Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 6/6/2016 (ENSO Neutral Condition)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method¹, the SFWMD empirical method², a sub-sampling of Neutral years³ and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with Neutral ENSO years⁴. The results for Croley's method and the SFWMD empirical method are based on the <u>CPC Outlook</u>.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season		roley's ethod ^{1*}	En	FWMD npirical ethod ²	Neuti	ampling of al ENSO ears ³	Sub-sampling of AMO Warm + Neutral ENSO Years ⁴		
	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	<u>Condition</u>	Value (ft)	Condition	
Current (Jun- Nov)	N/A	N/A	2.66	Very Wet	3.32	Very Wet	3.10	Very Wet	
Multi Seasonal (Jun-Apr)	N/A	N/A	2.73	Wet	3.56	Wet	5.42	Very Wet	

*Croley's Method Not Produced For This Report

See <u>Seasonal</u> and <u>Multi-Seasonal</u> tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

Tributary Hydrologic Conditions Graph:

5294 cfs 14-day running average for Lake Okeechobee Net Inflow through 6/5/2016. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Wet.

1.37 for Palmer Index on 6/4/2016.

According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Normal.

The wetter of the two conditions above is Wet.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 6/6/2016

Lake Okeechobee Stage: 14.32 feet

USACE Report for Lake Okeechobee

Lake Okeechobee Stage Hydrograph

	ee Management	Bottom Elevation	Current
Zone/	/Band	(feet, NGVD)	Lake Stage
High Lake Manage	ement Band	16.02	
	High sub-band	15.53	
Operational Band	Intermediate sub-band	15.04	
	Low sub-band	13.05	← 14.32
Base Flow sub-ba	nd	12.60	
Beneficial Use sub	o-band	10.60	
Water Shortage M	lanagement Band		

Part C of LORS2008: Discharge to WCA's

Release Guidance Flow Chart Outcome: Up to Maximum Releases to the WCAs if Desirable or with Minimum Everglades Impacts

Part D of LORS2008: Discharge to Tidewater

Release Guidance Flow Chart Outcome: S-79 up to 3000 cfs and S-80 up to 1170 cfs

Technical Input Summaries from:

- Lake Okeechobee Division
- <u>Coastal Ecosystems</u>
- Everglades Ecosystems Division
- Water Supply Department
- Water Resource Management Release Recommendation
- Kissimmee Watershed Environmental Conditions
- Operations Department

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers LORSS Homepage

LORS2008 Implementation on 6/6/2016 (ENSO Neutral Condition):

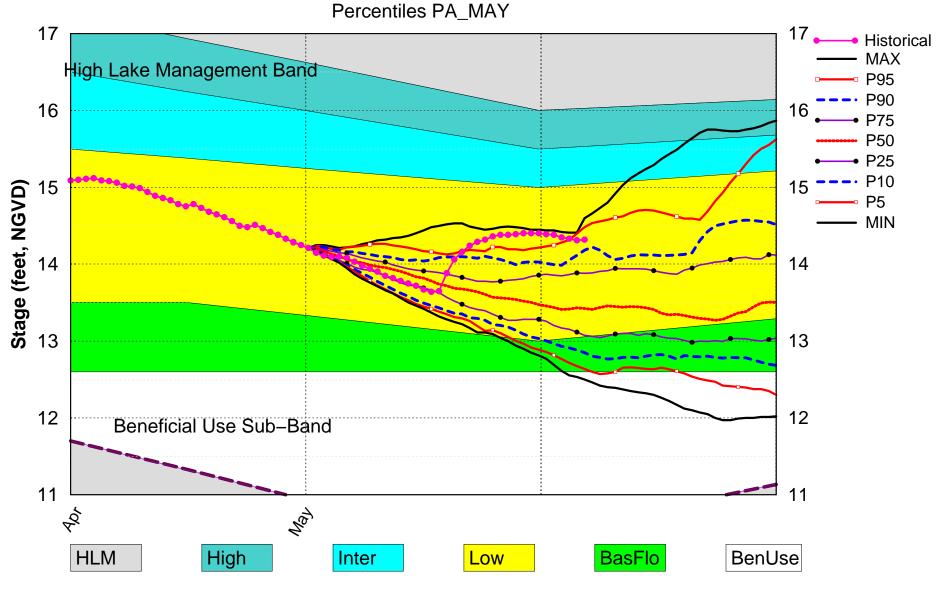
Water Supply Department Technical Input

Water Supply Outlook:

District wide, Raindar rainfall 1.43 inches for the week ending 6/6/2016. Lake stage on 6/6/2016 is 14.32 ft, up 0.08 ft from last week.

The updated May 2016 SFWMM Dynamic Position Analysis <u>percentile graph</u> and <u>tracking chart</u> for Lake Okeechobee show that the lake stage is in the Low Operational Sub-Band.

