Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 1/25/2016 (El Nino Condition)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method¹, the SFWMD empirical method², a sub-sampling of El Nino years³ and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with El Nino ENSO years⁴. The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season	Croley's Method ^{1*}		Em	FWMD npirical ethod ²	El Nir	ampling of no ENSO ears ³	Sub-sampling of AMO Warm + EI Nino ENSO Years ⁴	
	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition
Current (Jan- Jun)	N/A	N/A	1.19	Normal	1.85	Wet	2.35	Very Wet
Multi Seasonal (Jan-Oct)	N/A	N/A	3.39	Wet	3.88	Wet	5.61	Very Wet

^{*}Croley's Method Not Produced For This Report

See Seasonal and Multi-Seasonal tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

Tributary Hydrologic Conditions Graph:

8128 cfs 14-day running average for Lake Okeechobee Net Inflow through 1/25/2016. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Very Wet.

0.59 for Palmer Index on 1/24/2016.

According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Normal.

The wetter of the two conditions above is **Very Wet**.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 1/25/2016

Lake Okeechobee Stage: 15.31 feet

USACE Report for Lake Okeechobee

Lake Okeechobee Stage Hydrograph

Lake Okeechob	ee Management	Bottom Elevation	Current
Zone	/Band	(feet, NGVD)	Lake Stage
High Lake Manage	oment Rand	17.25	
Tilgit Lake Mariago		17.25	
	High sub-band	16.78	
Operational Band	Intermediate sub-band	16.06	
	Low sub-band	13.74	← 15.31
Base Flow sub-ba	nd	12.60	
Beneficial Use sub	o-band	12.03	
Water Shortage M	lanagement Band		

Part C of LORS2008: Discharge to WCA's

Release Guidance Flow Chart Outcome: Up to Maximum Releases to the WCAs if Desirable or with Minimum Everglades Impacts

Part D of LORS2008: Discharge to Tidewater

Release Guidance Flow Chart Outcome: S-79 up to 3000 cfs and S-80 up to 1170 cfs

Technical Input Summaries from:

- Lake Okeechobee Division
- Coastal Ecosystems
- Everglades Ecosystems Division
- Water Supply Department
- Water Resource Management Release Recommendation
- Kissimmee Watershed Environmental Conditions
- Operations Department

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers LORSS Homepage

LORS2008 Implementation on 1/25/2016 (ENSO El Nino Condition):

Water Supply Department Technical Input

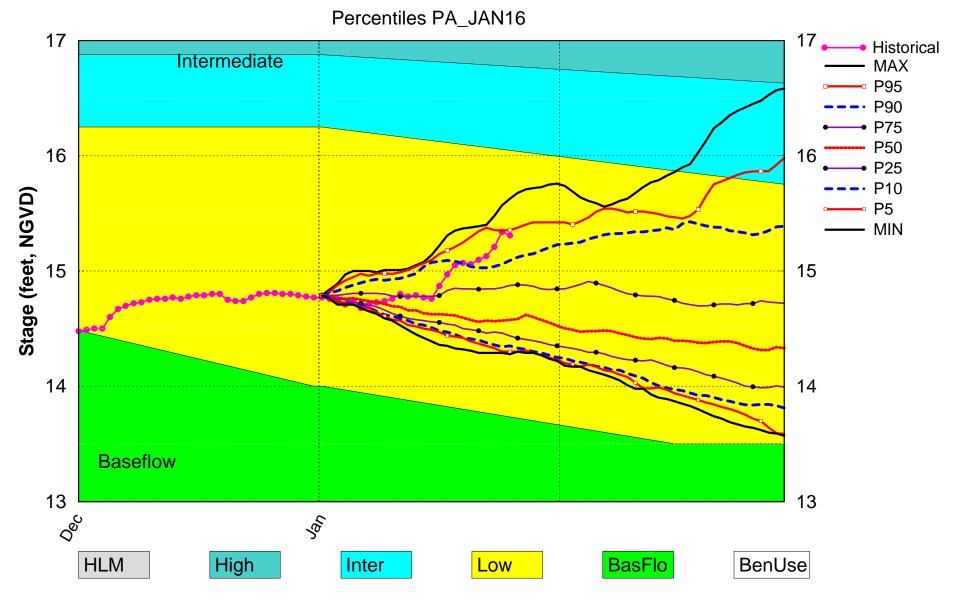
Water Supply Outlook:

District wide, Raindar rainfall 1.19 inches for the week ending 1/25/2016. Lake stage on 1/25/2016 is 15.31 ft, up 0.26 ft from last week.

The updated January 2016 SFWMM Dynamic Position Analysis <u>percentile graph</u> and <u>tracking chart</u> for Lake Okeechobee show that the lake stage is in the Low Operational Sub-Band.

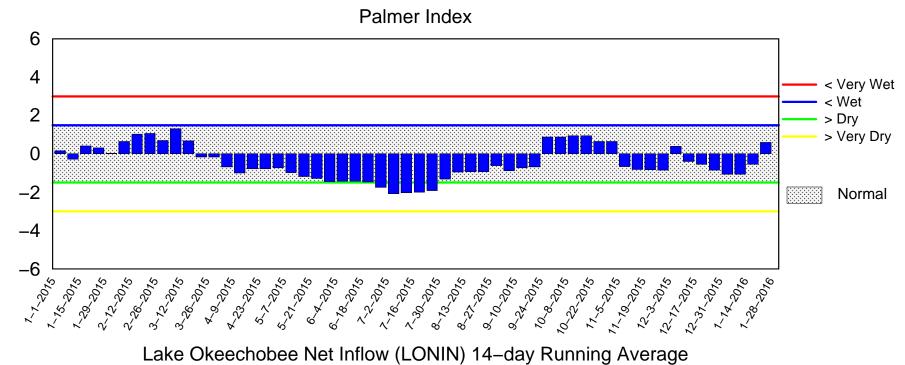
The LORS2008 tributary <u>indices</u> are classified as **Very Wet**. The PDSI indicates normal condition and the LONIN is Very Wet. The classification is based on the wetter of the two.

