Minimum Flows and Levels Criteria for the Caloosahatchee River

Don Medellin
Principal Scientist
Applied Sciences Bureau
MFL Rule initially adopted in 2001
Mean monthly flow of 300 cfs at S-79
Rule included planned recovery strategy (CERP)
MFL exceedances based on salinity criteria of a single species – tape grass
A petition was filed in 2010 requesting Governing Board initiate rulemaking to amend MFL rule
Petition denied, but Board approved and funded implementation of MFL studies
1. **Caloosahatchee River (C-43) West Basin Storage Reservoir**
 - Currently under construction
 - 170,000 Ac-Ft. storage
 - New water solely for environmental purposes

2. **Water Reservation Rule**
 - Adopted in 2014
 - Water in reservoir protected for fish and wildlife
Comprehensive Science Studies Completed 2011-2016

<table>
<thead>
<tr>
<th>Component</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydrodynamics</td>
<td>Influence of alterations on hydrodynamics</td>
</tr>
<tr>
<td>2 Inflow vs. Salinity</td>
<td>Monthly freshwater-salinity relationships</td>
</tr>
<tr>
<td>3 Water Quality</td>
<td>Relationships between inflow, salinity, and water quality</td>
</tr>
<tr>
<td>4 Zooplankton</td>
<td>Inflow, zooplankton and habitat compression</td>
</tr>
<tr>
<td>5 Ichthyoplankton</td>
<td>Relationships between ichthyoplankton and inflow</td>
</tr>
<tr>
<td>6 Benthic Fauna</td>
<td>Macrofauna-salinity patterns relative to inflow</td>
</tr>
<tr>
<td>7 Vallisneria data</td>
<td>Empirical relationships between tape grass, S, and inflow</td>
</tr>
<tr>
<td>8 Vallisneria model</td>
<td>Model exploration of tape grass, S, light, and inflow</td>
</tr>
<tr>
<td>9 Oyster Habitat</td>
<td>Salinity patterns for oyster habitat in lower CRE</td>
</tr>
<tr>
<td>10 Blue Crabs</td>
<td>Relationships between blue crab landings, rainfall, and inflow</td>
</tr>
<tr>
<td>11 Sawfish</td>
<td>Dry season inflow, hydrodynamics, and habitat extent</td>
</tr>
</tbody>
</table>
Science Advanced Through a Transparent and Open Public Process

- 2011 - Technical Issues Workshop
- 2013 - 2-Day Science Workshop – FL Gulf Coast Univ.
- 2016 - Completed comprehensive science assessment based on 11 different component studies
- 2016 - 2-Day Science Symposium
- 2017 - Science Document finalized
- 2017 - Draft MFL Technical document completed
- 2017 - Public Peer Review Session with panel of experts
- 2017 - Peer Review Report supports science basis for rule
- 2018 - Rule development process begins
Rule Development Public Process

- Oct 2017 – Governing Board approved Annual Regulatory Plan with Caloosahatchee rulemaking
- Nov. 2, 2017 – WRAC Updated
- Dec. 14, 2017 – Governing Board authorized Rule Development
- Feb. 15, 2018 – Public Workshop #1
- May 7, 2018 – West Coast Technical Meeting held
- June 1, 2018 – Public Workshop #2
- June 7, 2018 – WRAC Meeting
- July 12, 2018 – Notice of Proposed Rule
Caloosahatchee MFL Draft Rule Criteria

Proposed revision to Caloosahatchee MFL rule based on “Best Available Information”, including scientific studies, modeling and peer review conducted over the past 6 years

- **Magnitude:** 30-day moving average flow of 400 cfs at S-79
- **Duration:** An MFL exceedance occurs during a 365-day period when the 30-day moving average flow at S-79 is below 400 cfs and the 30-day moving average salinity exceeds 10 at the Ft. Myers salinity monitoring station
- **Return Frequency:** An MFL violation occurs when an exceedance occurs more than once in a five-year period

Note: MFL exceedances are expected until the recovery strategy is completed and operational
Recommended Action

Adopt amendments to Rule 40E-8.221, Florida Administrative Code, to revise the minimum flows and levels (MFL) criteria for the Caloosahatchee River
THANK YOU
Caloosahatchee River MFL Project Team

Staff:
- Cassondra Armstrong, Ph.D
- Jenifer Barnes
- Jennifer Brown
- Kim Chuirazzi
- Toni Edwards
- Amanda Kahn, Ph.D
- Nathan Kennedy, Ph.D
- Detong Sun, Ph.D
- Fawen Zheng, Ph.D

Managers:
- Susan Gray, Ph.D
- Lawrence Glenn

Previous Staff:
- Peter Doering, Ph.D
- Christopher Buzzelli, Ph.D