SOUTH FLORIDA WATER MANAGEMENT DISTRICT (SFWMD) WATER RESOURCES ADVISORY COMMISSION (WRAC)

2014 LOWER KISSIMMEE BASIN WATER SUPPLY PLAN WORKSHOP PRESENTATIONS

Wednesday, July 9, 2014, 1:30 PM SFWMD Okeechobee Service Center - Meeting Room 3800 NW 16th Boulevard Okeechobee, FL 34972

Overview of Florida Agriculture (BMP Enrollment in the Lower Kissimmee Basin)

Bonnie Wolff Peaez, FDACS

The Process of Developing the Statewide Agricultural Projections

The Balmoral Group

FSAID Overview

Outline

FSAID

- Florida Statewide Ag Irrigation Demand
- Funded by FDACS
- Develop statewide estimates of Ag water demand and projections

FSAID

The FSAID project was started to assist the FDACS in meeting the objectives set forth in Ch 570.085(2) Florida Statues:

Develop an agricultural water supply planning program

- 20-yr planning period
- Crop-specific, spatially distributed irrigation demand for historic, current, and future conditions.

FSAID Background

The current project builds off a previous SJRWMD project that developed parcellevel irrigation demands to assist in water conservation planning and groundwater modeling.

This work utilized existing GIS information available:

Irrigated Areas FLUCCS NASS Crop Data Layer CUP Polygons/Points

FSAID

Task Description

Develop Statewide Geodatabases

 (Ag Land and Irrigated Land)

 Refinement of Irrigated Land Geodatabase
 Irrigation Estimates
 Additional Ag-Related Water Requirements
 Agricultural Projections

FSAID Task 1

- Completed the Ag Land Geodatabase (ALG)
- The ALG includes all of the following layers: the ILG, Land Use (FLUCCS), and CUP polygons. NASS CDL is include as attributes only.

 Total Land in Farms, Ag Census 2007 =
 9,231,570 acres

 FSAID ALG 2010 =
 8,613,315 acres

 Total Land in Farms, Ag Census 2012 =
 9,548,342 acres

FSAID Task 2 Overview

The Irrigated Areas layer was refined for areas lacking refined GIS layers.

- NWFWMD and SRWMD Extensive Refinement
- SWFWMD and SFWMD Moderate Refinement
- SJRWMD No refinement

FSAID Task 2 – NWF and SR refinements

Before

Auto processing

Union of FLUCCS and NASS Polygons

FSAID Task 2– NWF and SR refinements

After

Manual Refinement of FLUCCS coverage

Takes into consideration:

- Known withdrawal locations
- CUP boundaries
- Historic Aerial imagery (approx. 2008-2012)
- NDVI visualization

FSAID

Task 2 – SWF and SF refinements

FSAID Task 2 – NDVI Example

The NDVI visualization was very helpful at identifying potential Non-Irrigated Citrus.

But this is a snapshot of one moment in time and trees can be replanted.

Confirmation was based on Google Earth time-enabled Imagery.

FSAID Task 2 – Results

FSAID Task 2 – Results

FSAID

Task 3 Overview

- The ILG was parameterized to support batchmode simulations of AFSIRS.
- Analysis of sensitivity to weather datasets complete
 - 3 sets of rainfall data tested
 - 3 sets of reference/potential ET tested

• AFSIRS is run for each polygon (n = 27,304)

- Double- and Triple Cropped Fields are separate AFSIRS runs, but are merged back together for final processing.
- Crop growing dates determined for North, Central, and South Florida regions.

FSAID Task 3 Rainfall Data

AFSIRS required daily rainfall input for a discrete (point) location.

Gage Data – discrete point data that is inferred to other areas (Theissen polygons)

Gridded Data – spatiallyaveraged data from remote sensing equipment

- AHPS 3-4km spacing
- NLDAS 12km spacing

FSAID Task 3 Rainfall Data

Analysis of annual rainfall totals confirms trade-off between gage and gridded rainfall data.

