contributions made by the heads and regul_k observation groups. (Recall that the distance 

observation group contains the particle exit time prediction that is not used in any of the 

present exercises but is nevertheless ―carried‖ through the inversion processes described 

herein and provided with a weight of 0.0). 

The Pareto Front 

Figure 7.6 records PEST’s Pareto front journey as a plot of particle travel time against 

calibration objective function. 
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Figure 7.6 The Pareto front - predicted particle trave time vs. calibration objective 

function. 

It is immediately apparent from an inspection of Figure 7.6 that PEST’s journey along the 

Pareto front did not actually begin on the Pareto front. This should not be construed as 

indicating failure of the Tikhonov regularisation scheme that defined this starting point. 

Rather it is an outcome of the fact that we chose a target measurement objective function of 

12.0 when calibrating the model using Tikhonov regularisation and instructed PEST to stop 

the calibration process as soon as this measurement objective function target was achieved. 

This saved model runs. It is apparent from Figure 7.6 and from an inspection of file 

calib5.pod that a lower measurement objective function value could have been sought 

without over-fitting. Alternatively, the REGCONTINUE variable in the ―regularisation‖ 

section of the PEST control file could have been set to ―continue‖ to force PEST to make all 

attempts possible to minimize the regularisation objective function subject to maintaining the 

selected measurement objective function constraint before ceasing execution. In real-world 

modelling practice these measures are not usually warranted as numerical convenience and 

subjectivity tend to play a larger role than rigorous application of geostatistical principles. 

Furthermore, in the present case they would not have lead to a better model prediction of total 

particle travel time, as the error in this prediction has its source in the null space. Fine-tuning 

of the calibrated parameter field would not have made this prediction any better. 

Once situated on the Pareto front, it appears that PEST’s journey along this front was smooth. 

Traversal of this front exposed no other objective function minima as occurred for the surface 

water modelling example. Nor did any parameters hit their bounds (as an inspection of 

parameters within file calib5.ppd would readily reveal if this were converted to ASCII format 

using the PPD2ASC utility). 
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So where does particle travel time predictive credibility run out? The fastest travel time 

prediction encountered on that part of the Pareto front that is pictured in Figure 7.6 is 3389 

days, this having been calculated on the second-to-last optimisation iteration. For this travel 

time the measurement objective function is 4.30 - which is not unreasonable for an ambient 

measurement noise of 0.1 m and a measurement weight of 10 applied to each of 12 

observations. The prior information objective function is 18.4 - also not unreasonable given 

that prior information equations are weighted using the inverse of the true covariance matrix 

and that there are 104 of these.  

Pilot point parameter values corresponding to this prediction can be extracted from the binary 

calib5.ppd file using the command: 

 ppd2par calib5.ppd temp.par 39 

These can be inserted into a new PEST control file as initial values in that file using the 

command: 

 parrep temp.par calib1r.pst calib5_soln.pst 

Set NOPTMAX to 0 in calib5_soln.pst and then run PEST using the command: 

 pest calib5_soln 

PEST’s screen output will verify that the above objective function components are correct 

and that we have indeed extracted from calib5.ppd the parameter set that we desire. The 

hydraulic conductivity field corresponding to these pilot point values is pictured in Figure 

7.7; so too is the particle path. 

 

Figure 7.7 Hydraulic conductivity field giving rise to a prediction of 3389 days. The 

particle path is also shown. 

A more quantitative analysis of this same problem is presented by Moore et al. (2010). As has 

been extensively discussed herein however, rarely in real-world modelling practice can 

assessment of predictive likelihood be more than subjective. This does not diminish the need 
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to make this assessment, nor the powerful means that modelling provides to make such 

assessment possible. In fact, scientifically-based environmental management depends on it. 
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8. Conclusions 
This document has attempted to describe the range of possibilities that are offered by PEST 

and its associated utility support software for exploration of the uncertainty associated with 

predictions of future environmental behaviour, and for reducing that uncertainty to its 

theoretical lower limit. In doing this, it has attempted to make this exploration as salient as 

possible to the way in which numerical simulation should be used to underpin real-world 

environmental management.  