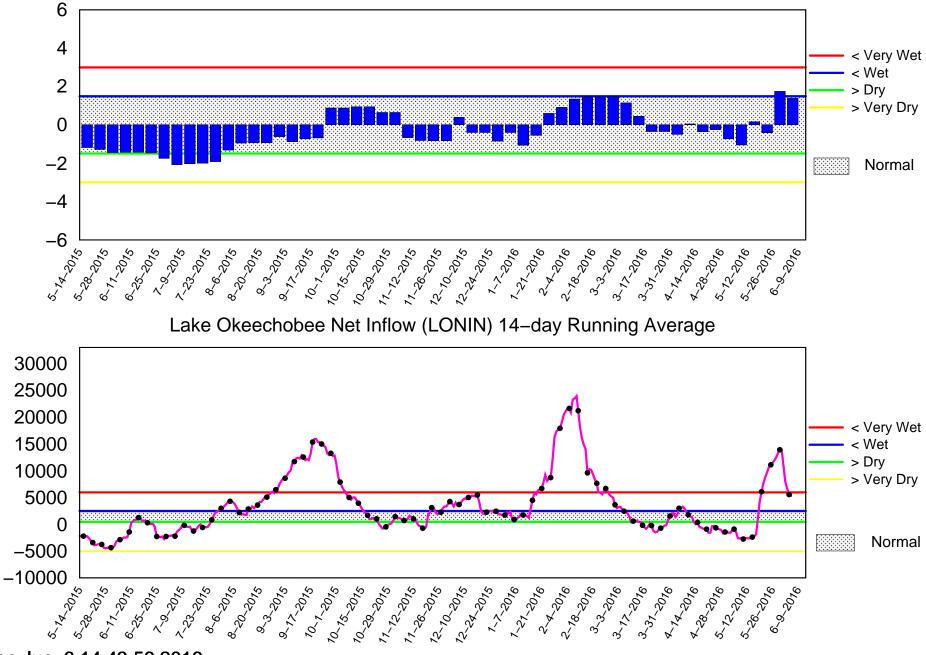
The LORS2008 tributary <u>indices</u> are classified as **Wet**. The PDSI indicates normal condition and the LONIN is Wet. The classification is based on the wetter of the two.


Water Supply Risk Evaluation

Area	Indicator	Value	Color Coded Scoring Scheme
	Projected LOK Stage for the next two months	Low Sub-Band	L
	Palmer Index for LOK Tributary Conditions	1.37 (Normal)	L
	CPC Procinitation Outlook	1 month: Normal	L
LOK	CPC Precipitation Outlook	3 months: Normal	L
	LOK Seasonal Net Inflow Forecast El Nino	3.32 ft (Normal to Extremely Wet)	L
	LOK Multi-Seasonal Net Inflow Forecast El Nino	3.56 ft (Wet)	L
	WCA 1: Site 1-7, Site 1-8T, & Site 1-9 Average	Above Line 1 (15.87 ft)	L
WCAs	WCA 2A: Site 2-17 HW	Above Line1 (12.07 ft)	L
	WCA-3A: 3 Station Average (Site 63, 64 and 65)	Above Line 1 (9.58 ft)	L
	Service Area 1	Year-Round Irrigation Rule in effect	L
LEC	Service Area 2	Year-Round Irrigation Rule in effect	L
	Service Area 3	Year-Round Irrigation Rule in effect	L

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow forecasts use slightly different classification intervals than those used by the 2008-LORS.

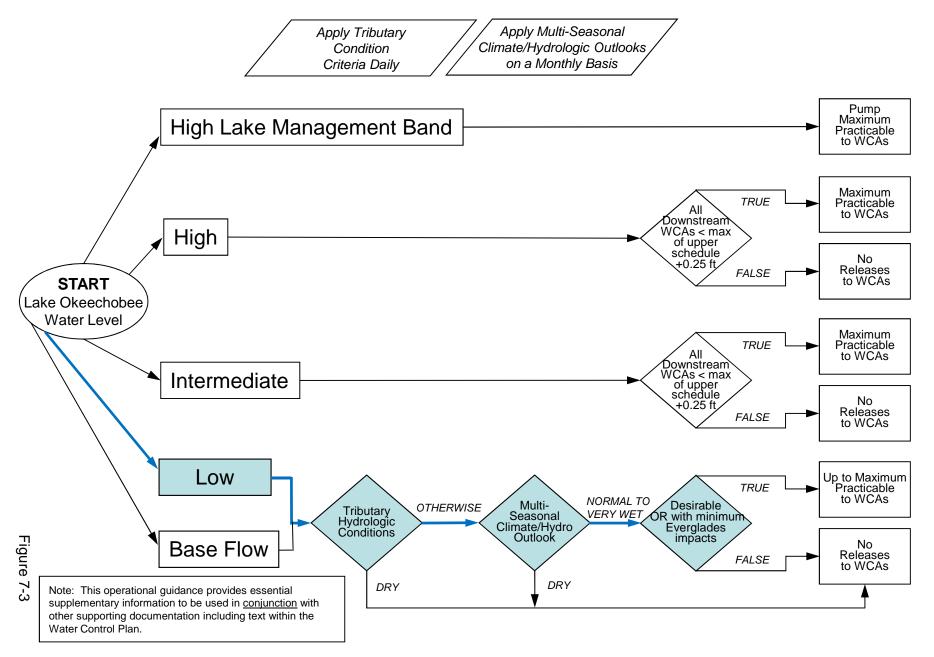
Back to Lake Okeechobee Operations Main Page Back to U.S. Army Corps of Engineers LORSS Homepage


