TCNS - S-191 BASIN TECHNICAL SHEET											
Subwatershed:	Taylor Creek/Nubbin Slough										
Basin:	S-191 (NEEPP Priority Basin)	Flow Issues ¹ :	MAYBE	Water Quality Issues ² :	YES						

Monitored Structure(s): S191

Inflow loads: None

Acreage: 120,464

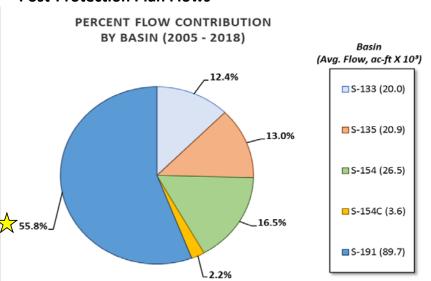
Percentage of Subwatershed Acreage: 61% **Percentage of Lake Okeechobee Watershed:**

¹Flow Issues:

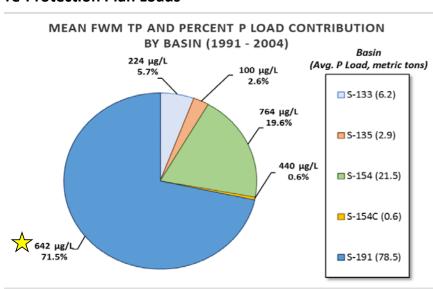
- This basin has the highest flows compared to the other basins in the Taylor Creek/Nubbin Slough subwatershed; runoff volumes are flashy.

3.5%

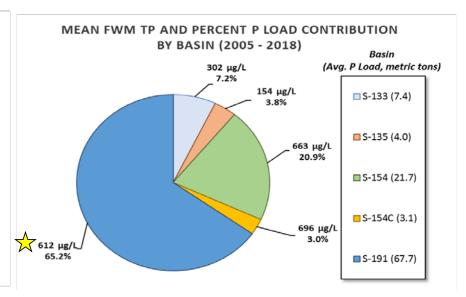
- There was a statistically significant decreasing trend in flow for the period of record (WY1991 to WY2018).

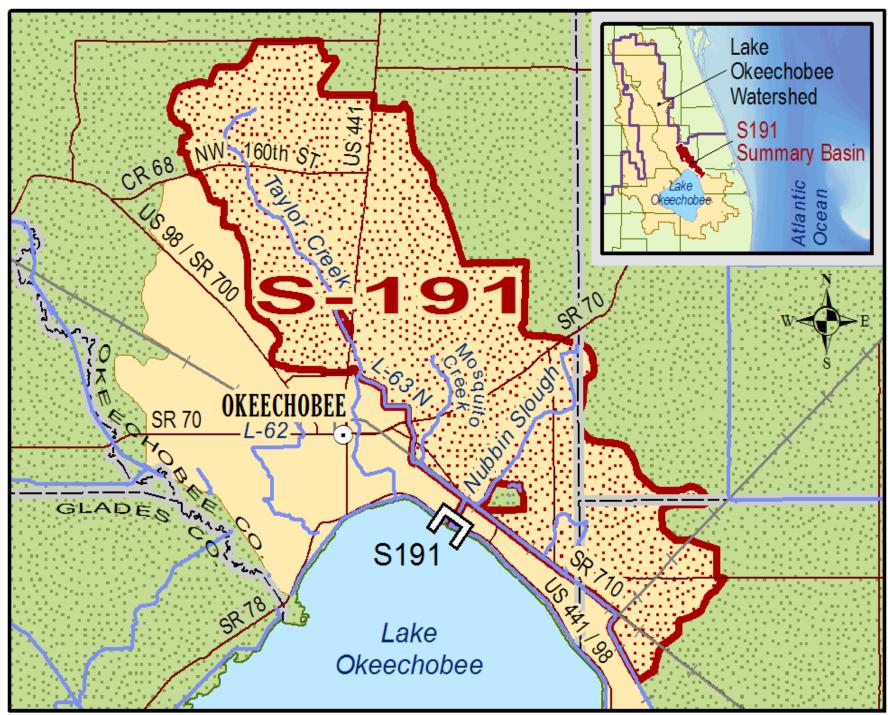

²Water Quality Issues:

- This is one of the Northern Everglades and Estuaries Protection Plan (NEEPP) four Priority basins.
- While there is a statistically significant decreasing trend for the period of record for total phosphorus (TP) loads, this basin had high TP flowweighted mean concentrations (FWMC) (612 μg/L during the post-protection plan period).
- The basin represents the majority of the TP loads for the Taylor Creek/Nubbin Slough subwatershed.