Water Supply Risk Evaluation

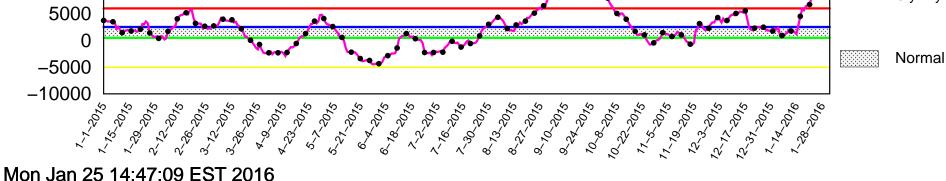

Area	Indicator	Value	Color Coded Scoring Scheme
	Projected LOK Stage for the next two months	Low Flow Sub-Band	М
	Palmer Index for LOK Tributary Conditions	0.59 (Normal)	L
LOK	CDC Presinitation Outland	1 month: Above Normal	Ш
LOK	CPC Precipitation Outlook	3 months: Above Normal	L
	LOK Seasonal Net Inflow Forecast	1.85 ft	_
	AMO warm/El Nino	(Normal to Extremely Wet)	1
	LOK Multi-Seasonal Net Inflow Forecast	2.00 # (///-4/	
	AMO warm/El Nino	3.88 ft (Wet)	L
	WCA 1: Site 1-7, Site 1-8T, & Site 1-9 Average	Above Line 1 (17.04 ft)	٦
WCAs	WCA 2A: Site 2-17 HW	Above Line1 (12.60 ft)	٦
	WCA-3A: 3 Station Average (Site 63, 64 and 65)	Above Line 1 (10.61 ft)	٦
	Service Area 1	Year-Round Irrigation Rule in effect	L
LEC	Service Area 2	Year-Round Irrigation Rule in effect	L
	Service Area 3	Year-Round Irrigation Rule in effect	L

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow forecasts use slightly different classification intervals than those used by the 2008-LORS for classifying the tributary hydrologic condition (THC).

Back to Lake Okeechobee Operations Main Page

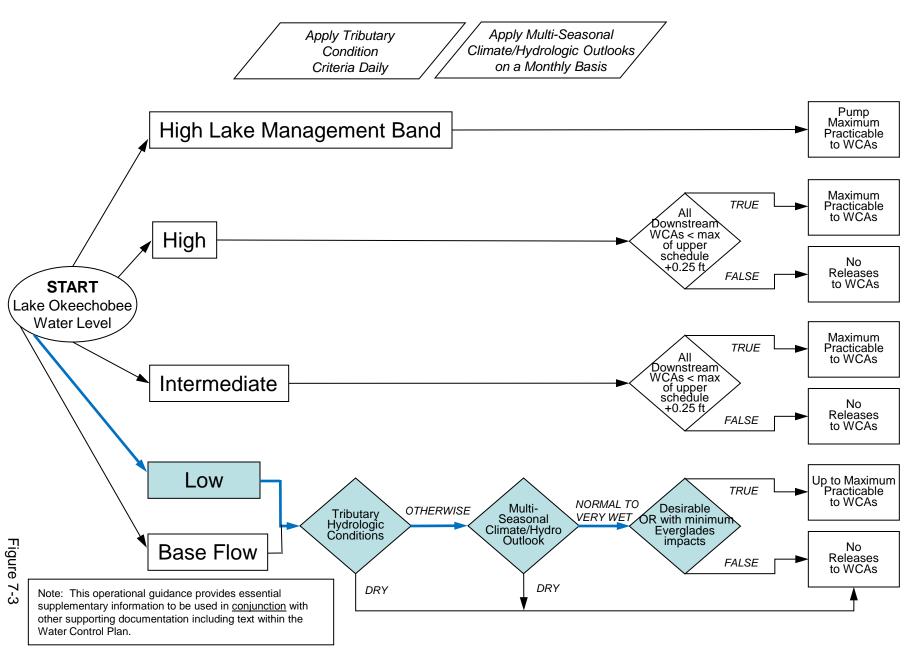

Back to U.S. Army Corps of Engineers LORSS Homepage

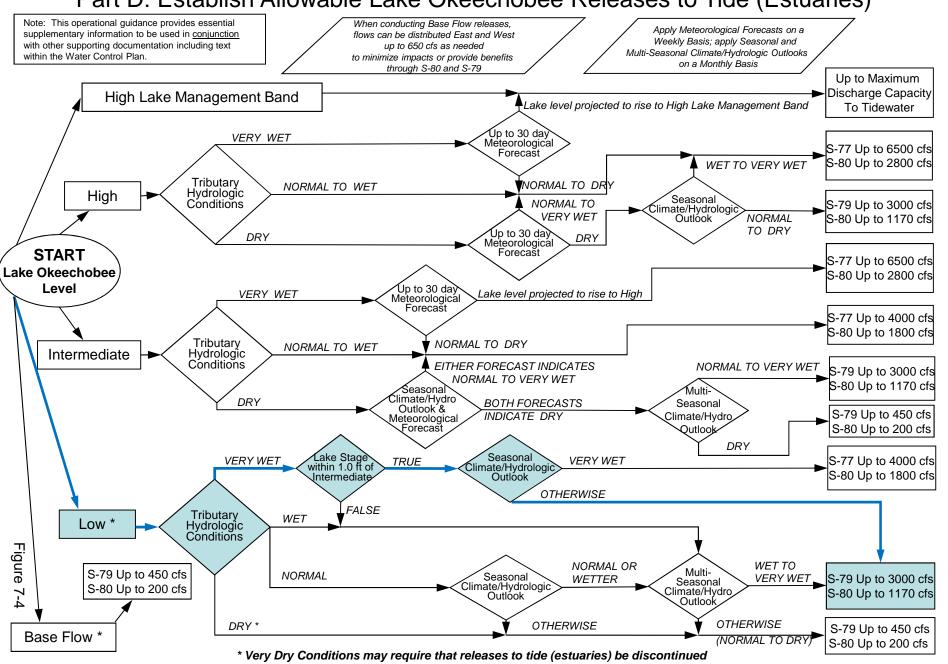
Lake Okeechobee SFWMM Jan 2016 Dynamic Position Analysis