- Gages offer 'true' peak events and droughts for a discrete location
- Gridded data offers more accurate spatial representation.

Gage rainfall ultimately used for FSAID (AHPS has a limited period of record)

FSAID Task 3 ET Data

3 sources of data were considered:

- NLDAS PET
- USGS GOESDCS PET
- USGS GOESDCS RET

USGS RET was ultimately used for FSAID to align with current industry standard (ASCE Penman-Monteith method).

FSAID Task 3 AFSIRS Results

Statewide Ag Crop Demand, 2010				
FSAID 2010	2427.1 mgd			
FSAID 2010	19.0 in/yr			
FRIS 2008	16.7 in/yr			
FRIS 2003	14.8 in/yr			
FRIS 1998	20.9 in/yr			
FRIS 1994	16.3 in/yr			
FRIS 1988	22.3 in/yr			
FRIS 1984	23.0 in/yr			
FRIS 1979	18.6 in/yr			

FSAID Task 4 Other Water Demand

Considered for FSAID

- Livestock Demand = 19.1 mgd
- Dairy Demand = 18.2 mgd
- Aquaculture = 23.9 mgd
- Frost Protection (not included in annual estimates)
 - Worst year (2010) Demand = 53,942 MG
 - Best year (1998) Demand = 7 MG

Not Considered for FSAID

- Crop Establishment / Fertigation
 - While some WMDs permit for this separately, these quantities of water are assumed to be integrated with regular irrigation use.

FSAID Task 4 Results

	Average
Water Use	Annual
Component	Demand
	(mgd)
Irrigation	2427.1
Livestock/Dairy	37.3
Aquaculture	23.9
Subtotal	2488.2
Frost Protection	33.1
(Ave)	

otate final a children (inga / o annua)

U V	
FSAID 2010	2,488
USGS 2000 USGS 2005	3,923 2,766
WMD RWPSs	2,154

FSAID Task 5 Background

FSAID

Task 5 Overview

- Utilized econometric modeling to estimate three types of potential change scenarios
 - Change in Irrigation Intensity/Conservation
 - Increasing or Decreasing Area
 - Change of Crop Types
- Projections in 5-year increments (2015, 2020, 2025, 2030) based on upper and lower bounds of the likely scenarios.

FSAID Task <u>5 Results</u>

Scenario	Predicted Average Annual Irrigation	Predicted Dry Year Annual Irrigation
	mgd	mgd
2010		
Base Case	2,582.8	2,854.2
2015		
Increase in Irrigation Intensity	2,610.5	2,885.1
Conservation Scenario	2,545.0	2,812.4
Crop Mix Change	3,907.9	4,287.6
Irrigated Acreage Change	2,556.6	2,826.7
2020		
Increase in Irrigation Intensity	2,608.9	2,883.6
Conservation Scenario	2,547.2	2,814.5
Crop Mix Change	3,902.7	4,279.9
Irrigated Acreage Change	2,592.8	2,864.3
2025		
Increase in Irrigation Intensity	2,610.5	2,885,1
Conservation Scenario	2,545.0	2,812.4
Crop Mix Change	3,708.4	4,072.5
Irrigated Acreage Change	2,600.4	2,872.2
2030		
Increase in Irrigation Intensity	2,610.4	2,884.9
Conservation Scenario	2,545.2	2,812.7
Crop Mix Change	3,708.4	4,072.5
Irrigated Acreage Change	2.597.1	2 868 1

Questions?

