Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 7/13/2015 (Developing El Nino Condition)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method¹, the SFWMD empirical method², a sub-sampling of El Nino years³ and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with ENSO El Nino years⁴. The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season	Croley's Method ^{1*}				ENS	ampling of O El Nino ears ³	AMO ENSO	Sub-sampling of AMO Warm + ENSO El Nino Years ⁴	
	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	
Current (Jul-Dec)	N/A	N/A	2.32	Very Wet	2.36	Very Wet	2.57	Very Wet	
Multi Seasonal (Jul-Apr)	N/A	N/A	2.79	Wet	3.66	Wet	4.30	Very Wet	

^{*}Croley's Method Not Produced For This Report

See <u>Seasonal</u> and <u>Multi-Seasonal</u> tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

Tributary Hydrologic Conditions Graph:

-489 cfs 14-day running average for Lake Okeechobee Net Inflow through 7/12/2015. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Dry.

-2.03 for Palmer Index on 7/11/2015.

According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Dry.

The wetter of the two conditions above is **Dry**.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 7/13/2015

Lake Okeechobee Stage: 12.08 feet

USACE Report for Lake Okeechobee

Lake Okeechobee Stage Hydrograph

	ee Management /Band	Bottom Elevation (feet, NGVD)	Current Lake Stage
High Lake Manage	ement Band	16.20	
	High sub-band	15.75	
Operational Band	Intermediate sub-band	15.29	
	Low sub-band	13.39	
Base Flow sub-ba	nd	12.60	
Beneficial Use sub	o-band	11.36	← 12.08
Water Shortage M	lanagement Band		

Part C of LORS2008: Discharge to WCA's

Release Guidance Flow Chart Outcome: No Releases to the WCAs

Part D of LORS2008: Discharge to Tidewater

Release Guidance Flow Chart Outcome: No Releases to the Estuaries

Technical Input Summaries from:

- Lake Okeechobee Division
- Coastal Ecosystems
- Everglades Ecosystems Division
- Water Supply Department
- Water Resource Management Release Recommendation
- Kissimmee Watershed Environmental Conditions
- Operations Department

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers LORSS Homepage

LORS2008 Implementation on 7/13/2015 (ENSO Neutral Condition):

Water Supply Department Technical Input

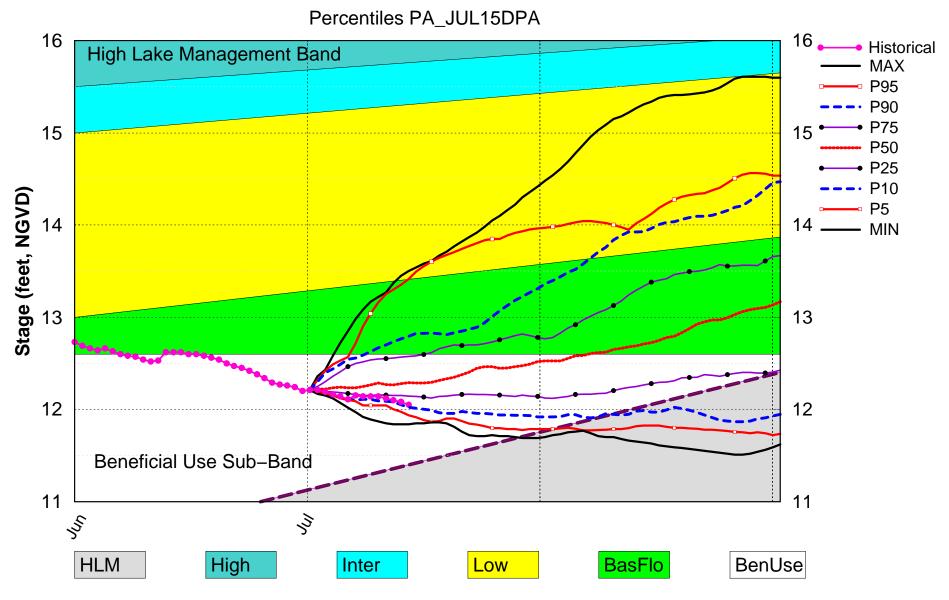
Water Supply Outlook:

District wide, Raindar rainfall 0.69 inches for the week ending 7/13/2015. Lake stage on 7/13/2015 is 12.08 ft, down 0.03 ft from last week.

The updated July 2015 SFWMM Dynamic Position Analysis <u>percentile graph</u> and <u>tracking chart</u> for Lake Okeechobee show that the lake stage is in the Low Flow Operational Sub-Band.

