Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 6/1/2015 (Developing El Nino Condition)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method¹, the SFWMD empirical method², a sub-sampling of El Nino years³ and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with ENSO El Nino years⁴. The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season		roley's ethod ^{1*}	SFWMD Empirical Method ²		ENS	ampling of O El Nino ears ³	Sub-sampling of AMO Warm + ENSO El Nino Years ⁴	
	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition
Current (Jun- Nov)	N/A	N/A	2.62	Very Wet	2.37	Very Wet	3.64	Very Wet
Multi Seasonal (Jun-Apr)	N/A	N/A	3.05	Wet	3.91	Wet	5.75	Very Wet

^{*}Croley's Method Not Produced For This Report

See Seasonal and Multi-Seasonal tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

Tributary Hydrologic Conditions Graph:

- **-4333 cfs** 14-day running average for Lake Okeechobee Net Inflow through 5/31/2015. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Dry.
- **1.45** for Palmer Index on 5/30/2015. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Normal.

The wetter of the two conditions above is **Normal**.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 6/1/2015

Lake Okeechobee Stage: 12.68 feet

USACE Report for Lake Okeechobee

Lake Okeechobee Stage Hydrograph

Lake Okeechobe Zone/	ee Management 'Band	Bottom Elevation (feet, NGVD)	Current Lake Stage
High Lake Manage	ement Band	16.00	
	High sub-band	15.50	
Operational Band	Intermediate sub-band	15.00	
	Low sub-band	13.00	← 12.68
Base Flow sub-ba	nd	12.60	
Beneficial Use sub	o-band	10.50	
Water Shortage M	lanagement Band		

Part C of LORS2008: Discharge to WCA's

Release Guidance Flow Chart Outcome: Up to Maximum Releases to the WCAs if Desirable or with Minimum Everglades Impacts

Part D of LORS2008: Discharge to Tidewater

Release Guidance Flow Chart Outcome: S-79 up to 450 cfs and S-80 up to 200 cfs

Technical Input Summaries from:

- Lake Okeechobee Division
- Coastal Ecosystems
- Everglades Ecosystems Division
- Water Supply Department
- Water Resource Management Release Recommendation
- Kissimmee Watershed Environmental Conditions
- Operations Department

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers LORSS Homepage

LORS2008 Implementation on 6/1/2015 (ENSO Neutral Condition):

Water Supply Department Technical Input

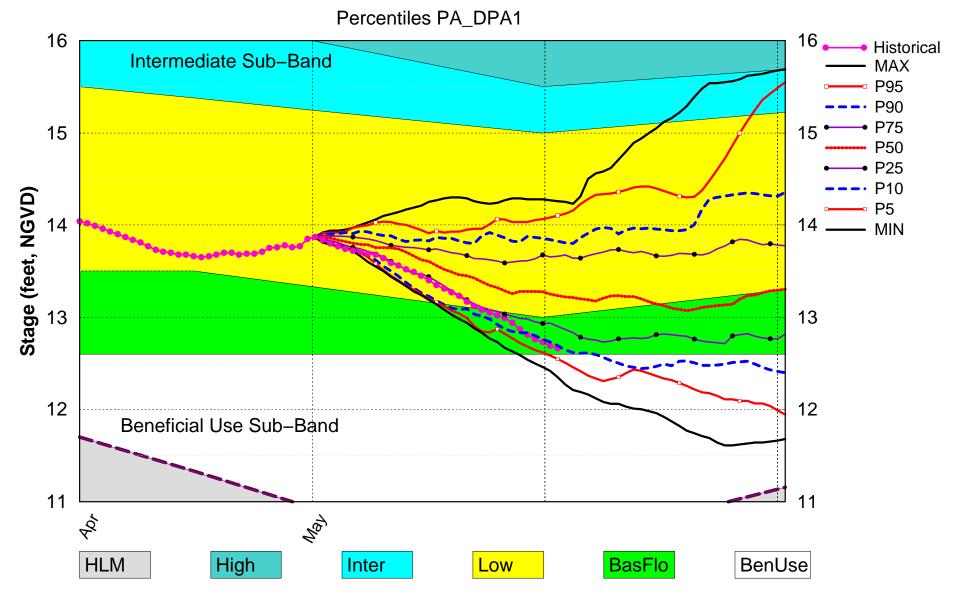
Water Supply Outlook:

District wide, Raindar rainfall 0.54 inches for the week ending 6/2/2015. Lake stage on 6/1/2015 is 12.69 ft, down 0.33 ft from last week.

The updated May 2015 SFWMM Dynamic Position Analysis <u>percentile graph</u> and <u>tracking chart</u> for Lake Okeechobee show that the lake stage is in the Low Flow Operational Sub-Band.