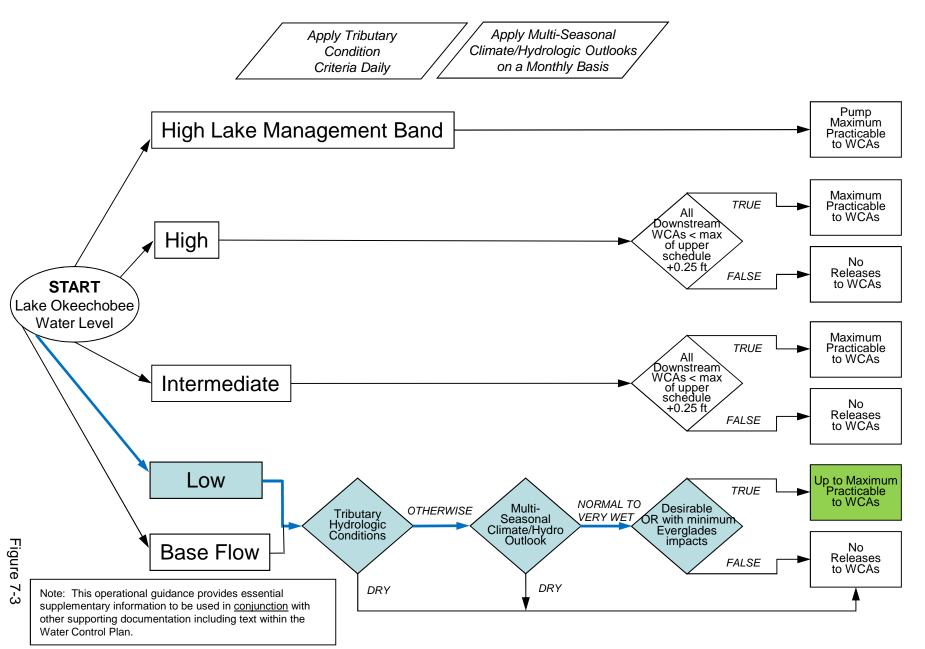
(See assumptions on the Position Analysis Results website)