Tim Desmarais, P.E. **TDesmarais@balmoralgroup.us** 407. 629.2185 ext 106

Dispersed Water Management Overview

Jeff Sumner, SFWMD

Dispersed Water Management Program Public-Private Partnerships for Water Resources Protection

Lower Kissimmee Basin Water Supply Plan Workshop July 9, 2014

Jeffrey M. Sumner, PE SFWMD Director of Agricultural Policy

Dispersed Water Management (DWM)

Definition: Shallow water distributed across parcel landscapes using relatively simple structures

Program Benefits

- Increased water storage
- Less water sent to Lake
 Okeechobee and estuaries
- Reduced nutrient loadings
- Increased groundwater recharge
- Improved habitat
- Higher soil moisture in dry season
- Rapid implementation

Primary Project Types

- Florida Ranchlands
 Environmental Services
 Project Pilot
- Northern Everglades -Payment for Environmental Services
- Regional Private lands
- Public Lands
- Water Farming

Florida Ranchlands Environmental Services Projects (FRESP)

- Public/private collaboration
- Field test market-based payment for water retention and/or phosphorus reduction
- Eight pilot projects; initially 3 years of operation

Florida Ranchlands Environmental Services Projects (FRESP)

Design Challenges Addressed

Who is eligible to participate?

 Ranchers enrolled in FDACS BMP Program & located in NE

What are the environmental services to be provided?

 Stormwater Retention and/or Nutrient Removal

Calculating the services above a baseline:

Services must be above and beyond regulatory requirements

Wetland permitting issues

 Can we ensure that creation of wetlands through this program won't be a disincentive to participate?

Florida Ranchlands Environmental Services Projects (FRESP)

STATUS

- Three now operating under NE-PES Program
- Two now operating under NRCS Wetland Reserve Program (WRP)
- Two continuing under extended agreements

Example: FRESP

Rafter T Ranch – Highlands County

Northern Everglades Payment for Environmental Services (NE-PES)

- 2011 Competitive bid process based on success of FRESP
- Eight initial contracts (NE-PES 1)
 - Total 4,800 ac-ft/yr
 - Average cost \$163/ac-ft
- Two new projects added in 2013 (NE-PES 2, 19 proposals)
 - Total 3,858 ac-ft/yr
 - Average cost \$112/ac-ft
 - Award period left open, subject to additional funding
 - 2014 Legislative Funding
 - Starting additional negotiations

10

Example: NE Payment for Environmental Services

Dixie Ranch – Okeechobee County

Example: Private Lands Projects

Nicodemus Slough – Glades County

The Water Farming Concept

The Evolution of DWM?

• The Challenge:

- Damaging wet-season discharges
- State struggling to fund long-term projects for water resource restoration (CERP)
- Citrus industry devastated by Citrus Greening, etc.

• The Opportunity:

- Lots of fallow citrus land in watershed
- Significant infrastructure already in place

• The Concept:

- Brought to us by the Indian River Citrus League
- Utilize fallow citrus lands for near-term storage of excess wet season flows
- Compensate citrus owner for providing environmental service as a commodity
- "Build the bridge"

13

Water Farming

St. Lucie River Basin Pilot Study

• Request for Proposals

- Above-ground flooding of fallow grove
- Retention in existing facilities only
- High percolation sites

• Five Competitive Submittals

- Three selected pilot sites
- Pilot Study Funding
 - \$1.6M SFWMD Funds
 - \$1.5M FDEP 319 Grant
- 3-Year Agreements

Water Farming

St. Lucie River Basin Pilot Study

• Goals of Pilot Study

- Reduce volume discharged from direct rainfall
- Reduce regional system volume being discharged to estuary
- Reduce load of TN and TP to estuary
- Monitor and document costs and benefits
- Make an <u>informed decision</u> regarding future role of Water Farming.

Water Farming Pilot Site 1 – Caulkins Citrus

PROJECT SUMMARY

- 450 Acre Fallow Grove
- Construction of perimeter levee
- Water diverted via pump from C-44 Canal
- 413-acre impoundment 4 feet deep
- Deep sands with no confining layer
 - Anticipated high percolation rate
- Proposed retention = 6,700 ac-feet / yr

DWM Economic Benefits - Public

- Avoids high cost of land acquisition & management
- Keeps land on local tax rolls
- Supports community economy
- Reduces land conversion

DWM Economic Benefits - Landowner

- In some cases, underlying ag use is maintained
- Income diversification
- May decrease irrigation or feed costs in dry season
- Income stream may replaces losses from non-production

DWM Challenges

- Projects are temporary
- Limited operational flexibility
- Small volumes per acre
 require numerous contracts
- Comparisons to regional projects is apples to oranges
- Dispersed Water Management is NOT the solution to all of our resource challenges.

