Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 3/13/2017 (ENSO Neutral Condition)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method¹, the SFWMD empirical method², a sub-sampling of Neutral years³ and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with Neutral ENSO years⁴. The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season		oley's ethod ^{1*}	SFWMD Empirical Method ²		Neuti	ampling of ral ENSO ears ³	Sub-sampling of AMO Warm + Neutral ENSO Years ⁴	
	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition
Current (Mar- Aug)	N/A	N/A	1.02	Normal	1.08	Normal	1.41	Normal
Multi Seasonal (Mar- Oct)	N/A	N/A	2.13	Normal	2.41	Normal	3.48	Wet

^{*}Croley's Method Not Produced For This Report

See <u>Seasonal</u> and <u>Multi-Seasonal</u> tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

Tributary Hydrologic Conditions Graph:

- **-2704 cfs** 14-day running average for Lake Okeechobee Net Inflow through 3/12/2017. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Dry.
- **-2.51** for Palmer Index on 3/11/2017. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Dry.

The wetter of the two conditions above is **Dry**.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 3/13/2017

Lake Okeechobee Stage: 13.08 feet

USACE Report for Lake Okeechobee

Lake Okeechobee Stage Hydrograph

Lake Okeechob	ee Management	Bottom Elevation	Current
Zone	/Band	(feet, NGVD)	Lake Stage
High Lake Manage	ement Band	17.25	
		40.50	
	High sub-band	16.58	
Operational Band	Intermediate sub-band	15.66	
	Low sub-band	13.50	
Base Flow sub-ba	nd	12.60	← 13.08
Beneficial Use sub	o-band	11.80	
Water Shortage M	lanagement Band		

Part C of LORS2008: Discharge to WCA's

Release Guidance Flow Chart Outcome: No releases to the WCAs.

Part D of LORS2008: Discharge to Tidewater

Release Guidance Flow Chart Outcome: S-79 up to 450 cfs and S-80 up to 200 cfs

Technical Input Summaries from:

- Lake Okeechobee Division
- Coastal Ecosystems
- Everglades Ecosystems Division
- Water Supply Department
- Water Resource Management Release Recommendation
- Kissimmee Watershed Environmental Conditions
- Operations Department

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers LORSS Homepage

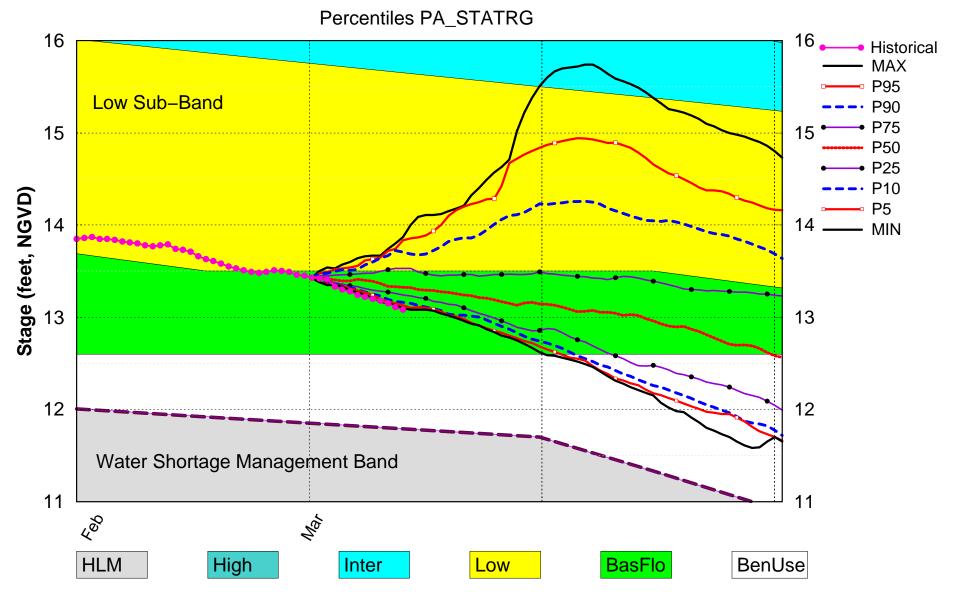
LORS2008 Implementation on 3/13/2017 (ENSO Neutral Condition):

Status for week ending 3/13/2017:

District wide, Raindar rainfall was 0.19 inches for the week. Lake stage on 3/13/2017 was 13.08 ft, down 0.20 ft from last week.