Tributary Basin Condition Indicators as of January 25 2016

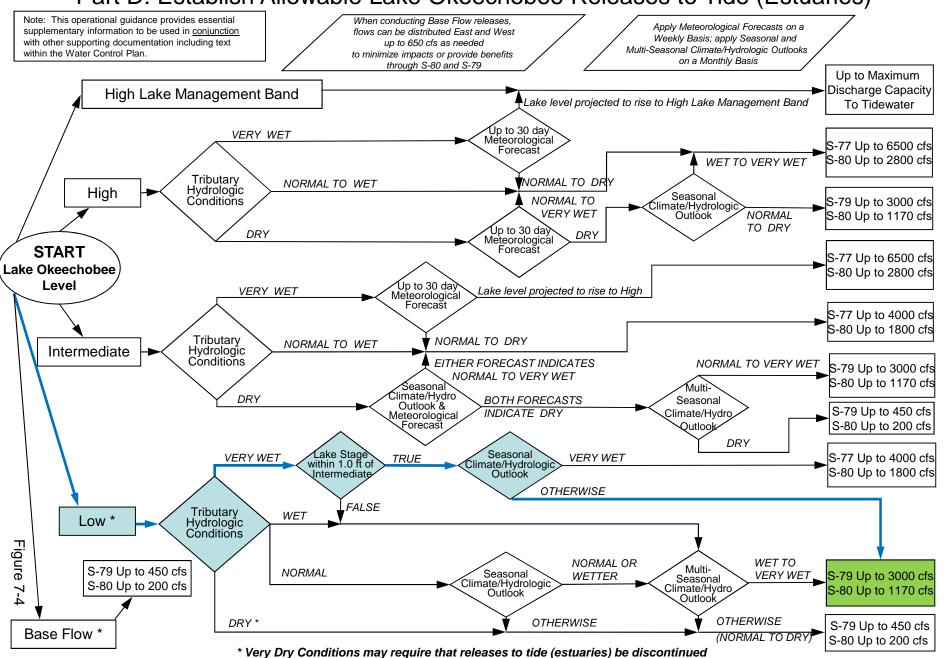


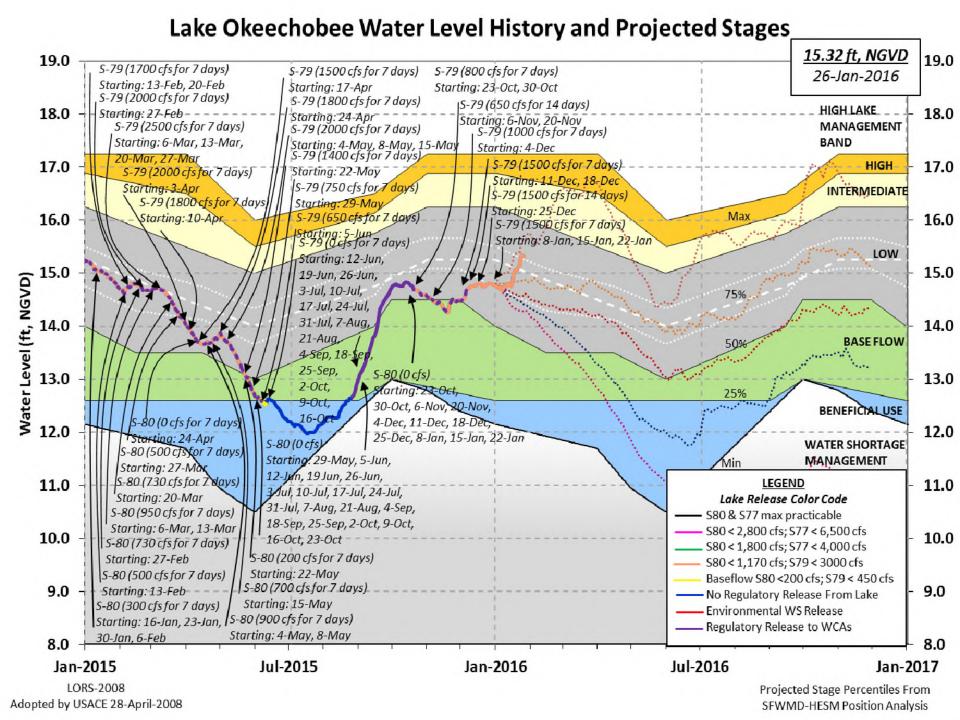

2008 LORS

Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas


2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)


2008 LORS FORECAST


Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas

2008 LORS FORECAST

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Data Ending 2400 hours 24 JAN 2016

Okeechobee Lake	Regulation	Elevat	ion Last Y	Year 2YRS Ago	
		(ft-NG		GVD) (ft-NGVD)	
*Okeechobee La	ake Elevatio	•		.89 13.80 (Of	fficial Elv
				Short Mngmt= 12	
Currently in (Jiiore inigme 12	. 03
carrenery in c	operacionar	riaria gemerre	Daria		
Simulated Ave	rage LORS200	08 [1965-200	0] 13.56		
Difference from			1.75		
	3				
24JAN (1965-20	007) Period	of Record A	verage 14	4.69	
Difference fro	om POR Avera	age	0.	.62	
Today Lake Oke	eechobee ele	evation is de	etermined fr	rom the 4 Int &	4 Edge
stations					
	Depth (Based	d on 2007 Cha	annel Condit	tion Survey) Rou	ıte 1 ÷
9.25'	1 /-	1 0000 71			. 0
	Depth (Based	d on 2008 Cha	annel Condit	tion Survey) Rou	ıte 2 ÷
7.45'	40 57				
Bridge Clearar	nce = 49.5/	•			
_					
- 4 Interior and 4	1 Edge Okee	chobee Lake i	Average (Avo	r-Dailv values)	:
- 4 Interior and 4	1 Edge Okeed	chobee Lake <i>i</i>	Average (Avg	g-Daily values)	:
- 4 Interior and 4 L001 L005	_		Average (Avg 352 S308	g-Daily values)	:
	L006 LZ40	0 S4 S	352 S308	S133	:
L001 L005	L006 LZ40	0 S4 S	352 S308	S133	:
L001 L005 15.07 15.30	L006 LZ40	0 S4 Si 31 15.43 1	352 S308 5.57 15.33	S133 3 15.13	:
L001 L005	L006 LZ40	0 S4 Si 31 15.43 1	352 S308 5.57 15.33	\$133 3 15.13 = 15.31	:
L001 L005 15.07 15.30	L006 LZ40	0 S4 Si 31 15.43 1	352 S308 5.57 15.33	S133 3 15.13	:
L001 L005 15.07 15.30	L006 LZ40	0 S4 Si 31 15.43 1	352 S308 5.57 15.33	\$133 3 15.13 = 15.31	:
L001 L005 15.07 15.30	L006 LZ40	0 S4 Si 31 15.43 1	352 S308 5.57 15.33	\$133 3 15.13 = 15.31	:
L001 L005 15.07 15.30 *Combination Of	L006 LZ40 15.39 15.3	0 S4 Si 31 15.43 1	352 S308 5.57 15.33	\$133 3 15.13 = 15.31	:
L001 L005 15.07 15.30 *Combination Of	L006 LZ40 15.39 15.3 Reechobee 2	0 S4 Si 31 15.43 19 Avg-Daily Lal	352 S308 5.57 15.33 ke Average =	S133 3 15.13 = 15.31 (*See Note)	
L001 L005 15.07 15.30 *Combination Of	L006 LZ40 15.39 15.3 keechobee 2 Dws (cfs): 2583	0 S4 Si 31 15.43 19 Avg-Daily Lal	352 S308 5.57 15.33 ke Average = -159	S133 3 15.13 = 15.31 (*See Note) Fisheating Ca	c 1164
L001 L005 15.07 15.30 *Combination Of Combination Of Combin	L006 LZ40 15.39 15.3 Reechobee 2 Dws (cfs): 2583 104	0 S4 Si 31 15.43 19 Avg-Daily Lal C5 S191	352 S308 5.57 15.33 ke Average = -159 426	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps	c 1164 122
L001 L005 15.07 15.30 *Combination Of Combination Of Combin	L006 LZ40 15.39 15.3 Reechobee 2 Dws (cfs): 2583 104 581	O S4 Si 31 15.43 19 Avg-Daily Lal C5 S191 S133 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps	c 1164 122 0
L001 L005 15.07 15.30 *Combination Of Combination Of Combin	L006 LZ40 15.39 15.3 Reechobee 2 Dws (cfs): 2583 104 581 814	O S4 Si 31 15.43 19 Avg-Daily Lal C5 S191 S133 Pumps S127 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84 74	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	c 1164 122 0
L001 L005 15.07 15.30 *Combination Of - Okeechobee Inflo S65E S154 S84 S84 S84X S71	L006 LZ40 15.39 15.3 seechobee 2 Dws (cfs): 2583 104 581 814 837	O S4 Si 31 15.43 19 Avg-Daily Lal C5 S191 S133 Pumps S127 Pumps S129 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84 74 55	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps	c 1164 122 0
L001 L005 15.07 15.30 *Combination Of - Okeechobee Inflo S65E S154 S84 S84 S84X S71 S72	Dws (cfs): 2583 104 581 814 837 245	O S4 Si 31 15.43 19 Avg-Daily Lal C5 S191 S133 Pumps S127 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84 74	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	c 1164 122 0
L001 L005 15.07 15.30 *Combination Of Combination Of Combin	L006 LZ40 15.39 15.3 seechobee 2 Dws (cfs): 2583 104 581 814 837	O S4 Si 31 15.43 19 Avg-Daily Lal C5 S191 S133 Pumps S127 Pumps S129 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84 74 55	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	c 1164 122 0
L001 L005 15.07 15.30 *Combination Of Combination Of Combin	Dws (cfs): 2583 104 581 814 837 245 7311	O S4 Si 31 15.43 19 Avg-Daily Lal C5 S191 S133 Pumps S127 Pumps S129 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84 74 55	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	c 1164 122 0
L001 L005 15.07 15.30 *Combination Of Combination Of Combin	Dws (cfs): 2583 104 581 814 837 245 7311	O S4 Si 31 15.43 19 Avg-Daily Lal C5 S191 S133 Pumps S127 Pumps S129 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84 74 55	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	c 1164 122 0
L001 L005 15.07 15.30 *Combination Of	L006 LZ40 15.39 15.3 Reechobee 2 Dws (cfs): 2583 104 581 814 837 245 7311 Lows (cfs):	C5 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84 74 55 22	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S2 Pumps S3 Pumps S4 Pumps	1164 122 0 0 359
L001 L005 15.07 15.30 *Combination Of - Okeechobee Inflo S65E S154 S84 S84X S71 S72 Total Inflows: Okeechobee Outfl S135 Culverts	L006 LZ40 15.39 15.3 Reechobee 2 Dws (cfs): 2583 104 581 814 837 245 7311 Lows (cfs):	C5 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	352 S308 5.57 15.33 ke Average = -159 426 84 74 55 22	S133 3 15.13 = 15.31 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S2 Pumps S3 Pumps S4 Pumps	1164 122 0 0 359

