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1. Introduction 

1.1 General 

The purpose of this document is to provide a brief “roadmap” of methodologies available 
through PEST and its utilities for undertaking model calibration and predictive 
uncertainty analysis. It is assumed that the model employs many parameters – probably 
many more parameters than can be estimated uniquely - and that these parameters reflect 
the fact that natural systems are complex and that certain predictions required of the 
model are dependent on this complexity. Parameters may be of one or many types, for 
example pilot point parameters and/or zone parameters describing the spatial distribution 
of one or more property types throughout the model domain. Parameters can also include 
distributed or “lumped” parameters employed by spatially variable or stand-alone 
submodels that provide input and/or boundary conditions to an overarching spatial model.  

Modern calibration software allows parameters to be represented (and adjustable) in a 
model at a level that is commensurate with the inherent complexity of the system which 
the model purports to represent, at least to the extent that a prediction may be sensitive to 
such complexity. Thus the pre-emptive (and often heavy-handed) pre-calibration 
parsimonizing required by previous approaches to model calibration is no longer needed. 
Simplifications necessary to achieve a well-posed solution to the inverse problem of 
model calibration are undertaken through the regularised inversion process itself. This 
approach to model calibration and model-based data analysis brings with it the following 
advantages. 

1. The calibration process is given maximum flexibility in extracting information 
from a calibration dataset. 

2. Thus predictions made by the model will be closer to maximum likelihood (and 
thus possess minimum potential wrongness) than they otherwise would. 

3. The extent of possible predictive wrongness can be quantified. 

The last point is particularly important. Most predictive error (especially where a 
prediction is sensitive to fine system detail that “slips between the cracks of the 
calibration process”) is dominated by the so-called “null space term” of the predictive 
error variance equation. This term is ignored in traditional post-calibration error analysis 
undertaken as an adjunct to over-determined parameter estimation. Such analysis is 
therefore based on the premise that “if it cannot be estimated it doesn’t exist”. In contrast, 
highly parameterised inversion explicitly acknowledges the fact that a prediction may be 
sensitive to system details and properties that cannot be estimated due to lack of 
information in the calibration dataset. To the extent that aspects of this detail are indeed 
inestimable, and therefore reside in the calibration null space, the potential error of a 
prediction which depends on them is not reduced through the calibration process, and is 
therefore the same as it would have been if the model had not been calibrated at all. This 
uncertainty is a function of the innate variability of system hydraulic properties – this 
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being encapsulated in what will be referred to herein as the C(p) covariance matrix (in 
which the p vector represents parameters employed by the model).  See Moore and 
Doherty (2005) and Moore and Doherty (2006) for more details.  

On the other hand, to the extent that a prediction is dependent on aspects of the system 
that are estimable through the calibration process, the potential error associated with that 
component of the prediction arises from the fact that the measurements from which these 
aspects of the system were estimated are contaminated by noise, the stochastic descriptor 
of which is provided by another covariance matrix C(ε) (with ε representing noise 
associated with these measurements). This noise has both a structural and measurement 
component. (Note that the former can often be substantially reduced by the use of many 
parameters instead of just a few as required by traditional approaches to model 
calibration.)  

Use of the methods described below is based on the assumption that the user “knows” 
C(p). This is not as worrying an assumption as it may first appear, for C(p) is, in fact, as 
much an encapsulation of a modeller’s ignorance as it is of his/her knowledge. Hence it 
can be simply an expression of “what may happen down there that I don’t know about” 
rather than an exact geostatistical descriptor of hydraulic property spatial variability. It is 
also assumed that the modeller knows the structure of C(ε), but is informed of its 
magnitude through the calibration process. In most modelling contexts C(ε) is assumed to 
be diagonal. Its magnitude is estimated to be that which is commensurate with the level 
of model-to-measurement misfit achieved through the calibration process. The user often 
chooses a suitable level of model-to-measurement misfit through trial and error based on 
repeated calibration attempts. The use of a large number of parameters often allows a 
very good fit to be achieved between model outputs and field data. However a fit that is 
“too good” is indicated by estimated parameter values that are unrealistic. Acceptance of 
a less-than-perfect fit, thereby accepting that measurements are contaminated by 
structural or observation noise, then becomes an important aspect of the calibration 
process; in implementing this process, the level of suspected structural plus observation 
noise is thereby estimated. 

1.2 Utility Software 

Three suites of utility programs are available to assist with PEST usage, and to undertake 
various types of analysis based on PEST input datasets. The first set (referred to herein as 
“PEST Utilities”) are supplied with PEST. Another set is the “Groundwater Data 
Utilities”. Many members of this latter suite were written to expedite PEST usage in the 
MODFLOW/MT3D modelling context; however other members of this suite are more 
general in nature and can be used with other models as well. A third set, known as the 
“Surface Water Utilities” is also available; these will not be discussed herein. 

PEST and all of its utility suites can be downloaded from the following site:- 

http://www.sspa.com/pest 
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1.3 Flow Charts 

The Appendices to this document contains a number of flow charts which synthesise the 
information contained in the text. These can be used for easy reference, and the text 
consulted for more detail.  

1.4 Further Documentation 

A full description of all software and methodologies discussed in this document can be 
found in PEST documentation, this comprising the PEST manual and its Addendum. See 
also the manuals for the Ground and Surface Water Utilities. 

1.5 Workshop 

A workshop is available in which many of the techniques and methodologies discussed 
herein are described in more detail. Files and documentation are provided, these allowing 
a user to implement these methodologies him/herself in the context of a simple 
MODFLOW model. These are provided to PEST course attendees. They can be provided 
to certain others on request.  

1.6 The JACTEST Utility 

PEST-based calibration and uncertainty analysis rests on the premise that model outputs 
are differentiable with respect to model parameters. Unfortunately, this condition is often 
violated, sometimes as an outcome of non-convergent iterative solution processes, and 
sometimes as an outcome of poor model algorithmic bases – see Kavetski et al (2005) for 
more details. PEST will tolerate the fact that some degree of “numerical granularity” in 
model outputs can tarnish derivatives computed through finite parameter differences. 
However if the problem is too severe, many of the methods described herein will not 
work. If PEST performance is poor, and the user suspects that model derivatives may be 
the problem, the integrity of these derivatives can be tested with the JACTEST utility (a 
PEST utility) once a PEST input dataset has been prepared. 
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2. Pre-Calibration Analysis 

2.1 The PEST Input Dataset 

2.1.1 Construction of a PEST Input Dataset 

A PEST input dataset is readily built either by hand, or with the help of various PEST and 
commercial utility programs. However, as was discussed above, it is recommended that 
such an input dataset cite many parameters rather than just a few – as many parameters as 
key model predictions may be sensitive to, on a scale that allows representation of the 
level of heterogeneity to which these predictions may also be sensitive. For these same 
reasons it is likely that few, if any, of these parameters will be tied or fixed.  