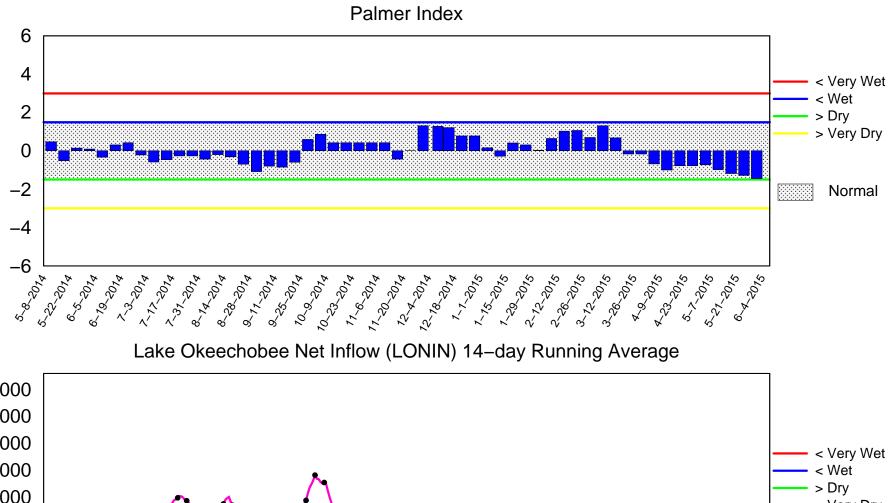
The LORS2008 tributary <u>indices</u> are classified as **Normal**. The PDSI indicates normal condition and the LONIN is Dry. The classification is based on the wetter of the two.

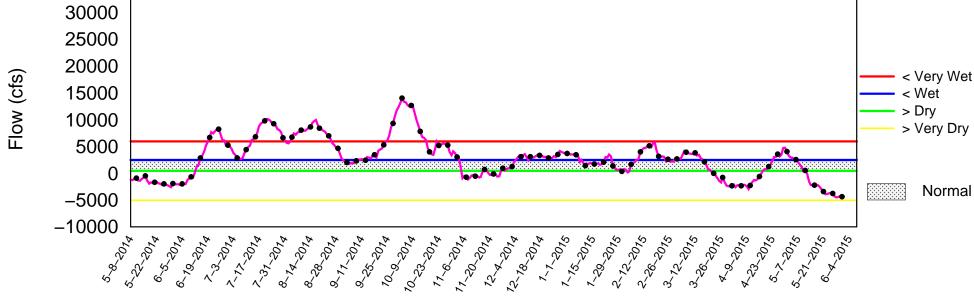
Water Supply Risk Evaluation


Area	Indicator	Value	Color Coded Scoring Scheme
	Projected LOK Stage for the next two months	Base Flow Sub-Band	М
	Palmer Index for LOK Tributary Conditions	-1.45 (Dry)	М
LOK	CDC Draginitation Outland	1 month: Above Normal	L
LOK	CPC Precipitation Outlook	3 months: Above Normal	L
	LOK Seasonal Net Inflow Forecast AMO warm/El Nino	3.64 ft (Normal to Extremely Wet)	٦
	LOK Multi-Seasonal Net Inflow Forecast AMO warm/El Nino	5.75 ft (Wet)	L
	WCA 1: Site 1-7, Site 1-8T, & Site 1-9 Average	Above Line 1 (15.63 ft)	L
WCAs	WCA 2A: Site 2-17 HW	Below Line 2 (10.51 ft)	Н
	WCA-3A: 3 Station Average (Site 63, 64 and 65)	Line 1 – Line 2 (7.97 ft)	М
	Service Area 1	Year-Round Irrigation Rule in effect	L
LEC	Service Area 2	Year-Round Irrigation Rule in effect	L
	Service Area 3	Year-Round Irrigation Rule in effect	L

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow forecasts use slightly different classification intervals than those used by the 2008-LORS for classifying the tributary hydrologic condition (THC).

