	SOUTH LAKE OKEECHOB	EE SUBWATERSHED TEC	CHNICAL SHEET						
Subwatershed:	South Lake Okeechobee								
Basins:	S2, S3, S4, S5A, East Beach Water Control District, East Shore Water Control District, South Florida Conservancy District, South Shore Drainage District, Closter Farms, Industrial Canal	Flow Issues ¹ : NO	Water Quality Issues ² :						
Monitored Structure(s):		S-2 (S2/S6/S7), S-3(S3/S8), S-352(S5A), S-4 (S4), C-10 (EBWCD), C-12A (Closter), C-12(ESWCD), C-4A (SSDD), S-236(SFCD), S-310 (S4/Industrial Canal)							
Inflow loads:		Lake Okeechobee, C-139 Basin, West Lake Okeechobee subwatershed							
Acreage:		363,141							
Percentage of S	ubwatershed Acreage:	N/A							
Percentage of La	ake Okeechobee Watershed:	10.5%							

¹Flow Issues:

- Flows from the South subwatershed represented only 3% of total inflows to Lake Okeechobee during the post-protection plan period. Flow and load evaluations were conducted based only on that portion of the flow that discharges from the South Lake Okeechobee subwatershed into Lake Okeechobee. There was a statistically significant decrease between pre and post-protection plan median flows. There was also a statistically significant decreasing trend for flow for the period of record.

²Water Quality Issues:

- The South subwatershed contributed only 4% of all total phosphorus (TP) loads discharged into the lake during the post-protection plan period. In addition, a statistically significant decreasing trend in TP load was found for the period of record.

Pre-Protection Plan Flows

Post-Protection Plan Flows

Pre-Protection Plan Loads

MEAN FW	M IP AND PERCENT P	LOAD CONTRIBUTION
	BY SUBWATERSHED (1	1991 - 2004)
		' Subwatershed
	148 µg/L	(Avg. P Load, metric tons)
196 µg/L	4.7%	

Post-Protection Plan Loads

MEAN FWN	I TP AND PERCENT P LO	DAD CONTRIBUTION
В	Y SUBWATERSHED (200	05 - 2018) Subwatershed
177 µg/L	168 µg/L 4.3%	(Avg. P Load, metric tons)

SOUTH LAKE OKEECHOBEE SUBWATERSHED - MAP

Prepared by: SFWMD B Moody -4/5/2019 @3:38 PM File: \\ad.sfwmd.gov\dfsroot\userdata\rmiessau\Docs\DPI\lowpp\technical_sheet\South_Lake_O_Subwatershed_Technical_Sheet.xlsx-South Lake O Subwatershed

SOUTH LAKE OKEECHOBEE SUBWATERSHED - STATISTICS

Summary Statistics												
	Period of Record	Pre-Protection Plan	Post-Protection Plan									
	WY1991-WY2018	WY1991-WY2004	WY2005-WY2018									
Averages												
Avg. Flow (acft/yr)	112,496	150,148	74,844									
Avg. Load (mt/yr)	27.37	33.45	21.30									
FWMC (ug/L)	197	181	231									
Avg. UAL (Ibs/acre/yr)	0.17	0.20	0.13									
Medians				Mann-Whitney Results p-values ³								
Median Flow (acft/yr)	89,944	115,966	85,200	0.0149								
Median Load (mt/yr)	25.38	28.06	22.68	0.0661								
Median FWMC (ug/L)	201	190	215	0.1181								
Median UAL (lbs/acre/yr)	0.15	0.17	0.14	0.0691								

Highlighted cells indicate statistical significance

³The Mann-Whitney test is a non-parametric test alternative to the two sample t-test. It is used to test the equality around the central tendency of two data sets (pre-protection plan period and post-protection plan period). A p-value of less than 0.05 indicates that a significant difference between pre-protection plan period and post-protection plan period exists. A comparison of the median values identifies which period is higher. A median is a value at the mid-point of a distribution of observed data.

Sub-watershed South - Seasonal Kendall τ Results for Total Monthly Flow (ac-ft) by Basin over Three Water Year Ranges

1991-2018							:	4		2005-2018					
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value
Sout	h 0.0%	-0.238	- 106	4546	<0.001	0.0%	-0.067	-76	5119	0.365	0.0%	-0.035	-16	1758	0.559

Sub-watershed South - Seasonal Kendall τ Results for Total Monthly P Load (kg) by Basin over Three Water Year Ranges

			1991-201	8		1991-2004					2005-2018					
Sub-watershed/Basin	% Missin Month	g g τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	
Sou	ith 0.0%	-0.192	-14.68	727	<0.001	0.0%	-0.078	-16.81	966	0.184	0.0%	-0.011	-1.18	318	0.862	

Sub-watershed South - Seasonal Kendall τ Results for Monthly FWM TP (μg/L) by Basin over Three Water Year Ran	nges
---	------

	1991-2018						1991-2004					2005-2018					
Sub-watershed/Basin	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value	% Missing Months	Kendall's τ	Sen Slope	Intercept	p-value		
South	1.2%	0.103	1	145	0.133	1.2%	-0.106	-2	169	0.299	1.2%	0.100	2	153	0.322		

Italic red font cells indicate statistical significance

Note: The Seasonal Kendall Tau analyzes data for monotonic trends (consistent upward or downward trend) and accounts for seasonality. Typically monthly data are used to identify seasons. Probability values (p-values) are derived from the tau-statistic which identifies the direction of the trend. A p-value less than 0.05 detects statistically significant trends for a period of interest. The Sen Slope provides an indication of the magnitude of the observed trend.

Prepared by: SFWMD B Moody -4/5/2019 @3:38 PM File: \\ad.sfwmd.gov\dfsroot\userdata\rmiessau\Docs\DPI\lowpp\technical_sheet\South_Lake_O_Subwatershed_Technical_Sheet.xlsx-South Lake O Subwatershed

SOUTH LAKE OKEECHOBEE SUBWATERSHED - MONTHLY DATA AND SKT TRENDS