Let it be assumed, for the moment, that in the PEST control file which forms the 
centrepiece of the PEST input dataset, PEST is instructed to run in “estimation” mode. 

2.1.2 Inclusion of a Prediction 

Under some circumstances it may be advisable to consider “carrying” one or more 
predictions of interest in the PEST input dataset as “observations” with weights of zero. 
If calculation of these predictions can be undertaken with little or no computational 
burden beyond that required for calculation of calibration-related model outputs, then 
these are immediately available for predictive error analysis as sensitivities of these 
predictions to model parameters are computed as part of normal PEST usage. 

2.1.3 Initial Parameter Values 

A significant difference between over-determined and under-determined parameter 
estimation (the latter describing the type of inversion required where there is an 
abundance of parameters), is that more care should be taken in providing initial values to 
model parameters in the latter case than in the former case. Initial parameter values 
should be those which are considered to be of highest likelihood based on 
geological/scientific evidence. This strategy, together with the regularization devices 
described below, provides a realistic “fall back position” for parameters and parameter 
combinations that are inestimable through the calibration process. 

2.1.4 Observation Weights 

The choice of observation weights is a subjective one. Where uncertainty analysis is to be 
undertaken using the PREDVAR or PREDUNC utility families discussed below, it is 
essential that these be proportional to the inverse of the assumed standard deviation of 
measurement noise (including structural noise as necessary). In most cases it is easiest to 
adopt a proportionality constant of 1; thus if, for example, a user estimates that the noise 
associated with all head measurements is characterised by a standard deviation of 2m, the 
weight assigned to each head measurement in the PEST control file should be 0.5. 
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On the other hand, if a PEST input dataset has been prepared in order to form the basis of 
a calibration exercise, a different weighting philosophy may sometimes be appropriate. 
When calibrating a model myself, I assign observations to a number of different 
observation groups. Grouping is normally on the basis of observation type; however 
observations of the same type may be subdivided into further groups by location, layer, 
assumed relevance to a prediction, or some other basis for similarity or collective 
relevance to the calibration/prediction process. In many cases I then consider that each 
such group should neither dominate the objective function, nor be dominated by other 
components of the objective function, for I may consider that the information contained 
in each such group is of roughly equal salience to the parameter estimation process. This 
can be particularly relevant where each such group holds information that is separately 
informative of different aspects of the system; in such a case it is important that the 
individual “message” from each such group be “heard” by PEST. Hence while within-
group weighting may indeed be such as to reflect relative observation “believability”(the 
inverse of observation noise), it may be important that the weighting between groups be 
such as to ensure that each group makes roughly the same contribution to the objective 
function at the start of the parameter estimation process. This can be achieved through 
undertaken the following steps. 

1. Set NOPTMAX to zero in the PEST control file. 

2. Run PEST in order to calculate the objective function, as well as the contribution 
made to the objective function by each observation group. (PEST will run the 
model only once when NOPTMAX is set to zero.) 

3. Use the PWTADJ1 utility (a PEST utility) to write a new PEST control file in 
which observation weights are adjusted such that the contribution by each 
observation group to the overall objective function is the same. 

Alternatively the ADJOBS utility (from both the Groundwater and Surface Water Utility 
suites) can be employed for weights adjustment. This allows weights to be formulated as 
functions of observation values (with different formulations allowed for each group), and 
allows subdivision of existing observation groups to form new groups, using observation 
names as a basis for such subdivision. 

2.2 Uncertainty and Error 

2.2.1 The Bayesian Approach 

To a Bayesian, the notion of “model calibration” is a strange concept. What is the point 
of assigning unique values to model parameters if uniqueness is achieved through a 
simplification process that results in spatial parameter value assignments that are a pale 
reflection of the complexity of real-world systems? How can a model parameterized in 
this abstract way possibly yield “the right answer” when it is used to make a prediction? 
Such an undertaking could only be justified if predictions could thereby be guaranteed to 
be of “maximum likelihood” as a result. But a Bayesian would readily point out that 
restricting model usage to simply the making of such a prediction would lack integrity, 
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for knowledge of the width of the predictive likelihood function is as important to a user 
as knowledge of the point of highest likelihood. 

In fact Bayes theorem does not even include the notion of “calibration”. Instead it speaks 
of a posterior parameter and/or predictive probability distribution - “posterior” in the 
sense of having included in computation of this distribution the fact that model 
parameters must be constrained such that model outputs under historical stresses replicate 
historical measurements of system state to within the level of measurement/structural 
noise associated with the latter. Once a posterior predictive probability distribution is 
known, the uncertainty associated with that prediction can be computed, this quantifying 
the range of values that this prediction may take with reasonable probability. Bayes 
theorem (and our intuition) readily informs us that predictive uncertainty is dependent on 
both hydraulic property uncertainty (as expressed by C(p)), the sensitivity of the 
prediction to different  properties of the system, the extent to which values taken by these 
properties are constrained by the calibration process, and the extent to which such 
constraints are weakened by the presence of measurement noise. 

2.2.2 Model Calibration 

Because Bayesian analysis is often computationally burdensome, and because the culture 
of our industry is built on the ill-founded belief that models are the modern-day 
equivalent of crystal balls, most models are “calibrated” prior to being used for the 
making of predictions. (I have never found a word to be as misunderstood as 
“calibration”; many in our industry seem to believe that it implies that a model is invested 
with supernatural powers.)  Once a model has been calibrated the concept of “predictive 
uncertainty” can no longer be used to characterize the fact that predictions made by that 
model may actually be wrong. Instead, analysis must focus on determining the error 
variance of predictions made by the model. This characterizes the probability distribution 
of “potential wrongness” of model predictions. The outcome of such an analysis is the 
likelihood that the “right answer” (which we will never know) is within a certain distance 
(in prediction space) of the prediction as made by the model at a certain level of 
confidence. 