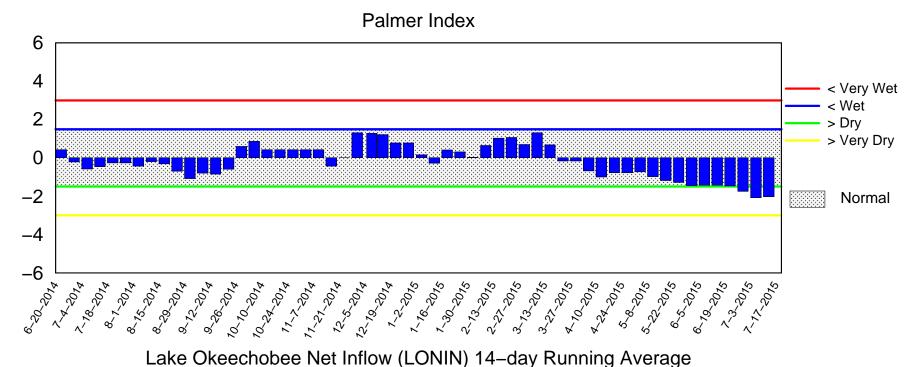
The LORS2008 tributary <u>indices</u> are classified as **Dry**. The PDSI indicates dry condition and the LONIN is Dry. The classification is based on the wetter of the two.

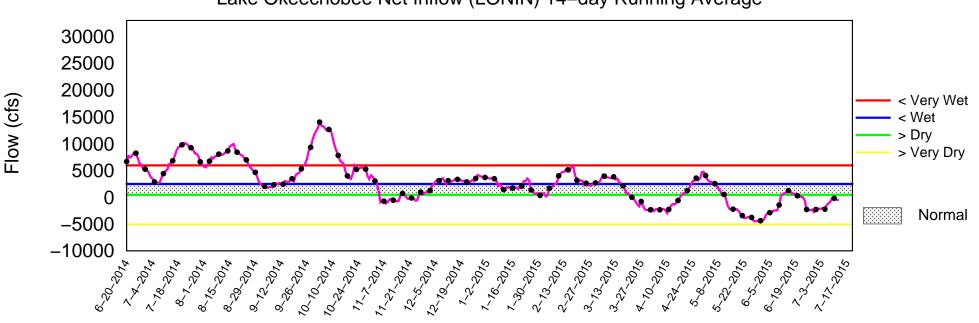
Water Supply Risk Evaluation


Area	Indicator	Value	Color Coded Scoring Scheme
	Projected LOK Stage for the next two months	Base Flow Sub-Band	М
	Palmer Index for LOK Tributary Conditions	-2.03 (Extremely Dry)	Н
LOK	CDC Presinitation Outland	1 month: Normal	L
LOK	CPC Precipitation Outlook	3 months: Normal	Ш
	LOK Seasonal Net Inflow Forecast AMO warm/El Nino	2.57 ft (Normal to Extremely Wet)	L
	LOK Multi-Seasonal Net Inflow Forecast AMO warm/El Nino	4.30 ft (Wet)	L
	WCA 1: Site 1-8C	Between Line 1 & 2 (14.83 ft)	М
WCAs	WCA 2A: Site 2-17 HW	Above Line 1 (11.61 ft)	L
	WCA-3A: 3 Station Average (Site 63, 64 and 65)	Between Line 1 & 2 (8.70 ft)	M
	Service Area 1	Year-Round Irrigation Rule in effect	L
LEC	Service Area 2	50% or more of USGS wells are within the lowest 10% to 30% of past water elevations and more than 25% are in the lowest 10% of past water elevations	Н
	Service Area 3	50% or more of USGS wells are within the lowest 10% to 30% of past water elevations and more than 25% are in the lowest 10% of past water elevations	Н

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow forecasts use slightly different classification intervals than those used by the 2008-LORS for classifying the tributary hydrologic condition (THC).

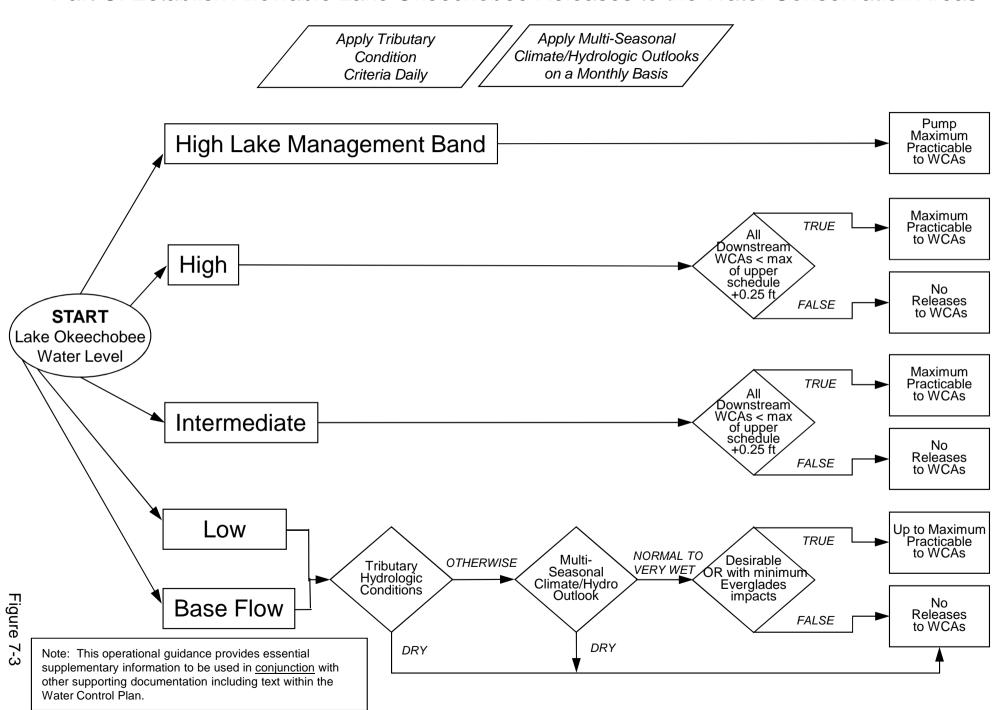
Back to Lake Okeechobee Operations Main Page