Lake Okeechobee SFWMM May 2016 Dynamic Position Analysis

(See assumptions on the Position Analysis Results website)

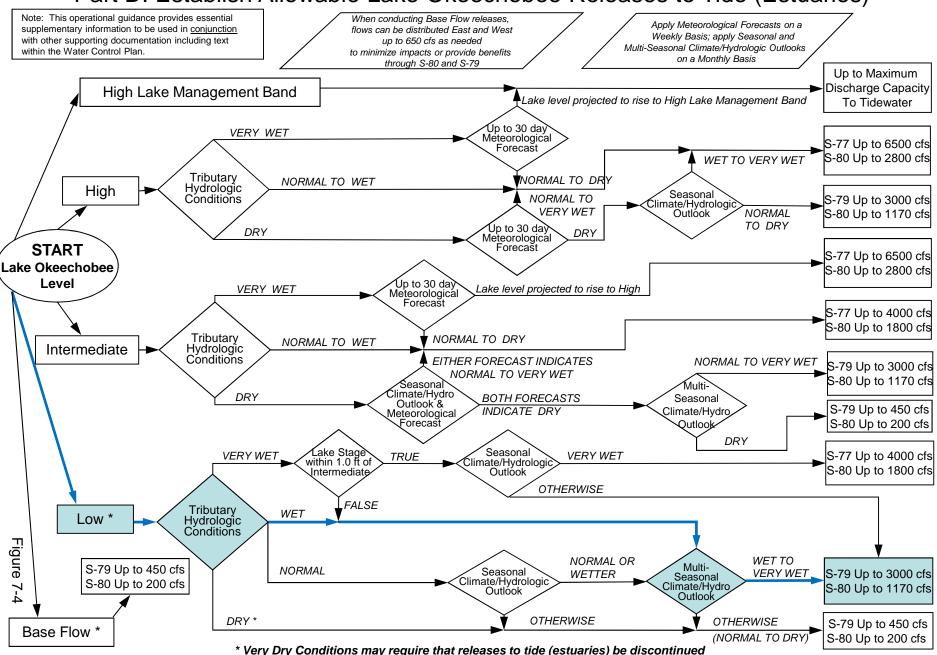
Tributary Basin Condition Indicators as of Jun 6 2016

Palmer Index

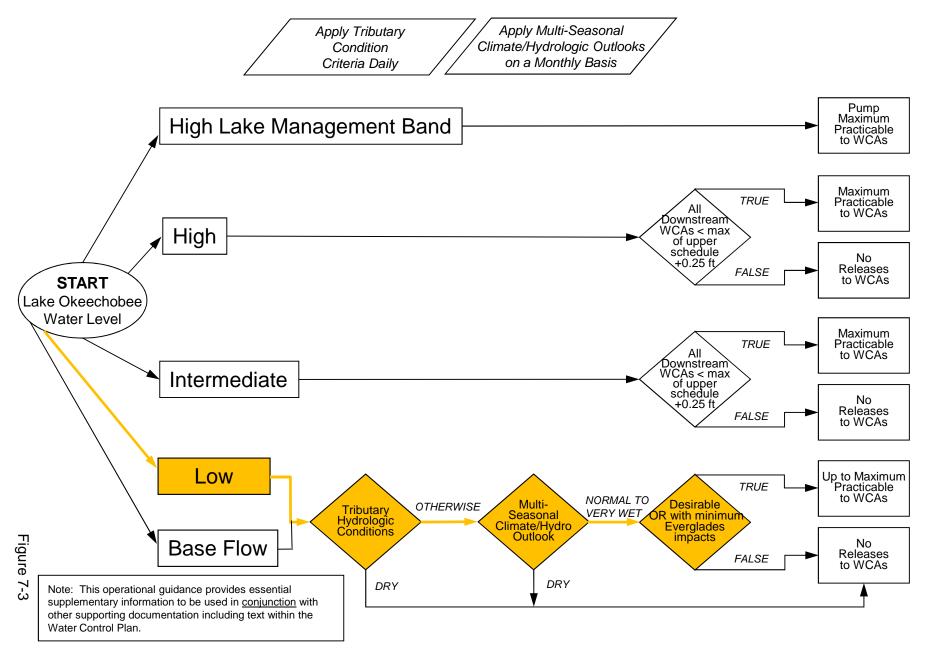


⁼low (cfs)

