Fire Project Update:

Mass and nutrient loss of cattail communities in WCA 2A in response to prescribed fires

Quarterly Communications Meeting on the Long-Term Plan for Achieving Water Quality Goals for Everglades Protection Area Tributary Basins

September/29, 2009

ShiLi Miao (PI) Cassondra Thomas Amy Farrell

Management objective

Assess whether <u>multiple</u> surface fires accelerate the recovery of the nutrient-enriched areas now dominated by cattails in WCA 2A

Research objectives

• Determine ecological effects of <u>multiple</u> surface fires on critical wetland ecosystem structure, function, and processes in nutrient-enriched areas

• Examine natural recovery pattern in WCA 2A

south florida water management district Conceptual model for Fire Project

Objectives

Quantify mass and nutrient loss and return

 Examine factors that affect mass and nutrient loss and return

 Assess ash chemistry and its impacts on water quality

south florida water management district Fire Project Design

<u>Date</u>	<u>Type</u>	Water Depth <u>(cm)</u>	
Highly enriched			
July 2006	Prescribed	10	
July 2008	Prescribed	43	
Moderately enric	hed		
February 2006	Wildfire	19	
August 2008	Prescribed	32	

Average Biomass and Nutrient

Average Biomass and Nutrient

Biomass & Nutrient Loss at Different Habitat & Burns

Habitat	Fire #	Nutrient loss (%)			
l		Mass	Carbon	Nitrogen	Ρ
Highly-enriched	1	62	62	62	50
	2	44	43	58	49
Moderately-enriched	1	49	62	63	41
	2	28	25	28	30

Highly-enriched plot post-fire, 2006

Combusted mass •62% of total mass

- 78 % of dead litter layer
- 24 % of live leaves

- 585 g C
- 0.7 g P
- 11 g N

Highly-enriched plot post-fire, 2008

Combusted mass •44% total mass

- 63 % of dead litter layer
 - 10 % of live leaves

- 379 g C
- 0.6 g P
- 10 g N

Moderately-enriched plot post-fire, 2006

Combusted mass •49% total mass

- 59 % of dead litter layer
- 19 % of live leaves

- 424 g C
- 0.1 g P
- 10 g N

Moderately-enriched plot post-fire 2008

Combusted mass ' •28% total mass

- 33 % of dead litter layer
- 17 % of live leaves

- 195 g C
- 0.2 g P
- 3 g N

south florida water management district Mass Loss and Pre-Fire Mass

Mass Loss and Water Depth

south florida water management district Mass Loss and Temperature

\bullet	Cattail
∇	Sawgrass
	Regression line
	95% Confidence interval
	Highly enriched 1st Fire
	Moderately enriched 1st Fire
	Highly enriched 2nd Fire
	Moderately enriched 2nd Fire

Mass Loss and Species

Ash Collection Design

Ash Collector S.T. Logger (Air) S.T. Logger (Air, Soil & Water)

south florida water management district Nutrient Return to the System

south florida water management district Ash Return to the System

	% burned	% pre-fire % burned	
	1.4	0.6 1.4	
	0.9	0.5	Ash TN
	1.0	0.4	Ash TC
	8.9	4.0	Ash TP
-	1.0 8.9	0.4 4.0	Ash TC Ash TP

All %s in B are based on <u>burned mass</u> or nutrient content

SOUTH FLORIDA WATER MANAGEMENT DISTRICT Ash Chemistry with Varying Temperature

south florida water management district Surface Water pH Response to Ash Addition

Ash Deposition and Water Depth on SWTP

Major Conclusions

 Prescribed fires were an effective way to quickly remove nutrients, as approximately 1% of N and C and < 8% of P of burned nutrients was returned as ash.

• Pre-fire mass and water depth at the time of fire were the main factors determining mass and nutrient loss.

• Water depth and fire temperature both directly (release) and indirectly (ash effect on water quality) affected ecosystem nutrient concentration.

south florida water management district Management Implications

• Two years were required for fuel loads to return for repeated fire but more time may be required for additional fires.

• As more N was released and less returned in ash than P, repeated fires can lead to a more N-limited system, and therefore care must be taken when considering prescribed fires in N-limited systems.

SOUTH FLORIDA WATER MANAGEMENT DISTRICT Management Implications

- Water depth is a key management consideration with levels between 10 and 40 cm resulting in successful surface fires.
 - The lower end is good for maximizing nutrient loss
 - The upper end is good for minimizing water quality changes.

• High water levels also reduce fire temperature, creating ash with lower pH, TP and soluble P concentrations.

Acknowledgements

SFWMD Robert Johnson Ben Gu BEM Systems Susan Carstenn Wendy Sotera Elsa Krauss CardoTBE Cassondra Thomas Chris Edelstein Dean Monette Amy Farrell David Cox Christina Stylianos Andy Steiner Dan/Pisut Scheda Ecological Associale<mark>s</mark>

Erik Sindhoj Lili Carpenter Jennifer Zimmerman Josh Creasser Manuel Tapia

Birkitt Environmental Services Hongjun Chen Damien Condo Dan Salembier

Project Publications

• Miao and Carstenn 2006. A new direction for large-scale experimental design and analysis. Frontiers in Ecology and the Environment 5: 227.

• Miao et al. 2008. Allometric relationships of field population of two clonal species with contrasting life histories, *Cladium jamaicense* and *Typha domingensis*. Aquatic Botany 88: 1-9.

• Gu et al. 2008. Effects of a prescribed fire on dissolved inorganic carbon dynamics in a nutrientenriched Everglades wetland. Fundamental and Applied Limnology 171:263-272.

• Miao and Zou, 2009. Seasonal variation in seed bank composition and its interaction with nutrient enrichment in Everglades wetlands. Aquatic Botany 90:157-164.

• Qian et al. 2009. Effects of burn temperature on ash nutrient forms and availability from cattail and sawgrass in the Florida Everglades. J. Environ. Qual. 38: 1-15.

• Qian et al. 2009. Estimation of postfire nutrient loss in the Florida Everglades. J. Environ. Qual. 38: 1812-1820.

• Thomas et al. 2009. Environmental factors affecting temporal and spatial patterns of soil redox potential in Florida Everglades wetlands. Wetlands 29:1133-1145.

•Miao et al. 2009. Real World Ecology: Large-scale and Long-Term Studies and Methods. Springer

pdf request to "smiao@sfwmd.gov"

Thank You