Back to U.S. Army Corps of Engineers LORSS Homepage

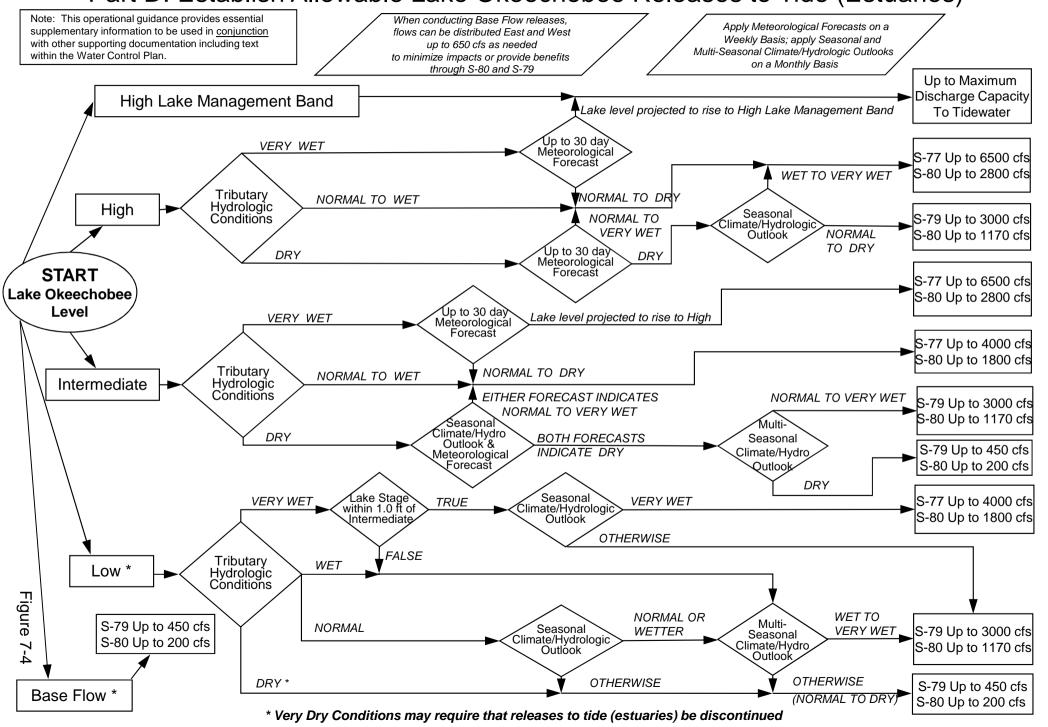

Lake Okeechobee SFWMM July 2015 Position Analysis

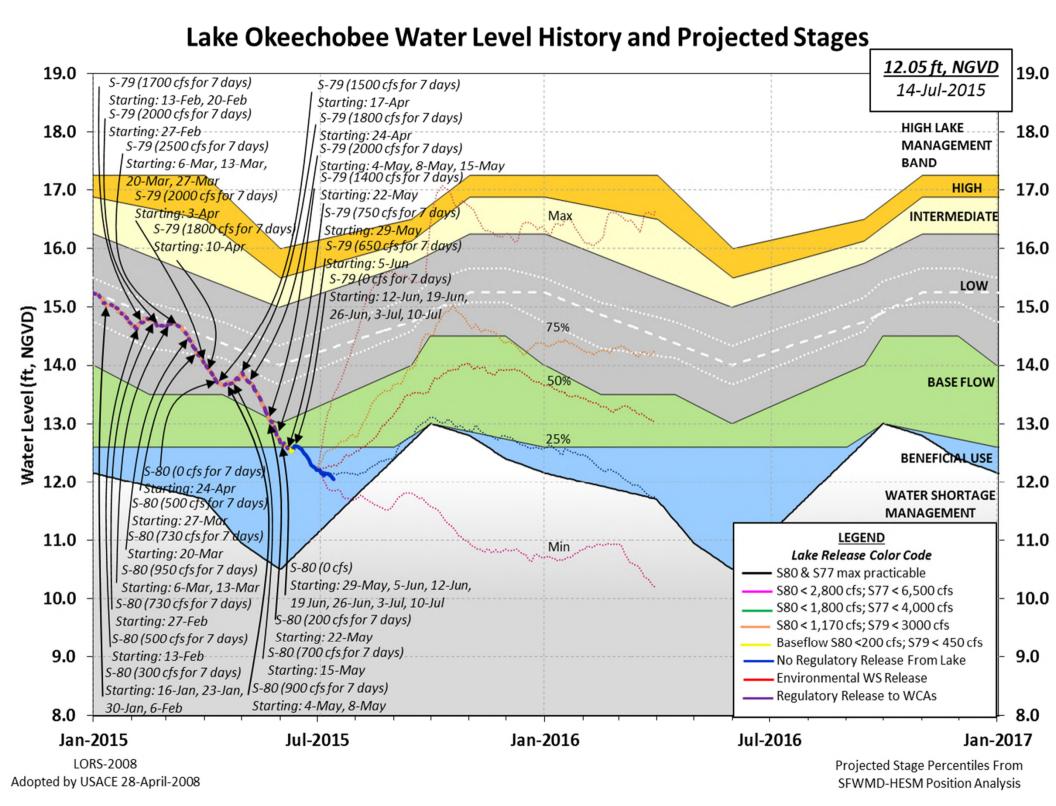
(See assumptions on the Position Analysis Results website)