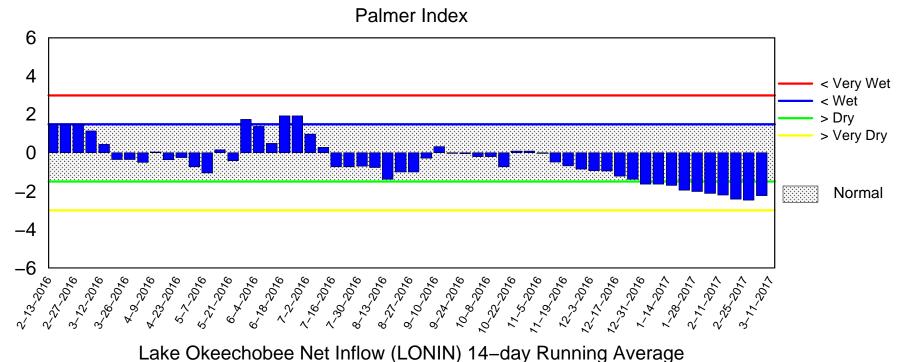
The updated March 2017 SFWMM Dynamic Position Analysis <u>percentile graph</u> for Lake Okeechobee show that the current lake stage is in the Base Flow Operational Sub-Band.

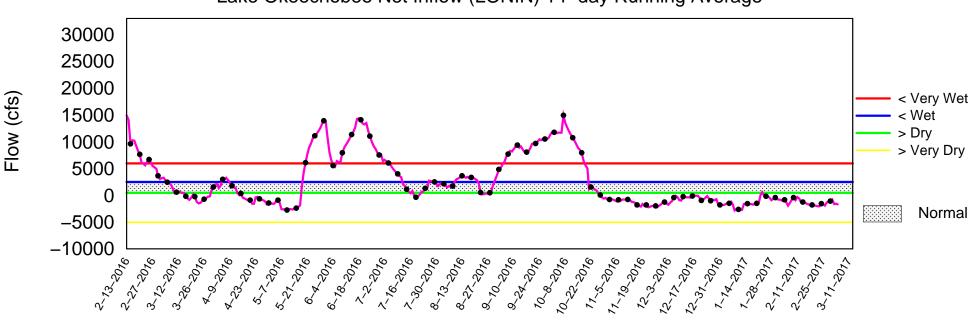
The LORS2008 tributary <u>indices</u> are classified as **Dry**. The PDSI indicates dry condition and the LONIN is Dry. The classification is based on the wetter of the two.


Water Supply Risk Evaluation

	Supply Misk Evaluation		
Area	Indicator	Value	Color Coded Scoring Scheme
	Projected LOK Stage for the next two months	Beneficial Use Sub-Band	П
	Palmer Index for LOK Tributary Conditions	-2.51 (Extremely Dry)	П
	CDC Propinitation Outlook	1 month: Normal	L
LOK	CPC Precipitation Outlook	3 months: Normal	L
	LOK Seasonal Net Inflow Outlook ENSO La Nina Years	1.08 ft (Dry)	M
	LOK Multi-Seasonal Net Inflow Outlook	2.41 ft (Normal)	M
	ENSO La Nina Years		
	WCA 1: Site 1-7, Site 1-8T, & Site 1-9 Average	Above Line 1 (16.24 ft)	L
WCAs	WCA 2A: Site 2-17 HW	Above Line1 (11.54 ft)	L
	WCA-3A: 3 Station Average (Site 63, 64 and 65)	Above Line 1 (9.27 ft)	L
	Service Area 1	Year-Round Irrigation Rule in effect	L
LEC	Service Area 2	Year-Round Irrigation Rule in effect	L
	Service Area 3	Year-Round Irrigation Rule in effect	L

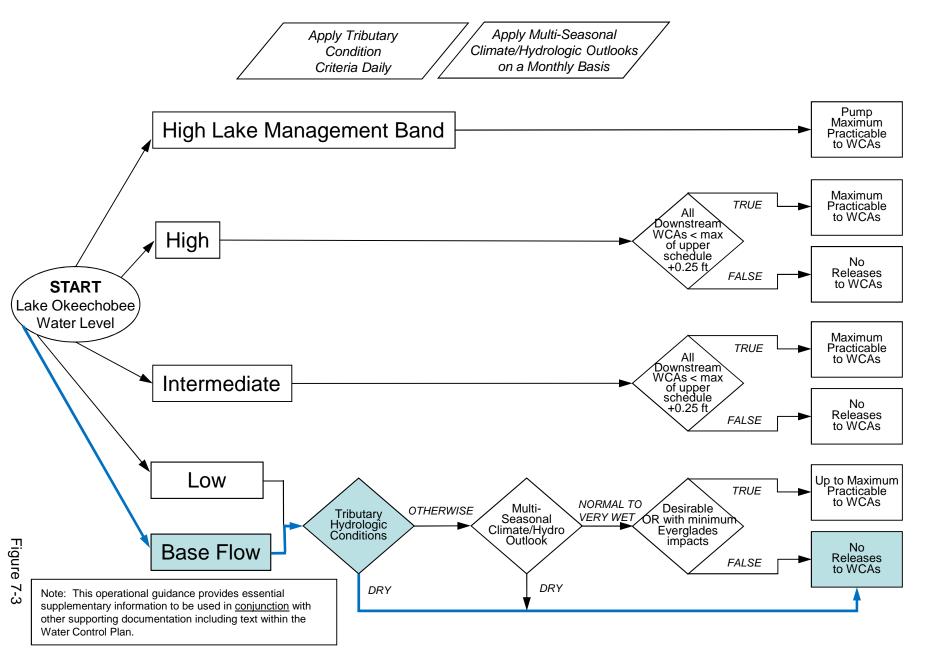
Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow outlooks use slightly different classification intervals than those used by the 2008-LORS.


