C-139 Basin

A Regional Water Management Perspective

Quarterly Communications Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins

December 1, 2009

Thomas Kosier tkosier@sfwmd.gov Jonathan Madden jmadden@sfwmd.gov

C-139 - one of several Everglades western tributaries
Collectively known as the "Western Basins"

Current Tributary Basins

- C-139 basin
- Feeder Canal basin
- L-28 Basin

Potential Tributary Basin S-4 basin (Industrial Canal)

Features & Challenges: C-139 Basin

Current Features

- 2nd largest discharging tributary to Everglades behind EAA
- Mandatory BMP source control program for landowners
- STA-5 & STA-6 treatment
- Dependency on groundwater for water supply

- Further reduce total phosphorus (TP) loads in basin discharges
- STA performance has been impacted by high inflow TP loads
- Increase basin storage
- Land Use Intensification due to economic conditions
- Management of water supply to promote conservation and improve water quality
- Ensure flood protection is maintained

Features & Challenges: Feeder Canal Basin

Current Features

- 3rd largest discharging tributary to Everglades behind EAA
- No Mandatory BMP source control program for all landowners
- No STA treatment
- Dependency on groundwater for water supply

- Further reduce TP loads in basin discharges
- Increase basin storage
- Management of water supply to promote conservation and improve water quality
- Discharge limits to be determined

Features & Challenges: L-28 Basin

Current Features

- 4th largest discharging tributary to Everglades behind EAA
- C-139 Annex diversion of flows to STA-6 w/ Mandatory BMPs
- Remaining landowners <u>No</u> Mandatory BMPs & <u>No</u> STA treatment
- Dependency on groundwater for water supply

- Further reduce TP loads in basin discharges
- Increase basin storage
- Management of water supply to promote conservation and improve water quality
- Discharge limits to be determined

Features & Challenges: S-4 Basin

Current Features

- Consists of S-4 and Industrial Canal
- Historically discharged to Lake Okeechobee and Caloosahatchee River
- Diversion Proposal ~ 50% of basin discharge south to C-139 Region
- Mandatory BMPs, but <u>No</u> STA treatment currently in basin

- Reduce TP loads to Lake Okeechobee by increasing load south
- Storage and treatment of diverted flows (water quality impacts)
- Integrated water management with C-139 Region (flood control)
- Avoid overloading existing STAs including upcoming expansion
- C-139 Region water supply potential use

Basin Specific Projects: Existing & Currently Planned

Existing

- STA-5: Cells 1, 2 and 3
- STA-6: Sections 1 and 2
- C-139 Annex Pump Station

<u> Planned</u>

- Feeder Canal Basin: "Critical Project" (Tribe and ACOE)
- Compartment C" in construction
- Potential S-4/Industrial Canal Diversion to the south
- Feeder Canal/L-28 CERP Projects

C-139 Regional "Challenges"

Develop an integrated regional approach beyond basin specific efforts to deal with these challenges

- Water Quality & Quantity
 - EFA mandates basins not meeting goals
- Flood Control
 - Most rain falls in short period decreasing percent retained within basins
- Water Availability
 - Reliance on groundwater is affected by rainfall patterns and soils
- Coordination/Integration of Projects
 - ECP/LTP, CERP, Land Practices

C-139 Regional Perspective: Potential Solutions

Evaluate the feasibility of

- Regional Storage
 - Benefit Water Quality, Water Availability

Canal / Infra-structure modifications

- Allow for more flexibility in movement of water for flood protection & regional storage/treatment
- Develop interconnections between individual basins for water availability for irrigation
- Operational Optimization
 - Take advantage of infra-structure to better manage regional water resources

C-139 Regional Feasibility Study

The Regional Feasibility Study (RFS) will

 Identify solutions for C-139, Feeder Canal and L-28 Basins together as a "Region" and include potential S-4 basin diversions

Phase 1 FY 2008-2010:

- Gather existing information
- Identify additional data needs (and benefits to study)
- Collect additional data (Topography, Canal Crosssections, Monitoring Wells)
- Develop Integrated Groundwater/Surface Water model for region

Phase 2 FY2010:

 Conduct RFS to develop alternatives and planning level costs

Potential "alternatives"

- Storage in above-ground impoundments
- Storage and treatment in above-ground impoundments
- Evaluation of potential S-4 Basin diversions
- Water management changes through infrastructure changes
- Water management changes through operational changes
- Potential shift of withdrawals from the Lower Tamiami Aquifer to other water resources
 - Canal surface water
 - Recycling of stormwater for irrigation

Potential alternatives continued

Alternative water storage – excess water capture
Alternative treatment technologies
Regional/sub-regional scaling

As the RFS moves forward, there is always potential for shorter-term/interim solutions to be identified and developed

Overall Project Execution

- Phase I Develop a baseline model for the C-139 Region
- Phase II Identify potential solutions for region and quantify appropriate "Performance Measures"
- Future Efforts
 - Select Alternative
 - Develop Basis of Design
 - Development of solution (design, Operation Plan, etc.)
 - Implementation of solution (construction, etc.)
 - Operations and maintenance

Project Breakdown (Cont'd)

Phase I – Current Efforts

- Existing data collection, data gaps identification & model selection
- Field data collection
- Baseline model development
- Identification of challenges within the region
- Identification of a range of possible alternatives

Project Breakdown (Cont'd)

<u>Phase II</u> (FY 2010)

- Development of Performance Measures and several Alternatives
- Alternatives scenario modeling
- Review and analysis of proposed projects/water optimization strategies
- Conceptual design development
- Cost estimation

Phase 1 "Work Plan" and Schedule

- Task 1 Various meetings throughout duration of contract
- Task 2 Gather and assess relevant reports and data produce summary reports
- Task 3 Field Data Collection: Jul Dec 2009
- Task 4 Model Development, Calibration and Verification: Oct 2009 - Jan 2010
- Task 5 Final Report and Work Plan for Phase 2: Feb 2010
- Commence with Phase 2: Mar 2010

Overall Project Layout

Current and Next Steps

Begin Task 3 ("Fill in the Data Gaps"): Jul - Sep 2009

- Ground-truth topography
- Additional monitoring well installation and monitoring
- Additional canal cross-sections
- Meet with Landowners when/where appropriate

Begin Task 4 Model Development: Aug – Nov 2009

Field Data Collection

Phase I – current data needs

0	verall	Seminoles Reservation
Nested Groundwater wells	9	1
Water Surface Level	3	0
Canal Cross Sections	11	8
Spot Elevations	40	5

Field Data Collection (Overall)

"Nested Pair" Monitoring Wells

Regional Model Development

Need an integrated surface water/groundwater model

Cost to modify existing models was considered cost prohibitive

 Lack of "internal" water quality data represents a challenge

Selected the MIKE-SHE/MIKE-11 model with a "Spreadsheet" Water Quality analysis

Coordinated Effort - Public Input and District Resources

Critical coordination

- Stakeholder Input
- Construction and Engineering issues
- Regional Modeling (integrated surface & groundwater)
- Land Management issues
- Operation of District facilities
- Regulatory issues
- Water Supply planning
- River of Grass restoration coordination

C-139 Basin Regional Feasibility Study

Questions/Comments?