Tributary Basin Condition Indicators as of July 13 2015



Mon Jul 13 15:12:28 EDT 2015


2008 LORS


Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas

2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Data Ending 2400 hours 12 JUL 2015

Okeechobee Lake	Regulation	Ele	vation	Last Ye	ear 2YRS Ao	au au	
5.1.555115255	110941401011				VD) (ft-NGV	•	
*Okeechobee La	ake Elevati		12.08		26 14.82		Elv
Bottom of High							,
Currently in (nore mignic-	11.33	
carrencry in (operacionar	Manageme	iic baila				
Simulated Ave	rage LORS20	08 [1965-	20001	12.45			
Difference from	_			-0.37			
12JUL (1965-20	007) Period	of Recor	d Avera	ge 13	.57		
Difference fro	om POR Aver	age		-1.	49		
Today Lake Oke	eechobee el	evation i	s deter	mined from	om the 4 Int	E & 4 Edge	
stations							
++Navigation I	Depth (Base	d on 2007	Channe	1 Condit	ion Survey)	Route 1 ÷	
6.02'		_					
++Navigation I	Depth (Base	d on 2008	Channe	1 Condit	ion Survey)	Route 2 ÷	
4.22'		_					
Bridge Clearar	nce = 50.02	'					
_							
1 Interior and	4 Edga Okaa	ahohoo In	leo Arron	aga (Aug	Daily value	ag).	
4 Interior and 4	4 Edge Okee	chobee La	ke Aver	age (Avg	-Daily value	es):	
						es):	
L001 L005	L006 LZ4	0 S4	S352	S308	S133	es):	
L001 L005	L006 LZ4		S352	S308	S133	es):	
L001 L005	L006 LZ4	0 S4	S352	S308	S133	es):	
L001 L005	L006 LZ4 12.08 -N	0 S4 R- 12.07	S352 12.17	S308 11.99	S133 12.11	es):	
L001 L005 11.99 12.13	L006 LZ4 12.08 -N	0 S4 R- 12.07	S352 12.17	S308 11.99	S133 12.11		
L001 L005 11.99 12.13	L006 LZ4 12.08 -N	0 S4 R- 12.07	S352 12.17	S308 11.99	S133 12.11		
L001 L005 11.99 12.13	L006 LZ4 12.08 -N	0 S4 R- 12.07	S352 12.17	S308 11.99	S133 12.11		
L001 L005 11.99 12.13	L006 LZ4 12.08 -N	0 S4 R- 12.07	S352 12.17	S308 11.99	S133 12.11		
L001 L005 11.99 12.13 *Combination O	L006 LZ4 12.08 -N keechobee	0 S4 R- 12.07	S352 12.17	S308 11.99	S133 12.11		
L001 L005 11.99 12.13 *Combination O	L006 LZ4 12.08 -N keechobee	0 S4 R- 12.07	S352 12.17	S308 11.99	S133 12.11 12.08 (*See Note) g Cr 780	
L001 L005 11.99 12.13 *Combination Of	L006 LZ4 12.08 -N	0 S4 R- 12.07 Avg-Daily	S352 12.17	\$308 11.99 verage =	S133 12.11 12.08 (*See Note Fisheating S135 Pumps) g Cr 780	
L001 L005 11.99 12.13 *Combination Of	L006 LZ4 12.08 -N keechobee ows (cfs): 1134	0 S4 R- 12.07 Avg-Daily	S352 12.17 Lake A	\$308 11.99 verage =	S133 12.11 12.08 (*See Note) g Cr 780	
L001 L005 11.99 12.13 *Combination Of Combination Of Combin	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0	0 S4 R- 12.07 Avg-Daily C5 S191	S352 12.17 Lake A	\$308 11.99 verage =	S133 12.11 12.08 (*See Note Fisheating S135 Pumps) g Cr 780 s 0	