Back to Lake Okeechobee Operations Main Page
Back to U.S. Army Corps of Engineers LORSS Homepage

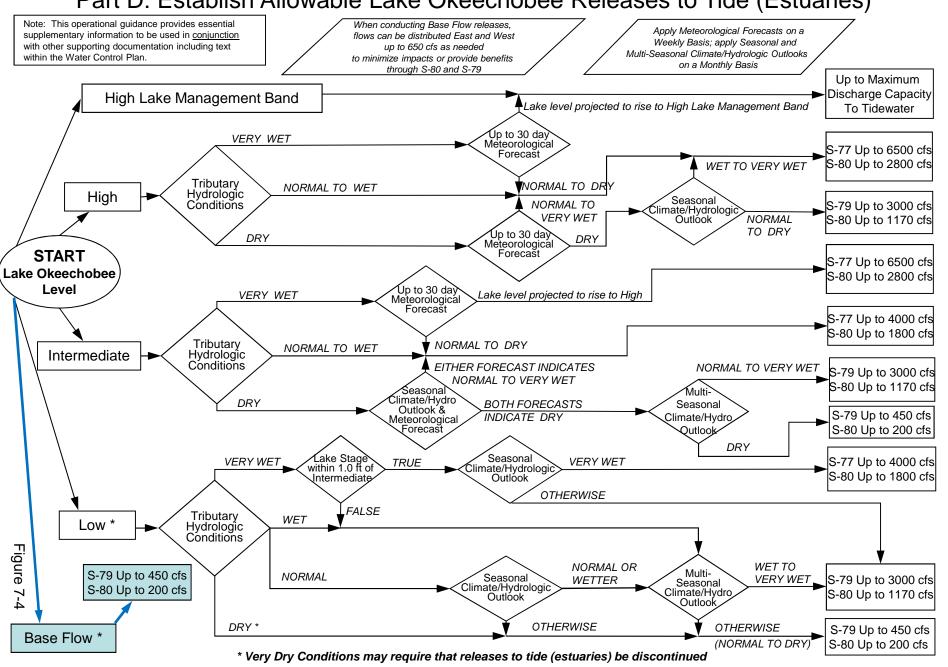

Lake Okeechobee SFWMM Mar 2017 Dynamic Position Analysis

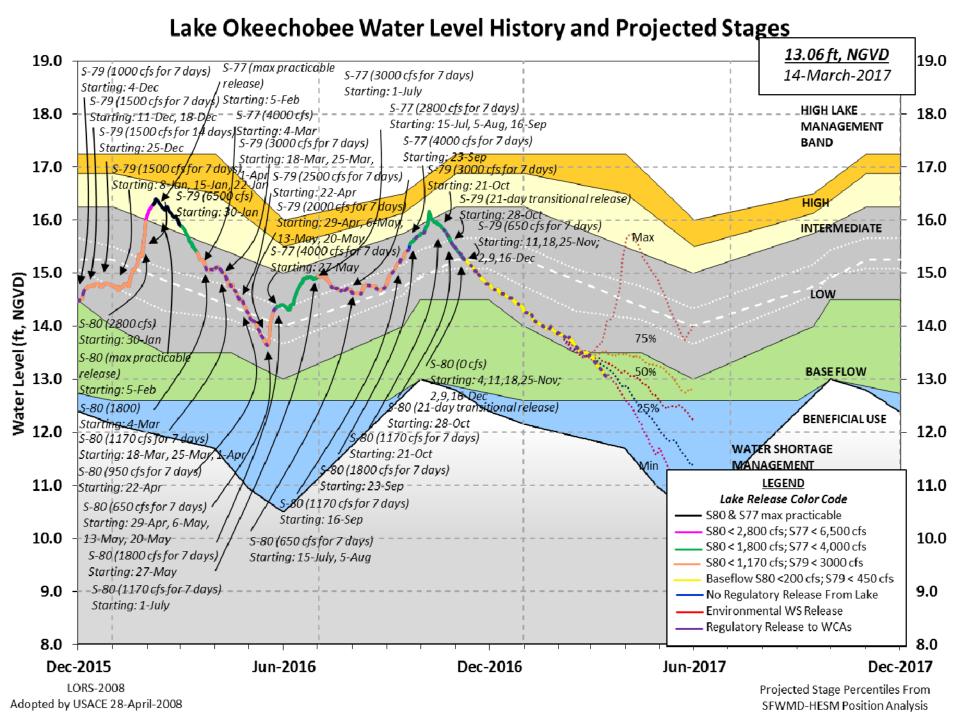
(See assumptions on the Position Analysis Results website)

