

Updated STA Phosphorus Modeling For the 2010 Planning Period

Work Order No. CN040902-WO03R2

Prepared for

A LAND TER MANY COMPANY

Prepared by

Gary Goforth, Inc. 10924 SW Hawkview Circle Stuart, FL 34997 (772) 223-8593

Under Subcontract to

TETRA TECH EC, INC. 759 South Federal Highway, Suite 100 Stuart, FL 34994 (772) 781-3400

FINAL REPORT

October 2007

October 30, 2007

Ms. Kelly Gracie Project Manager Tetra Tech EC, Inc. 1901 S. Congress Avenue Ste. 270 Boynton Beach, FL 33426

U.S. Army Corps of Engineers South Florida Water Management District Tetra Tech Contract No. CN040902-WO03R2 **Updated STA Phosphorus Modeling for the 2010 Period**

Dear Ms. Gracie:

I am pleased to submit this final report titled "Updated STA Phosphorus Modeling for the 2010 Planning Period". This document constitutes Deliverable 7.5.2 under Tetra Tech EC Purchase Order 1020342 dated June 25, 2007.

I gratefully acknowledge the valuable contributions of the staff of the South Florida Water Management District, and the technical review by yourself, staff of the District and of the U. S. Army Corps of Engineers, in the development of the information contained in this report.

Certification

I hereby certify, as a Professional Engineer in the State of Florida, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse without specific verification or adaptation by the Engineer. This certification is made in accordance with the provisions of the Laws and Rules of the Florida Board of Professional Engineers under Chapter 61G15-29, Florida Administrative Code.

GEGOGOTL

Gary F. Goforth, P.E. Florida P.E. # 35525

Date: <u>10/30/07</u> Reproductions are not valid unless signed, dated and embossed with Engineer's seal

Table of Contents

1.	INT	RODUCTION	1
	1.1. 1.2. 1.3. 1.4.	SCOPE OF WORK REGIONAL CONDITIONS FOR THE 2010 PLANNING PERIOD PHOSPHORUS MODELING REVISED C-139 BASIN DATA	13
2.	STA	A-1E	6
3.	STA	A-1W	10
4.	STA	1-2	13
	4.1. Phosp	SENSITIVITY ANALYSIS: REDIRECTION TO COMPARTMENT B TO ACHIEVE AN STA-2 HORUS LOADING RATE OF 1.3 G/M ² /yr	
5.	CO	MPARTMENT B 2	20
	5.1. Phosp	SENSITIVITY ANALYSIS: REDIRECTION TO COMPARTMENT B TO ACHIEVE AN STA-2 HORUS LOADING RATE OF 1.3 G/M ² /YR	
6.	EAA	A STORAGE RESERVOIR A-1	28
	6.1.	SENSITIVITY ANALYSIS: LAKE OKEECHOBEE TP CONCENTRATION OF 150 PPB	32
7.	STA	A-3 /4	35
	7.1.	SENSITIVITY ANALYSIS: LAKE OKEECHOBEE TP CONCENTRATION OF 150 PPB	38
8.	STA	A-5	11
9.	STA	A-6	17
10). S'	UMMARY	50
11	. R	EFERENCES	54
A	PPENI	DIX A. SFWMM MODEL ASSUMPTIONS	55
		DIX B. REVISED C-139 BASIN DATA SETS AND INFLOW DATA SETS A-5 AND STA-6	54
A]	PPENI	DIX C. DMSTA OUTPUT	73

List of Tables

Table 1-1: Anticipated Status of Regional Water Resource Projects in the 2010 Period 2
Table 1-2: Calibration Dataset Ranges (Draft, from www.wwwalker.net/dmsta/)
Table 1-3: Variable Ranges for Model Applications - Used to Trigger Warning Messages
(Draft, from www.wwwalker.net/dmsta/)
Table 2-1: Summary of Long-term Average Annual Inflow to STA-1E
Table 2-2: Summary of DMSTA Results for STA-1E
Table 3-1: Summary of Long-term Average Annual Inflow to STA-1W. 11
Table 3-2: Summary of DMSTA Results for STA-1W. 11
Table 4-1: Long-term Average Annual Inflow to STA-2 For a PLR of 1.0 g/m ² /yr14
Table 4-2: Summary of DMSTA Results for STA-2 with a PLR of $1.0 \text{ g/m}^2/\text{yr}$
Table 4-3: Long-term Average Annual Inflow to STA-2 For a PLR of 1.3 g/m ² /yr 17
Table 4-4: Summary of DMSTA Results for STA-2 with a PLR of 1.3 $g/m^2/yr$
Table 5-1: Long-term Average Annual Inflow to Compartment B For an STA-2 PLR of 1.0
g/m ² /yr
g/m ² /yr
Table 5-3: Long-term Average Annual Inflow to Compartment B For an STA-2 PLR of 1.3
g/m ² /yr
Table 5-4: DMSTA Results for Compartment B with an STA-2 PLR of 1.3 g/m2/yr26
Table 6-1: Summary of Long-term Average Annual Inflow to EAASR A-1
Table 6-2: Summary of DMSTA Results for EAASR A-1 (Lake TP Conc. of 100 ppb) 30
Table 6-3: Summary of Long-term Average Annual Inflow to EAASR
Table 6-4: Summary of DMSTA Results for EAASR A-1 (Lake TP Conc. of 150 ppb) 33
Table 7-1: Summary of Long-term Average Annual Inflow to STA-3/4 (Lake TP Conc of
100 ppb)
Table 7-2: Summary of DMSTA Results for STA-3/4 (Lake TP Conc. of 100 ppb)
Table 7-3: Summary of Long-term Average Annual Inflow to STA-3/4 (Lake TP Conc of
150 ppb)
Table 7-4: Summary of DMSTA Results for STA-3/4 (Lake Conc. of 150 ppb)
Table 8-1: Estimate of Inflow Distribution to Balance the PLR to STA-5 and STA-641
Table 8-2: Summary of Long-term Average Annual Inflow to STA-5, Including
Compartment C Build-out
Table 8-3: Summary of DMSTA Results for STA-5, Including Comp. C Build-out
Table 9-1: Summary of Long-term Average Annual Inflow to STA-6, Including
Compartment C Build-out
Table 9-2: Summary of DMSTA Results for STA-6, Including Comp. C Build-out
Table 10-1: Summary of DMSTA Modeling Results