Questions?

Overview of the Draft Lower Kissimmee Basin Water Supply Plan

Cynthia Gefvert and Chris Sweazy, SFWMD

2014 LOWER KISSIMMEE BASIN WATER SUPPLY PLAN

WRAC Issues Workshop Water Supply Plan Update Chris Sweazy

Lead Hydrogeologist, SFWMD

July 9, 2014

Kissimmee Basin Planning Area

What is the Use of Regional Water Supply Plans?

- Advanced look at future use and supports develop strategies to meet projected demands while sustaining the needs of the environment
- Identifies needs for future work to improve the clarity of water supply conditions.
- Tool for local governments required to respond with updates to Water Facilities Element of their Comprehensive Plan

Regional Water Supply Plan Requirements

- At Least a 20-year Planning Period
- Updated Every Five Years
- Demand Estimates and Projections
- Resource Analyses/Issue Identification
- Evaluation of Water Source Options, Including Conservation
- Water Resource Development
 - Responsibility of Water Management
- Water Supply Development
 - Responsibility of Water Utilities/Users
- Minimum Flows and Levels (MFLs)
 - Prevention or Recovery Strategies

2014 LKB Plan Process

- Water Resources Advisory Commission (WRAC)
 - Serves as overall forum
- Two WRAC Issues Workshops held to date (February and today)
- Coordination with local stakeholders, Seminole Tribe, special interest groups, SWFWMD and local agencies

- Draft LKB Water Supply Plan distributed/posted June 20
 - Informational presentation to GB tomorrow (July 10)
 - Proposed presentations to WRAC (August and September)
 - Presentation of plan for approval to GB (September)

Lower Kissimmee Basin (LKB) Description

- Includes portions of Okeechobee, Highlands and Glades counties
- Major agricultural industry
- Largest urban area City of Okeechobee (23,000 residents)
- Seminole Tribe of Florida Brighton Reservation
- 6 public water supply utilities
- Lake Istokpoga & Lake Okeechobee
- Kissimmee River

2014 Draft LKB Plan Update Documents

Plan/Appendices

Support

LKB WSP Outline

- Executive Summary
- Chapter 1: Introduction
 - Purpose, Plan Goal and Objectives
 - Overview of Planning Area and Process
 - Water Supply Planning to 2035
- Chapter 2: Demand Estimates and Projections
 - Summary of Water Use Demands by Category
 - Population and Water Use Trends
 - Demand Projections in Perspective

LKB WSP Outline (cont.)

sfwmd.gov

Chapter 3: Water Resource Analyses

 Resource protection overview, MFLs, restricted allocation areas, overview of water resources, and water resources evaluation and analysis

Chapter 4: Water Resource Development Projects

 Water resource projects such as monitoring, modeling,, and hydrogeologic studies and analysis. Other projects such as dispersed water management

Chapter 5: Evaluation of Water Source Options

- Surface water, groundwater, reclaimed water, storage, and conservation
- **Chapter 6: Water Supply Development Projects**
 - Utility summaries
- Chapter 7: Future Direction

LKB WSP Appendices

Appendix A

- Demands and Projections
- Methodology
- Appendix B
 - Minimum Flows and Levels & Recovery and Prevention Strategies
- Appendix C
 - Potable Water and Wastewater Treatment Utilities
- Appendix D
 - Information for Local
 Government Comprehensive Plans