Tributary Basin Condition Indicators as of March 6 2017



Mon Mar 06 16:14:42 EST 2017


2008 LORS


Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas

2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Data Ending 2400 hours 12 MAR 2017

Olrooghobaa Talaa					
Okeechobee Lake 1		(ft-NGVD		GVD) (ft-NGVD)	
*Okeechobee Lal Bottom of High Currently in Op	Lake Mngm	nt= 17.25 Top	of Water	.47 14.65 (O Short Mngmt= 11	
Simulated Avera Difference from			13.24 -0.16		
12MAR (1965-20) Difference from		d of Record Ave		4.47 .39	
Today Lake Okeo	echobee el	levation is det	ermined f	rom the 4 Int &	4 Edge
++Navigation D	epth (Base	ed on 2007 Chan	nel Condi	tion Survey) Ro	oute 1 ÷
7.02'					
	epth (Base	ed on 2008 Chan	nel Condi	tion Survey) Ro	ute 2 ÷
5.22' Bridge Clearance	aa - 50 70) ·			
bridge Crearant	ce = 50.73	,			
_					
4 Interior and 4	Edge Okee	echobee Lake Av	erage (Av	g-Daily values)	:
T 0 0 1 T 0 0 E 1	T 0 0 6 T 7/	10 01 025	2 9200	C1 2 2	
	L006 LZ4		2 S308 27 -NR		
L001 L005 1 12.91 13.18					
12.91 13.18	13.07 13.	.07 13.14 13.	27 -NR	- 12.96	
	13.07 13.	.07 13.14 13.	27 -NR	- 12.96 = 13.08	
12.91 13.18	13.07 13.	.07 13.14 13.	27 -NR	- 12.96	
12.91 13.18	13.07 13.	.07 13.14 13.	27 -NR	- 12.96 = 13.08	
12.91 13.18	13.07 13.	.07 13.14 13.	27 -NR	- 12.96 = 13.08	
12.91 13.18 *** *Combination Oke	13.07 13.	.07 13.14 13.	27 -NR	- 12.96 = 13.08	
12.91 13.18 *** *Combination Oke	13.07 13.	.07 13.14 13.	27 -NR	- 12.96 = 13.08	r 0
*Combination Oke Combination Oke Combination Oke Combination Oke The state of t	13.07 13. eechobee ws (cfs): 0 0	.07 13.14 13. Avg-Daily Lake S65EX1 S191	27 -NR Average	- 12.96 = 13.08 (*See Note) Fisheating C S135 Pumps	0
*Combination Oke Combination Oke Combi	13.07 13. eechobee ws (cfs): 0 0 0	.07 13.14 13. Avg-Daily Lake S65EX1 S191 S133 Pumps	27 -NR Average 819 0 0	- 12.96 = 13.08 (*See Note) Fisheating C S135 Pumps S2 Pumps	0 0
*Combination Oke Combination Oke Combi	13.07 13. eechobee ws (cfs): 0 0 0 0	.07 13.14 13. Avg-Daily Lake S65EX1 S191 S133 Pumps S127 Pumps	27 -NR Average 819 0 0 0	- 12.96 = 13.08 (*See Note) Fisheating C S135 Pumps S2 Pumps S3 Pumps	0 0 0
*Combination Oke *Combination Oke - Okeechobee Inflor S65E S154 S84 S84X S71	13.07 13. eechobee ws (cfs): 0 0 0 0 0	Avg-Daily Lake S65EX1 S191 S133 Pumps S127 Pumps S129 Pumps	27 -NR Average 819 0 0 0 0	- 12.96 = 13.08 (*See Note) Fisheating C S135 Pumps S2 Pumps S3 Pumps S4 Pumps	0 0 0
*Combination Oke *Combination Oke - Okeechobee Inflor S65E S154 S84 S84X S71 S72	13.07 13. eechobee ws (cfs): 0 0 0 0	.07 13.14 13. Avg-Daily Lake S65EX1 S191 S133 Pumps S127 Pumps	27 -NR Average 819 0 0 0	- 12.96 = 13.08 (*See Note) Fisheating C S135 Pumps S2 Pumps S3 Pumps	0 0 0
*Combination Oke Combination Oke Combi	ws (cfs): 0 0 0 0 0 0 673	S65EX1 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	27 -NR Average 819 0 0 0 0	- 12.96 = 13.08 (*See Note) Fisheating C S135 Pumps S2 Pumps S3 Pumps S4 Pumps	0 0 0
*Combination Oke Combination Oke Combination Oke Combination Oke Combination Oke Inflow S65E S154 S84 S84 S71 S72 Total Inflows: Okeechobee Outflood Okeechobee Outflood Okeechobee Outflood Combination Oke	### (cfs): 0 0 0 0 0 673 Ows (cfs):	S65EX1 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	27 -NR Average: 819 0 0 0 0 0	- 12.96 = 13.08 (*See Note) Fisheating C S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5	0 0 0 0 -146
*Combination Oke *Combination Oke Okeechobee Inflor S65E S154 S84 S84X S71 S72 Total Inflows: Okeechobee Outflor S135 Culverts	13.07 13. eechobee ws (cfs): 0 0 0 0 0 673 ows (cfs):	S65EX1 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	27 -NR Average: 819 0 0 0 0 0	= 13.08 (*See Note) Fisheating C S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5	0 0 0 0 -146
*Combination Oke *Combination Oke Okeechobee Inflor S65E S154 S84 S84X S71 S72 Total Inflows: Okeechobee Outflo	### (cfs): 0 0 0 0 0 673 Ows (cfs):	S65EX1 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	27 -NR Average: 819 0 0 0 0 0	- 12.96 = 13.08 (*See Note) Fisheating C S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5	0 0 0 0 -146
*Combination Oke *Combination Oke Okeechobee Inflow S65E S154 S84 S84X S71 S72 Total Inflows: Okeechobee Outflow S135 Culverts S127 Culverts	13.07 13. eechobee ws (cfs): 0 0 0 0 673 ows (cfs): 0 0 0	S65EX1 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps S131 Pumps Lake	27 -NR Average 819 0 0 0 0 0 591 855 204 171	Fisheating C S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5 S77 S77Below S308 S308Below	0 0 0 0 -146 1317 1344 -NR- 369