L001 L005 11.99 12.13 *Combination Of Combination Of Combin	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0 0	0 S4 R- 12.07 Avg-Daily C5 S191 S133 Pum	S352 12.17 Lake A	S308 11.99 verage =	S133 12.11 12.08 (*See Note Fisheating S135 Pumps S2 Pumps	g Cr 780 s 0	
L001 L005 11.99 12.13 *Combination Of Combination Of Combin	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0 0 156	0 S4 R- 12.07 Avg-Daily C5 S191 S133 Pum S127 Pum	S352 12.17 Lake A	\$308 11.99 verage =	S133 12.11 12.08 (*See Note Fisheating S135 Pumps S2 Pumps S3 Pumps S3 Pumps	g Cr 780 s 0 0	
L001 L005 11.99 12.13 *Combination Of Combination Of Combin	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0 0 156 0	0 S4 R- 12.07 Avg-Daily C5 S191 S133 Pum S127 Pum S129 Pum	S352 12.17 Lake A	S308 11.99 verage =	S133 12.11 12.08 (*See Note Fisheating S135 Pumps S2 Pumps S3 Pumps S3 Pumps	g Cr 780 s 0 0	
L001 L005 11.99 12.13 *Combination Off Combination Off	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0 0 156 0 2070	0 S4 R- 12.07 Avg-Daily C5 S191 S133 Pum S127 Pum S129 Pum	S352 12.17 Lake A	S308 11.99 verage =	S133 12.11 12.08 (*See Note Fisheating S135 Pumps S2 Pumps S3 Pumps S3 Pumps	g Cr 780 s 0 0	
L001 L005 11.99 12.13 *Combination Of Combination Of Combin	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0 0 156 0 2070 lows (cfs):	0 S4 R- 12.07 Avg-Daily C5 S191 S133 Pum S127 Pum S129 Pum	S352 12.17 Lake A	\$308 11.99 verage = 0 0 0 0 0	S133 12.11 12.08 (*See Note Fisheating S135 Pumps S2 Pumps S3 Pumps S4 Pumps	g Cr 780 s 0 0	
L001 L005 11.99 12.13 *Combination Of Combination Of Combin	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0 0 156 0 2070 lows (cfs):	0 S4 R- 12.07 Avg-Daily C5 S191 S133 Pum S127 Pum S129 Pum	S352 12.17 Lake A	S308 11.99 verage =	S133 12.11 12.08 (*See Note Fisheating S135 Pumps S2 Pumps S3 Pumps S3 Pumps	g Cr 780 s 0 0	
L001 L005 11.99 12.13 *Combination Of Combination Of Combination Of Combination Of Combination Of Combination Of S65E S154 S84 S84 S84X S71 S72 Total Inflows: Cokeechobee Outf: S135 Culverts (Used)	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0 0 156 0 2070 lows (cfs): -NR-	0 S4 R- 12.07 Avg-Daily C5 S191 S133 Pum S127 Pum S129 Pum S131 Pum	S352 12.17 Lake A	\$308 11.99 verage = 0 0 0 0 0	S133 12.11 12.08 (*See Note Fisheating S135 Pumps S2 Pumps S3 Pumps S4 Pumps S4 Pumps	g Cr 780 s 0 0	
L001 L005 11.99 12.13 *Combination Of Combination Of Combin	L006 LZ4 12.08 -N keechobee ows (cfs): 1134 0 0 156 0 2070 lows (cfs):	0 S4 R- 12.07 Avg-Daily C5 S191 S133 Pum S127 Pum S129 Pum S131 Pum	S352 12.17 Lake A	\$308 11.99 verage = 0 0 0 0 0	S133 12.11 12.08 (*See Note Fisheating S135 Pumps S2 Pumps S3 Pumps S4 Pumps) g Cr 780 s 0 0 0	