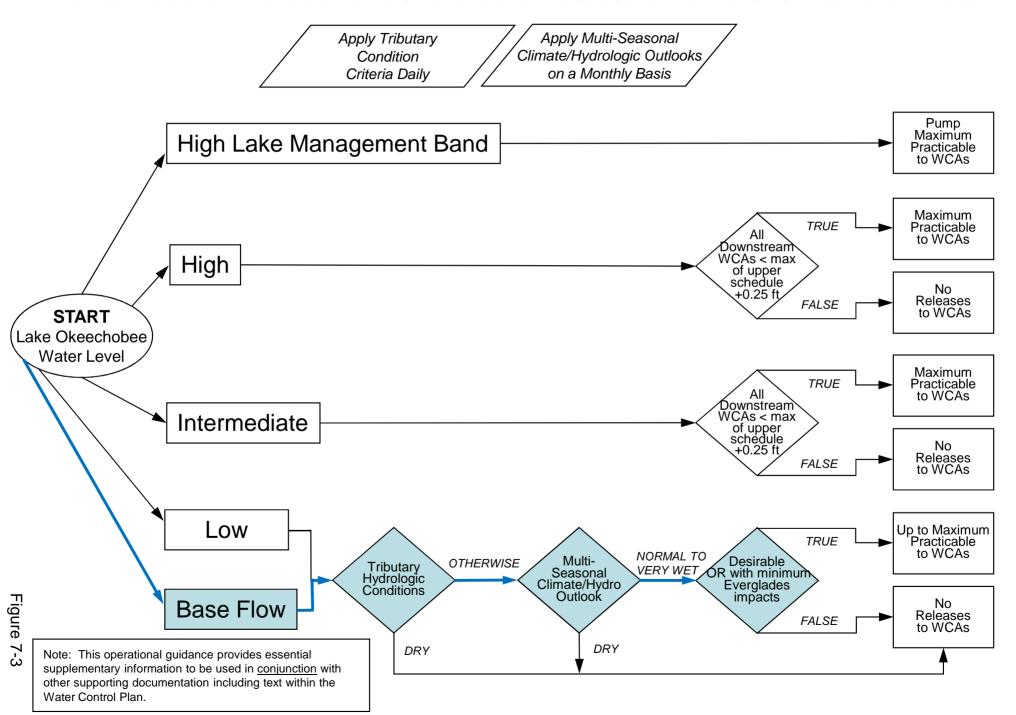
Back to Lake Okeechobee Operations Main Page