****\$77 Structure outflow is being used to compute Total Outflow. ****S308 Structure outflow is being used to compute Total Outflow. Okeechobee Pan Evaporation (inches): S77 0.19 S308 0.35 Average Pan Evap x 0.75 Pan Coefficient = 0.20" = 0.02' Lake Average Precipitation using NEXRAD: = -NR-" = -NR-' = -NR-" = -NR-"Evaporation - Precipitation: Evaporation - Precipitation using Lake Area of 730 square miles is equal to -NR-Lake Okeechobee (Change in Storage) Flow is -6353 cfs or -12600 AC-FT Note: Headwater, tailwater, and stage values below are instantaneous values unless otherwise specified. Headwater Tailwater ----- Gate Positions -----Elevation Elevation Disch #1 #2 #3 #4 #5 #6 #7 #8 Ν

	(ft-msl)	(ft-msl)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft) (ft)
(ft)									
		()	I) see n	ote at	bott	com			
North East Sh	ore								
S133 Pumps:	13.01	12.73	0	0	0	0	0	0	(cfs)
S193:									
S191:	17.44	12.82	0	0.0	0.0	0.0			
S135 Pumps:	12.59	12.87	0	0	0	0	0		(cfs)
S135 Culver	ts:		0	0.0	0.0				
North West Sh	ore								
S65E:	21.10	12.76	0	0.0	0.0	0.0	0.0	0.0	0.0
S65EX1:	21.10	12.76	819						
S127 Pumps:	12.95	12.92	0	0	0	0	0	0	(cfs)
S127 Culver	t:		0	0.0					
S129 Pumps:		-NR-	0	0	0	0			(cfs)
S129 Culver	t:		0	-NR-					
S131 Pumps:	12.38	13.10	0	0	0				(cfs)
S131 Culver			0						,
Fisheating	Creek								
nr Palmda		27.83	0						
_		13.14	-146	5.	4 5.	6 5	. 4		
				٠.	- 0.				
South Shore									
	10.98	13.28	0	0	0	0			(cfs)
S131 Culver Fisheating	t: Creek le rt	27.83	0 -146	5.	4 5.		. 4		

```
S169: 13.32 10.98 0 0.0 0.0 0.0
S310: 13.24 54

      S310:
      13.24

      S3 Pumps:
      11.19

      13.18
      0

      0
      0

      0
      0

      13.18
      11.19

      591
      1.3

      1.6
      11.20

      13.15
      0

      13.15
      0

      13.15
      0

      13.15
      0

      13.15
      0

      13.15
      0

      13.15
      0

      13.15
      0

      13.15
      0

      13.16
      0

      13.17
      0

      13.16
      0

      13.17
      0

      13.18
      0

      13.19
      0

      13.10
      0

      13.10
      0

      13.10
      0

      13.10
      0

      13.10
      0

      13.10
      0

      13.10
      0

      13.10
      0

      14.10
      0

      15.10
      0

      15.10
      0

      15.10
      0

      15.10
                                                                                                 (cfs)
                                                                   0 0 0 0
                                                                                                          (cfs)
  S352: 13.26
C10A: -NR-
                                     11.04
                                                      204 0.3 0.5
                                                                 0.0 8.0 8.0 8.0 8.0
                                      13.12
                                       13.01 171
   L8 Canal PT
                             S351 and S352 Temporary Pumps/S354 Spillway
                      11.20
                                      13.15