S129 Culverts 0 (Used)	S352	505	S308	-3		
	L8 Canal Pt	-181	S308Below	-66 (NOT		
Total Outflows: 1758						
****S77 Structure outflow ****S308 Structure outflow						
Okeechobee Pan Evaporation (inches): S77 0.36 S308 0.35 Average Pan Evap x 0.75 Pan Coefficient = 0.27" = 0.02'						
Lake Average Precipitation	using NEXRAD: =	-NR-" =	-NR- '			
Evaporation - Precipitation: = -NR-" = -NR-" Evaporation - Precipitation using Lake Area of 730 square miles is equal to -NR-						
Lake Okeechobee (Change in Storage) Flow is -3933 cfs or -7800 AC-FT						
-						

Note: Headwater, tailwater, and stage values below are instantaneous values unless otherwise specified.

	Headwater	Tailwater				Gat	e Pos	sition	ns	
	Elevation	Elevation	Disch	#1	#2	#3	#4	#5	#6 #	‡7
#8	(ft-msl)	(ft-msl)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft) (f	t)
(ft)		(T) see n	ote at	bott	om				
North East Sh	nore	(=	, 200 11	000 00						
S133 Pumps:	-	12.28	0	0	0	0	0	0	(cfs)	
	18.54	12.21	0	0.0	0.0	0.0				
S135 Pumps		-NR-			0	0	0		(cfs)	
S135 Culve			-NR-	-NR-	-NR-	-			(/	
North West Sh	nore									
S65E:	20.95	11.97	1134	0.5	0.5	0.5	0.5	0.3	0.0	
S127 Pumps	13.04	12.22	0	0	0	0	0	0	(cfs)	
S127 Culve	rt:		0	0.0						
S129 Pumps: S129 Culver		11.52	0 0	0	0	0			(cfs)	
S131 Pumps		12.16	0	0	0				(cfs)	
Fisheating nr Palmda nr Lakepo	ale	32.54 12.68	780							

```
C5: 14.03 12.13 0 0.0 0.0 0.0
South Shore

      S4 Pumps:
      11.79
      12.00
      0
      0
      0
      0

      S169:
      11.93
      11.89
      90
      5.0
      5.0
      5.0

                                                            (cfs)
 S169:
 S310:
            11.90
                              145
 S3 Pumps: 11.33
S354: 12.00
                     12.00
                               0
                                      0 0
                                                0
                                                             (cfs)
                              502 2.3 2.4
                     11.33
                                      0 0 0 0
 S2 Pumps: 11.05
                     11.88
                                0
                                                            (cfs)
                                    2.3 2.3 2.5
            11.88 11.05
12.12 11.07
-NR- 12.23
 S351:
                              877
                              505
 S352:
                                    1.9 1.9
 C10A:
                                     8.5 8.5 8.5 8.5 8.5
 L8 Canal PT
                      12.02 -181
                 S351 and S352 Temporary Pumps/S354 Spillway
 S351:
             11.05
                     11.88
                              877 -NR--NR--NR--NR--NR-
 S352:
             11.07
                     12.12
                              505 -NR--NR--NR--NR-
 S354:
            11.33
                     12.00
                              502 -NR--NR--NR--NR-
Caloosahatchee River (S77, S78, S79)
 S47B: 14.16 11.02
                                    0.0 0.0
                      10.98 -9 5.0
 S47D:
             10.98
 S77:
   Spillway and Sector Flow:
             11.89 11.02 56 0.0 0.0 0.0 0.0
   Flow Due to Lockages+:
                                1
 S77 Below USGS Flow Gage 20
 S78:
   Spillway and Sector Flow:
            10.85 2.75
                               0 0.0 0.0 0.0 0.0
                                9
   Flow Due to Lockages+:
 S79:
   Spillway and Sector Flow:
            2.99 0.51 828 0.0 0.0 0.0 1.0 0.5 0.0 0.0
0.0
   Flow Due to Lockages+:
                                5
                    om S77 7% (ppm) 66
   Percent of flow from S77
   Chloride
St. Lucie Canal (S308, S80)
   Spillway and Sector Flow:
            11.94 13.48
                              0 0.0 0.0 0.0 0.0
   Flow Due to Lockages+:
                                -3
 S308 Below USGS Flow Gage
                              -66
 S308 Below USGS Flow Gage -66
S153: 18.92 13.34 0 0.0 0.0
 S80:
   Spillway and Sector Flow:
             13.59 0.55 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
```

```
Flow Due to Lockages+: 18
Percent of flow from S308 NA %

Steele Point Top Salinity (mg/ml) ****
Steele Point Bottom Salinity (mg/ml) ****

Speedy Point Top Salinity (mg/ml) ****
Speedy Point Bottom Salinity (mg/ml) ****
```

+ Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

-				Wi	.nd
Daily Precipitation Totals Speed	1-Day	3-Day	7-Day	Directio	on
-	(inches)	(inches)	(inches)	(Degø)	
mph)					
S133 Pump Station:	-NR-	0.00	0.04		
S193:	-NR-	0.00	0.00	-NR-	-NR-
Okeechobee Field Station:	-NR-	0.00	0.00		
S135 Pump Station:	-NR-	0.00	0.23		
S127 Pump Station:	-NR-	0.00	0.00		
S129 Pump Station:	-NR-	0.00	0.01		
S131 Pump Station:	-NR-	0.00	0.00		
S77:	0.00	0.00	1.06	143	2
S78:	0.00	0.00	0.07	254	0
S79:	0.00	0.00	0.02	184	1
S4 Pump Station:	-NR-	0.00	0.00		
Clewiston Field Station:	-NR-	0.00	0.00		
S3 Pump Station:	-NR-	0.00	0.03		
S2 Pump Station:	-NR-	0.00	1.05		
S308:	0.00	0.00	0.12	129	8
S80:	0.00	0.00	0.82	200	1
Okeechobee Average	0.00	0.00	0.20		
(Sites S78, S79 and	S80 not inc	:luded)			
Oke Nexrad Basin Avg	-NR-	0.00	0.07		

Okeechobee Lake Elevations	12 JUL 2015	12.08 Difference	from
12JUL15			
12JUL15 - 1 Day =	11 JUL 2015	12.10	0.02
12JUL15 - 2 Days =	10 JUL 2015	12.12	0.04
12JUL15 - 3 Days =	09 JUL 2015	12.14	0.06
12JUL $15 - 4$ Days =	08 JUL 2015	12.14	0.06
12JUL $15 - 5$ Days =	07 JUL 2015	12.14	0.06
12JUL $15 - 6$ Days =	06 JUL 2015	12.15	0.07
12JUL $15 - 7$ Days =	05 JUL 2015	12.11	0.03
12JUL15 - 30 Days =	12 JUN 2015	12.62	0.54
12JUL15 -1 Year =	12 JUL 2014	13.26	1.18
12JUL15 - 2 Year =	12 JUL 2013	14.82	2.74