Back to U.S. Army Corps of Engineers LORSS Homepage

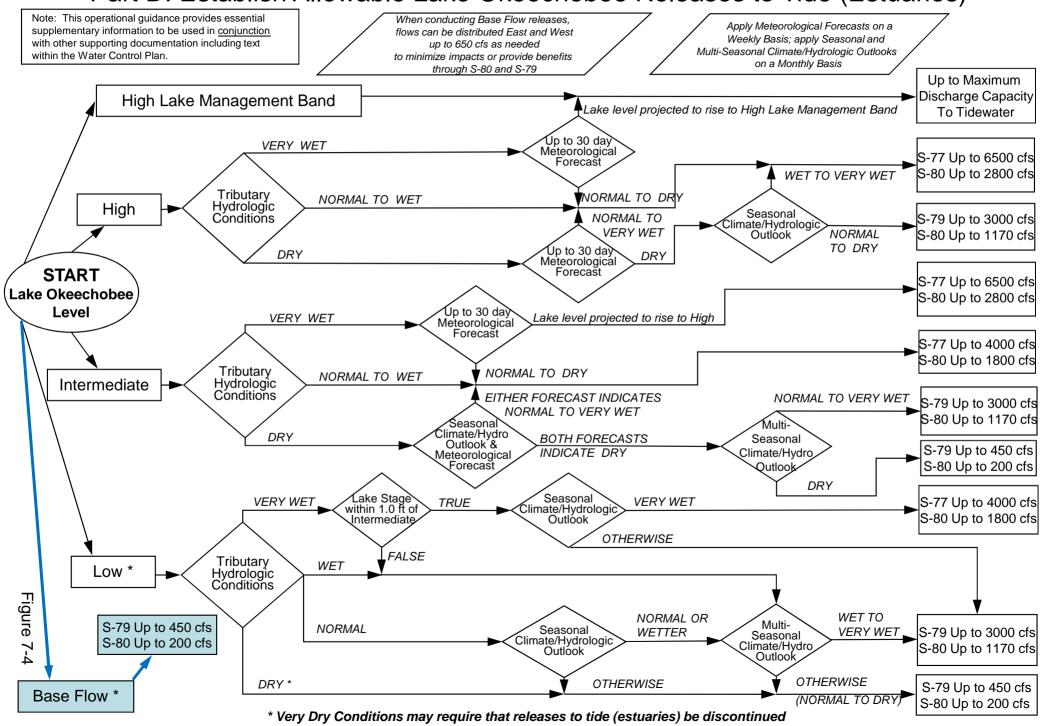

Lake Okeechobee SFWMM May 2015 Dynamic Position Analysis

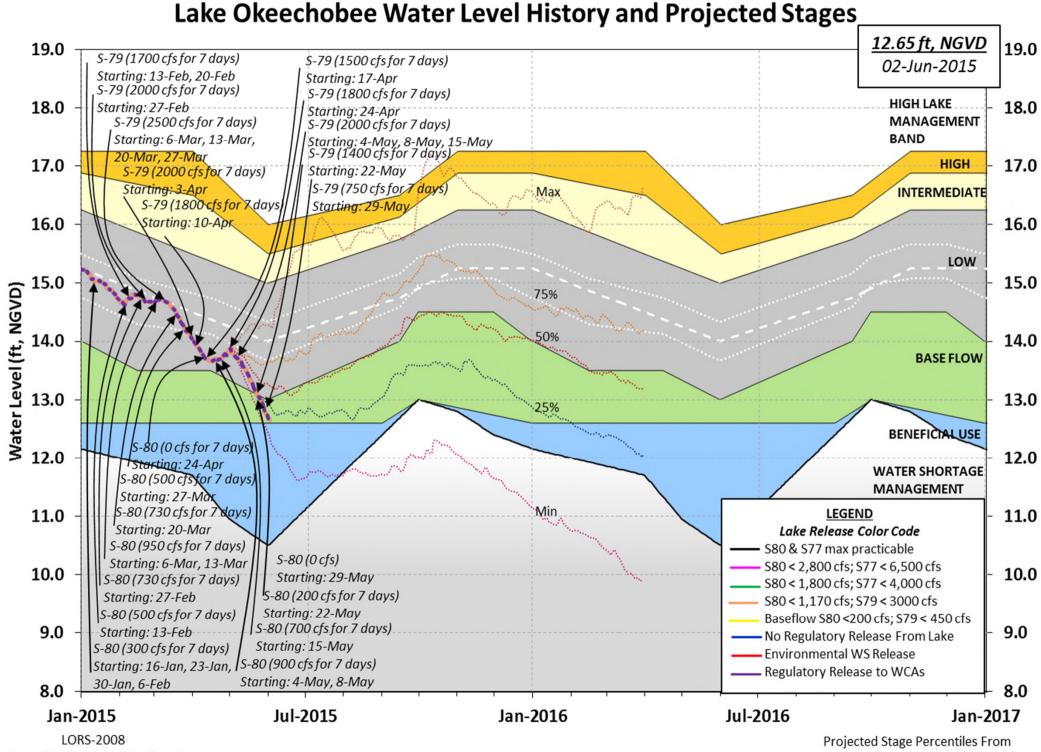
(See assumptions on the Position Analysis Results website)

Tributary Basin Condition Indicators as of June 1 2015



Tue Jun 02 08:28:35 EDT 2015


2008 LORS


Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas

2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Data Ending 2400 hours 01 JUN 2015

Okeechobee Lake	Regulation	Elevat	tion Last Ye	ar 2YRS Ago	
		(ft-NG	GVD) (ft-NGV	D) (ft-NGVD)	
*Okeechobee La	ake Elevatio	n 12.	65 12.4	6 13.33 (Of	ficial Elv
Bottom of High	h Lake Mngmt	= 16.00 To	op of Water Sh	ort Mngmt= 10.	50
Currently in (Operational	Management	Band		
Simulated Ave	rage INPS2NN	8 [1965_200	001 11.96		
Difference from	_		0.69		
01JUN (1965-20			_		
Difference from	om POR Avera	ge	-0.4	7	
Todav Lake Oke	eechobee ele	vation is d	determined from	m the 4 Int &	4 Edae
stations	ccciiobcc cic	vacion ib c	iccelmined 110	iii ciic i iiic u	1 Lage
	Depth (Based	on 2007 Ch	nannel Conditi	on Survey) Rou	te 1 ÷
6.59'	Donth (Bagad	on 2000 Ch	annol Conditi	on Survey) Rou	+0 2 :
4.79'	Depth (Based	. OII 2006 CI.	lanner Conditi	on Survey) Rou	ite Z ÷
Bridge Cleara	nce = 51.10'				
_					
4 Interior and	4 Edge Okeec	hobee Lake	Average (Avg-	Daily values):	
	_			_	
L001 L005	L006 LZ40	S4 S	3352 S308	s133	
	L006 LZ40	S4 S	3352 S308	s133	
L001 L005 12.57 12.74	L006 LZ40 12.66 12.6	S4 S 4 12.66 1	3352 S308 22.74 12.57	S133 12.66	
L001 L005	L006 LZ40 12.66 12.6	S4 S 4 12.66 1	3352 S308 2.74 12.57	12.65	
L001 L005 12.57 12.74	L006 LZ40 12.66 12.6	S4 S 4 12.66 1	3352 S308 2.74 12.57	S133 12.66	
L001 L005 12.57 12.74	L006 LZ40 12.66 12.6	S4 S 4 12.66 1	3352 S308 2.74 12.57	12.65	
L001 L005 12.57 12.74 *Combination Ol	L006 LZ40 12.66 12.6 keechobee A	S4 S 4 12.66 1	3352 S308 2.74 12.57	12.65	
L001 L005 12.57 12.74 *Combination Of	L006 LZ40 12.66 12.6 keechobee A	S4 S 4 12.66 1 vg-Daily La	3352 S308 2.74 12.57 ake Average =	S133 12.66 12.65 (*See Note)	
L001 L005 12.57 12.74 *Combination Of - Okeechobee Inflo	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287	S4 S 4 12.66 1 vg-Daily La	3352 S308 22.74 12.57 ake Average =	S133 12.66 12.65 (*See Note) Fisheating Cr	
L001 L005 12.57 12.74 *Combination Of Combination Of Combin	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0	S4 S 4 12.66 1 vg-Daily La S191 S133 Pumps	3352 S308 22.74 12.57 ake Average =	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps	0
L001 L005 12.57 12.74 *Combination Of Combination Of Combin	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0 0	S4 S 4 12.66 1 vg-Daily La S191 S133 Pumps S127 Pumps	3352 S308 22.74 12.57 ake Average = 0 0 0	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps S2 Pumps	0 0
L001 L005 12.57 12.74 *Combination Of Combination Of Combin	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0 0 0	S4 S 4 12.66 1 vg-Daily La S191 S133 Pumps S127 Pumps S129 Pumps	3352 S308 22.74 12.57 ake Average =	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	0
L001 L005 12.57 12.74 *Combination Of Combination Of Combin	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0 0 0	S4 S 4 12.66 1 vg-Daily La S191 S133 Pumps S127 Pumps	3352 S308 22.74 12.57 ake Average = 0 0 0 0	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps S2 Pumps	0 0 0
L001 L005 12.57 12.74 *Combination Of Combination Of Combin	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0 0 0 0	S4 S 4 12.66 1 vg-Daily La S191 S133 Pumps S127 Pumps S129 Pumps	3352 S308 22.74 12.57 ake Average = 0 0 0 0	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	0 0 0
L001 L005 12.57 12.74 *Combination Of Combination Of Combin	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0 0 0 291	S4 S 4 12.66 1 vg-Daily La S191 S133 Pumps S127 Pumps S129 Pumps	3352 S308 22.74 12.57 ake Average = 0 0 0 0	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	0 0 0
L001 L005 12.57 12.74 *Combination Of Combination Of Combin	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0 0 0 291 lows (cfs):	S4 S 4 12.66 1 Tog-Daily La S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	0 0 0 0 0 0	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps S4 Pumps	0 0 0 0
*Combination Ol *Combination Ol Combination	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0 0 0 291 lows (cfs):	S4 S 4 12.66 1 vg-Daily La S191 S133 Pumps S127 Pumps S129 Pumps	3352 S308 22.74 12.57 ake Average = 0 0 0 0	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps	0 0 0
*Combination Ol *Combination Ol Okeechobee Inflo S65E S154 S84 S71 S72 C5 Total Inflows: Okeechobee Outfi	L006 LZ40 12.66 12.6 keechobee A ows (cfs): 287 0 0 0 291 lows (cfs): -NR-	S4 S 4 12.66 1 Tog-Daily La S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	0 0 0 0 0 0	S133 12.66 12.65 (*See Note) Fisheating Cr S135 Pumps S2 Pumps S3 Pumps S4 Pumps	0 0 0 0