Pre-Protection Plan Flows

PERCENT FLOW CONTRIBUTION BY BASIN (1991 - 2004) Basin (Avg. Flow, ac-ft X 103) 13.3% S-133 (22.5) S-135 (23.6) 14.0% ■ S-154 (22.8) S-154C (1.1) S-191 (99.1) ∟0.7%


Post-Protection Plan Flows



Pre-Protection Plan Loads

Post-Protection Plan Loads

S-191 BASIN - STATISTICS

	Summary Statistics													
	Period of Record	Pre-Protection Plan	Post-Protection Plan											
	WY1991-WY2018	WY1991-WY2004	WY2005-WY2018											
Averages														
Avg. Flow (acft/yr)	94,416	99,147	89,685											
Avg. Load (mt/yr)	73.10	78.54	67.66											
FWMC (ug/L)	628	642	612											
Avg. UAL (lbs/acre/yr)	1.34	1.44	1.24											
Medians				Mann-Whitney Results p-values ³										
Median Flow (acft/yr)	88,090	88,654	88,090	0.6133										
Median Load (mt/yr)	73.23	76.12	66.70	0.4907										
Median FWMC (ug/L)	617.21	648.5	571	0.1752										
Median UAL (lbs/acre/yr)	1.34	1.40	1.22	0.4906										
Highlighted cells indicate statisti	cal significance													

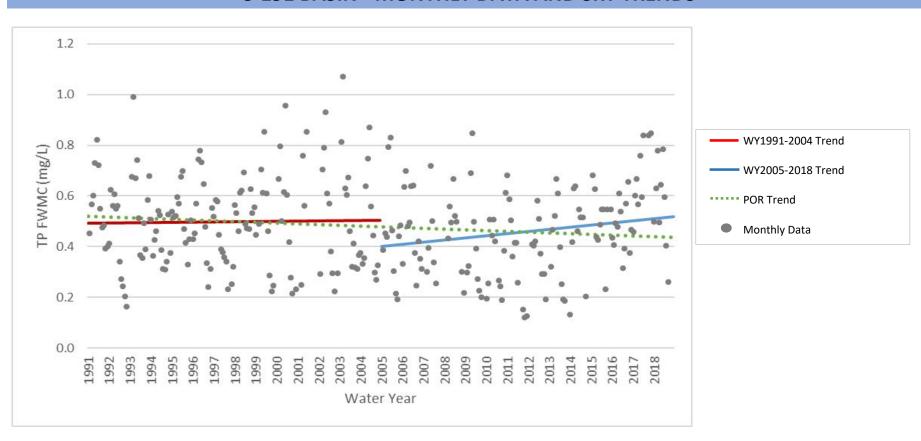
³The Mann-Whitney test is a non-parametric test alternative to the two sample t-test. It is used to test the equality around the central tendency of two data sets (pre-protection plan period and post-protection plan period). A p-value of less than 0.05 indicates that a significant difference between pre-protection plan period and post-protection plan period exists. A comparison of the median values identifies which period is higher. A median is a value at the mid-point of a distribution of observed data.

Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall τ Results for Total Monthly Flow (ac-ft) by Basin over Three Water Year Ranges

		1	991-2018	3			1	L991-2004	1		2005-2018					
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	
S-191 Basin	0.0%	-0.172	-43.67	2764	0.021	0.0%	-0.110	-94.27	4193	0.346	0.0%	0.018	0.00	956	0.760	

Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall τ Results for Total Monthly P Load (kg) by Basin over Three Water Year Ranges

	1991-2018							4		2005-2018					
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value
S-191 Basin	0.0%	-0.188	-20.04	1373	0.014	0.0%	-0.097	-32.45	2198	0.394	0.0%	0.018	0.00	414	0.760


Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall τ Results for Monthly FWM TP (μg/L) by Basin over Three Water Year Ranges

		1991-2018						1	1		2005-2018					
Sub-watershed/Ba		% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value
S-191	1 Basin	16.1%	-0.116	-3	520	0.115	11.9%	0.009	1	493	0.936	20.2%	0.184	8	401	0.099

Italic red font cells indicate statistical significance

Note: The Seasonal Kendall Tau analyzes data for monotonic trends (consistent upward or downward trend) and accounts for seasonality. Typically monthly data are used to identify seasons. Probability values (p-values) are derived from the tau-statistic which identifies the direction of the trend. A p-value less than 0.05 detects statistically significant trends for a period of interest. The Sen Slope provides an indication of the magnitude of the observed trend.

S-191 BASIN - MONTHLY DATA AND SKT TRENDS