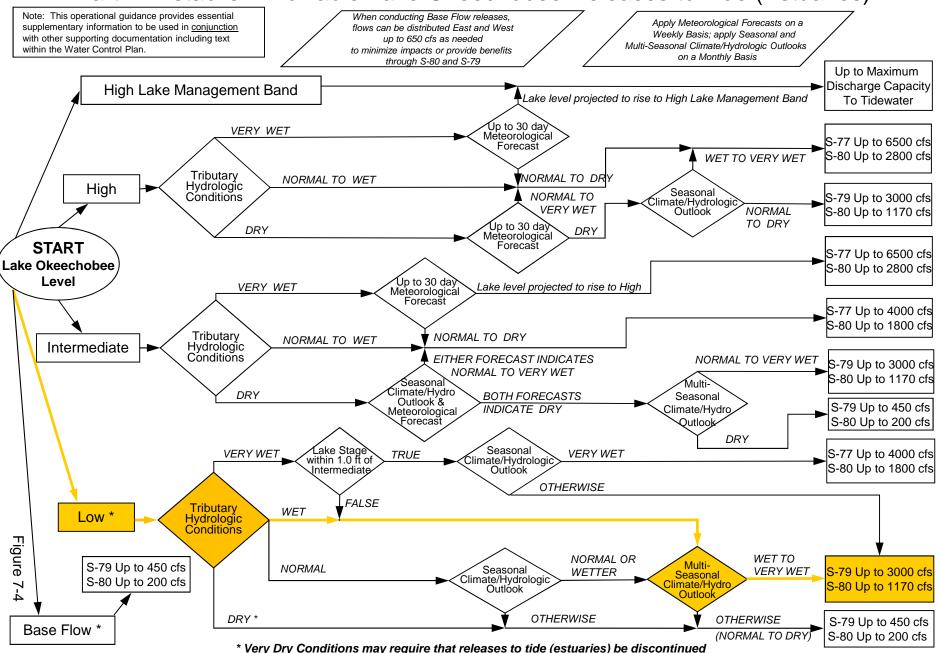
Mon Jun 6 14:43:56 2016


2008 LORS

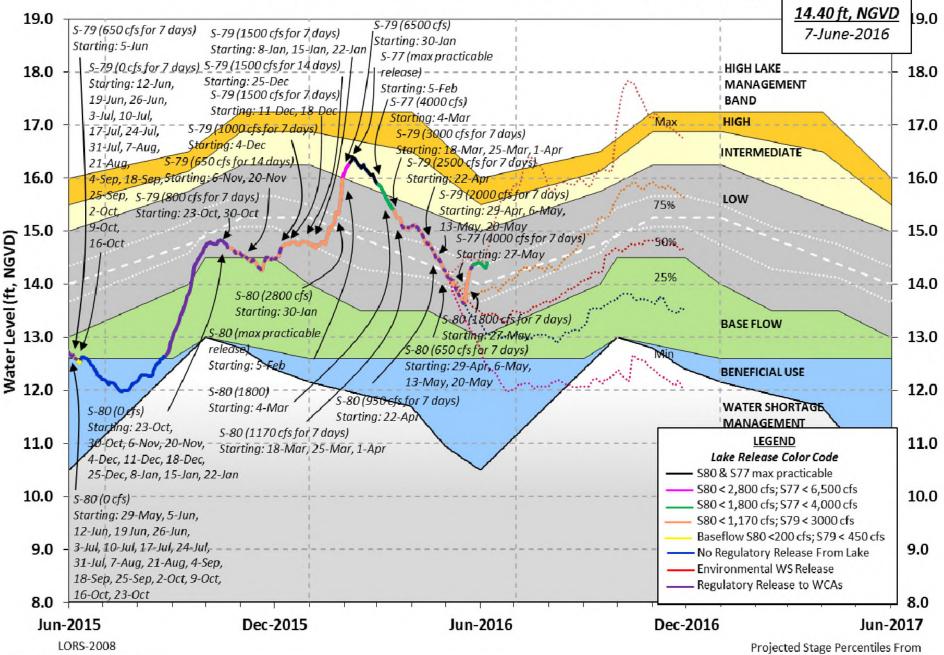
Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas


2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)


2008 LORS FORECAST

Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas



2008 LORS FORECAST

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Lake Okeechobee Water Level History and Projected Stages