_ Long Term Mean 30day Avearge ET for Lake Alfred (Inches) = -NR-

				-						
_					- 1	-1			(= 0=====)	
				_					ow (LONIN)	1
	1015			-	_			previous	_	Avg-Daily Flow
	12JUL15		Today				2015	-304	MON	-1993
	12JUL15		Day				2015	-221	SUN	-1288
	12JUL15		Days				2015	-28	SAT	-1726
	12JUL15		Days				2015	78	FRI	1331
	12JUL15		Days				2015	-36	THU	1405
	12JUL15		Days				2015	-180	WED	-159
	12JUL15	-6	Days	=			2015	-182	TUE	9684
	12JUL15		Days				2015	-1579	MON	-4284
	12JUL15		Days				2015	-1277	SUN	-2434
	12JUL15	-9	Days	=			2015	-2226	SAT	-4261
	12JUL15		_				2015	-1971	FRI	-NR-
	12JUL15	-11	Days	=	01	JUL	2015	-1906	THU	-NR-
	12JUL15	-12	Days	=	30	JUN	2015	-1906	WED	4926
	12JUL15	-13	Days	=	29	JUN	2015	-2677	TUE	-4853
_										
_						SI	65E			
				۰۵	verage			previous	14 days	Avg-Daily Flow
	12JUL15		Toda				2015	738	MON	1134
	12JUL15	_1	Day	_			2015	683	SUN	1185
	12JUL15		Days				2015	625	SAT	1173
	12JUL15		Days				2015	569	FRI	1045
	12JUL15		Days				2015	526	THU	870
	12JUL15		Days				2015	492	WED	782
	12JUL15		Days				2015	460	TUE	795
	12JUL15		Days				2015	420	MON	516
	12JUL15		Days				2015	415	SUN	323
	12JUL15		Days				2015	409	SAT	469
	12JUL15		-				2015	409	FRI	-NR-
	12JUL15		_				2015	419	THU	-NR-
	12JUL15						2015	419	WED	331
	12JUL15		_				2015	419	WED TUE	227
	TZU ULLI	-13	pays	-	49	OOIN	ZUID	433	105	441

_ Lake Okeechobee Outlets Last 14 Days

			S-77	S-77	Below S-77	S-78	S-78	S-79
			Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
			(0700-2100)	(ALL DAY)	(ALL-DAY)	(0700-2100)	(ALL DAY)	(ALL DAY)
	DATE	C	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
12	JUL	201	5 4	-NA-	39	0	18	1651
11	JUL	201	5 263	439	463	0	23	900
10	JUL	201	5 139	-NA-	81	0	13	2490
09	JUL	201	5 0	2	-267	61	161	1802
80	JUL	201	5 0	3	-226	172	310	4005
07	JUL	201	5 0	1	-133	171	303	4844
06	JUL	201	5 7	-NA-	-49	123	178	3650
05	JUL	201	5 148	250	263	0	22	122