S129 Culverts	0	S352	0	S308	2			
(Used) S131 Culverts USED)	0	L8 Canal Pt	7	S308Below	6 (NOT			
•	484							
****S77 Structure of ****S308 Structure		_	-					
S77 0.	Okeechobee Pan Evaporation (inches): S77 0.07 S308 0.02 Average Pan Evap x 0.75 Pan Coefficient = 0.03" = 0.00'							
Lake Average Precip	pitation	using NEXRAD: =	0.00" =	0.00'				
Evaporation - Precipitation: = 0.03" = 0.00' Evaporation - Precipitation using Lake Area of 730 square miles is equal to 662 cfs out of the lake. Lake Okeechobee (Change in Storage) Flow is -6504 cfs or -12900 AC-FT								
	——————————————————————————————————————							

Note: Headwater, tailwater, and stage values below are instantaneous values unless otherwise specified.

	Headwater	Tailwater				Gat	e Pos	sition	ns	
# 0	Elevation	Elevation	Disch	#1	#2	#3	#4	#5	#6 #	‡7
#8	(ft-msl)	(ft-msl)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft) (f	t)
(ft)		(т) see n	ote at	- bott	- Om				
North East Sh	nore	(±	, всс п	occ ac	Doce	20111				
S133 Pumps S193:	: 13.40	15.21	84	0	0	0	0	84	(cfs)	
S191:	18.08	15.23	426	0.7	0.2	0.7				
S135 Pumps	·	-NR-	122	31	31	30	30		(cfs)	
S135 Culve	rts:		0	-NR-	-NR-					
North West Sh										
	21.03	15.11								
S127 Pumps S127 Culve		-NR-	74 -NR-	6 -NR-	0	37	31	0	(cfs)	
S129 Pumps S129 Culve		15.33	55 0	12 0.0	43	0			(cfs)	
S131 Pumps S131 Culve		15.43	22	0	24				(cfs)	
Fisheating nr Palmda nr Lakepo	ale	32.95	1164							

```
C5: 15.38 15.27 -159 8.0 0.0 8.0
South Shore

      S4 Pumps:
      11.77
      15.39
      359
      0 359
      0

      S169:
      15.56
      11.96
      64
      2.0
      2.5
      1.7

                                                           (cfs)
 S169:
 S310:
            15.28
                               -47
 S3 Pumps: 9.84
C354: 15.40
             9.84
                     15.40
                                0
                                      0 0
                                               0
                                                             (cfs)
                               0 0.0 0.0
 S354:
S2 Pumps: 9.83
                      9.84
                                          0 0 0
                     15.36
                      9.83 0 0.0 0.0 0.0
9.32 0 0.0 0.0
12.66
                                                           (cfs)
            15.36 9.83
15.46 9.32
-NR- 12.66
 S352:
 C10A:
                                     0.0 0.0 0.0 0.0 0.0
 L8 Canal PT
                      12.42
                                7
                S351 and S352 Temporary Pumps/S354 Spillway
                              0 -NR--NR--NR--NR--NR-
 S351:
             9.83
                      15.36
                     15.46
 S352:
             9.32
                                0 -NR--NR--NR--NR-
 S354:
             9.84
                     15.40
                                0 -NR--NR--NR--NR-
Caloosahatchee River (S77, S78, S79)
 S47B: 13.22 11.45
                                     0.5 1.0
 S47D:
             11.43
                     11.42 40 5.0
 S77:
   Spillway and Sector Flow:
             15.19 11.50 471 0.0 2.5 0.0 0.5
   Flow Due to Lockages+:
                                4
 S77 Below USGS Flow Gage 370
 S78:
   Spillway and Sector Flow:
             11.31 2.65 1290 0.5 1.0 1.0 1.0
                               25
   Flow Due to Lockages+:
 S79:
   Spillway and Sector Flow:
            2.76 0.43 3479 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2.0
   Flow Due to Lockages+:
                                9
                             14%
   Percent of flow from S77
                    (ppm)
   Chloride
                              52
St. Lucie Canal (S308, S80)
   Spillway and Sector Flow:
                              0 0.0 0.0 0.0 0.0
            15.30 13.93
   Flow Due to Lockages+:
                                 2
 S308 Below USGS Flow Gage
                                6
 S153: 19.03 13.75 120 0.5 0.0
 S80:
   Spillway and Sector Flow:
             13.95 1.53 724 0.0 0.5 0.5 0.0 0.5 0.5 0.0
```

