C-139 Vegetable Production Demonstration Project

Kelly Morgan*, Gene McAvoy and Shinjiro Sato

*University of Florida
Soil and Water Sciences
Department
Southwest Florida Research
and Education Center
2686 SR 29N
Immokalee, FL 34142
conserv@ufl.edu

South Florida Water Management District, Everglades Regulation Division

Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins
May 27, 2009
Agenda

- The C-139 Basin Vegetable Demonstration Project
- Plant Phosphorus Basics
- Soil Phosphorus and Soil Testing Basics
- The 2005-2008 Demonstration Project
- The Current Demonstration Project (2008 – 2011)
- Summary and Next Steps
The C-139 Vegetable Demonstration Project

Goals:

- Evaluate the state standard Soil Test P index (Mehlich 1) for vegetable crops on the high pH soils with high P-Ca precipitates that are typical of the C-139 Basin,
- Compare the four common soil extractants for development of a more reliable Soil Test P index for these soil conditions, and
- Determine the effects on yield and plant characteristics of lowering soil pH to increase P availability thus reducing the need for new P application
- Developed as a cooperative agreement between the SFWMD, FDACs, UF-IFAS and volunteer C-139 Basin growers
C-139 Basin Background

- Approximately 170,000 acres of agricultural production in Hendry County
- Commodities = vegetables, citrus sugarcane and pasture
- Vegetable production has increased over the past 10 years
- Since 2003, compliance TP monitoring has been conducted to determine no increases from 1978 - 1988 historic levels
- The basin exceeded TP load limits in 3 of the past 4 years.
Plant Phosphorus Basics

How much N, P, and K does a tomato field absorb (plants + fruit)?

Per 1000 cartons of tomatoes, about:
75 lbs N
20 lbs P_2O_5
140 lbs K_2O

How much N, P, and K leaves the field with the fruit?

Per 1000 cartons of tomatoes, about:
42 lbs N
10 lbs P_2O_5
90 lbs K_2O
Soil Phosphorus

- Sand holds very little P
- P precipitates out as Ca compounds in soils with pH > 7.0 and Ca > 600 ppm
- Available to plant for short period of time

- Soil test measures “extractable” P and not “total” P
- “Extractable” P may contain P not available to the plant

H$_2$PO$_4$ \rightleftharpoons CaHPO$_4$ \cdot 2H$_2$O \rightleftharpoons Ca$_8$H$_2$(PO$_4$)$_6$ \cdot 5H$_2$O \rightleftharpoons Ca$_{10}$F$_2$(PO$_4$)$_6$ \cdot 5H$_2$O

- Water Soluble: P is soluble in water.
- Bicarbonate extractable: P is available after being converted to bicarbonate.
- Extractable with Acid: P is available after being extracted with acid.
- Partially available: P is available to some extent.
- Not plant available: P is not available to the plant.
Soil Test P (Extractable vs. Available)

- A Soil Test measures extractable nutrients
 - Only a portion of extractable nutrients are available to the plant.
 - It is used as a basis to estimate plant-available nutrients and calculate fertilizer requirements (P index)

<table>
<thead>
<tr>
<th>Soil test rating</th>
<th>Mehlich 1 Soil-test P (ppm)</th>
<th>Probability that crop will respond to P fertilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>< 10</td>
<td>Very good</td>
</tr>
<tr>
<td>Low</td>
<td>10 – 15</td>
<td>Good</td>
</tr>
<tr>
<td>Medium</td>
<td>16 – 30</td>
<td>It might, it might not</td>
</tr>
<tr>
<td>High</td>
<td>31 – 60</td>
<td>About zero</td>
</tr>
<tr>
<td>Very high</td>
<td>> 60</td>
<td>No chance</td>
</tr>
</tbody>
</table>
P Availability in C-139 Basin Soils

- P most available to plants in the pH range of 5.5 to 6.5, even with high Ca concentrations
- P is increasingly not available above pH 7.0 in high Ca soils
- C-139 Basin soil pH ranges between 7.0 and 8.1, and soils have high Ca concentrations
- The State standard Soil Test P (Mehlich 1) provides best results on soils below pH 7.2
- Use of an index based on the Mehlich 1 method may not provide most accurate results for C-139 Basin conditions.
The 2005-2008 Demonstration Project

- Five sites
- Duration = three years
- Crops = tomato, peppers, and green beans
- Soils pH = 7.0 to 8.1
Crop and Soil Test Summary

- All soil P values in the high to very high P index
- Soil Ca very high (>400) in all plots
- Greater growth and yield was associated with sites on the lower end of the pH range suggesting the importance of pH adjustment to reduce P needs

<table>
<thead>
<tr>
<th>Farms</th>
<th>Spring 2006</th>
<th>Fall 2006</th>
<th>Spring 2007</th>
<th>Fall 2007</th>
<th>Spring 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tomato</td>
<td>Tomato</td>
<td>Tomato</td>
<td></td>
<td>Tomato</td>
</tr>
<tr>
<td>2</td>
<td>Eggplant</td>
<td>Green beans</td>
<td>Peppers</td>
<td>Green beans</td>
<td>Corn</td>
</tr>
<tr>
<td>3a</td>
<td>Tomato</td>
<td>Green beans</td>
<td>Tomato</td>
<td>Green beans</td>
<td>Green beans</td>
</tr>
<tr>
<td>3b</td>
<td>Green beans</td>
<td>Green beans</td>
<td>Green beans</td>
<td>Green beans</td>
<td>Green beans</td>
</tr>
<tr>
<td>4</td>
<td>Green beans</td>
<td>Green beans</td>
<td>Green beans</td>
<td>Green beans</td>
<td>Green beans</td>
</tr>
<tr>
<td></td>
<td>Tomato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Change in Soil Test P over Time

