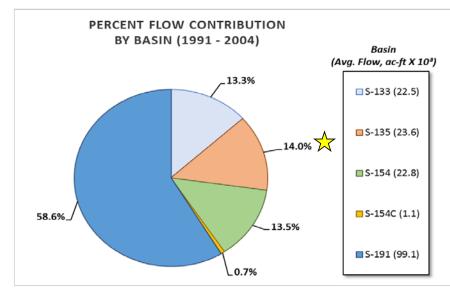
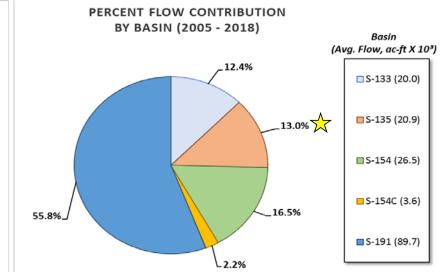
TCNS - S-135 BASIN TECHNICAL SHEET												
ubwatershed: Ta	aylor Creek/Nubbin Slough											
Basin: S-	-135	Flow Issues ¹ : NO	Water Quality Issues ² : NO									
Monitored Structur	re(s):	S135										
nflow loads:		S191 through Lakeside Ranch S	STA									
Acreage:		17,756										
Percentage of Subv	vatershed Acreage:	9%										
Percentage of Lake	Okeechobee Watershed:	0.5%										

¹Flow Issues:

- There were no statistically significant trends in flows.

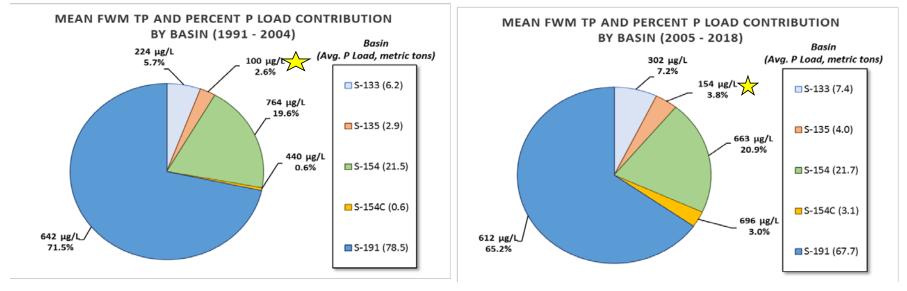

- Need to determine if the pump operation is representative of the runoff. In other words, is the water sometimes moved for water management activities. Also, it is uncertain how much water exchange occurs at the locks.

²Water Quality Issues:


Pre-Protection Plan Flows

- The total phosphorus (TP) flow-weighted mean concentrations (FWMC) appear to be in a relatively good range (154 μg/L during the post-protection plan period) and are relatively low overall compared to other areas of the Taylor Creek/Nubbin Slough Subwatershed.

- The data indicates that there have been spikes in TP FWMC that appear to correspond to weather events.



Post-Protection Plan Flows

Pre-Protection Plan Loads

Post-Protection Plan Loads

 $\label{eq:started_st$

S-135 BASIN - MAP

REG/EREG 01-NOV-2012 CMIESSAU \\ad.sfwmd.gov\dfsroot\data\err_gis\projects\EVG\lok\kEdgemon_LOK_PerformanceMeasures\mxd\S135_PerformanceMeasures_TinyMap_cm1.mxd

Prepared by: SFWMD K Campos -3/29/2019 @11:54 AM File: \\ad.sfwmd.gov\dfsroot\userdata\rmiessau\Docs\DPI\lowpp\technical_sheet\lowpp_tcns_s135_sheet.xlsx-S-135 Basin