Adopted by USACE 28-April-2008

Projected Stage Percentiles From SFWMD-HESM Position Analysis

U. S. Army Corps of Engineers, Jacksonville District Lake Okeechobee and Vicinity Report ** Preliminary Data - Subject to Revision ** Data Ending 2400 hours 05 JUN 2016 Okeechobee Lake Regulation Elevation Last Year 2YRS Ago (ft-NGVD) (ft-NGVD) (ft-NGVD) *Okeechobee Lake Elevation 14.32 12.59 12.39 (Official Elv) Bottom of High Lake Mngmt= 16.02 Top of Water Short Mngmt= 10.58 Currently in Operational Management Band Simulated Average LORS2008 [1965-2000] 11.97 Difference from Average LORS2008 2.35 05JUN (1965-2007) Period of Record Average 13.13 Difference from POR Average 1.19 Today Lake Okeechobee elevation is determined from the 4 Int & 4 Edge stations ++Navigation Depth (Based on 2007 Channel Condition Survey) Route 1 ÷ 8.26' ++Navigation Depth (Based on 2008 Channel Condition Survey) Route 2 ÷ 6.46' Bridge Clearance = -NR-' 4 Interior and 4 Edge Okeechobee Lake Average (Avg-Daily values): L001 L005 L006 LZ40 S4 S352 S308 S133 14.23 14.40 14.39 14.28 14.25 14.45 -NR- 14.33 *Combination Okeechobee Avg-Daily Lake Average = 14.32 (*See Note) Okeechobee Inflows (cfs): S65E 4221 C5 -112 Fisheating Cr 110 S135 Pumps S154 0 S191 0 0 0 S84 226 S133 Pumps S2 Pumps 0 810 0 S84X S127 Pumps S3 Pumps 0 102 0 0 S71 S129 Pumps S4 Pumps 0 S72 12 S131 Pumps Total Inflows: 5369 Okeechobee Outflows (cfs): S135 Culverts 0 S354 0 S77 (Not Used) S127 Culverts 0 S351 0 S77Below 3924 (USED) S129 Culverts -NR- S352 0 S308 (Not Used)

S131 Culverts -NR- L8 Canal Pt 267 S308Below 1747 (USED) Total Outflows: No Report Due To Missing S77 or S308 Discharge Data ****S77 Structure outflow is being used to compute Total Outflow. ****S308 Structure outflow is being used to compute Total Outflow. Okeechobee Pan Evaporation (inches): S77 0.28 S308 0.29 Average Pan Evap x 0.75 Pan Coefficient = 0.21" = 0.02' Lake Average Precipitation using NEXRAD: = 0.99" = 0.08' Evaporation - Precipitation: = -0.78" = -0.06'Evaporation - Precipitation using Lake Area of 730 square miles is equal to 15237 cfs into the lake. Lake Okeechobee (Change in Storage) Flow is 2118 cfs or 4200 AC-FT

Note: Headwater, tailwater, and stage values below are instantaneous values unless otherwise specified.

	Headwater	Tailwater				Gat	te Pos	sitio	ıs	
#8	Elevation	Elevation	Disch	#⊥	#2	#3	#4	#5	#6	#7
#0	(ft-msl)	(ft-msl)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
(ft)										
		()	I) see 1	note at	: bott	om				
North East S										
S133 Pumps S193:								0	(cfs)
S191:	18.26	14.58	0	0.0	0.0	0.0				
S135 Pumps									(cfs)
S135 Culve	rts:		0	-NR-	-NR-					
North West S	hore									
S65E:		14.62	4221	1.9	2.4	2.4	2.4	2.4	1.4	
S127 Pumps										
S127 Culve				0.0					·	
S129 Pumps		-NR-	0	0	0	0			(cfs)
S129 Culve		INIC		-NR-	0	0			(CID)
S131 Pumps		14.60		0	0				(cfs)
S131 Culve	rt:		-NR-							
Fisheating	Creek									
nr Palmd		30.78	110							
nr Lakep										
C5:	14.31	14.26 -	-112	5.2 5	b.3 5	5.3				

South Shore								
S4 Pumps:	11.25	14.26	0	0	0	0		(cfs)
S169:	14.28	11.24	0	0.0	0.0	0.0		
S310:	14.30		37					
S3 Pumps:	9.57	14.30	0	0	0	0		(cfs)
S354:	14.30	9.57	0	0.0	0.0			
S2 Pumps:	9.50	14.28	0	0	0	0	0	(cfs)
S351:	14.28	9.50	0	0.0	0.0	0.0		
S352:	14.51	9.65	0	0.0	0.0			
C10A:	-NR-	14.37		0.0	0.0	4.0	0.0	0.0
L8 Canal PT	i i i i i i i i i i i i i i i i i i i	14.20	267					