Modelling cannot provide certainty where none exists. However, if used properly, it can 

minimize our potential for error when making predictions of future environmental behaviour 

by providing proper receptacles for all available information. This information includes 

expert knowledge, point measurements of system properties, and historical measurements of 

system state. Modelling can then be used to quantity the potential for error that remains once 

all of this information has been assimilated. This quantification is essential to risk assessment 

which, in turn, is essential to good decision-making. 

From these considerations it is apparent that if environmental management is to benefit from 

numerical modelling, two types of software are required. Obviously, simulation capabilities 

must be provided by numerical models. Indeed the art of modelling is a mature art, and while 

models will continue to improve, a solid foundation has been built over the last 30 years of 

model usage for their continued development and improvement. However for models to 

achieve their full potential in environmental management, they must be partnered with 

software which can use them to extract information from all available sources, and to 

quantity the nature and ramifications of gaps in this information as it pertains to the 

assessment of future environmental behaviour under different possible management regimes. 

Unfortunately, the development of this kind of software has not yet reached maturity. 

However there is growing recognition within the industry that there is an urgent need for this 

to happen. Perhaps, as software developers respond to this need, the next 10 years will see 

modelling ―come of age‖ as a consequence.  

Meanwhile, another obstacle to the general acceptance of methodologies and tools such as 

that provided by the PEST suite is fast disappearing. The numerical burden of having to 

undertake hundreds, thousands, or even tens of thousands of model runs will not be too great 

of a numerical burden for much longer. Parallelisation of model runs is essential if runs are to 

be done in these numbers. At the time of writing, the development of computing technology 

is exactly in this direction. Within a few years massive parallelisation of model runs within a 

single machine, or across multiple real or virtual machines in unknown places across the 

world will be a trivial undertaking, available to all modellers in all places. 

It is the author’s hope that modellers find the methodologies and exercises provided herein 

useful, and that they convey the ideas which underpin them to their colleagues, and to those 

who must make decisions on the basis of models. It is hoped that these exercises and ideas 

provide at least a small contribution to the continued evolution of a modelling culture that 

abandons the magical aura that is sometimes implicitly associated with models, replacing it 

instead with a scientific understanding of the modelling process that guarantees it an 

indispensable role in hard-nosed, risk-based decision-making.  
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Appendix 1. PEST Utilities 
This appendix presents a series of tables listing utility software provided with PEST, together 

with the function that each program serves. Programs are grouped into different tables 

according to similarity of function. Complete descriptions of the following utilities can be 

found at http://www.pesthomepage.org/. 

Checking Utilities 

Program  Purpose 

TEMPCHEK Checks the integrity of a PEST template file. 

INSCHEK Checks the integrity of a PEST instruction file. 

PESTCHEK Checks an entire PEST input dataset for correctness and consistency. 

Classical parameter estimation preprocessing and postprocessing  

(Note: Some of these can also be employed for regularized inversion preprocessing and 

postprocessing.) 

Program  Purpose 

PARREP Builds a new PEST control file whose initial values are optimized values from a previous 

PEST run. 

PARAMFIX Alters prior information pertaining to one or a number of parameters as these parameters 

are tied or fixed. 

EIGPROC Collects uncertainty, sensitivity, and eigencomponent information pertinent to a nominated 

parameter from PEST output files. 

PCOV2MAT Extracts a parameter covariance matrix from a PEST control file, rewriting it in matrix file 

format. 

INFSTAT Computes a suite of observation influence statistics, including DFBETAS and Cook’s D. 

PESTGEN Builds a basic PEST control file based on a parameter value file and an INSCHEK output 

file. 

Regularized inversion preprocessing and postprocessing 

Program  Purpose 

ADDREG1 Adds preferred-value regularization to a PEST control file based on initial parameter 

values. 

SUBREG1 Subtracts regularization from a PEST control file. 

SUPCALC Estimates number of superparameters to employ in SVD-assisted parameter estimation. 

SVDAPREP Writes a PEST input dataset for SVD-assisted parameter estimation. 

PARCALC Run as part of a model employed for SVD-assisted parameter estimation; computes base 

parameter values from superparameter values. 