List of Figures

Figure 2-1: Schematic of STA-1E (Not to Scale) 6 Figure 2-2: Comparison of Inflows and Outflows for STA-1E 9 Figure 3-1: Schematic of STA-1W (Not to Scale) 10 Figure 3-2: Comparison of Inflows and Outflows for STA-1W. 12 Figure 4-1: Schematic of STA-2 (Not to Scale) 13 Figure 4-2: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.0 g/m²/yr. 16 Figure 4-3: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.3 g/m²/yr. 16 Figure 5-1: Preliminary Schematic of Compartment B Build-out, Subject to Revision (Brown & Caldwell 2007). 20 Figure 5-3: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.0 g/m²/yr. 23 Figure 5-3: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.3 g/m²/yr. 27 Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 100 ppb). 31 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 34 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 37 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 40 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out; Subject to Revision (modified from URS 2007). 42	Figure 1-1: Overview of EAA And Surrounding Basins	. 2
Figure 3-1: Schematic of STA-1W (Not to Scale). 10 Figure 3-2: Comparison of Inflows and Outflows for STA-1W. 12 Figure 4-1: Schematic of STA-2 (Not to Scale). 13 Figure 4-2: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.0 g/m²/yr. 16 Figure 4-3: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.3 g/m²/yr. 16 Figure 5-1: Preliminary Schematic of Compartment B Build-out, Subject to Revision (Brown & Caldwell 2007). 20 Figure 5-2: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.0 g/m²/yr. 23 Figure 5-3: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.3 g/m²/yr. 23 Figure 6-1: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.3 g/m²/yr. 27 Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 100 ppb). 31 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 40 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45		
Figure 3-1: Schematic of STA-1W (Not to Scale). 10 Figure 3-2: Comparison of Inflows and Outflows for STA-1W. 12 Figure 4-1: Schematic of STA-2 (Not to Scale). 13 Figure 4-2: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.0 g/m²/yr. 16 Figure 4-3: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.3 g/m²/yr. 16 Figure 5-1: Preliminary Schematic of Compartment B Build-out, Subject to Revision (Brown & Caldwell 2007). 20 Figure 5-2: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.0 g/m²/yr. 23 Figure 5-3: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.3 g/m²/yr. 23 Figure 6-1: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.3 g/m²/yr. 27 Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 100 ppb). 31 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 40 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45	Figure 2-2: Comparison of Inflows and Outflows for STA-1E	. 9
Figure 4-1: Schematic of STA-2 (Not to Scale).13Figure 4-2: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.0 g/m²/yr		
Figure 4-2: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.0 g/m²/yr	Figure 3-2: Comparison of Inflows and Outflows for STA-1W	12
Figure 4-3: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.3 g/m²/yr 19 Figure 5-1: Preliminary Schematic of Compartment B Build-out, Subject to Revision (Brown & Caldwell 2007)		
Figure 4-3: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.3 g/m²/yr 19 Figure 5-1: Preliminary Schematic of Compartment B Build-out, Subject to Revision (Brown & Caldwell 2007)	Figure 4-2: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.0 g/m ² /yr	16
& Caldwell 2007)		
Figure 5-2: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.0 g/m²/yr	Figure 5-1: Preliminary Schematic of Compartment B Build-out, Subject to Revision (Brow	vn
1.0 g/m²/yr		
Figure 5-3: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 27 Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 27 Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 31 Figure 6-2: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 34 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 37 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified 40 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in 41 All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells		
1.3 g/m2/yr. 27 Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 100 ppb). 31 Figure 6-2: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 150 ppb). 34 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46	$1.0 \text{ g/m}^2/\text{yr}$	23
Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 100 ppb). 31 Figure 6-2: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 150 ppb). 34 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46		
100 ppb). 31 Figure 6-2: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 150 ppb). 34 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 37 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 40 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46		
Figure 6-2: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 150 ppb). 34 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46	Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration	of
150 ppb). 34 Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46	100 ppb)	31
Figure 7-1: Schematic of STA-3/4 (Not to Scale). 35 Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46		
Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb). 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46		
100 ppb). 37 Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46		35
Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46		
150 ppb). 40 Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007). 42 Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out. 45 Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells. 46		37
Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007)	Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of	
from URS 2007)	150 ppb)	40
Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out	Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified	d
All Cells, Including Compartment C Build-out		42
Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells 46		
Figure 9-1: Comparison of Inflows and Outflows for STA-6.		
	Figure 9-1: Comparison of Inflows and Outflows for STA-6.	49