	S351	and S352	2 Tempora	ary Pur	mps/Si	354 Sp	pillwa	У		
S351:	9.50	14.28	0	-NR1	NRNI	RNR-	NR	NR-		
S352:	9.65	14.51	0							
S354:	9.57	14.30	0							
	Diron (C		970)							
Caloosahatch S47B:	13.20	10.91	5/9)	0 1	0.9					
S47D:	10.92	10.91	58	6.0	0.9					
s77:	10.92	10.91	50	0.0						
	and Sector	Flow:								
	13.81	11.06	3924	4.4	4.4	4.4	4.4			
Flow Due	to Lockage	s+:	5							
S77 Below	USGS Flow G	lage	3924							
S78:										
Spillway	and Sector	Flow:								
	10.87	3.14	3583	3.5	0.0	4.0	4.0			
Flow Due	to Lockage	s+:	17							
s79:										
	and Sector	Flow:								
Spiiiway	2.99	1.55	4983	3.0	4.0	3.0	4.0	4.0	4.0	4.0
4.0										
Flow Due	to Lockage	es+:	б							
Percent	of flow fro	om S77	77%							
Chloride	:	(ppm)	44							
St. Lucie Ca S308:	nal (S308,	S80)								
	and Sector	Flow:								
	-NR-	-NR-	1747	5.0 5	5.0 !	5.0 5	5.0			
Flow Due	to Lockage		-NR-							
S308 Below	USGS Flow	Gage	1747							
S153:	18.93	13.95	55	0.0	0.0					
S80:										
Spillway	and Sector	Flow:								
	-NR-	-NR-	-NR-	1.1	1.1	1.2	0.0	1.2	1.1	0.0
	to Lockage		-NR-							
Percent	of flow fro	om S308	-NR-%							

Steele Point Top Salinity (mg/ml)	* * * *
Steele Point Bottom Salinity (mg/ml)	* * * *
1 · 5 ·	
Speedy Point Top Salinity (mg/ml) Speedy Point Bottom Salinity (mg/ml)	

+ Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

				Wi	nd
aily Precipitation Totals	1-Day	3-Day	7-Day	Directic	n
peed	(
	(inches)	(inches)	(inches)	(Degø)	
mph)		0 00	0 00		
S133 Pump Station:	-NR-		0.00		
S193:	-NR-	0.00	0.00	-NR-	-NR-
Okeechobee Field Station:			0.00		
S135 Pump Station:	-NR-	0.00	0.00		
S127 Pump Station:	-NR-		0.00		
S129 Pump Station:	-NR-	0.00	0.00		
S131 Pump Station:	-NR-	0.00	0.00		
S77:	0.22	0.22	0.22	169	2
S78:	0.12	0.12	0.25	114	4
S79:	0.30	2.03	2.31	143	4
S4 Pump Station:	-NR-	0.00	0.00		
Clewiston Field Station:	-NR-	0.00	0.00		
S3 Pump Station:	-NR-	0.00	0.00		
S2 Pump Station:	-NR-		0.00		
S308:		******		-NR-	-NR-
S80:	0 06	0.06	1.03		
Okeechobee Average			******	IVIC	1410
(Sites S78, S79 and					
Oke Nexrad Basin Avg	0.99	1.17	 1.35		

Okeechobee Lake Elevations 05 JUN 2016 14.32 Difference from 05JUN16 05JUN16 -1 Day = 04 JUN 2016 14.31 -0.01 05JUN16 -2 Days = 03 JUN 2016 14.33 0.01 05JUN16 -3 Days = 02 JUN 2016 14.35 0.03 05JUN16 -4 Days = 01 JUN 2016 14.38 0.06 31 MAY 2016 05JUN16 -5 Days = 14.39 0.07 05JUN16 -6 Days = 30 MAY 2016 14.40 0.08 05JUN16 -7 Days = 29 MAY 2016 14.40 0.08 06 MAY 2016 05JUN16 -30 Days = 14.03 -0.29 05JUN16 -1 Year = 05 JUN 2015 12.59 -1.73 05JUN16 -2 Year = 05 JUN 2014 12.39 -1.93 Long Term Mean 30day Avearge ET for Lake Alfred (Inches) = -NR-