PICALC Run as part of a model employed for SVD-assisted parameter estimation; computes prior 

information expressed in terms of base parameter values. 

IDENTPAR Computes parameter identifiability. 

PCLC2MAT Computes base parameter composition of SVD-assist superparameters. 

GENLINPRED Automates running of PREDUNC* and PREDVAR* utilities. Undertakes linear predictive 

uncertainty/error analysis; also computes parameter identifiability and relative 

uncertainty/error variance reduction. 

RESPROC Processes information written in binary form to *.rsd file during any PEST run in which 

regularization of any kind is employed. 

RESWRIT Processes information written by RESPROC; stores resolution and “G” matrices in PEST 

matrix file format. 

REGERR Computes the covariance matrix of regularization-induced structural noise. 

http://www.pesthomepage.org/
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Weights and covariance matrix manipulation 

Program  Purpose 

COV2COR Calculates a correlation coefficient matrix from a covariance matrix. 

COVCOND Calculates a conditioned covariance matrix from an unconditioned covariance matrix. 

PWTADJ1 Alters weights in a PEST control file so that the contribution to the initial objective 

function by all observation groups is equal based on residuals calculated at initial values. 

PWTADJ2 Attempts to create observation-group-specific weights, which are the inverse of 

measurement-error standard deviations. 

WTFACTOR Multiplies the weights pertaining to all observations belonging to a selected observation 

group by a specified factor. 

Linear uncertainty analysis 

Program  Purpose 

PREDUNC1 Computes the uncertainty of a user-specified prediction. 

PREDUNC4 Computes contributions to predictive uncertainty by different parameters or parameter 

groups. 

PREDUNC5 Computes observation worth through its effect in lowering predictive uncertainty. 

Linear error analysis 

Program  Purpose 

PARAMERR Computes the covariance matrix of parameter error after a calibration exercise involving 

any form or regularization. 

PREDERR Computes the error variance of a prediction whose sensitivities are available after a 

calibration exercise involving any form or regularization. 

PREDERR1 Similar to PREDERR, but slightly different in its input-file requirements. 

PREDERR2 Similar to PREDERR, but slightly different in its input-file requirements. 

PREDERR3 Similar to PREDERR, but slightly different in its input-file requirements. 

PREDVAR1 Computes the error variance of a model prediction based on a notional calibration exercise 

implemented using truncated SVD; also finds the minimum of the predictive error variance 

curve. 

PREDVAR1A As for PREDVAR1, but undertakes SVD on Q
1/2
X rather than X

t
QX. 

PREDVAR4 Computes contribution made to the error variance of a prediction by different parameters 

and/or groups of parameters. 

PREDVAR5 Computes observation worth through its efficacy in lowering predictive error variance. 

 

Nonlinear error analysis 

Program  Purpose 

VECLOG Computes the log of all elements of a vector (normally used as part of nonlinear highly 

parameterized predictive maximization/minimization). 

PEST2VEC Facilitates preparation for nonlinear highly parameterized predictive uncertainty analysis 

done by way of constrained maximization /minimization. 

VEC2PEST Facilitates preparation for nonlinear highly parameterized predictive uncertainty analysis 

done by way of constrained maximization /minimization. 

OBSREP Replaces observations in a PEST control file with best-fit model-generated equivalents. 

(This is normally run just prior to REGPRED.) 

REGPRED Builds a PEST control file in which postcalibration nonlinear predictive uncertainty 

analysis is effected by constrained prediction maximization/minimization. 

RANDPAR Computes random parameter values, placing these values into a series of parameter-value 

files. 

PNULPAR Undertakes null-space projection of random parameter fields to remove solution-space 

component; replaces it with solution space component from calibrated model. 

RDMULRES Reads multiple output files produced as an outcome of Monte Carlo analysis and collates 

results. 
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MULPARTAB Builds a table of multiple sets of parameter values produced through null-space Monte 

Carlo analysis. 

COMFILNME Facilitates post-null-space Monte Carlo file management. 

Pareto analysis 

Program  Purpose 

PPD2ASC Stores all data recorded in a Pareto parameter data file in ASCII format. 

PPD2PAR Extracts single parameter sets from the Pareto parameter data file. 