If care is taken in parameterising a model, and in estimating values for model parameters 
through the calibration process, the probability distribution of predictive error and that of 
predictive uncertainty will not be too different. However the latter will normally be 
smaller than the former. “Predictive uncertainty” is a “purer” concept than “predictive 
error”, being strictly a function of stochastic descriptors such as C(p) and C(ε), rather 
than the details of how a unique solution was achieved to a fundamentally nonunique 
inverse problem, to thereby achieve a “calibrated model”. 

2.3 Linear Predictive Uncertainty Analysis – the PREDUNC Suite 

2.3.1 General 

Using the PREDUNC suite (these are PEST utilities) linear uncertainty analysis can be 
undertaken on either a calibrated or uncalibrated model. In the former case parameter 
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values employed in the analysis should be those which are considered most likely from a 
hydrogeological perspective. Note that many more parameter types than are actually 
estimated during the calibration process can be employed in this analysis. Thus, for 
example, the values assigned to boundary conditions, system inputs such as recharge, 
even historical pumping rates (or multipliers thereof) can be included in the analysis; the 
contributions made by these various model components to the uncertainties of key model 
predictions can then be readily analysed. 

2.3.2 Theoretical Basis 

Members of the PREDUNC suite compute predictive uncertainty through conditioning of 
the pre-calibration prediction/observation covariance matrix in accordance with the 
observation dataset, and the noise associated therewith. See PEST documentation for full 
details. 

2.3.3 Obtaining a JCO File 

Use of any of the PREDUNC utilities is predicated on the assumption that a PEST 
control file exists (as well as template and instruction files cited therein), together with a 
Jacobian matrix (JCO) file computed on the basis of this PEST control file. The control 
file must instruct PEST to run in “estimation” mode. Weights must be assigned as the 
inverse of observation noise. The JCO file can be produced by setting the PEST 
NOPTMAX variable to -1 or -2 and then running PEST. 

2.3.4 Predictive Sensitivity Vector 

Use of the PREDUNC suite also requires the existence of a file holding the predictive 
sensitivity vector (i.e. the derivative of the prediction of interest with respect to each 
parameter involved in the analysis). Sensitivities must be stored in “PEST matrix file” 
format. Such a file is easily extracted from a JCO file using the JROW2VEC utility. The 
JCO file may be the same as that discussed above; this will be the case if the prediction is 
“carried” with the calibration dataset as formerly discussed. If not, a JCO file from which 
it can be extracted can be produced by undertaking an entirely different PEST run 
specifically for this purpose in which “observations” cited in the PEST control file are in 
fact predictions whose uncertainty is to be analysed. The weights assigned to these 
predictions do not matter (unless they are all zero, for PEST will then cease execution 
before the Jacobian matrix is calculated, saying that the objective function is zero); nor 
do their “observed values” as provided in the PEST control file. 

2.3.5 Parameter Uncertainty File  

Before using any members of the PREDUNC suite, the user must prepare a “parameter 
uncertainty file”. This encapsulates the C(p) matrix – the matrix of innate parameter 
variability. C(p) submatrices can be provided as individual parameter standard deviations 
(where these submatrices are diagonal), or as full matrix files (in PEST matrix file 
format). In the latter case, construction of these files may sometimes be assisted through 



Pre-Calibration Analysis 8

use of the PPCOV (Groundwater Data) Utility which builds a C(p) matrix for pilot point 
parameters based on a user-specified variogram. 

2.3.6 PREDUNC1, PREDUNC4 and PREDUNC5 

PREDUNC1 computes both the pre- and post-calibration uncertainty associated with a 
specific prediction. PREDUNC4 allows the user to compute the contribution made to the 
uncertainty of a specified prediction by different parameter groups; both pre- and post-
calibration uncertainty contributions are thus computed. PREDUNC5 allows the user to 
compute the worth of different observation groups (including individual observations) in 
making a specific prediction. Observation (group) worth can be computed as either the 
increase in predictive uncertainty accrued through omitting the observation(s) from the 
calibration dataset, or as the reduction from pre-calibration uncertainty achieved through 
using only that (those) observation(s) in constraining the posterior prediction probability 
distribution. 

2.3.7 Optimisation of Future Data Acquisition 

PREDUNC5 can be employed to test the worth of observations that have not even been 
made. This is possible because linear analysis requires only that observation and 
predictive sensitivities (and not actual observation and prediction values) be employed. 
Thus PREDUNC5 can be used as a basis for optimisation of future data acquisition. In 
this respect it is vastly superior to OPR-PPR statistics developed for this purpose by the 
USGS. The latter can only be employed after enough pre-calibration parsimonizing has 
been performed to reduce the dimensionality of the null space to zero. They thus fail to 
recognise the (mostly significant) contribution made to predictive uncertainty by 
inestimable parameterisation fine detail. In fact the less data that is presently available, 
and hence the more urgent is the need for supplementary data, the greater will be the 
amount of simplification required to compute these statistics, the broader will be the 
dimensions of the (ignored) null space, and the more misleading will these statistics be 
(as can be readily verified by studies based on synthetic models) What is the observation 
that is of most worth? It is normally that which tells a modeller something that he/she 
does not already know; by definition this information presently lies within the null space. 
Therefore, by their very construction, OPR-PPR statistics are flawed. 

2.3.8 Limitations of PREDUNC Analysis 

Unfortunately, analysis of the type undertaken by the PREDUNC suite is not possible if 
the observation dataset is too large, for matrices required in the analysis become too big 
too invert. In such cases the PREDVAR suite must be used instead. The results may be 
slightly different however, as PREDVAR analysis is based on a notional calibration 
exercise undertaken using truncated singular value decomposition on scaled parameters; 
thus its focus is on predictive error variance rather than predictive uncertainty. However 
while differences exist as a result of this, they are normally not significant enough to 
invalidate the analysis. 
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2.4 Linear Predictive Error Variance Analysis – the PREDVAR Suite 

2.4.1 General 

Members of the PREDVAR suite (i.e. PREDVAR1, PREDVAR4 and PREDVAR5) 
perform the same roles as respective members of the PREDUNC suite. These utilities, 
however, compute predictive error variance rather than predictive uncertainty (and 
parameter/observation contributions thereto). As stated above, predictive error variance is 
not quite as “pure” a quantity as predictive uncertainty; however its computation is 
feasible even where observations number in the tens of thousands.  