Flow Due to Lockages+: 10
Percent of flow from S308 0%

Steele Point Top Salinity (mg/ml) ****
Steele Point Bottom Salinity (mg/ml) ****

Speedy Point Top Salinity (mg/ml) 9843

Speedy Point Bottom Salinity (mg/ml)

+ Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

_				Wi	nd
- Daily Precipitation Totals Speed	1-Day	3-Day	7-Day	Directio	n
	(inches	(inches)	(inches)	(Degø)	
(mph)					
S133 Pump Station:	-NR-	0.00	0.00		
S193:	-NR-	0.00	0.00	-NR-	-NR-
Okeechobee Field Station:	-NR-	0.00	0.00		
S135 Pump Station:	-NR-	0.00	0.00		
S127 Pump Station:	-NR-	0.00	0.00		
S129 Pump Station:	-NR-	0.00	0.00		
S131 Pump Station:	-NR-	0.00	0.00		
S77:	0.00	1.98	1.98	213	0
S78:	0.00	0.93	0.93	128	1
S79:	0.00	0.78	0.78	167	4
S4 Pump Station:	-NR-	0.00	0.00		
Clewiston Field Station:	-NR-	0.00	0.00		
S3 Pump Station:	-NR-	0.00	0.00		
S2 Pump Station:	-NR-	0.00	0.00		
S308:		*****		270	0
S80:	0.00	0.59	1.55	309	4
Okeechobee Average	*****	6541.08	*****		
(Sites S78, S79 and					
Oke Nexrad Basin Avg	0.00	1.25	1.25		

Okeechobee Lake Elevations	24 JAN 2016	15.31 Difference	from
24JAN16			
24JAN16 -1 Day =	23 JAN 2016	15.34	0.03
24JAN $16 - 2$ Days =	22 JAN 2016	15.21	-0.10
24JAN $16 - 3$ Days =	21 JAN 2016	15.13	-0.18
24JAN $16 - 4$ Days =	20 JAN 2016	15.10	-0.21
24JAN16 -5 Days =	19 JAN 2016	15.06	-0.25
24JAN16 -6 Days =	18 JAN 2016	15.07	-0.24
24JAN $16 -7$ Days =	17 JAN 2016	15.05	-0.26
24JAN $16 - 30$ Days =	25 DEC 2015	14.81	-0.50
24JAN16 -1 Year =	24 JAN 2015	14.89	-0.42
24JAN16 - 2 Year =	24 JAN 2014	13.80	-1.51

