			T									
Subwatershed:	Taylor Creek/Nubbin Slough											
Basin:	S-154C	Flow Issues ¹ : MAYBE	Water Quality Issues ² : YES									
Monitored Strue	cture(s):	S154C										
Inflow loads:		None										
Acreage:		2,134										
Percentage of Su	ubwatershed Acreage:	1%										
Percentage of La	ake Okeechobee Watershed:	0.1%										

¹Flow Issues:

- Flow measurements were not collected consistently at the S-154C structure until 10/1/98; as such the data included in the SKT analysis starts on this date. Flow measurements were collected by manually recorded observation until 5/12/08 and have since been collected using a CR10 (Campbell Scientific Inc. Measurement and Control Module).

- Flow measurement changes occurred in the S-154C Basin during the pre and post-protection plan period. Need to investigate whether samples are representative of runoff areas.

- Flow data from 2009-present could be evaluated further for changes in trends since the same methods were used during this period.

²Water Quality Issues:

- This basin had high total phosphorus (TP) flow-weighted mean concentrations (FWMC) (696 µg/L during the post-protection plan period).

- The high TP unit area load (3.17 lbs/acre in the post-protection plan period) may be influenced by flow measurements and needs further investigation.

- This basin is only 1% of total subwatershed acreage (2,134 ac) and less that 0.1% of Lake Okeechobee Watershed acreage.

- This basin may be a good location for a project that captures runoff from S-154C and S-154 (FWMC also >600 μ g/L) combined.

Pre-Protection Plan Flows

Pre-Protection Plan Loads

MEAN FWM TP AND PERCENT P LOAD CONTRIBUTION

Post-Protection Plan Flows

Post-Protection Plan Loads

MEAN FWM TP AND PERCENT P LOAD CONTRIBUTION

Prepared by: SFWMD K Campos -3/29/2019 @11:46 AM

 $\label{eq:linear} File: \label{eq:linear} File: \label{eq:linear} \label{eq:linear} File: \label{eq:linear} \label{eq:linear} File: \label{eq:linear} \label{eq:linear} File: \label{eq:linear} \label{eq:linear} \label{eq:linear} File: \label{eq:linear} \label{eq:linear} \label{eq:linear} \label{eq:linear} File: \label{eq:linear} \label{eq:linear} \label{eq:linear} File: \label{eq:linear} File: \label{eq:linear} \lab$

REG/EREG 08-NOV-2012 CMIESSAU \\ad.sfwmd.gov\dfsroot\data\err_gis\projects\EVG\lok\kEdgemon_LOK_PerformanceMeasures\mxd\S154C_PerformanceMeasures_TinyMap_cm1.mxd

Prepared by: SFWMD K Campos -3/29/2019 @11:46 AM File: \\ad.sfwmd.gov\dfsroot\userdata\rmiessau\Docs\DPI\lowpp\technical_sheet\lowpp_tcns_s154c_sheet.xlsx-S-154C Basin

S-154C BASIN - STATISTICS

Summary Statistics													
	Period of Record	Pre-Protection Plan	Post-Protection Plan										
	WY1991-WY2018	WY1991-WY2004	WY2005-WY2018										
Averages													
Avg. Flow (acft/yr)	2,677	1,115	3,569										
Avg. Load (mt/yr)	2.17	0.61	3.07										
FWMC (ug/L)	658	440	696										
Avg. UAL (lbs/acre/yr)	2.47	0.83	3.17										
Medians				Mann-Whitney Results p-values ³									
Median Flow (acft/yr)	2,258	552	2,868	0.0041									
Median Load (mt/yr)	1.73	0.26	2.21	0.0033									
Median FWMC (ug/L)	579	397	708	0.0170									
Median UAL (lbs/acre/yr)	1.90	0.54	2.29	0.0168									
Highlighted cells indicate statistical significance													

³The Mann-Whitney test is a non-parametric test alternative to the two sample t-test. It is used to test the equality around the central tendency of two data sets (pre-protection plan period and post-protection plan period). A p-value of less than 0.05 indicates that a significant difference between pre-protection plan period and post-protection plan period exists. A comparison of the median values identifies which period is higher. A median is a value at the mid-point of a distribution of observed data.

Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall t Results for Total Monthly Flow (ac-ft) by Basin over Three Water Year Ranges

1991-2018								1991-2004			2005-2018				
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value
S-154C Basin	25.0%	0.270	1.80	13	<0.001	50.0%	0.294	0.42	-3	0.089	0.0%	0.090	0.68	63	0.122

Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall T Results for Total Monthly P Load (kg) by Basin over Three Water Year Ranges

	1991-2018							1991-2004			2005-2018					
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	
S-154C Basin	25.0%	0.297	0.92	5	<0.001	50.0%	0.302	0.09	0	0.079	0.0%	0.099	0.43	31	0.142	

Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall τ Results for Monthly FWM TP (µg/L) by Basin over Three Water Year Ranges

		1991-2018				1991-2004			2005-2018						
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value
S-154C Basin	45.8%	0.214	12	252	0.021	74.4%	0.065	11	215	0.796	17.3%	0.061	6	416	0.546

Italic red font cells indicate statistical significance

Note: The Seasonal Kendall Tau analyzes data for monotonic trends (consistent upward or downward trend) and accounts for seasonality. Typically monthly data are used to identify seasons. Probability values (p-values) are derived from the tau-statistic which identifies the direction of the trend. A p-value less than 0.05 detects statistically significant trends for a period of interest. The Sen Slope provides an indication of the magnitude of the observed trend.

Prepared by: SFWMD K Campos -3/29/2019 @11:46 AM File: \\ad.sfwmd.gov\dfsroot\userdata\rmiessau\Docs\DPl\lowpp\technical_sheet\lowpp_tcns_s154c_sheet.xlsx-S-154C Basin