Sensitivity data manipulation 

Program  Purpose 

JACTEST Undertakes serial or parallel model runs to test the integrity of finite-difference-calculated 

derivatives. 

POSTJACTEST JACTEST postprocessor; provides index of derivatives corruptness for different model 

outputs. 

JACWRIT Rewrites the contents of a *.jco file in ASCII format. 

JCO2JCO Writes a Jacobian matrix corresponding to a new PEST control file on the basis of 

information contained in an existing *.jco/*.pst file pair. 

JCO2MAT Rewrites the contents of a *.jco file in PEST matrix file format. 

JCOADDZ Adds sensitivities to an existing *.jco file. 

JCOCOMB Builds a new *.jco file from an existing one, in which observations from the first are 

combined in user-supplied ratios in the second. 

JCODIFF Subtracts the contents of one *.jco file from that of another. 

JCOORDER Reorders rows and/or columns in a *.jco file. 

JCOPCAT Concatenates two *.jco files; thus sensitivities with respect to some parameters can be 

computed on one machine and those with respect to other parameters can be computed on 

another. 

JCOTRANS Translates from old *.jco storage format to new (compressed) storage format employed by 

PEST. 

JROW2MAT Extracts a row of a Jacobian matrix file and writes it in PEST matrix file format. 

JROW2VEC Extracts a row of a Jacobian matrix file, transposes it, and writes it in PEST matrix file 

format. 

DERCOMB1 Combines two external derivatives files (supplied by models that can calculate their own 

derivatives) into one, before being read by PEST. 

MULJCOSEN Reads multiple *.jco files as written on a single PEST run (if PEST is instructed to write 

such multiple files); calculates composite sensitivity of nominated parameter or 

observation from iteration to iteration. 

WTSENOUT Computes a weighted Jacobian matrix and a weighted observation vector. 

Matrix manipulation 

Program  Purpose 

MAT2SRF Writes a matrix in SURFER grid format. 

MATADD Performs matrix addition. 

MATCOLEX Extracts a column of a matrix. 

MATDIAG Extracts the diagonal of a matrix. 

MATDIFF Performs matrix differencing. 

MATINVP Computes the inverse of a positive definite matrix. 

MATJOINC Joins matrices which possess the same number of columns. 

MATJOIND Joins two matrices in a diagonal sense (useful in forming a composite covariance matrix). 

MATJOINR Joins matrices which possess the same number of rows. 

MATORDER Reorders the rows or columns of a matrix. 

MATPROD Performs matrix multiplication. 

MATQUAD Evaluates the quadratic form y
t
My. 

MATROW Extracts a single row of a matrix. 

MATSMUL Multiplies a matrix by a scalar. 

MATSPEC Lists matrix specifications. 

MATSVD Undertakes singular value decomposition of an arbitrary matrix. 
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MATSYM Forms a symmetric matrix as (M + M
t
)/2. 

MATTRANS Computes the transpose of a matrix. 

MATXTXI Computes (X
t
X)

-1
 where X has more rows than columns. 

MATXTXIX Computes (X
t
X)

-1
X where X has more rows than columns. 

Global optimization 

Program  Purpose 

SCEUA_P Global optimization by use of the SCEUA algorithm. 

CMAES_P Global optimization by use of the CMAES algorithm. 

General 

Program  Purpose 

PAR2PAR Undertakes arbitrary mathematical manipulation of model parameters; normally run as part 

of a model calibrated by PEST. 

SCALEPAR Builds a PEST input dataset based on parameters scaled by their innate variability. 

GENLIN Generalized linear model. 

PESTLIN Reads a general PEST input dataset and accompanying *.jco file; creates a GENLIN 

model and accompanying PEST input dataset for calibration of that model. 

SENSAN Undertakes basic sensitivity analysis through repeated model runs. 

SENSCHEK Checks the integrity of a SENSAN input dataset. 

PAUSE Pauses PEST execution. 

PUNPAUSE Unpauses PEST execution. 

PSTOP Stops PEST execution. 

PSTOPST Instructs PEST to cease execution with a full statistical printout. 