                                                      855 -NR--NR--NR--NR--NR-
                                     13.26 204 -NR--NR--NR--NR-
13.18 591 -NR--NR--NR-
   S352:
                      11.04
   S354:
                      11.19
Caloosahatchee River (S77, S78, S79)
   S47B: 13.82 10.85
                                                                 0.0 0.0
   S47D:
                       10.93
                                      10.92 -7 6.1
   S77:
    Spillway and Sector Flow:
                        13.19 11.04 1313 2.5 0.0 2.5 2.5
     Flow Due to Lockages+: 4
   S77 Below USGS Flow Gage 1344
   S78:
      Spillway and Sector Flow:
                        10.79 2.95
                                                     859 0.0 0.0 2.5 0.0
    Flow Due to Lockages+:
                                                       15
   S79:
      Spillway and Sector Flow:
        3.08 0.32 990 0.0 0.0 0.5 1.0 1.0 1.0 0.0
0.0
      Flow Due to Lockages+:
                                                         12
      Percent of flow from S77 133% Chloride (ppm) 57
St. Lucie Canal (S308, S80)
   S308:
      Spillway and Sector Flow:
     13.06 12.71 0 0.0 4.0 4.0 4.0 Flow Due to Lockages+: -NR-
   ____ 369
S153: 18.59 12.68 0
S80:
                                                       0 0.0 0.0
      Spillway and Sector Flow:
                                                    0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
28
                       12.90 1.36
      Flow Due to Lockages+:
      Percent of flow from S308 NA %
   Steele Point Top Salinity (mg/ml) ****
```

```
Steele Point Bottom Salinity (mg/ml) ****

Speedy Point Top Salinity (mg/ml) ****

Speedy Point Bottom Salinity (mg/ml) ****
```

+ Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

				Wi	.nd
aily Precipitation Totals	1-Day	3-Day	7-Day	Directio	n
peed					
	(inches)	(inches)	(inches)	(Degø)	
mph)					
S133 Pump Station:	-NR-	0.00	0.00		
S193:	-NR-	0.00	0.00	-NR-	-NR-
Okeechobee Field Station:	-NR-	0.00	0.00		
S135 Pump Station:	-NR-	0.00	0.00		
S127 Pump Station:	-NR-	0.00	0.00		
S129 Pump Station:	-NR-	0.00	0.00		
S131 Pump Station:	-NR-	0.00	0.00		
S77:	0.02	0.02	0.02	64	2
S78:	0.00	0.00	0.00	25	2
S79:	0.00	0.00	0.00	157	3
S4 Pump Station:	-NR-	0.00	0.00		
Clewiston Field Station:	-NR-	0.00	0.00		
S3 Pump Station:	-NR-	0.00	0.00		
S2 Pump Station:	-NR-	0.00	0.00		
S308:	0.00	0.00	0.01	270	0
S80:	0.00	0.00	0.00	72	1
Okeechobee Average	0.01	0.00	0.00		
(Sites S78, S79 and	S80 not inc	cluded)			
Oke Nexrad Basin Avg	-NR-	0.00	0.00		

eechobee Lake Elevations	12 MAR 2017	13.08 Differ	rence from
2MAR17			
12MAR17 - 1 Day =	11 MAR 2017	13.11	0.03
12MAR17 - 2 Days =	10 MAR 2017	13.15	0.07
12MAR17 - 3 Days =	09 MAR 2017	13.18	0.10
12MAR17 - 4 Days =	08 MAR 2017	13.20	0.12
12MAR17 -5 Days =	07 MAR 2017	13.22	0.14
12MAR17 -6 Days =	06 MAR 2017	13.24	0.16
12MAR17 - 7 Days =	05 MAR 2017	13.28	0.20
12MAR17 -30 Days =	10 FEB 2017	13.74	0.66
12MAR17 - 1 Year =	12 MAR 2016	15.47	2.39
12MAR17 -2 Year =	12 MAR 2015	14.65	1.57