S129 Culverts 0	S352	702	S308	0						
(Used) S131 Culverts USED)	L8 Canal Pt	65	S308Below	41 (NOT						
Total Outflows: 3882										
****S77 Structure outflow is being used to compute Total Outflow. ****S308 Structure outflow is being used to compute Total Outflow.										
Okeechobee Pan Evaporation (inches): S77 0.32 S308 0.36 Average Pan Evap x 0.75 Pan Coefficient = 0.25" = 0.02'										
Lake Average Precipitati	on using NEXRAD:	= -NR-" :	= -NR-'							
Evaporation - Precipitation: = -NR-" = -NR-" Evaporation - Precipitation using Lake Area of 730 square miles is equal to -NR- Lake Okeechobee (Change in Storage) Flow is -7663 cfs or -15200 AC-FT										

Note: Headwater, tailwater, and stage values below are instantaneous values unless otherwise specified.

	Headwater	Tailwater				Gat	e Pos	sition	ns	
що	Elevation	Elevation	Disch	#1	#2	#3	#4	#5	#6 #7	
#8	(ft-msl)	(ft-msl)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft) (ft)
(ft) (I) see note at bottom										
North East Sl	hore	(1) see in	oce ac	, DOCC	JOIII				
S133 Pumps S193:		12.43	0	0	0	0	0	0	(cfs)	
	18.13	12.45	0	0.0	0.0	0.0				
S135 Pumps	:	-NR-	0	0	0	0	0		(cfs)	
S135 Culve:	rts:		-NR-	-NR-	-NR-					
North West Sl										
S65E:	21.09	12.40	287	0.0		0.3				
S127 Pumps S127 Culve:		12.58	0	0.0	0	0	0	0	(cfs)	
S129 Pumps S129 Culve		12.78	0 0	0	0	0			(cfs)	
S131 Pumps S131 Culve		12.69	0	0	0				(cfs)	
Fisheating nr Palmda nr Lakepo	ale	28.37 12.68	4							