PSLAVE PEST slave program. 
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Appendix 2. PEST Groundwater Data Utilities 
This appendix presents a series of tables listing utility software provided with the PEST 

Groundwater Data Utilities suite. Programs are grouped into different tables according to 

similarity of function. Complete descriptions of these utilities can be found at 

http://www.pesthomepage.org/. 

Implementation of pilot-point parameterization 

Program  Purpose 

FAC2FEFL Uses PPKFAC_FEFL-generated kriging factors to modify a FEFLOW input data 

file on the basis of spatial interpolation from a set of pilot points. 

FAC2FEM Uses PPK2FAC-generated kriging factors to produce a MicroFEM input file on 

the basis of spatial interpolation from a set of pilot points. 

FAC2MF2K Modifies an existing set of MODFLOW-2000 input files, replacing parameters 

cited in that file with pilot-point-based parameters (often a first step in pilot-

point-based model calibration). 

FAC2REAL Uses PPKFAC-generated kriging factors to produce a MODFLOW-compatible 

real array on the basis of spatial interpolation from a set of pilot points. 

FAC2RSM Uses PPKFACR-generated kriging factors to produce an RSM model input data 

file on the basis of spatial interpolation from a set of pilot points. 

PPK2FAC Calculates kriging factors for use in spatial interpolation from a set of pilot points 

to model grid cell centers. 

PPK2FACF Calculates kriging factors for use in spatial interpolation from a set of pilot points 

to the nodes of a MicroFEM finite element mesh. 

PPK2FAC1 Identical to PPK2FAC except the regularization data file it writes is suitable for 

the use of PPKREG1. 

PPK2FACR Calculates kriging factors for use in spatial interpolation from a set of pilot points 

to the nodes of an RSM mesh. Regularization data file protocol is identical to that 

of PPK2FAC1. 

PPK2FAC_FEFL Calculates kriging factors for use in spatial interpolation from a set of pilot points 

to the elements of a FEFLOW mesh. Regularization data file protocol is identical 

to that of PPK2FAC1. 

PARM3D Assists in pilot-point parameterization of a 3-D model domain where 

hydrogeological units intersect grid layers. 

MODFLOW/MT3D array manipulation 

Program  Purpose 

ARR2BORE Undertakes spatial interpolation from a single array to a set of points. 

INT2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-

compatible integer array. 

INT2REAL Builds a MODFLOW/MT3D-compatible real array based on the contents of a 

MODFLOW/MT3D-compatible integer array. 

LOGARRAY Evaluates the log (to base 10) of all elements of a real array. 

PT2ARRAY Builds a MODFLOW-compatible real array; the value assigned to each array 

element is calculated from information pertaining to points lying within the 

respective element. 

REAL2INT Builds a MODFLOW/MT3D-compatible integer array based on the contents of a 

MODFLOW/MT3D-compatible real array. 

REAL2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-

compatible real array. 

REAL2SRF Translates a MODFLOW/MT3D-compatible real array into a SURFER grid file. 

REAL2TAB Translates a MODFLOW/MT3D-compatible real array into three-column real 

array table format. 

SRF2REAL Re-writes a SURFER grid file as a MODFLOW-compatible real array. 

http://www.pesthomepage.org/
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TAB2INT Generates a MODFLOW/MT3D-compatible integer array from an integer array 

stored within a GIS. 

TAB2REAL Generates a MODFLOW/MT3D-compatible real array from a real array stored 

within a GIS. 

TABCONV Translates between integer or real array table files using row/column identifier 

format and those using cell number identifier format. 

TWOARRAY Combines two real arrays by addition, subtraction, multiplication, division and 

partial replacement. 

MODFLOW/MT3D/SEAWAT preprocessing 

Program  Purpose 

MOD2ARRAY Reads a MODFLOW or MT3D input file, extracting real or integer arrays from that 

file and storing them in separate files. 

ELEV2CONC Computes the elevation of the freshwater-saltwater interface on the basis of a 

sequence of concentration arrays. 

ELEV2CONC1 Similar to ELEV2CONC, but computes “zero flow head” arrays as well. 

REPARRAY “Pastes” a MODFLOW- or MT3D-compatible real array into an existing 

MODFLOW or MT3D input file. 