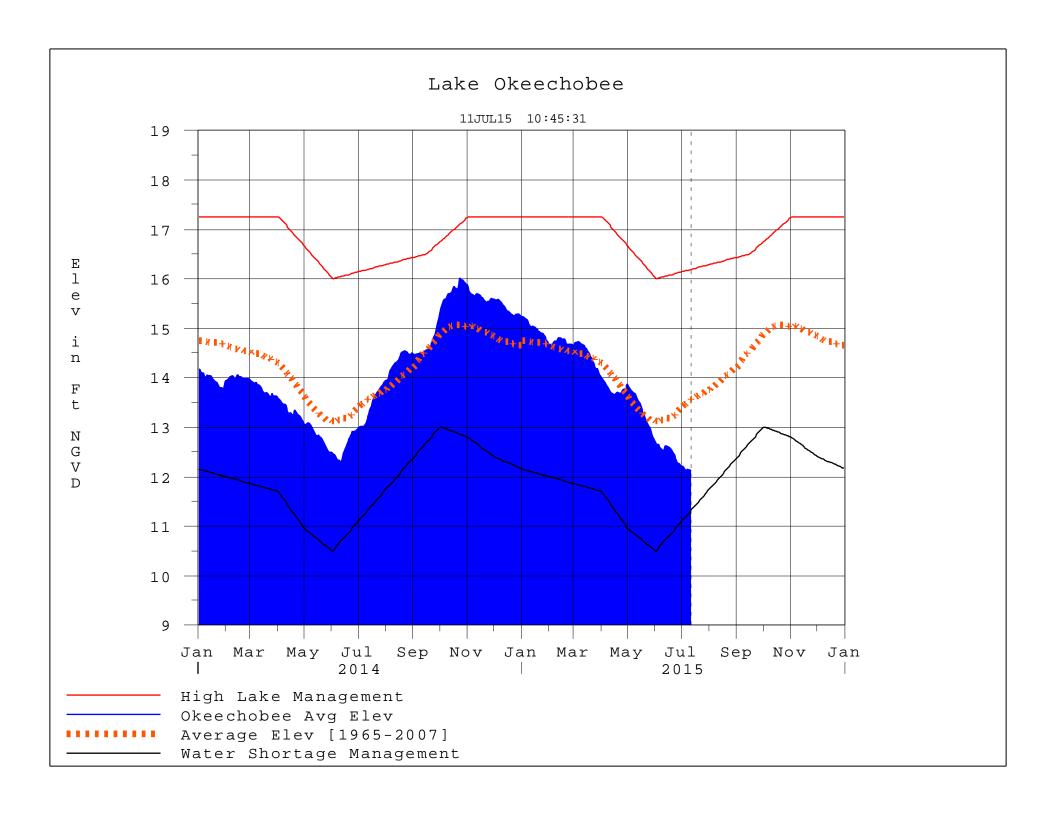
04 JUL 2015 153 03 JUL 2015 58	224 -NA-	220 72	0	13 7	12 625
02 JUL 2015 0	2	-118	0	18	434
01 JUL 2015 0	44	-62	0	20	595
30 JUN 2015 40	56	72	0	22	279
29 JUN 2015 0	3	-130	42	316	833
29 00N 2019 0	3	130	42	310	033
S-310	S-351	S-352	S-354	L8 Canal Pt	
Discharg			Discharge	Discharge	
(ALL DA		(ALL DAY)	(ALL DAY)	(ALL DAY)	
DATE (AC-FT		(AC-FT)	(AC-FT)	(AC-FT)	
12 JUL 2015 287	1739	1001	995	-359	
11 JUL 2015 221	2023	960	1626	-317	
10 JUL 2015 104	1634	710	1634	-359	
09 JUL 2015 -45	1202	260	1178	-460	
08 JUL 2015 -249	1481	139	1166	-588	
07 JUL 2015 118	1805	603	1077	-565	
06 JUL 2015 276	1569	912	1456	-589	
05 JUL 2015 217	1073	779	805	-273	
04 JUL 2015 256	940	873	740	-287	
03 JUL 2015 222	1364	845	652	-200	
02 JUL 2015 -3	-NR-	-NR-	-NR-	-164	
01 JUL 2015 -191	-NR-	-NR-	-NR-	-178	
30 JUN 2015 -118	2905	1110	1801	-96	
29 JUN 2015 359	2965	1225	1783	-2	
S-308	Below S-30				
Dischar	-	-			
(ALL DA		(ALL-DAY)			
DATE (AC-FT		(AC-FT)			
12 JUL 2015 -5	-130	35			
11 JUL 2015 -5	-124	23			
10 JUL 2015 -5	-153	19			
09 JUL 2015 -4	63	31			
08 JUL 2015 -8	156	42			
07 JUL 2015 -2	90	15			
06 JUL 2015 -7	-84	30			
05 JUL 2015 -8	-11	23			
04 JUL 2015 -4	146	31			
03 JUL 2015 -4	20	27			
02 JUL 2015 -7	21	19			
01 JUL 2015 -8	132	32			
30 JUN 2015 -11	97	41			
29 JUN 2015 -7	-72	33			

*** NOTE: 1) Discharge from (0700-2100) is computed using Spillway and Sector

Gate Discharges from 0700 hrs to 2100 hrs.

2) Discharge (ALL DAY) is computed using Spillway, Sector Gate and Lockages Discharges from 0015 hrs to 2400 hrs.

(I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day


* On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average.

On 14 Mar 2001, due to the isolation of various gages within the standard $\,$

- 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation.
- On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.
- On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of $\rm S135$ from low lake levels.
- Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations
 - ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/
- \$ For information regarding Lake Okeechobee Service Area water
 restrictions

please refer to www.sfwmd.gov

Report Generated 13JUL2015 @ 11:38 ** Preliminary Data - Subject to Revision

Classification Tables

Supplemental Tables used in conjunction with the LORS2008

Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• 6-15 Day Precipitation Outlook Categories

Table ?? in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Seasonal

Outlook

Table K-3 in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic	Palmer Index	2-wk Mean L.O. Net
Classification*	Class Limits	Inflow Class Limits
Very Wet	3.0 or greater	Greater >= 6000 cfs
Wet	1.5 to 2.99	2500 - 5999 cfs
Near Normal	-1.49 to 1.49	500 - 2499 cfs
Dry	-2.99 to -1.5	-5000 – 500 cfs
Very Dry	-3.0 or less	Less than -5000 cfs

^{*} use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
[[1000]	Seasonal Outlook
> 0.93	> 2.0	Very Wet
0.71 to 0.93	1.51 to 2.0	Wet
0.35 to 0.70	0.75 to 1.5	Normal
< 0.35	< 0.75	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
		Multi-Seasonal Outlook
> 2.0	> 4.3	Very Wet
1.18 to 2.0	2.51 to 4.3	Wet
0.5 to 1.17	1.1 to 2.5	Normal
< 0.5	< 1.1	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories
Above Normal	Wet to Very Wet
Normal	Normal
Below Normal	Dry

^{*} Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan

Under Construction