Long Term Mean 30day Avearge ET for Lake Alfred (Inches) = -NR-

Lake Okeechobee Net Inflow (LONIN) Average Flow over the previous 14 days Avg-Daily Flow 12 MAR 2017 -2905 12MAR17 Today = -2838 MON 12MAR17 - 1 Day =11 MAR 2017 -2990 SUN -4849 12MAR17 - 2 Days =10 MAR 2017 -2687 SAT -2739 09 MAR 2017 12MAR17 - 3 Days =-2570 FRI -NR-08 MAR 2017 12MAR17 - 4 Days =-2070 THU -1006 12MAR17 - 5 Days =07 MAR 2017 -1826 WED -791 06 MAR 2017 12MAR17 - 6 Days =-1816 TUE -4832 05 MAR 2017 12MAR17 - 7 Days =-1594 MON -1043 12MAR17 - 8 Days =04 MAR 2017 -1648 SUN -3503 12MAR17 - 9 Days =03 MAR 2017 -1550 SAT -14768 02 MAR 2017 12MAR17 - 10 Days =-747 FRI 15 01 MAR 2017 28 FEB 2017 12MAR17 -11 Days = -1007 380 THU 12MAR17 - 12 Days =-1132 WED -129412MAR17 - 13 Days =27 FEB 2017 -1284 TUE 440

					S	55E			
				Average	Flov	w over	previous	14 days	Avg-Daily Flow
12MAR17		Today	<i>y</i> =	12	MAR	2017	1	MON	0
12MAR17	-1	Day	=	11	MAR	2017	1	SUN	0
12MAR17	-2	Days	=	10	MAR	2017	1	SAT	0
12MAR17	-3	Days	=	09	MAR	2017	1	FRI	8
12MAR17	-4	Days	=	8 0	MAR	2017	0	THU	0
12MAR17	-5	Days	=	07	MAR	2017	0	WED	0
12MAR17	-6	Days	=	06	MAR	2017	0	TUE	0
12MAR17	-7	Days	=	05	MAR	2017	0	MON	0
12MAR17	-8	Days	=	04	MAR	2017	0	SUN	0
12MAR17	-9	Days	=	03	MAR	2017	0	SAT	0
12MAR17	-10	Days	=	02	MAR	2017	0	FRI	0
12MAR17	-11	Days	=	01	MAR	2017	0	THU	0
12MAR17	-12	Days	=	28	FEB	2017	0	WED	0
							_		I -

27 FEB 2017

0 TUE

0

Lake Okeechobee Outlets Last 14 Days

12MAR17 - 13 Days =

			S-77	Below S-77	S-78	S-79
			Discharge	Discharge	Discharge	Discharge
			(ALL DAY)	(ALL-DAY)	(ALL DAY)	(ALL DAY)
	DATI	C	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
12	MAR	2017	2611	2665	1733	1987
11	MAR	2017	2208	2559	1519	2203
10	MAR	2017	1783	1783	1109	1627
09	MAR	2017	1485	1293	716	711
08	MAR	2017	1294	1075	700	718
07	MAR	2017	1928	1823	1106	1373
06	MAR	2017	2548	2606	2084	2043
05	MAR	2017	2711	3014	2018	1576
04	MAR	2017	2617	2660	1746	2392
03	MAR	2017	1282	952	1321	1849
02	MAR	2017	766	690	377	571

28	FEB	2017 2017 2017	1791	1289 1704 1994	506 921 1586	661 1098 2013	
	DATE		S-310 Discharge (ALL DAY) (AC-FT)	S-351 Discharge (ALL DAY) (AC-FT)	S-352 Discharge (ALL DAY) (AC-FT)	S-354 Discharge (ALL DAY) (AC-FT)	L8 Canal Pt Discharge (ALL DAY) (AC-FT)
12		2017		1695	405	1001	338
		2017		1967	785	1190	168
		2017		1971	1158	1602	209
		2017		1963	1158	1575	250
		2017		1688	1255	1475	267
		2017		1596	1001	1444	382
		2017		1695	486	1103	379
		2017		1638	397	480	320
04	MAR	2017	-4	1434	333	492	327
03	MAR	2017	24	1404	270	1297	255
02	MAR	2017	58	1428	210	1224	336
01	MAR	2017	75	1531	153	1503	378
28	FEB	2017	75	1364	373	1602	396
27	FEB	2017	39	980	89	1245	332
			S-308	Below S-308	3 S-80		
			Discharge	Discharge	Discharge	2	
			(ALL DAY)	(ALL-DAY)	(ALL-DAY)		
	DATE	C	(AC-FT)	(AC-FT)	(AC-FT)		
12	MAR	2017	-NR-	732	56		
11	MAR	2017	1304	512	46		
10	MAR	2017	-NR-	442	37		
09	MAR	2017	-NR-	368	48		
		2017		644	52		
		2017		583	61		
		2017		946	28		
		2017		481	34		
		2017		404	35		
		2017		29	36		
		2017		242	57		
		2017		-17	53		
		2017		192	48		
27	FEB	2017	0	332	33		

*** NOTE: Discharge (ALL DAY) is computed using Spillway, Sector Gate and

Lockages Discharges from 0015 hrs to 2400 hrs.