MODFLOW/MT3D/SEAWAT/FEFLOW postprocessing 

Program  Purpose 

ARRDET Lists the contents of a MODFLOW or MT3D binary 

head/drawdown/concentration output file. 

BUD2HYD Extracts flow data from a MODFLOW binary cell-by-cell flow term file. 

Rewrites this data in a form suitable for plotting against time. 

BUD2SMP Extracts flow data from a MODLFOW binary cell-by-cell flow term file. 

Rewrites this data in bore sample file format. 

CONC2ELEV Computes the elevation of the freshwater/saltwater interface on the basis of a 

sequence of concentration arrays. 

DAR2SMP Translates system states computed by a FEFLOW model to bore sample file 

format. 

GETMULARR Extracts arrays from MODFLOW/MT3D binary output files at user-nominated 

simulation times and stores these arrays in separate binary files. 

GETMULARR1 Extracts all arrays for a nominated simulation time from a MODFLOW/MT3D 

binary output file and writes these to another binary MODFLOW/MT3D output 

file. 

MANY2ONE Splits MODFLOW/MT3D-generated binary files comprised of multiple two-

dimensional results arrays into individual ASCII/binary files. 

MOD2OBS Interpolates model-generated data to the same times and locations as those cited 

in a user-supplied bore sample file; writes another bore sample file.  

LAYDIFF Evaluates head value differences in different layers based on contents of a bore 

sample file, bore coordinates file and bore listing file. 

MOD2SMP Interpolates the information contained in a binary MODFLOW/MT3D output file 

to a set of user-specified bores, rewriting the bore-specific data as a bore sample 

file. 

MOD2SMPDIFF Interpolates the information contained in a binary MODFLOW/MT3D output file 

to user-specified bores, calculating the difference or ratio between 

heads/concentrations at user-nominated pairs of bores. 

SECTION Interpolates the data contained in multiple MODFLOW-compatible real arrays to 

an arbitrary transect line through all or part of the finite-difference grid. 

Processing and manipulation of field and model time series 

Program Purpose 

PMP2INFO Builds a bore information file from a bore pumping file, the former containing 

cumulative pumped volumes between two user-specified dates for a user-supplied 

list of bores. 

PMPCHEK Checks the integrity of the data contained in a bore pumping file. 
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SMP2HYD Rewrites the contents of a bore sample file for a user-specified list of bores in a 

form suitable for plotting borehole data against time. 

SMP2INFO Time-interpolates the information contained in a bore sample file to a user-specified 

date for a list of user-specified bores, thus writing a bore information file ready for 

access by commercial contouring software. 

SMP2SMP Interpolates data contained within one bore sample file to the dates and times 

represented in another bore sample file. 

SMPCAL Calibrates one time-series dataset on the basis of another. 

SMPCHEK Checks the integrity of a bore sample file. 

SMPDIFF Writes a new bore sample file in which differences are taken between successive 

values in an existing bore sample file, or between values in an existing file and a 

reference value. 

SMPTREND Writes a new bore sample file in which differences are taken between samples 

within an existing bore sample file and either the first sample for each bore in that 

file or a reference sample. However, sampling is restricted to a yearly sample 

window. 

Construction of a PEST input dataset 

Program Function 

ADJOBS Adjusts observation weights for different observation groups in a PEST control file 

according to user-defined formulas. 

ARRAYOBS Facilitates the introduction of model outputs consisting of MODFLOW/MT3D-

compatible real arrays into a PEST parameter-estimation process. 

PESTPREP Automates construction of a PEST control file and PEST instruction file for a model 

comprised of MODFLOW and/or MT3D followed by MOD2OBS, or MODFLOW 

followed by BUD2SMP followed by SMP2SMP. 

PESTPREP1 Similar to PESTPREP but provides extra flexibility in observation naming. 

PESTPREP2 Similar to PESTPREP1 but allows extra observation data to be added to an existing 

PEST input dataset. 

Adding regularization to a PEST input dataset 

Program Purpose 

GENREG Inserts prior information pertaining to many different types of regularization into an 

existing PEST control file. 

PPCOV Builds a covariance matrix pertaining to pilot point parameters based on one or a 

number of geostatistical structures. 