- Soil P stays high even for Zero P plots
- Indicates that non-plant-available P exists in the soil to be “extracted”
- Extended evaluation is needed to determine how long it will take for the Soil P to decrease.
Effect of P Application on Growth and Yield

- **Green Beans**
 - Significant reduction in plant growth and yield with reduced P
 - Some evidence of reduced leaf P conc. with reduced fertilizer P

- **Tomatoes**
 - Some significant increase in number of large fruit
 - No statistically significant effect on total yield
Green Bean – Growth Response

- Leaf P was in the optimum range at all sample dates
- Leaf P significantly greater in the full P rate 28% of samples compared with zero rate
- 44% of sample had significantly greater biomass at 30 and 60 days after planting with increased fertilizer P
Green Bean – Yield Results

- Some indication (28% of crops) of significant yield increase in pods < 3 inches long with increased P added
- Increase in yield of pods > 4 inches long with increased P rate were significant (78% of crops)
Tomatoes – Yield Results

- Some significant difference in yields by fruit size
- Earlier Large and Xlarge fruit (first harvest) <20% of time
- Higher yield of large (6x6) fruit at full and half P rates

\[y = -0.0009x^2 + 0.1294x + 71.621 \]
\[R^2 = 0.1139 \]
The Current Demonstration Project (2008 – 2011)

- Continuation of first 3 year study
 - 4 Farms per season
 - 3 Fixed fertilizer P rates (one additional rate)
- 4 soil extractants compared with Mehlich 1
 - Develop appropriate soil test P index for C-139
 - Mehlich 3 (future State standard), Olsen, Brey and AB-DTPA
- Sequential analysis conducted to determine the soil P forms
 - Determine plant available P
 - Establish P form extracted by the different extractants
 - Identify the extractant that best measures plant available P in C-139 soils
The Current Demonstration Project (2008 – 2011) - continues

- Enhanced soil P availability with pH adjustment
 - An evaluation of amendments to reduce pH was conducted. Only S was identified as a practical at that time.
 - One site in the Fall (2008) and one in the Spring (2009)
 - Uses the minimum S rate to affect desired pH change
 - Rates are based on current UF-IFAS Soil Test recommendations
 - All S was banded at the root zone along with P as a potential BMP
 - Reduced application rate 250 lbs/acre in comparison to industry practices (approx. 1000 lbs/acre.)
 - Water quality samples are collected for S and P to determine the differences for the ditches serving the different sample plots.
 - Continue research on alternate amendments for pH adjustment and dissemination to growers.
Sequential Soil P Analysis

- Approximately 25 and 50 mg/kg applied at the 100 and 50% P rates
- Nearly all added P in water soluble fraction at planting (0 DAT, days after transplanting)
- Reduction in water soluble P and increase in Carbonate extractable P at 30 DAT
- Reduced available P form (crop uptake) and increase in first precipitation form
- Little change in other soil (non-available) P fractions

[Bar chart showing changes in soil P fractions at 0 DAT and 30 DAT]
Comparing Extractable P with P Fractional Analysis Results

- Mehlich 1 extracts more P than in the water soluble fraction and nearly all the P in the water and carbonate fractions (may over-estimate available P)
- Mehlich 3 and Brey extracts nearly all of the water soluble fraction and little of the carbonate fraction
- Olsen and AB-DTPA extracts only the water soluble P fraction (may under-estimate available P)
S Application and Field Ditch Water Samples (Preliminary Results)

- Elemental S is used to reduce soil pH
- Recommended pH range is 5.5 to 6.5 for improved nutrient availability
- Current S rates can approach 1000 lbs/ac
- Typical applications are above 200 lbs/ac
- Mean S in ditch water entering test field (outside source) = 0.023 ppm
- Mean S in water from ditches adjacent to S applied plots increased on average by less than 0.001 ppm compared with plots receiving no added sulfur
Continued Review of Alternatives for pH Adjustment

- Sulfur coated fertilizer
 - **Positives**
 - Further reduction in elemental S added to the soil,
 - Reduction in number of steps involved in application,
 - S is bound to the fertilizer particle so S runoff is less likely, and
 - **Negatives**
 - Moderation of soil pH is only in the immediate vicinity of the fertilizer pellet and not effective outside that zone, and
 - Higher cost per unit fertilizer amount
Continued Review of Alternatives for pH Adjustment

- Chemically stabilized P (ionic retention)
 - **Positives**
 - No soil added elemental S, and
 - Additive fixes P so Ca does not
 - **Negatives**
 - New on market with few field results available,
 - No protection of P away from fertilizer particle, and
 - Higher costs
Summary and Next Steps

☐ Crop responses to P application indicate that industry applied P levels can be optimized,

☐ However, project continuation is needed for development of a reliable index.

☐ Water quality monitoring for the different plots is starting to provide insight on how it relates to the different P and S application levels

☐ Continued investigation on alternate amendments for modifying soil pH is needed.

☐ Long-term tracking of soil P is needed to determine legacy P issues on “no P applied” plots.