2.4.2 Theoretical Basis 

PREDVAR analysis is based on a notional calibration exercise undertaken using 
truncated singular value decomposition. The optimal singular value truncation level is 
computed by PREDVAR1; this can provide a sound basis for selection of an appropriate 
number of super parameters to use in a subsequent SVD-assisted calibration exercise (see 
the next section).  

Because an explicit singular value decomposition of the (weighted) calibration Jacobian 
matrix is undertaken, members of the PREDVAR suite are able to compute contributions 
to predictive error made by the calibration solution and null spaces. This further 
distinguishes these utilities from those of the PREDUNC suite. 

2.4.3 Parameter Scaling 

It can be shown that predictive error variance is minimized where parameter estimation 
(whether notional as in PREDVAR analysis or actual as in real-life model calibration), is 
undertaken on the basis of parameters which are normalised with respect to their innate 
variabilities. Using the SCALEPAR utility, a new PEST control file, and its associated 
JCO file, can be built from an original PEST control file and the JCO file computed from 
it. This scaled pair should then be used for PREDVAR analysis, as the results of this 
analysis will then more closely resemble the results of PREDUNC analysis. Note 
however, that if this is done, predictive sensitivities must also be modified so that they 
pertain to scaled parameters rather than native parameters. This will happen automatically 
if predictions are being “carried” with observations in a single PEST control file as 
discussed above, but will require another SCALEPAR run if predictive sensitivities are 
computed using a separate PEST run (in which the model is presumably run using inputs 
and boundary conditions salient to the prediction). Note also that the parameter 
uncertainty file employed for PREDVAR analysis will also require modification when 
parameters are scaled. Fortunately it is an easy matter to make this modification, for all 
parameter variances become, by definition, 1.0. 

2.4.4 Limitations of PREDVAR Analysis 

If there are many observations, use of the PREDVAR suite becomes problematical if 
there are more than about 1800 parameters because the time required to undertake 
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singular value decomposition of the Jacobian matrix becomes excessive. At the time of 
writing it is planned to overcome this problem using the PROPACK solver (Larsen, 
1998) in place of SVD. 

2.5 Flow Chart 

See Appendix A – “Parameter, Observation and Null Space Contributions to Predictive 
Uncertainty” - for a summary of procedures discussed in this section.  
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3. Model Calibration  

3.1 Initial Parameters 

As has already been stated, when undertaking highly-parameterized regularized inversion 
initial parameter values should be of highest likelihood from a geological point of view. 
Sometimes, however, assistance in the assignment of initial parameter values can be 
gained through undertaking traditional parameter estimation based on a small number of 
parameters (for example parameters that encompass entire model layers) prior to 
undertaking SVD-assisted estimation of parameters pertaining to finer system detail. This 
is especially useful in highly nonlinear contexts such as can occur if the calibration 
dataset includes contaminant concentration measurements. 

3.2 Adding Regularisation 

3.2.1 General 

Let it be assumed that a PEST input dataset has been constructed. Let it be further 
assumed that in the PEST control file PEST is asked to run in “estimation” mode. If 
many parameters are cited, the inverse problem will probably be ill-posed; hence 
regularisation is required for its solution. PEST employs two broad types of 
regularisation, viz. Tikhonov and subspace regularisation. These can be employed 
separately or simultaneously. When undertaking SVD-assisted parameter estimation, the 
use of super parameters as required by this process constitutes a form of subspace 
regularisation; Tikhonov regularisation is implemented through the addition of 
constraints on parameter values (or differences between parameter values) embodied in a 
series of prior information equations. 

3.2.2 The ADDREG1 Utility 

The easiest way to add Tikhonov regularisation to a PEST control file is through the 
ADDREG1 utility (a PEST utility). ADDREG1 provides one prior information equation 
for each adjustable parameter, these informing PEST that each parameter should be 
preferentially equal to its initial value. Before running ADDREG1 however, it is 
advisable to assign parameters of different types (and/or parameters of the same type in 
different parts of the model domain) to different parameter groups. This allows 
ADDREG1 to assign prior information equations pertaining to these different parameter 
groups to different regularisation groups. When the PEST IREGADJ variable (part of the 
“regularisation” section of the PEST control file) is set to 1, PEST is then able to apply 
differential weighting to each resulting group of prior information equations, with 
weighting applied more strongly to those groups for which cited parameters are less 
informed by the calibration process. The PEST control file produced by ADDREG1 
informs PEST that it must run in regularisation mode; it includes a “regularisation” 
section in the file which it writes, and sets IREGADJ to 1 in that section. 
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When PEST is run in regularisation mode a target objective function must be set. 
ADDREG1 assumes that this is 1.0; this almost certainly will require adjustment by the 
user. ADDREG1 also sets the FRACPHIM regularisation control variable to 0.1. Thus, 
during each iteration of the regularised inversion process, PEST temporarily sets the 
target measurement objective function to one tenth of the current value of the 
measurement objective function (allowing the beneficial effects of Tikhonov 
regularisation to be thereby felt from the very start of the parameter estimation process). 
However it is never set lower than the user-specified global target measurement objective 
function. 

3.2.3 The GENREG Utility 

If the type of regularisation added to a PEST control file by ADDREG1 is considered to 
be too simplistic, or to be inappropriate for use in a specific parameter estimation context, 
regularisation can be added to a PEST control file by other means. The reader’s attention 
is drawn to the GENREG utility supplied with the Groundwater Data Utilities. GENREG 
facilitates formulation of complex suites of regularisation equations which, once 
formulated, are automatically added to an existing PEST control file. 