C5:	13.85	12.71	0	0.0	0.0	.0				
South Shore										
S4 Pumps:	10.44	12.69	0	0	0	0			(cfs	;)
S169:	12.84	10.43	0	0.0	0.0	0.0				
S310:	12.78		80							
S3 Pumps:	10.98	13.01	0	0	0	0			(cfs	.)
S354:	13.01	10.98	834	1.8	2.0	· ·			(С15)	, ,
	10.94	12.90	034	0	2.0	0	0		/afa	. \
S2 Pumps:							U		(cfs	; <i>)</i>
S351:	12.90	10.94	1199	2.2	2.4	2.2				
S352:	12.80	10.86	702	1.6	1.8					
C10A:	-NR-	12.85		8.5	8.5	8.	5 8	.5	8.5	
L8 Canal PI		12.69	65							
	S351	and S352	? Tempora	ary Pum	nps/S3	54 Sp	illwa	У		
S351:	10.94	12.90	1199	-NRN	IR – – NR	_ – NR –	-NR	NR –		
S352:	10.86	12.80		-NRN						
S354:	10.98	13.01	834							
	10.96			-NKN						
Caloosahatche	e River (9	377 S78	S79)							
S47B:	14.95	10.95	5757	0.0	0.0					
S47B:	10.91	10.93	-68	4.8	0.0					
	10.91	10.92	-68	4.8						
S77:	1 ~	- -1								
Spillway	and Sector									
	12.45	10.96	1079	0.0	4.0	3.5	0.0			
Flow Due	to Lockage	es+:	3							
S77 Below U	JSGS Flow (Gage	901							
S78:										
	and Sector	· Flow:								
SPIII Way	10.81	2.92	690	0.0	0 0	1.0	1 0			
Flow Due	to Lockage		17	0.0	0.0	1.0	1.0			
S79:										
	and Sector	flow:								
-1 31	3.12	0.55	900	0.0	0.0	1.0	1.0	1.0	0.5	0.0
0.0	J L	0.33	200		3.0				3.3	3.0
	to Lockage	7a+.	5							
	of flow fro		120%							
Chloride		(ppm)	72							
St. Lucie Car	nal (S308.	S80)								
S308:	()	•								
	and Sector	flow:								
	12.58	12.40	0	0 0	0.0	0.0	0 . 0			
Flow Duo	to Lockage		0	0.0	0.0	0.0	0.0			
TIOW DUE	to hockage	-DI-	U							
S308 Below	USGS Flow	Gage	41							
S153:		-NR-	-NR-	0.0	-NR-					
S80:										
	and Sector	flow:								
-FWal	-NR-	-NR-	-NR-	0 0	0.0	0 0	0 0	0 0	0 0	0 0
	111/	IMIZ-	7/1// —	0.0	0.0	0.0	0.0	0.0	0.0	0.0

```
Flow Due to Lockages+: -NR-
Percent of flow from S308 -NR-%

Steele Point Top Salinity (mg/ml) ****

Speedy Point Top Salinity (mg/ml) ****

Speedy Point Top Salinity (mg/ml) ****
```

+ Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

_				Wi	.nd
- Daily Precipitation Totals Speed	1-Day	3-Day	7-Day	Directio	n
	(inches)	(inches)	(inches)	(Degø)	
(mph)					
S133 Pump Station:	-NR-	0.00	0.00		
S193:	-NR-	0.00	0.00	-NR-	-NR-
Okeechobee Field Station:	-NR-	0.00	0.00		
S135 Pump Station:	-NR-	0.14	0.35		
S127 Pump Station:	-NR-	0.04	0.36		
S129 Pump Station:	-NR-	0.00	0.00		
S131 Pump Station:	-NR-	0.00	0.00		
S77:	0.00	0.00	0.00	75	1
S78:	0.02	0.02	0.02	60	1
S79:	0.09	0.40	0.96	37	2
S4 Pump Station:	-NR-	0.00	0.00		
Clewiston Field Station:	-NR-	0.00	0.00		
S3 Pump Station:	-NR-	0.00	0.00		
S2 Pump Station:	-NR-	0.04	0.04		
S308:	0.00	0.04	0.04	93	3
S80:	0.00	1.13	1.13	-NR-	-NR-
Okeechobee Average	0.00	0.02	0.06		
(Sites S78, S79 and	S80 not ind	cluded)			
Oke Nexrad Basin Avg	-NR-	0.09	0.15		

_ Okeechobee Lake Elevations 01JUN15	01 JUN 2015	12.65 Difference	e from
01JUN15 -1 Day =	31 MAY 2015	12.68	0.03
01JUN15 -2 Days =	30 MAY 2015	12.73	0.08
01JUN15 -3 Days =	29 MAY 2015	12.76	0.11
01JUN15 - 4 Days =	28 MAY 2015	12.81	0.16
01JUN15 -5 Days =	27 MAY 2015	12.87	0.22
01JUN15 - 6 Days =	26 MAY 2015	12.94	0.29
01JUN15 - 7 Days =	25 MAY 2015	12.99	0.34
01JUN15 - 30 Days =	02 MAY 2015	13.80	1.15
01JUN15 -1 Year =	01 JUN 2014	12.46	-0.19
01JUN15 - 2 Year =	01 JUN 2013	13.33	0.68