S-135 BASIN - STATISTICS

	Summary Statistics													
	Period of Record	Pre-Protection Plan	Post-Protection Plan											
	WY1991-WY2018	WY1991-WY2004	WY2005-WY2018											
Averages														
Avg. Flow (acft/yr)	22,241	23,606	20,876											
Avg. Load (mt/yr)	3.44	2.90	3.98											
FWMC (ug/L)	125	100	154											
Avg. UAL (lbs/acre/yr)	0.43	0.36	0.49											
Medians				Mann-Whitney Results p-values ³										
Median Flow (acft/yr)	21,972	22,494	21,082	0.5201										
Median Load (mt/yr)	2.43	2.26	2.47	0.7828										
Median FWMC (ug/L)	85.72	86	87	0.9633										
Median UAL (lbs/acre/yr)	0.30	0.28	0.31	0.7295										
Highlighted cells indicate statist	cal significance													

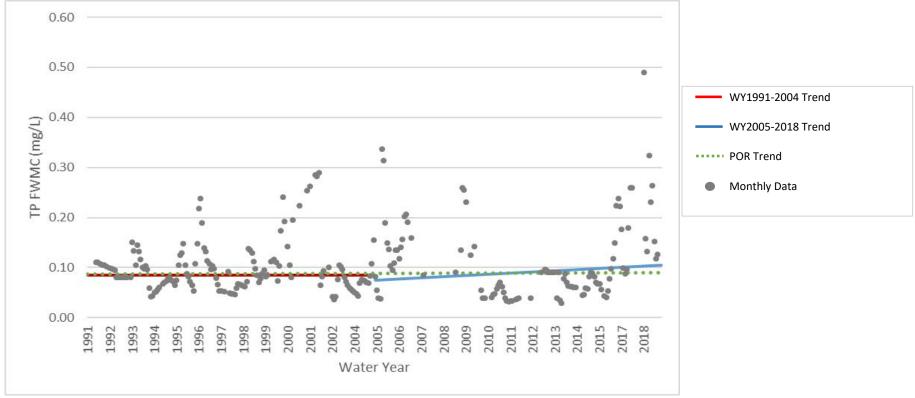
³The Mann-Whitney test is a non-parametric test alternative to the two sample t-test. It is used to test the equality around the central tendency of two data sets (pre-protection plan period and post-protection plan period). A p-value of less than 0.05 indicates that a significant difference between pre-protection plan period and post-protection plan period exists. A comparison of the median values identifies which period is higher. A median is a value at the mid-point of a distribution of observed data.

Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall τ Results for Total Monthly Flow (ac-ft) by Basin over Three Water Year Ranges

	1991-2018							1991-200	4		2005-2018				
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value
S-135 Basin	0.0%	-0.049	0.00	703	0.582	0.0%	0.038	3.40	943	0.776	0.0%	0.229	22.97	143	0.066

Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall t Results for Total Monthly P Load (kg) by Basin over Three Water Year Ranges

	1991-2018							1991-200	4		2005-2018					
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	
S-135 Basin	0.0%	-0.050	0.00	68	0.576	0.0%	0.026	0.12	98	0.852	0.0%	0.226	1.82	13	0.080	


Sub-watershed Taylor Creek/Nubbin Slough - Seasonal Kendall τ Results for Monthly FWM TP (μg/L) by Basin over Three Water Year Ranges

1		1991-2018						1991-2004					2005-2018				
	Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	
	S-135 Basin	25.3%	0.011	0	87	0.918	14.3%	0.000	0	85	1.000	36.3%	0.075	2	75	0.672	

Italic red font cells indicate statistical significance

Note: The Seasonal Kendall Tau analyzes data for monotonic trends (consistent upward or downward trend) and accounts for seasonality. Typically monthly data are used to identify seasons. Probability values (p-values) are derived from the tau-statistic which identifies the direction of the trend. A pvalue less than 0.05 detects statistically significant trends for a period of interest. The Sen Slope provides an indication of the magnitude of the observed trend.

S-135 BASIN - MONTHLY DATA AND SKT TRENDS

Prepared by: SFWMD K Campos -3/29/2019 @11:54 AM