Long T	erm M	leali	300a	у А	vearg	е в.	I LOI	. цаке	Allred (.	Inches) =	-NR-
_											
										ow (LONIN)	
					rage				previous	14 days	Avg-Daily Flow
24J	AN16		Today	=				2016	8074	MON	-6026
24J	AN16		Day			23	JAN	2016	9162	SUN	28285
24J	AN16	-2	Days	=				2016	7550	SAT	17533
24J	AN16	-3	Days	=		21	JAN	2016	6508	FRI	6711
24J	AN16		Days			20	JAN	2016	6345	THU	9022
24J	AN16	-5	Days	=		19	JAN	2016	6167	WED	-1974
24J	AN16	-6	Days	=		18	JAN	2016	5427	TUE	4502
24J	AN16		Days			17	JAN	2016	5625	MON	17362
24J	AN16	-8	Days	=		16	JAN	2016	4191	SUN	21470
24J	AN16	-9	Days	=				2016	2380	SAT	23705
			Days			14	JAN	2016	682	FRI	-1919
24J	AN16	-11	Days	=		13	JAN	2016	946	THU	-4009
24J	AN16	-12	Days	=		12	JAN	2016	1218	WED	2340
24J	AN16	-13	Days	=		11	JAN	2016	1040	TUE	-3973
_											
								55E			
					Aver	_	Flov	v over	previous	_	Avg-Daily Flow
	AN16		Today		Aver	24	Flow JAN	v over 2016	2256	MON	2583
24J	AN16		Day	=	Aver	24 23	Flow JAN JAN	v over 2016 2016	2256 2142	MON SUN	2583 3197
24J 24J	AN16 AN16	-2	Day Days	=	Aver	24 23 22	Flow JAN JAN JAN	v over 2016 2016 2016	2256 2142 1972	MON SUN SAT	2583 3197 2956
24J 24J 24J	AN16 AN16 AN16	-2 -3	Day Days Days	= =	Aver	24 23 22 21	Flow JAN JAN JAN JAN	v over 2016 2016 2016 2016	2256 2142 1972 1800	MON SUN SAT FRI	2583 3197 2956 2708
24J 24J 24J 24J	AN16 AN16 AN16 AN16	-2 -3 -4	Day Days Days Days	= = =	Aver	24 23 22 21 20	Flow JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649	MON SUN SAT FRI THU	2583 3197 2956 2708 3069
24J 24J 24J 24J 24J	AN16 AN16 AN16 AN16	-2 -3 -4 -5	Day Days Days Days	= = = =	Aver	24 23 22 21 20 19	Flow JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649 1471	MON SUN SAT FRI THU WED	2583 3197 2956 2708 3069 3345
24J 24J 24J 24J 24J 24J	AN16 AN16 AN16 AN16 AN16	-2 -3 -4 -5 -6	Days Days Days Days Days	= = = = =	Aver	24 23 22 21 20 19	Flow JAN JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649 1471 1275	MON SUN SAT FRI THU WED TUE	2583 3197 2956 2708 3069 3345 3216
24J 24J 24J 24J 24J 24J 24J	AN16 AN16 AN16 AN16 AN16 AN16	-2 -3 -4 -5 -6	Days Days Days Days Days Days	= = = = =	Aver	24 23 22 21 20 19 18	Flow JAN JAN JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649 1471 1275 1083	MON SUN SAT FRI THU WED TUE MON	2583 3197 2956 2708 3069 3345 3216 2965
24J 24J 24J 24J 24J 24J 24J 24J	AN16 AN16 AN16 AN16 AN16 AN16 AN16	-2 -3 -4 -5 -6 -7	Days Days Days Days Days Days Days Days	= = = = = = =	Aver	24 23 22 21 20 19 18 17	Flow JAN JAN JAN JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649 1471 1275 1083 904	MON SUN SAT FRI THU WED TUE MON SUN	2583 3197 2956 2708 3069 3345 3216 2965
24J 24J 24J 24J 24J 24J 24J 24J	AN16 AN16 AN16 AN16 AN16 AN16 AN16 AN16	-2 -3 -4 -5 -6 -7 -8	Days Days Days Days Days Days Days Days	= = = = = = = = = = = = = = = = = = = =	Aver	24 23 22 21 20 19 18 17 16	Flow JAN JAN JAN JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649 1471 1275 1083 904 793	MON SUN SAT FRI THU WED TUE MON SUN SAT	2583 3197 2956 2708 3069 3345 3216 2965 2055
24J 24J 24J 24J 24J 24J 24J 24J 24J	AN16 AN16 AN16 AN16 AN16 AN16 AN16 AN16	-2 -3 -4 -5 -6 -7 -8 -9	Days Days Days Days Days Days Days Days	= = = = = = = = = = = = = = = = = = = =	Aver	24 23 22 21 20 19 18 17 16 15	Flow JAN JAN JAN JAN JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649 1471 1275 1083 904 793 708	MON SUN SAT FRI THU WED TUE MON SUN SAT FRI	2583 3197 2956 2708 3069 3345 3216 2965 2055 1660 874
24J 24J 24J 24J 24J 24J 24J 24J 24J 24J	AN16 AN16 AN16 AN16 AN16 AN16 AN16 AN16	-2 -3 -4 -5 -6 -7 -8 -9 -10	Days Days Days Days Days Days Days Days	= = = = = = = = = = = = = = = = = = = =	Aver	24 23 22 21 20 19 18 17 16 15 14	Flow JAN JAN JAN JAN JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649 1471 1275 1083 904 793 708 676	MON SUN SAT FRI THU WED TUE MON SUN SAT FRI THU	2583 3197 2956 2708 3069 3345 3216 2965 2055 1660 874
24J 24J 24J 24J 24J 24J 24J 24J 24J 24J	AN16 AN16 AN16 AN16 AN16 AN16 AN16 AN16	-2 -3 -4 -5 -6 -7 -8 -9 -10 -11	Days Days Days Days Days Days Days Days	= = = = = = = = = = = = = = = = = = = =	Aver	24 23 22 21 20 19 18 17 16 15 14 13	Flow JAN JAN JAN JAN JAN JAN JAN JAN JAN JAN	v over 2016 2016 2016 2016 2016 2016 2016 2016	2256 2142 1972 1800 1649 1471 1275 1083 904 793 708	MON SUN SAT FRI THU WED TUE MON SUN SAT FRI	2583 3197 2956 2708 3069 3345 3216 2965 2055 1660 874

_ Lake Okeechobee Outlets Last 14 Days

			S-77	S-77	Below S-77	S-78	S-78	S-79
			Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
			(0700-2100)	(ALL DAY)	(ALL-DAY)	(0700-2100)	(ALL DAY)	(ALL DAY)
	DATE	C	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
24	JAN	201	5 -NR-	943	733	-NR-	2607	6917
23	JAN	201	5 -NR-	2	-441	-NR-	3016	10195
22	JAN	201	б -NR-	8	67	-NR-	1859	6986
21	JAN	201	5 -NR-	13	-108	-NR-	1145	6901
20	JAN	201	5 -NR-	295	376	-NR-	1258	5476
19	JAN	201	5 -NR-	13	90	-NR-	3591	8760
18	JAN	201	б -NR-	11	23	-NR-	4347	9314
17	JAN	201	5 -NR-	5	146	-NR-	3950	10256