PPKREG Adds a “prior information” and “regularization” section to a PEST control file 

where parameterization is based on pilot points. 

PPKREG1 Similar to PPKREG but more powerful in that it facilitates the use of both 

“difference regularization” (same as PPKREG) and “preferred-value 

regularization.” 

ZONE2VAR1 Computes a parameter variogram where parameterization is based on a large 

number of zones of piecewise constancy, and is defined through a ZONMDEF 

output file. Assists in undertaking “variogram regularization” as described by 

Johnson and others (2007). 

ZONE2VAR2 Computes a parameter variogram much more quickly than ZONE2VAR1 because it 

employs the results of the parameter search process done by the latter program as 

read from a binary file written by it. 

VERTREG Adds “vertical regularization” prior-information equations to a PEST control file 

where parameterization is based on pilot points. 

Working with the MODFLOW adjoint process 

Program  Function 

ASENPROC Reads a “distributed parameter sensitivity file” written by the adjoint state version 

of MODFLOW; formulates sensitivities for PEST parameters and writes them to a 

PEST “external derivatives file.” 
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MKMHOBS Reads a bore sample file. Writes a MODFLOW 2005 heads observation file, as well 

as an instruction file to read a MODFLOW heads output data file and a “PEST 

building block file” containing pertinent fragments of a PEST control file. 

PPMDEF Builds a parameter definition file for the use of ASENPROC, linking distributed 

parameters as employed by the adjoint process of MODFLOW to pilot-point 

parameters. 

ZONMDEF Assists in the preparation of input files for the use of PEST in conjunction with the 

MODFLOW-2005 adjoint process where parameters are based on a large number of 

zones of piecewise constancy. 

Uncertainty Analysis 

Program Function 

FIELDGEN Generates a stochastic field in each zone of a model domain using the sequential 

Gaussian simulation method. 

PPSAMP Used in calibration-constrained Monte Carlo analysis. Samples stochastic fields at 

pilot point locations, interpolates between the pilot points, and generates difference 

fields. 

Geographical data manipulation 

Program Function 

GRID2ARC Writes ARCINFO generated files of the active part of the finite-difference grid as 

defined by a user-supplied integer array. 

GRID2BLN Writes a SURFER blanking file of the active part of the finite-difference grid as 

defined by a user-supplied integer array. 

GRID2DXF Writes a DXF file of the active part of the finite-difference grid as defined by a user-

supplied integer array. 

GRID2PT Tabulates the coordinates of the cell centers of the finite-difference grid within an 

active window defined by a user-supplied integer array. 

INT2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-

compatible integer array. 

PTINGRID Locates the finite-difference cells in which arbitrary, user-supplied points lie; 

optionally provides the value of an integer or real array element pertaining to the 

cell containing each such point. 

QDIG2DXF Translates the output of the shareware digitizing program, QDIGIT, into DXF 

format. 

QDIG2XYZ Translates the “contours” output of QDIGIT to an “xyz” data file. 

RDAT2TAB Reads an RSM element data file or index file. Adds mesh centroid coordinates to 

respective data elements and rewrites data in tabular format. 

ROTBLN Rotates a SURFER blanking file about the top left corner of a finite-difference grid 

so that the component elements of the file can be overlain over the grid when the 

latter has been rotated such that its row direction is oriented directly east. 

ROTDAT Rotates a data file about the top left corner of a finite-difference grid so that the 

component elements of the file can be overlain over the grid when the latter has 

been rotated such that its row direction is oriented directly east. 

ROTDXF Rotates a DXF file about the top left corner of a finite-difference grid so that the 

component elements of the file can be overlain over the grid when the latter has 

been rotated such that its row direction is oriented directly east. 

RSM2SRF Reads an RSM (also GMS) 2D mesh file. Writes files through which SURFER can 

plot mesh design, outer mesh boundary, as well as nodes and element centroids. 

ZONE2BLN Writes a SURFER “blanking” file of finite-difference grid zonation as defined by a 

user-supplied, MODFLOW-compatible integer array. 

ZONE2DXF Writes a DXF file of finite-difference grid zonation as defined by a user-supplied, 

MODFLOW-compatible integer array. 
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