3.3 Computing Sensitivities 

3.3.1 Computation of Base Parameter Sensitivities 

Prior to undertaking SVD-assisted parameter estimation, a Jacobian matrix file (i.e. a  
JCO file) must be created based on initial parameter values as listed in the PEST control 
file for the current parameter estimation problem. Ideally, it is better to do this after 
regularisation prior information equations have been added to this file than before this 
has occurred. This allows PEST to compute the first set of super parameter sensitivities 
“for free” during the ensuing SVD-assisted parameter estimation exercise. However, 
especially if super parameters are few in number, failure to do this does not incur a large 
computational cost – a cost, in fact, that may be very small compared with that associated 
with re-calculating an entire base parameter JCO file. (Note that in SVD-assist parlance, 
“base parameters” are the parameters actually employed by the model; “super 
parameters” are linear combinations of these base parameters as estimated by PEST 
through the SVD-assisted parameter estimation process.) 

3.3.2 The JCO2JCO Utility 

The JCO2JCO utility writes a JCO file corresponding to a new PEST control file based 
on that corresponding to an old PEST control file. The new PEST control file may differ 
from the old file in the following ways. 

1. Prior information may have been added or subtracted. 

2. Parameters and/or observations may have been removed. 

3. Observation weights may have been altered. 



Model Calibration 13

4. The mode in which PEST is run (i.e. “estimation”, “prediction” or 
“regularisation”) may have been altered. 

5. Parameters may be tied or fixed in the new PEST control file that were not tied or 
fixed in the old PEST control file. 

Thus, for example, if a JCO file was produced on the basis a PEST control file for which 
PREDVAR or PREDUNC analysis was performed, and prior information was 
subsequently added to this file using the ADDREG1 utility prior to undertaking SVD-
assisted parameter estimation, a JCO file pertaining to the modified PEST control file can 
be readily produced using JCO2JCO. While this file lacks sensitivities corresponding to 
the new prior information equations, it will nevertheless be useable by PEST for 
computation of super parameters upon commencement of the ensuing SVD-assisted 
parameter estimation process. If it is desired that the JCO file actually contain prior 
information sensitivities so that super parameter sensitivities can be computed “for free” 
during the first SVD-assist optimisation iteration, then PEST can be run for one iteration 
based on the prior-information-augmented base parameter PEST control file with the “/i” 
switch included in the PEST command line. Use of this switch informs PEST that it must 
read an existing JCO file to obtain sensitivities to all observations rather than calculate 
these itself on the basis of finite parameter differences. After having read this base 
parameter JCO file, it writes another JCO file in which the sensitivities to both 
observations and prior information equations are recorded. 

3.4 Jacobian Manipulation Utilities 

A number of utilities have been written to obviate the need to re-compute sensitivities if 
these sensitivities are available in part or in whole in existing JCO files. If model run 
times are long, use of these utilities can accrue large savings in computation time. See, 
for example. JCOPCAT (combines sensitivities with respect to different groups of 
parameters into a single JCO file), JCOADDZ (adds rows or columns to the Jacobian 
matrix contained in a JCO file), JCOORDER (re-orders rows/columns in a JCO file), etc. 

3.5 Preparing for SVD-Assisted Parameter Estimation 

3.5.1 The SVDAPREP Utility 

The writing of a PEST control file for SVD-assisted parameter estimation is undertaken 
using the SVDAPREP utility. (On BPROC machines, however, it is better to use 
MSVDAPREP instead; this is documented with the MPEST version of PEST.) In the 
course of its execution, SVDAPREP requests a number of items of information from the 
user; in most cases default values for these items can be accepted by simply pressing the 
<Enter> key. 

3.5.2 Number of Super Parameters 

How many super parameters should be estimated? A prior PREDVAR1 analysis will 
suggest a suitable answer to this question (That is, the number of super parameters should 
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be roughly equal to the number of singular values at which predictive error variance is 
minimized.). However rarely will such an analysis have been undertaken prior to running 
SVDAPREP (if for no other reason than that a suitable prediction is not available for the 
purpose of PREDVAR-based predictive error variance analysis). In this case, trial and 
error may constitute an important part of the answer to this question. 

On my first SVD-assisted PEST run, I normally employ a relatively small number of 
super parameters. Thus the parameter estimation process is completed quickly; 
alternatively, if there is anything wrong with either the model or PEST input dataset, I 
will quickly be informed of this through failure of the parameter estimation process. If 
the parameter estimation process does indeed appear to progress well, I inspect the 
condition number file; this has the same filename base as the PEST control file, but 
possesses an extension of “.cnd”. As long as condition numbers recorded in this file are 
less than about 103, the inverse problem is well enough posed and the number of super 
parameters being estimated is therefore not unduly high. (Condition numbers even lower 
than this are often desirable, particularly where derivatives computation is compromised 
by numerical noise.) Alternatively, if I feel that I could justifiably obtain a lower 
measurement objective function than PEST has achieved with the current number of 
super parameters, and if condition numbers are low, I will normally increase the number 
of super parameters and repeat the SVD-assisted parameter estimation process. 

3.6 SVDA and Internal Parameter Scaling 

For reasons that are described in PEST documentation, it is best if super parameter 
definition takes place on the basis of scaled (by their sensitivities) parameters rather than 
native parameters. PEST provides a number of means by which appropriate internal 
parameter scaling coefficients can be computed – see a description of the 
SVDA_SCALADJ variable. In general, the best value to select for this variable (when 
running SVDAPREP to construct the super parameter PEST control file) is 2. However 
this value is only appropriate where some parameters are log transformed (for the 
sensitivities of such parameters are used as a basis for scale adjustment of non-log-
transformed parameters). In other cases a value of 4 can be employed. However the user 
should then exercise caution in the setting of parameter bounds, for the bounded interval 
of each parameter is then employed as a basis for its scaling. (Note that it is common 
practice when using the FEHM model to allow FEHM, rather than PEST, to undertake 
log transformation of parameters such as permeability. In general it is better to allow 
PEST to undertake the logarithmic transformation, especially when undertaking SVD-
assisted parameter estimation, because of the important role that log transformed 
variables play in determining parameter scaling coefficients. Note also that if log 
transformation is undertaken by FEHM rather than PEST, then absolute, rather than 
relative, parameter increments should be employed for finite-difference derivatives 
computation.) 
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3.7 SVD-Assisted Parameter Estimation 

3.7.1 The PARLAM Variable 

SVD-assisted parameter estimation is implemented by running PEST on the basis of a 
PEST control file produced by SVDAPREP. If using parallel PEST, (or if using PEST on 
a BPROC machine) set the PARLAM variable in the PEST run management file to -6 or 
higher (i.e. -5, -4 etc). A setting of -6 forces PEST to limit the number of trial Marquardt 
lambdas employed on any one parallel run package to 6. This is normally more than 
sufficient, and eliminates excessive wastage of model runs. 

