Modeling at SFWMD

Jayantha ('Obey') Obeysekera, Ph.D., P.E. Director, Hydrologic and Environmental Systems Modeling Department

> Presentation for ELM Peer Review Panel August 1, 2006

Modeling at the District

 Hydrologic & Environmental Systems Modeling Department
 Centralized Model Development
 Regional Modeling (Development, Implementation, Application)
 Other Departments
 Model Implementation & Application

HYDROLOGIC & ENVIRONMENTAL SYSTEMS MODELING (HESM)

Department Director Jayantha Obeysekera

Interagency Modeling Center (jointly with CORPS)

Model Development

Model Application Support

CERP & Acceler8 Modeling Coordination Regional Simulation Model Dev. Capability Maturity Model Imp. Model Library Implementation

Modeling for Water Supply Plans Operations Flood Control

Complexities of the South Florida System

Decade of the 70s

Electric Analog Model

Simulated water levels and flows in coastal region

Upgraded Regional Routing Model to include daily time step

Initial development of SFWMM (2x2)- a regional-scale computer simulation model

Physical Modeling - Real system

Physical Model at U.C. Berkeley

The SFWMM or 2X2

- Divides South Florida into 2 mile by 2 mile square grid cells
- Integrated surface water groundwater model
- Simulates:
 - Hydrology
 - Water Management

R MANAGEMENT DISTRICT What is NSM?

- A computer model of the pre-drainage system
- Integrated surface and ground water hydrologic model
- 2,382 2 mile x 2 mile grid cells
- Lake Istokpoga to Florida Bay

Modeling Approach

SFWMM Model

Climatic Input

 Rainfall
 ET

 Boundary

 Conditions

Period of record: 1965-2000

- Landuse/Landcover
- Water Demands
- Operating Criteria

Model Output

- Daily time series of water levels, flows
- Demands not met

Performance Measures (Ag, Env, Urban)

Hydrologic Performance Measure

Operational Planning

Decade of the 90s-Initial Development of RSM

Development of the <u>next generation</u> models initiated:
 Object-Oriented
 C++
 Database interfaces

New modeling algorithms researched

Classification of Models

MODEL PROCESSES AND AREAS OF CONCERN

Strategic Modeling Plan Implementation Progress

Established the Office of Modeling (now HESM)

- Model Development
- Interagency Modeling Center (CERP)
- Model Application (non-CERP)

Established Modeling Oversight Team (MOT)

Quality Assurance & Quality Control through implementation of a Modeling Methodology

Capability Maturity Model (CMM)

Peer Review

A requirement of the new modeling methodology

Status of peer reviews:

- **2x2 model (1998, 2005)**
- RSM (Theory part reviewed in 2005)
- LECsR (June 2006)
- Everglades Landscape Model (ELM) (process initiated)

Regional Simulation Model (RSM)

Why we needed it?

- 2x2 has served for about 25-years. Need a next generation regional-scale model
- Next generation tool needs to:
 - Minimize or eliminate "single person dependency"
 - Be well documented, easy to learn, flexible and transparent
 - Defensible. Meet requirements of additional scrutiny that we did not have 10-15 years ago -> Peer Review
 - Make use of new data, new technologies in computers and modeling methods.
 - Be efficient (reasonable run times), and accurate

RSM Development Approach

- Important tool for implementation of CERP and non-CERP projects
- Low-level effort used to design and begin the development of the next generation version of 2x2
- Higher priority on RSM during last two years allocation of experienced 2x2 modelers in the development, contractual help
- A phased approach for completion
- Transition from 2x2 to RSM cannot happen overnight (due to unique differences)

RSM Versions

Natural System, NSRSM

Managed System, SFRSM

Surface exaggerated vertically for display

SFWMM (2x2) versus RSM 2x2 RSM

Natural System RSM RSM HSE Model Domain SEWMD Boundary Vatural System Rivers **Hydrologic Simulation** LOWP Everglades Landscapes Kissimm **Engine (HSE)** St. Lucie River Indian Lake Okeechober Prairie **Natural System RSM** Fisheating Lake Creek Loxahatchee Okeechobee River Caloosahatchee Pre-drainage physical setup Simulate hydrologic Northern processes Overland flow Big Cypress Groundwater flow River network