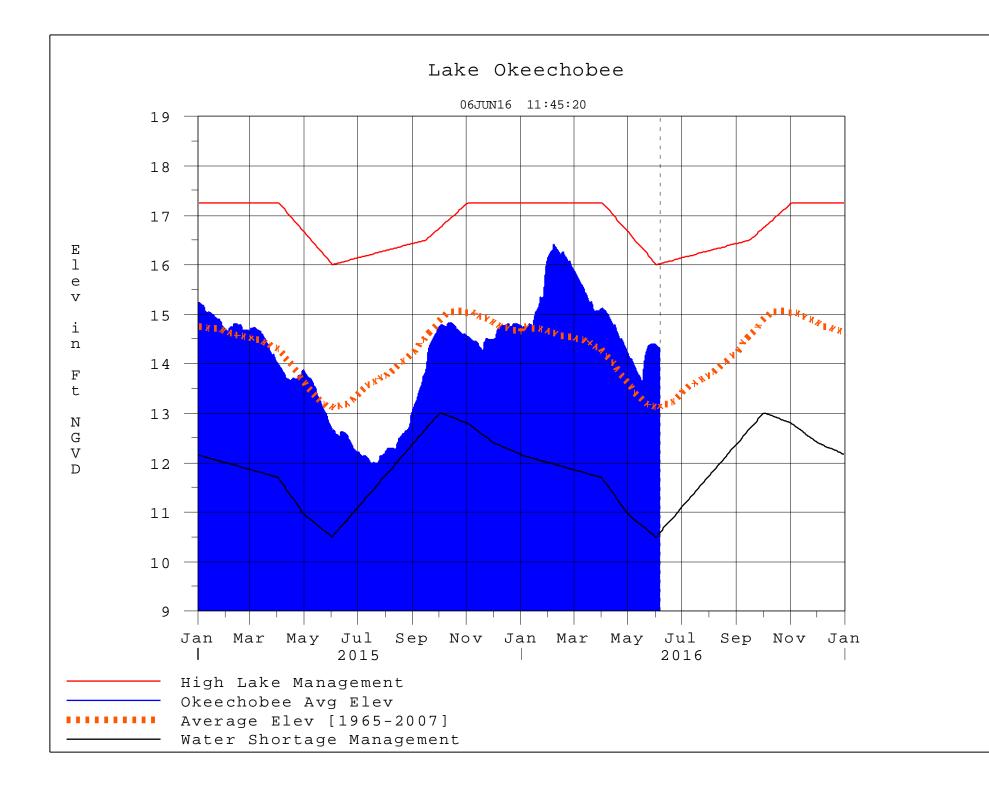
_				La	ake (Okeed	chobee	Net Infl	ow (LONIN)		
			I	Average	Flow	w ove	er the	previous	14 days	Avg-Daily	Flow
05J	UN16	To	oday	=	05	JUN	2016	5295	MON	8056	
05J	UN16 -	-1 I	Day	=	04	JUN	2016	5561	SUN	1924	
05J	UN16 -	-2 I	Days	=	03	JUN	2016	6664	SAT	2659	
05J	UN16 -	-3 I	Days	=	02	JUN	2016	8008	FRI	408	
05J	UN16 -	-4 I	Days	=	01	JUN	2016	10703	THU	4325	
05J	UN16 -	-5 I	Days	=	31	MAY	2016	13897	WED	4322	
05J	UN16 -	-6 I	Days	=	30	MAY	2016	13937	TUE	6829	
05J	UN16 -	-7 I	Days	=	29	MAY	2016	13415	MON	6995	
05J	UN16 -	-8 I	Days	=	28	MAY	2016	12589	SUN	8652	
05J	UN16 -	-9 I	Days	=	27	MAY	2016	11977	SAT	6601	
05J	UN16 -1	10 I	Days	=	26	MAY	2016	11467	FRI	1151	
05J	UN16 -1	11 I	Days	=	25	MAY	2016	11162	THU	5558	
05J	UN16 -1	12 I	Days	=	24	MAY	2016	10725	WED	9299	
05J	UN16 -1	13 I	Days	=	23	MAY	2016	9723	TUE	7350	

_

S65E									
				Average	Flow	v over	previous	14 days	Avg-Daily Flow
05JUN16		Today	/=	05	JUN	2016	6519	MON	4221
05JUN16	-1	Day	=	04	JUN	2016	6636	SUN	4359
05JUN16	-2	Days	=	03	JUN	2016	6644	SAT	4942
05JUN16	-3	Days	=	02	JUN	2016	6531	FRI	5362
05JUN16	-4	Days	=	01	JUN	2016	6328	THU	5654
05JUN16	-5	Days	=	31	MAY	2016	6083	WED	5971
05JUN16	-б	Days	=	30	MAY	2016	5779	TUE	6589
05JUN16	-7	Days	=	29	MAY	2016	5422	MON	6912
05JUN16	-8	Days	=	28	MAY	2016	5048	SUN	6949
05JUN16	-9	Days	=	27	MAY	2016	4671	SAT	7359
05JUN16	-10	Days	=	26	MAY	2016	4273	FRI	7831
05JUN16	-11	Days	=	25	MAY	2016	3836	THU	8245
05JUN16	-12	Days	=	24	MAY	2016	3367	WED	8401
05JUN16	-13	Days	=	23	MAY	2016	2892	TUE	8468