15 14 13 12	JAN JAN JAN JAN	2016 2016 2016 2016 2016	-NR- -NR- -NR- -NR-	11 7 9 7 13	191 28 -87 -89 -133	-NR- -NR- -NR- -NR-	2516 957 897 1018 1314	7613 5297 1110 1976 2388
11			-NR- S-310 Discharge (ALL DAY)	S-351 Discharge (ALL DAY)	(ALL DAY)	-NR- S-354 Discharge (ALL DAY)	L8 Canal Pt Discharge (ALL DAY)	3216
2.4	DATE		(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	
		2016 2016	-93 -163	0	0 0	0	14 203	
		2016	-163 -71	0	0	0	203 377	
		2016	-71 -90	0	0	0	410	
		2016	-53	0	0	0	416	
		2016	13	0	0	0	385	
		2016	-109	0	0	0	330	
		2016	-137	0	0	0	336	
		2016	-127	0	0	0	285	
		2016	-87	0	0	0	118	
		2016	-3	0	0	0	394	
		2016	-50	0	0	0	448	
12	JAN	2016	-74	0	0	0	442	
11	JAN	2016	-89	0	0	0	392	
			S-308	Below S-308	3 S-80			
		ī	Discharge	Discharge	Discharge	.		
			(ALL DAY)	(ALL-DAY)	(ALL-DAY)			
	DATE		(AC-FT)	(AC-FT)	(AC-FT)			
24		2016	3	13	1455			
		2016	2	-158	1108			
		2016	4	-265	1118			
21	JAN	2016	7	353	398			
20	JAN	2016	5	-60	595			
19	JAN	2016	2	59	708			
18	JAN	2016	3	-47	719			
17	JAN	2016	2	-352	1296			
		2016	2	-291	864			
		2016	4	-337	681			
		2016	1	75	1065			
		2016	1	94	42			
12	JAN	2016	1	52	41			

*** NOTE: 1) Discharge from (0700-2100) is computed using Spillway and Sector $\,$

183

Gate Discharges from 0700 hrs to 2100 hrs.

2) Discharge (ALL DAY) is computed using Spillway, Sector Gate and
Lockages Discharges from 0015 hrs to 2400 hrs.

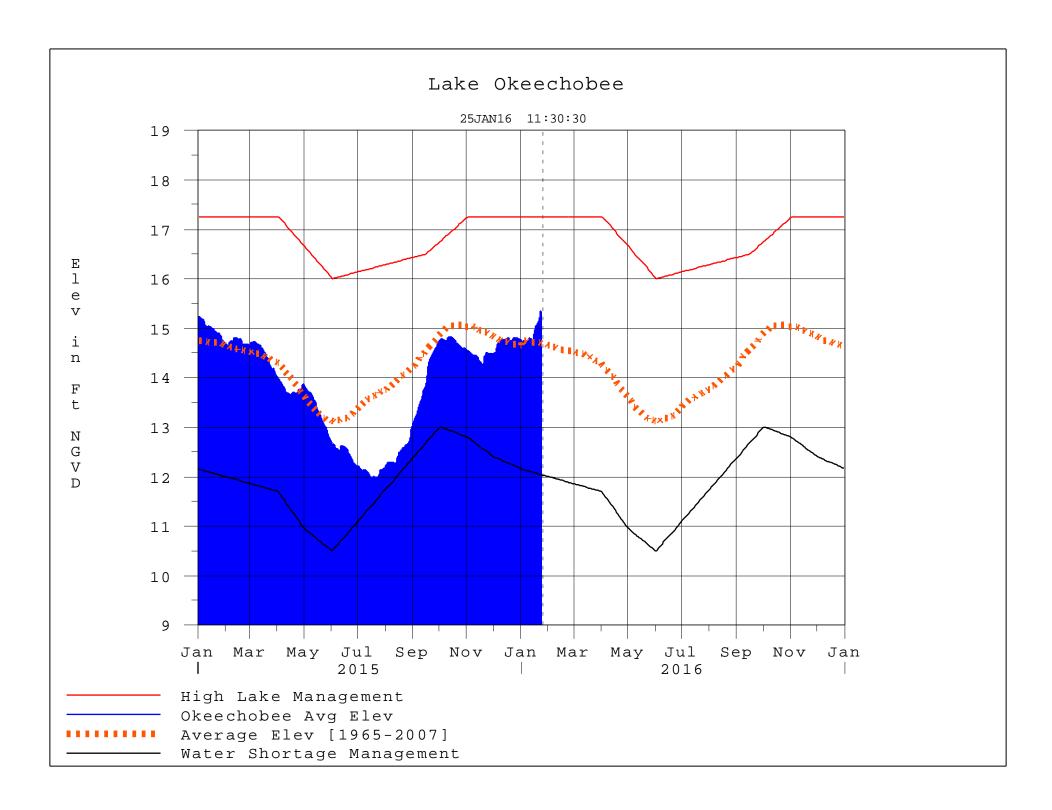
Localized Discharges from 0013 mis to 2100 mis.

6

(I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

_

11 JAN 2016 2


* On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average.

On 14 Mar 2001, due to the isolation of various gages within the standard

- 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation.
- On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.
- On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels.
- Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations
 - ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/
- \$ For information regarding Lake Okeechobee Service Area water restrictions

please refer to www.sfwmd.gov

Report Generated 25JAN2016 @ 11:15 ** Preliminary Data - Subject to Revision

Classification Tables

Supplemental Tables used in conjunction with the LORS2008

Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• 6-15 Day Precipitation Outlook Categories

Table ?? in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Seasonal

Outlook

Table K-3 in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic	Palmer Index	2-wk Mean L.O. Net
Classification*	Class Limits	Inflow Class Limits
Very Wet	3.0 or greater	Greater >= 6000 cfs
Wet	1.5 to 2.99	2500 - 5999 cfs
Near Normal	-1.49 to 1.49	500 - 2499 cfs
Dry	-2.99 to -1.5	-5000 – 500 cfs
Very Dry	-3.0 or less	Less than -5000 cfs

^{*} use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
[[1000]	Seasonal Outlook
> 0.93	> 2.0	Very Wet
0.71 to 0.93	1.51 to 2.0	Wet
0.35 to 0.70	0.75 to 1.5	Normal
< 0.35	< 0.75	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
		Multi-Seasonal Outlook
> 2.0	> 4.3	Very Wet
1.18 to 2.0	2.51 to 4.3	Wet
0.5 to 1.17	1.1 to 2.5	Normal
< 0.5	< 1.1	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories
Above Normal	Wet to Very Wet
Normal	Normal
Below Normal	Dry

^{*} Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan

Under Construction