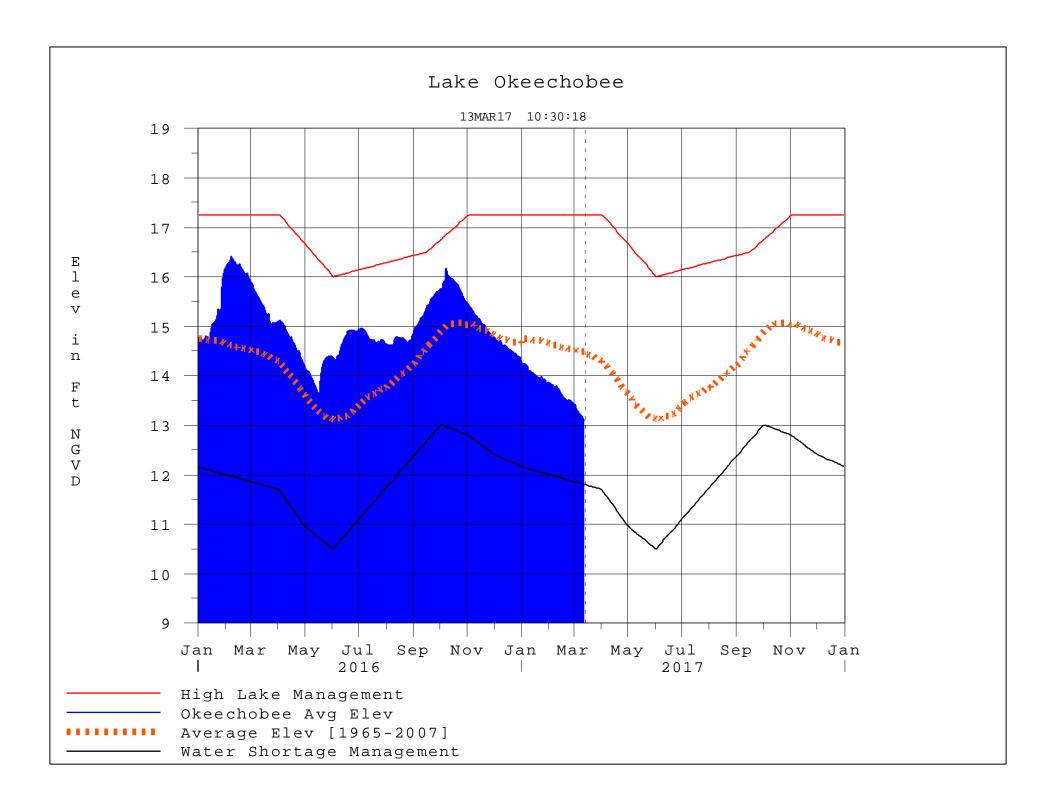
(I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

^{*} On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average. On 14 Mar 2001, due to the isolation of various gages within the standard

¹⁰ stations, the average of the interior 4 station gages was used

as the Lake Okeechobee Elevation.

On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.


On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels.

Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations

- ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/
- \$ For information regarding Lake Okeechobee Service Area water restrictions

please refer to www.sfwmd.gov

Report Generated 13MAR2017 @ 10:38 ** Preliminary Data - Subject to Revision **

Classification Tables

Supplemental Tables used in conjunction with the LORS2008

Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• 6-15 Day Precipitation Outlook Categories

Table ?? in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Seasonal

Outlook

Table K-3 in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic	Palmer Index	2-wk Mean L.O. Net		
Classification*	Class Limits	Inflow Class Limits		
Very Wet	3.0 or greater	Greater >= 6000 cfs		
Wet	1.5 to 2.99	2500 - 5999 cfs		
Near Normal	-1.49 to 1.49	500 - 2499 cfs		
Dry	-2.99 to -1.5	-5000 – 500 cfs		
Very Dry	-3.0 or less	Less than -5000 cfs		

^{*} use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
	20003	Seasonal Outlook
> 0.93	> 2.0	Very Wet
0.71 to 0.93	1.51 to 2.0	Wet
0.35 to 0.70	0.75 to 1.5	Normal
< 0.35	< 0.75	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
		Multi-Seasonal Outlook
> 2.0	> 4.3	Very Wet
1.18 to 2.0	2.51 to 4.3	Wet
0.5 to 1.17	1.1 to 2.5	Normal
< 0.5	< 1.1	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories
Above Normal	Wet to Very Wet
Normal	Normal
Below Normal	Dry

^{*} Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan

Under Construction