Southern

Everglades

Florida

SFRS

 Validation against predrainage historical records & anecdotal information

RSM Achievements to Date

- Several applications during development and implementation
- Numerous refereed journal articles (peer review)
- External Peer review of RSM theory (by a panel)
- Calibrated sub-regional models for Everglades Agricultural Area, Palm Beach, Broward, Miami-Dade, Caloosahatchee and St. Lucie
- Natural System Regional Simulation Model (NSRSM)

Schedule - Phases

FY05	FY06	FY07	FY08
RSM Phase I	RSM Phase II	RSM Phase III	RSM Phase IV
 Hydrologic simulation calibration & validation Peer Review – RSM Theory Natural System RSM initial version 	 Address peer review recommendations Develop coupling of hydrology & water management Develop selected subregional models (eg. Miami-Dade) Initial Water Quality Development 	 Apply subregional SFRSMs and NSRSM in selected projects Peer Review of Natural System RSM Complete management capabilities Start migration from 2x2 to RSM Enhance Water Quality features 	 Apply SFRSM for priority Program needs Continue migration from 2x2 to RSM Finalize Water Quality features

Conceptual Model and Grid Design

- Covers the entire lower east coast region
- Three (3) model layers to account for heterogeneity in the surficial aquifer
- Spatial and temporal scales
 - Cells (704 ft. by 704 ft.) 225 cells in each 2x2 cell
 - Daily time step

Lower East Coast SubRegional (LECsR) Model Overview

- Combines previous county-level models
- Three dimensional groundwater flow model of Surficial Aquifer System
- Based on the popular groundwater model developed by USGS (MODFLOW)
- Includes SFWMD developed enhancements
- Integrates surface water in wetlands
- Effect of system-wide operations to be obtained from 2x2 and RSM (in the future)
- Peer Review complete June 2006

Lake Okeechobee

- Largest lake in southeastern US
- Area: 1730 km²
- Average depth: 2.7 m
 Surrounded by dike
 Turbid, wind driven
 Eutrophic

LOEM

A Diagram of Major Processes in the LOEM

Restoration of the Loxahatchee River

Loxahatchee River Salinity Model Domain

Everglades Landscape Model

- Integrate hydrology, biology and nutrient cycling in spatially explicit simulation
- Understand ecosystem dynamics at regional scale
- Develop predictions of landscape response to altered water & nutrient management

Thank You !

Questions ?

Development History of the Lake Okeechobee Hydrodynamic and Wind-wave Model

- Wind-wave Model (by wind-wave equations approach) Jiang, Wang, and Jin(1996). <u>J. of Ocean Engineering.</u> Ren, Wang, and Jin (1997). <u>J. of Computers and Fluids.</u> Ren, Wang, and Jin (1997). <u>J. of Ocean Engineering.</u> Jin and Wang (1998). <u>J. of AWRA.</u>
- Wind-wave Model (by Spectral Energy Approach)
 Mei, Fan, and Jin (1997). <u>Journal of Geophysical Research</u> Jin and Ji (2001). <u>Journal of Ocean Engineering</u>,
- 3-D Hydrodynamic Model (modified from EFDC) Jin, Hamrick, and Tisdale (2000). <u>Journal of Hydraulic Engineering</u>, ASCE.
 Jin, Ji, and Hamrick (2002). <u>Journal of Waterway</u>, <u>Port, Coastal, and Ocean Engineering</u>, ASCE.

Jin, and Ji (2005). Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE,

3-D Sediment Model (modified from EFDC) Jin and Ji (2004). <u>Journal of Hydraulic Engineering</u>, ASCE.

CERP^{THFLOR} Components

XXXXXX

Aquifer Storage & Recovery

Surface Water Storage Reservoir

Stormwater Treatment Areas (STAs)

Reuse Wastewater

Seepage Management

Removing Barriers to Sheetflow

Operational Changes