3.7.2 The PARREP Utility 

When undertaking SVD-assisted parameter estimation, PEST actually estimates values 
for super parameters rather than the base parameters employed by the model. As in 
normal PEST operation, best parameter values are recorded in a PAR file (i.e. a file with 
the same base name as the PEST control file, but with an extension of “.par”). However 
the super parameter values recorded in this file have no meaning to anyone but PEST. On 
the other hand, best base parameter values are recorded in a BPA file. It is important to 
note that the filename base of this file is the same as that of the base parameter PEST 
control file and not that of the super parameter PEST control file. (It is thus over-written 
on subsequent SVD-assisted PEST runs based on the same base parameter set.)  

When the SVD-assisted parameter estimation process is complete, a new base PEST 
control file citing optimised parameter values as initial parameter values can be built 
using the PARREP utility. NOPTMAX can then be set to 0 in this file and PEST then 
run. PEST will thus undertake one model run on the basis of optimised base parameter 
values. All model input files will thereby contain optimised parameter values, and all 
model output files will contain model outputs computed from these values. (Note that the 
undertaking of a final model run based on optimised parameters occurs automatically if 
PEST undertakes non-SVD-assisted parameter estimation. Unfortunately this cannot 
occur when SVD-assisted parameter estimation is complete as super parameter 
definitions may alter as the parameter estimation process proceeds, and previous 
definitions are lost to PEST. If optimal parameter values were computed using a lost 
definition, recovery of the optimal base parameter set is impossible for PEST.) 

3.8 Obtaining Super Parameter Definitions 

When PEST undertakes SVD-assisted parameter estimation, the values of base 
parameters are computed from current super parameter values prior to undertaking each 
model run by the PARCALC utility. SVDAPREP inserts this utility (together with 
PICALC for computation of prior information equations) into the model batch/script file 
which it writes as part of its preparations for an SVD-assisted parameter estimation run. 
Prior to each model run, PEST writes a file named parcalc.in for the use of PARCALC 
on that model run. PARCALC then undertakes super-to-base parameter translation and 
writes all model input files. 
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If, at any stage of the parameter estimation process, a user wishes to inspect the linear 
combination of base parameters that define any super parameter, the PCLC2MAT utility 
can be employed. When inspecting the PCLC2MAT output file, the following should be 
remembered. 

1. In definition of any super parameter, the squares of base parameter coefficients 
sum to 1. 

2. The base parameter composition of any super parameter can change as the 
parameter estimation process progresses; this will occur if any base parameter hits 
its upper or lower bound in the course of this process. 

3.9 Flow Chart 

See Appendix B – “SVD-Assisted Model Calibration” - for a summary of procedures 
discussed in this section.  
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4. Linear Post-Calibration Error Variance Analysis  

4.1 Predictive Error Variance Analysis 

4.1.1 General 

Once a model has been calibrated, it is an easy matter to compute the error variance of 
any prediction made by that model using linear analysis. This analysis takes full account 
of the null space contribution to predictive error variance. Unlike PREDVAR-based 
predictive error analysis discussed in Section 2, the analysis described below is 
implemented in the context of a specific calibration exercise, and is based on information 
forthcoming from that exercise.  

4.1.2 RESPROC and Related Utilities 

Whenever PEST undertakes any form of regularised inversion, it writes a “regularisation 
data file”, this having the same filename base as the PEST control file, but possessing an 
extension of “.rsd”. This is a binary file, and so is not available for direct inspection. 
Before any post-calibration predictive error analysis is undertaken, this file (together with 
other files written by PEST) should be processed using the RESPROC utility. RESPROC 
calculates the R and G matrices used in linear predictive error variance analysis (see 
PEST documentation for more details) from the information contained in these files and 
stores these matrices in binary form (they are often very large). If desired, the RESWRIT 
utility can be used to re-write these matrices in PEST matrix file format (these are ASCII 
files). MAT2SRF can then be employed to re-write the resolution matrix (i.e. the R 
matrix) as a SURFER grid file; the diagonal dominance (or otherwise) of this matrix can 
then be inspected using SURFER. 

4.1.3 The PREDERR Utility 

The error variance of a model prediction can be computed using the PREDERR utility (or 
any other member of the PREDERR suite). PREDERR obtains sensitivities of the 
prediction of interest directly from a user-nominated row of a sensitivity matrix embodied 
in a JCO file; thus these sensitivities do not need to be extracted from this file using the 
JROW2VEC utility. This will be the same JCO file as written during the calibration 
process if the prediction was in fact “carried” through this process. Otherwise, these 
sensitivities will reside in another JCO file. However that JCO file must cite the same 
parameters in the same order as the JCO file produced during the calibration process. 
Ideally, it should also have been produced on the basis of calibrated parameter values. 

4.1.4 Re-Computation of Parameter Sensitivities 

Computation (by RESPROC) of post-calibration R and G matrices after completion of 
SVD-assisted parameter estimation is a complicated matter; see PEST documentation for 
details. Accuracy of computation of these matrices (and hence of linear predictive error 
variance analysis) is enhanced if base parameter sensitivities are re-calculated using 
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optimised parameters after SVD-assisted parameter estimation is complete. This is easily 
achieved if NOPTMAX is set to -1 rather than 0 in the post-calibration PARREP-
produced PEST control file described above in which initial parameter values are in fact 
optimised parameter values. Note that this PEST control file should have a different name 
from that employed for computation of base parameter sensitivities prior to SVD-assisted 
parameter estimation in order to prevent overwriting of the original JCO file used by 
PEST for super parameter definition; this is necessary because both of these JCO files are 
needed by RESPROC. (However in the event that one of these JCO files is not present, 
errors incurred by using the other twice - particularly the post calibration JCO file - are 
not great.) 

4.1.5 Observation Uncertainty File 

Because weights employed in the calibration process will not necessarily be proportional 
to the inverse of observation uncertainties, the latter must be provided to PREDERR in a 
separate “observation uncertainty file”, this embodying the C(ε) matrix discussed above. 
See PEST documentation for construction details of this file. A parameter uncertainty file 
(embodying the C(p) matrix) must also be provided. However no parameter scaling is 
necessary as is recommended when undertaking PREDVAR analysis; as stated above, 
predictive error variance is computed by PREDERR on the basis of an actual, rather than 
a notional, calibration exercise. 