Long Term M	ean	30day	yΑ	vearg	e E'	Γ foi	r Lake	Alfred (Inches) =	-NR-
_										
									ow (LONIN)	
				rage				previous		Avg-Daily Flow
01JUN15		Гoday					2015	-4411	_	-3784
01JUN15		Day					2015	-4369		-3551
01JUN15		Days					2015	-4303		-NR-
01JUN15		Days					2015	-4318	SAT	-4861
01JUN15		Days					2015	-4321		-6445
01JUN15	-5	Days	=		27	MAY	2015	-4113	THU	-8431
01JUN15	-6	Days	=				2015	-3629	WED	-5382
01JUN15		Days			25	MAY	2015	-3541	TUE	-2551
01JUN15	-8	Days	=		24	MAY	2015	-3460	MON	-2558
01JUN15	-9	Days	=		23	MAY	2015	-3648	SUN	-1808
01JUN15	-10	Days	=		22	MAY	2015	-3718	SAT	-3385
01JUN15	-11	Days	=		21	MAY	2015	-3251	FRI	-4967
01JUN15	-12	Days	=		20	MAY	2015	-3119	THU	-6670
01JUN15	-13	Days	=		19	MAY	2015	-2444	WED	-2947
_							55E			
				7,110.20	200			previous	14 darra	Avg-Daily Flow
01JUN15		Today		Aver			2015	376		287
01JUN15	_ 1	Day	-				2015	396	-	287
01JUN15		Days					2015	389		-NR-
01JUN15		Days					2015	373		337
01JUN15		Days					2015	381		318
01JUN15		Days					2015	391		266
01JUN15		Days					2015	407		377
01JUN15		Days					2015	432		456
01JUN15		Days					2015	484		372
		Days					2015	547		522
01JUN15 01JUN15		-					2015	628		243
01JUN15		_					2015	750		449
01JUN15 01JUN15		_					2015	750		510
01JUN15 01JUN15		_					2015	937	-	467
0100112	-13	Days	=		19	IMA I	70T2	937	MRD	40/

_ Lake Okeechobee Outlets Last 14 Days

			S-77	S-77	Below S-77	S-78	S-78	S-79
			Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
		(0700-2100)	(ALL DAY)	(ALL-DAY)	(0700-2100)	(ALL DAY)	(ALL DAY)
	DATE	C	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
01	JUN	2015	1327	-NA-	1786	811	1402	1794
31	MAY	2015	1382	-NA-	2030	992	1751	2046
30	MAY	2015	1768	-NA-	2382	1132	1786	2249
29	MAY	2015	1428	-NA-	1886	819	1402	1542
28	MAY	2015	1487	-NA-	2045	821	1417	1329
27	MAY	2015	1511	-NA-	2141	822	1417	1602
26	MAY	2015	1456	-NA-	1862	804	1526	2044
25	MAY	2015	1275	-NA-	1509	1166	1989	2551

23 22 21	MAY MAY MAY	2015 2015 2015 2015 2015	1536 2294 2033 1164 1701	-NA- -NA- -NA- -NA-	2242 3546 3338 2330	1220 2008 1543 632	2472 3473 -NR- 1691	4489 5908 3700 2038 2842
		2015	1669	-NA-	3118 3033	1098 1168	2456 2582	2933
	DATE	(S-310 ischarge ALL DAY) (AC-FT)	S-351 Discharge (ALL DAY) (AC-FT)	S-352 Discharge (ALL DAY) (AC-FT)	S-354 Discharge (ALL DAY) (AC-FT)	L8 Canal Pt Discharge (ALL DAY) (AC-FT)	
0.1		2015	159	2378	1392	1654	129	
		2015	175	2514	1503	1931	70	
		2015	154	-NR-	-NR-	-NR-	128	
		2015	176	3107	1682	2288	156	
		2015	162	3159	1697	2320	333	
		2015	182	2976	1662	2384	381	
		2015	177	2481	1202	2048	337	
		2015	78	1906	605	1878	299	
		2015	62	1547	666	1666	246	
		2015	139	1606	637	1888	279	
		2015	179	2372	1412	2011	285	
		2015	177	3109	1818	1983	395	
		2015	183	3056	1495	1753	388	
		2015	119	2445	1229	1703	351	
			S-308	Below S-308				
		D	ischarge	Discharge	Discharge			
		(ALL DAY)	(ALL-DAY)	(ALL-DAY)			
	DATE	C	(AC-FT)	(AC-FT)	(AC-FT)			
		2015	1	81	-NR-			
		2015	0	14	45			
		2015	127	181	45			
		2015	130	347	54			
28	MAY	2015	1	141	-NR-			
		2015	298	405	107			
		2015	325	415	340			
		2015	433	538	562			
		2015	461	562	898			
		2015	566	564	1030			
		2015	-NA-	55	378			
		2015	-NA-	485	350			
20	MAY	2015	-NA-	1051	1158			