______ Lake Okeechobee Outlets Last 14 Days

S-77	S-77	Below S-77	S-78	S-78	S-79
Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
(0700-2100)	(ALL DAY)	(ALL-DAY)	(0700 - 2100)	(ALL DAY)	(ALL DAY)
DATE (AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
05 JUN 2016		7782	-NR-	7139	9892
04 JUN 2016		7758	-NR-	7011	9442
03 JUN 2016		8163	-NR-	7480	10428
02 JUN 2016		7440	-NR-	6650	8972
01 JUN 2016		7221	-NR-	6422	9391
31 MAY 2016		7390	-NR-	6990	10570
30 MAY 2016		8454	-NR-	9312	13113
29 MAY 2016		9291	-NR-	9623	13538
28 MAY 2016		8753	-NR-	9294	11120
27 MAY 2016		5860	-NR-	6195	7480


26 MAY 2016		521	-NR-	2911	3423
25 MAY 2016		1398	-NR-	3080	3418
24 MAY 2016		628	-NR-	4889	7788
23 MAY 2016		784	-NR-	2777	5643
S	-310 S-351	S-352	S-354	L8 Canal Pt	
Dise	charge Discharge	Discharge	Discharge	Discharge	
(ALI	L DAY) (ALL DAY)	(ALL DAY)	(ALL DAY)	(ALL DAY)	
DATE (AG	C-FT) (AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	
05 JUN 2016	73 0	0	0	530	
04 JUN 2016	180 256	36	91	515	
03 JUN 2016	232 1003	б	525	493	
02 JUN 2016	165 1194	276	498	464	
01 JUN 2016	153 611	286	642	419	
31 MAY 2016	69 571	700	131	520	
30 MAY 2016	20 535	266	208	543	
29 MAY 2016	2 331	171	230	548	
28 MAY 2016	-23 32	173	16	552	
27 MAY 2016	-18 77	355	99	532	
26 MAY 2016	-39 28	506	220	537	
	-162 0	0	0	459	
	-260 0	0	0	405	
23 MAY 2016	-345 0	0	0	371	
S	-308 Below S-30	8 S-80			
	charge Discharge		e		
	L DAY) (ALL-DAY)				
	C-FT) (AC-FT)	(AC-FT)	,		
05 JUN 2016	3464	-NR-			
04 JUN 2016	3558	2379			
03 JUN 2016	3480	2368			
02 JUN 2016	3534	2393			
01 JUN 2016	3597	2414			
31 MAY 2016	3457	2377			
30 MAY 2016	3535	2341			
29 MAY 2016	3301	2344			
28 MAY 2016	3433	2338			
27 MAY 2016	1968	1752			
26 MAY 2016	472	439			
25 MAY 2016	767	609			
24 MAY 2016	611	741			
23 MAY 2016	823	869			
*** NOTE: 1)	Discharge from (0	1700-2100) i	s computed	uging Spillway	and
Sector	Discharge Hom (0	7700-Z100) I	s computed	using spiriway	anu
20001	Gate Discharges f	rom 0700 hr	s to 2100 h	rs.	
2)	Discharge (ALL DA				r Gate
and		, <u> </u>			
	Lockages Discharg	es from 001	5 hrs to 24	00 hrs.	
_					

(I) - Flows preceeded by "I" signify an instantaneous
 flow computed from the single value reported for the day

- * On 11 May 1999, Lake Okeechobee Elevation was switched from

Instantaneous 2400 value to an average-daily lake average. On 14 Mar 2001, due to the isolation of various gages within the standard 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation. On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level. On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels. Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/ \$ For information regarding Lake Okeechobee Service Area water restrictions please refer to www.sfwmd.gov

Report Generated 06JUN2016 @ 11:38 ** Preliminary Data - Subject to Revision **

Classification Tables

Supplemental Tables used in conjunction with the LORS2008 Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• <u>6-15 Day Precipitation Outlook Categories</u>

Table ?? in the Lake Okeechobee Water Control Plan

<u>Classification of Lake Okeechobee Net Inflow for Seasonal</u>

<u>Outlook</u>

 Table K-3 in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

 Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic Classification*	Palmer Index Class Limits	2-wk Mean L.O. Net Inflow Class Limits
Very Wet	3.0 or greater	Greater >= 6000 cfs
Wet	1.5 to 2.99	2500 - 5999 cfs
Near Normal	-1.49 to 1.49	500 - 2499 cfs
Dry	-2.99 to -1.5	-5000 – 500 cfs
Very Dry	-3.0 or less	Less than -5000 cfs

* use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
		Seasonal Outlook
> 0.93	> 2.0	Very Wet
0.71 to 0.93	1.51 to 2.0	Wet
0.35 to 0.70	0.75 to 1.5	Normal
< 0.35	< 0.75	Dry

**Volume-depth conversion based on average lake surface area of 467,000 acres

Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
		Multi-Seasonal Outlook
> 2.0	> 4.3	Very Wet
1.18 to 2.0	2.51 to 4.3	Wet
0.5 to 1.17	1.1 to 2.5	Normal
< 0.5	< 1.1	Dry

**Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories
Above Normal	Wet to Very Wet
Normal	Normal
Below Normal	Dry

* Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan

Under Construction