4.1.6 Parameter Error Covariance Matrix 

If desired, the parameter error covariance matrix can be computed using the 
PARAMERR utility. However I rarely, if ever, do this. 

4.2 Post-Calibration PREDVAR and PREDUNC Analysis 

There is no reason why PREDVAR and PREDUNC analysis should not be performed on 
the basis of a calibrated parameter set rather than on the basis of a pre-calibration 
parameter set as described in Section 2 of this document. In fact, certain aspects of this 
analysis (such as parameter and observation contributions to predictive error variance and 
optimisation of data acquisition) are better undertaken on the basis of a calibrated 
parameter set than an initial parameter set. 

4.3 Flow Chart 

See Appendix C – “Post-Calibration Linear Error Variance Analysis” - for a summary of 
procedures discussed in this section.  
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5. Nonlinear Post-Calibration Error Variance Analysis 

5.1 Constrained Maximization/Minimization of a Key Model Prediction 

5.1.1 Solution Space and Null Space Constraints 

If run in predictive analysis mode after calibrating a highly parameterised model using 
regularised inversion, PEST can be asked to maximize/minimize a key model prediction 
while ensuring that:- 

1. The measurement objective function does not change by more than a certain 
amount from that obtained during the calibration process; and 

2. Parameters do not change by more than a certain amount from that obtained 
during the calibration process. 

It should be noted that:- 

1. The above problem is formulated in terms of parameter changes rather than 
absolutes.  

2. For the objective function “a certain amount” is assessed in terms of C(ε), the 
stochastic descriptor of measurement noise.  

3. For parameters “a certain amount” is assessed in terms of C(p), the stochastic 
descriptor of innate parameter variability. 

Constraints on the objective function imposed by C(ε) translate to constraints on changes 
allowed to parameter combinations occupying the calibration solution space. Constraints 
imposed by C(p) are actually enforced on parameter changes projected onto the 
calibration null space. Thus the two components of the dual-component objective 
function are independent. This allows formulation of a convenient objective function 
limit based on normal variates through which the maximisation/minimization process can 
thereby be used to define a predictive confidence interval.  

5.1.2 REGPRED and Related Utilities 

Constrained predictive maximization/minimization can only be undertaken as an adjunct 
to a prior calibration process. After the latter is complete, PARREP must be employed to 
create a PEST control file based on optimised parameters. OBSREP is then employed to 
create a PEST control file in which “observations” are in fact model outputs at 
observation points under calibration conditions. A predictive analysis PEST control file 
in which both of the C(ε) and C(p) constraints are employed is then built using the 
REGPRED utility. REGPRED also alters the model batch file such that the VECLOG, 
MATDIFF and MATPROD utilities are run as part of the model in order to undertake 
necessary null space parameter projections.  
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5.1.3 Using SVD-Assist for Nonlinear Predictive Error Variance Analysis 

A problem in applying the above methodology in a highly parameterised context is that a 
large number of parameters are potentially involved in the predictive error variance 
analysis process; hence the number of model runs per iteration may be very high. 
Contrast this with SVD-assisted parameter estimation where the use of super parameters 
reduces the number of model runs per iteration to a potentially very low number. If a 
super parameter set could be defined to span a “predictive solution subspace” in the same 
manner that a super parameter set is defined to span the “calibration solution subspace” 
during SVD-assisted parameter estimation, then the predictive analysis process could also 
be undertaken with great computational efficiency. 

This in fact can be done. PEST can comfortably run in “predictive analysis” mode, with 
its SVD-assist process activated. Furthermore, super parameter definitions can be 
supplied by the user rather than computed by PEST on the basis of parameter sensitivities 
pertaining to a calibration dataset. Tonkin, Doherty and Moore (2007) show how super 
parameters can actually be defined on the basis of “surrogate predictions” whose 
computation is very fast. Once an optimal predictive solution subspace is defined on the 
basis of sensitivities of these surrogate predictions to all parameters, the full model can be 
run by PEST in an SVD-assisted predictive analysis process in which a true model 
prediction is maximised/minimised. Only as many model runs per iteration are required 
as there are super parameters defined. Though no utilities are provided to specifically 
automate computation of predictive super parameters, the JCO2MAT and MATSVD 
utilities can be useful in this endeavour. 

5.2 Null Space Monte Carlo 

5.2.1 Discrete and Continuous Stochastic Fields 

Null space Monte Carlo analysis will be described only for the case where model 
parameterisation is comprised of a large number of zones of piecewise constancy and/or 
where parameters are lumped by other means. Its use in cases where continuous 
stochastic parameter distributions are employed to characterise parameter heterogeneity 
is only slightly more complicated. See documentation of the PPSAMP utility from the 
Groundwater Data Utility suite for more details. 

5.2.2 The RANDPAR and PNULPAR Utilities 

In implementing null space Monte Carlo analysis, different realisations of parameter sets 
are first generated on the basis of an appropriate C(p) matrix using the RANDPAR utility 
(a PEST utility). The calibrated parameter field is then subtracted from each such set. The 
resulting parameter differences are then projected onto the calibration null space (or an 
approximation to it), and the projected differences are then re-added to the calibrated 
parameter field; these steps are implemented using the PNULPAR utility. If the model 
were perfectly linear each new parameter set thus obtained would calibrate the model to 
within confidence limits set by C(ε).  
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5.2.3 Model Re-Calibration using Pre-Calculated Sensitivities 

However because model linearity is a phenomenon only rarely encountered in real-world 
modelling practice, each newly parameterised model obtained in the above manner must 
be re-calibrated. In many cases this is easily achieved in only one optimisation iteration 
of SVD-assisted parameter estimation. Furthermore, the same set of super parameters can 
be employed for all such re-calibration exercises. In addition to this, because PEST is 
able to provide the first parameter update “for free” in an SVD-assisted parameter 
estimation process, finite-difference computation of super parameter sensitivities is not 
required. Thus only a few model runs need to be undertaken per random parameter set in 
order to create a suite of entirely different model parameterisations, all of which calibrate 
the model on the one hand (to within limits set by C(ε)) and all of which respect 
parameter reality constraints on the other hand (to within limits set by C(p)). If it 
transpires that more than one optimisation iteration is needed to restore a particular 
parameter set to calibration status, then PEST will indeed require that super parameter 
derivatives be computed for the second optimisation iteration; this will require as many 
model runs as there are super parameters. Alternatively if, on the basis of just one pre-
calibration model run, it is obvious that a stochastic parameter set computed in the 
manner described above is unlikely to be warped back into calibration on just one 
iteration because its calibration status is too bad, it can be rejected before re-calibration is 
attempted. 