*** NOTE: 1) Discharge from (0700-2100) is computed using Spillway and Sector $\,$

1383

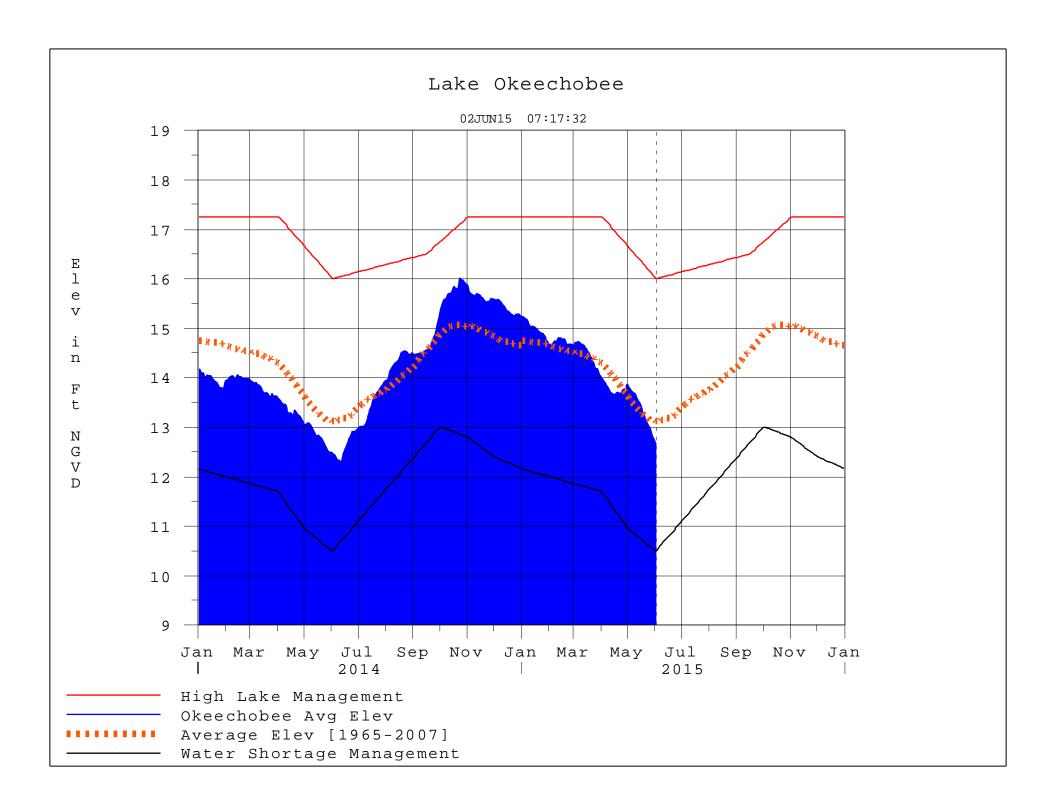
Gate Discharges from 0700 hrs to 2100 hrs.

(I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

1282

_

19 MAY 2015 -NA-


* On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average.

On 14 Mar 2001, due to the isolation of various gages within the standard $\,$

- 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation.
- On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.
- On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of $\rm S135$ from low lake levels.
- Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations
 - ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/
- \$ For information regarding Lake Okeechobee Service Area water
 restrictions

please refer to www.sfwmd.gov

Report Generated 02JUN2015 @ 07:15 ** Preliminary Data - Subject to Revision

Classification Tables

Supplemental Tables used in conjunction with the LORS2008

Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• 6-15 Day Precipitation Outlook Categories

Table ?? in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Seasonal

Outlook

Table K-3 in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic	Palmer Index	2-wk Mean L.O. Net
Classification*	Class Limits	Inflow Class Limits
Very Wet	3.0 or greater	Greater >= 6000 cfs
Wet	1.5 to 2.99	2500 - 5999 cfs
Near Normal	-1.49 to 1.49	500 - 2499 cfs
Dry	-2.99 to -1.5	-5000 – 500 cfs
Very Dry	-3.0 or less	Less than -5000 cfs

^{*} use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
[[1000]	Seasonal Outlook
> 0.93	> 2.0	Very Wet
0.71 to 0.93	1.51 to 2.0	Wet
0.35 to 0.70	0.75 to 1.5	Normal
< 0.35	< 0.75	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
		Multi-Seasonal Outlook
> 2.0	> 4.3	Very Wet
1.18 to 2.0	2.51 to 4.3	Wet
0.5 to 1.17	1.1 to 2.5	Normal
< 0.5	< 1.1	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories
Above Normal	Wet to Very Wet
Normal	Normal
Below Normal	Dry

^{*} Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan

Under Construction