Total Demands for the LKB Planning Area

SUMMARY OF DEMANDS					
Use Category	2010 (MGD)	2035 (MGD)	Change (MGD)	Percent Change	
Public Water Supply	2.8	3.4	0.6	21.4	
Domestic Self-Supply	2.1	2.6	0.5	23.8	
Commercial & Industrial Self-Supply	19.5	23.9	4.4	22.6	
Power Generation Self-Supply	4.4	6.4	2.0	45.5	
Recreational & Landscape Self-Supply	0.61	0.65	0.04	6.6	
Agricultural Self-Supply	162.5	185.0	22.5	13.8	
Total Water Use	192.0	222.0	30.0	15.6	

LKB 2010 and 2035 Demands

2010 Demand = 192 MGD

2035 Demand = 222 MGD

Changes Since 2005-2006 KB Plan Update

- Lake Okeechobee Regulation 2008 schedule
 - Change in status of Lake Okeechobee MFL
 - Additional allocations limited
- Lake Okeechobee water shortage management
- Lake Istokpoga MFL

Water Resource Considerations in LKB

sfwmd.gov

Limited surface water availability

- Lake Istokpoga/Indian Prairie Basin
- Lake Okeechobee & LOSA
- Seminole Tribe of Florida Brighton Reservation water rights
- Kissimmee River Basin Water Reservation
- Irrigated Pasture
- MFLs SFWMD & SWFWMD
- LORS 2008

Water Source Options

* Alternative water source

Evaluation of Demands and Resources

- Surface water availability
 - Addressed under previous plans
 - Minimal projected demand for new surface water
- Groundwater availability
 - Updated LKB groundwater model
 - Evaluated drawdown potential on MFL lakes

Plan Findings

- Surface water availability
 - Addressed by existing restricted allocation area rules
 - Minimal projected demand for new surface water
- Groundwater availability
 - No additional drawdown projected under SWFWMD MFL lakes that are in recovery
 - Sufficient groundwater appears to be available for the increase in projected needs of the basin though 2035

LKB Future Direction

- Complete development of Kissimmee River Basin Water Reservation
- Coordinate with SWFWMD to refine modeling of LKB region and MFL lakes
- USACE to complete HHD rehabilitation and revise the regulation schedule
- Continue to implement MFL recovery and prevention strategies
- Water users and SFWMD collaborate to increase understanding of the aquifers

LKB Future Direction (Cont.)

- Promote plugging & abandonment of flowing wells
- Promote development of tail-water recovery ponds
- Encourage water conservation measures through more efficient irrigation methods and automated weather stations
- Promote metering of water consumption
- Work with FDAC and agricultural stakeholders on methodologies and data sources for future crop projections

Conclusion

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

LOWER KISSIMMEE BASIN WATER SUPPLY PLAN

sfwmd.qov

- The future water demands of the region can be met through the 2035 planning horizon with appropriate management and continued development of available groundwater sources
- Completion of USACE Herbert Hoover Dike Rehabilitation Project and subsequent revision to the Lake Okeechobee regulation schedule could improve LOSA level of certainty

Next Steps

Chris Sweazy, SFWMD

What's Next?

February	Initial WRAC Discussion
Feb - Mar	Individual stakeholder meetings
April 16	Kick-off public workshop
uly 9	2nd public workshop
uly 10	GB informational presentation
uly 24	Deadline for comments on Draft Plan
August 7	SFWMD WRAC presentation
September 4	SFWMD WRAC presentation
September 11	SFWMD Governing Board Approval

LKB Water Supply Plan Information

For further information including Plan documents, can be found at: <u>www.sfwmd.gov</u>

 \checkmark then type in search box:

"Lower Kissimmee Basin Water Supply Plan"
Link Local Governments & Utilities with Water Supply Planning

After the District Governing Board approves the Water Supply Plan:

- All local governments must amend their comprehensive plan to incorporate a water supply facilities work plan for at least a 10 year period within 18 months of water supply plan
- Utilities identify the projects to be developed
- Utilities complete Annual Progress Reports

Submit Comments

Comments Due: Thursday July 24th

Send to: Chris Sweazy (csweazy@sfwmd.gov)

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Questions?