5.2.4 Steps Required for Null Space Monte Carlo Analysis 

Null space Monte-Carlo analysis can be implemented as follows.. 

1. First calibrate a model using SVDA. The base PEST control file will probably 
include Tikhonov regularisation (expressed as prior information), though this is 
not essential. 

2. Once the calibration process is complete, build a new base parameter PEST 
control file in which initial parameters are in fact optimised parameters; use the 
PARREP utility to achieve this. 

3. Remove all prior information from this new base PEST control file; inform PEST 
that it must run in “estimation” mode. 

4. Set NOPTMAX to -1 or -2 in this file and run PEST to compute a new JCO file.  

5. Now set NOPTMAX to 1 in this base parameter PEST control file. This will be 
referred to as the “primary base PEST control file”. 

6. Make a copy of this file; this will be referred to as the “reference base PEST 
control file”. 

7. Run SVDAPREP to build a super parameter PEST control file based on the 
“primary base PEST control file”. Make sure that NOPTMAX is set to 1 in this 
new super parameter PEST control file. Also make sure that Broyden Jacobian 
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upgrading is allowed (see PEST documentation for a discussion of this feature) 
and that the Marquardt lambda control variable PHIRATSUF is set to 0.1 rather 
than 0.3. 

8. Create a parameter uncertainty file which encapsulates the C(p) matrix.  

9. Run the RANDPAR utility on either the “primary base” or the “reference base” 
PEST control file to produce a series of “parameter value files” encapsulating 
realisations of C(p). 

10. Run the PNULPAR utility to create calibration-constrained random parameter 
sets (each residing in a parameter value file of its own) citing the name of the 
“reference base PEST control file” in response to the pertinent prompt. 

11. Run the PARREP utility using a command of the type:- 

 PARREP random_par reference_base primary_base 

In the above command random_par is the name of a parameter value file 
produced by PNULPAR, reference_base is the name of the reference base PEST 
control file and primary_base is the name of the primary base PEST control file. 
Thus the primary base PEST control file now contains projected parameters added 
to calibrated parameters as its initial parameter set. 

12. Run PEST on the super parameter PEST control file built from the reference base 
PEST control file. 

Steps 11 and 12 should be repeated for each PNULPAR-generated parameter value file. 
One iteration of SVD-assisted parameter estimation will be undertaken on each random 
parameter field if the above steps are taken. If desired, alterations to the above procedure 
may include the following. 

1. A “filtering” step may be added whereby a model run is undertaken for each new 
parameter set before SVD-assisted parameter estimation is attempted. If the 
objective function is too high, the parameter field is rejected and re-calibration is 
not undertaken. (This process would be made more efficient if it were undertaken 
internally by PEST rather than requiring a separate model run which is then 
repeated by PEST; this issue will be addressed as further PEST development takes 
place.) 

2. NOTMAX could be set to 2 or higher in the super parameter PEST control file to 
allow more optimisation iterations than one to take place. However, for these 
latter iterations, PEST will compute super parameter derivatives, this requiring 
that one model run be undertaken per super parameter. In contrast the first 
iteration of the SVD-assisted parameter estimation process requires no super 
parameter derivatives calculation as super parameter derivatives are computed 
from pre-calculated base parameter derivatives. 
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5.3 Flow Chart 

See Appendix D – “Post-Calibration Nonlinear Error Variance Analysis” - for a summary 
of procedures discussed in this section.  
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Notes on Previous Figure 

1. The model does not need to be calibrated in order to conduct this analysis. 

2. Observations employed in the analysis do not need to have been acquired; only 
sensitivities, and not actual observation values, are used in the analysis. 

3. The calibration PEST input dataset should contain no regularisation prior 
information. 

4. All weights within the calibration PEST control file should be proportional to the 
inverse of observation uncertainty (including that induced by “structural noise”). 

5. The parameter uncertainty file is easily prepared with a text editor, especially 
where parameters are uncorrelated. Where correlation exists, the PPCOV utility 
can be used to build a covariance matrix file for a parameter subset. PPCOV is a 
member of the Groundwater Data Utilities. 
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Notes on Previous Figure 

1. The integrity of base or super parameter derivatives can be tested using the JACTEST utility. 

2. The JCO2JCO utility can be employed to build a new JCO file from an existing one where changes to a PEST control file are 
restricted to:- 

a. adding or subtracting prior information, 

b. fixing, tying, re-transforming or removing parameters, 

c. re-weighting or removing observations. 

3. Use MPEST and MSVDAPREP instead of PEST and SVDAPEST on BPROC machines. 
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Appendix C 
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Appendix D 

Post-Calibration Nonlinear Error Variance Analysis
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Notes on Previous Figure 

1. The model batch file may need to be modified further than REGPRED’s alterations in order to run the model under predictive 
conditions as well as under calibration conditions. 

2. The predictive maximization/minimization process can be made much more efficient if predictive analysis is undertaken on the 
basis of super-parameters defined to span the “predictive solution space”. PEST’s ability to undertake SVD-assisted predictive 
analysis on the basis of user-defined super parameters allows this. See Tonkin, Doherty, Moore (2007) 
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Appendix E 

Null-space Monte Carlo Analysis
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Notes on Previous Figure 

1. Null space Monte Carlo Analysis is actually a little more complicated than suggested in the previous figure. It involves the 
completion of an (SVD-assisted) PEST run for each random parameter field. However as each run may involve only one PEST 
iteration, and as super-parameter sensitivities for all such runs can be identical (and pre-calculated), the generation of multiple 
parameter sets or fields which, on the one hand, respect specified parameter stochastic distributions while, on the other hand, 
calibrate the model, can be numerically quite cheap. 

 