1. Introduction

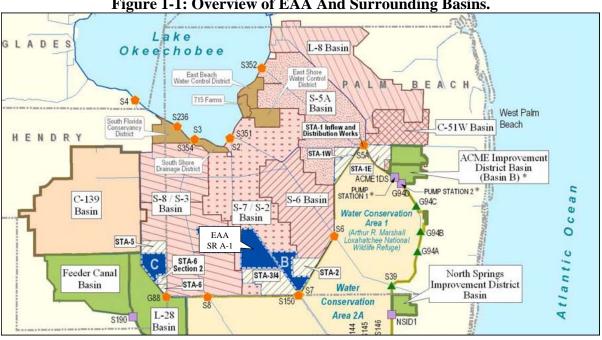
As part of the adaptive implementation strategy of the *Everglades Protection Area Tributary Basins Long-Term Plan for Achieving Water Quality Goals* (LTP), the analyses presented in the *Baseline Data for the Basin-Specific Feasibility Studies to Achieve the Long-Term Water Quality Goals for the Everglades* (Goforth and Piccone 2001) are to be regularly updated to improve the degree of confidence in the projected total phosphorus loads in inflows to the STAs, or in some instances, discharged directly to the Everglades Protection Area (Burns & McDonnell, 2003 as amended). A previous report updated the basin data sets from Water Year (WY) 1995 through WY2007, covering the period May 1, 1994 through April 30, 2007 (Goforth 2007a). Using the flow and phosphorus data developed in that effort, a subsequent report updated the STA inflow data sets for regional conditions anticipated for the 2010 planning period (Goforth 2007b). This report presents the results of updated STA performance projections based on phosphorus removal modeling using the DMSTA model (Walker and Kadlec 2005).

1.1. Scope of Work

This work constitutes Task 7 of CN040902-WO03.Ta18 - Preparation of an Environmental Impact Statement for Everglades Agricultural Area Conveyance and Regional Treatment Project Plus Compartments B and C - between the District and Tetra Tech EC, Inc. This work is being performed under Purchase Order No. 1030342, which was issued on June 25, 2007, between Tetra Tech EC, Inc., and Gary Goforth, Inc.

The scope of work for Task 7 consists of three major elements:

- 1. Update Flow and Phosphorus Data Sets for ECP Basins
- 2. Update STA Inflow Data Sets
- 3. Conduct DMSTA Modeling


This report presents the results of modeling the phosphorus performance of the STAs, the EAA Storage Reservoir and the treatment areas on Compartments B and C using the updated STA inflow data sets for the 2010 planning period.

1.2. Regional Conditions for the 2010 Planning Period

The previous update of the STA inflow data sets was completed in 2005 as part of the *EAA Regional Feasibility Study* (ADA/Burns & McDonnell 2005). That Study evaluated the regional water management conditions for two time periods, 2006-2009 and 2010-2014. This present analysis focuses on the regional conditions that are anticipated to be present in the 2010 time frame. The anticipated status of the water resources projects within the basins tributary to the STAs (shown in **Figure 1-1**) is provided in the **Table 1-1**. Appendix A contains a more complete summary of the key modeling assumptions used in this simulation throughout the South Florida area.

Figure 1-1: Overview of EAA And Surrounding Basins.

Table 1-1: Anticipated Status of Regional Water Resource Projects in the 2010 Period. Project **Status During the 2010 Period**

IIUjee	Status During the 2010 I critica
Original Everglades Construction Project	All 6 STAs fully operational. Approximately 20% of the S-5A Basin runoff diverted to the Hillsboro Canal through existing facilities. Ch. 298 District and 715 Farms diversions in place. No EAA runoff reduction adjustment necessary to account for Best Management Practices.
Compartment B	Build-out completed and flow-capable by December 2010, including ability to re-direct STA-2 inflow to the North Build-out area.
Compartment C	Build-out completed and flow-capable by December 2010
EAA Storage Reservoir A-1	16,000-acre reservoir operable with a 12-ft depth
Acme Basin B	Runoff directed away from WCA-1 and discharged to C-51W, and then to STA-1E
L-8 Reservoir	Partially completed: 870 acres, depth 44 ft. Facilities not completed for diversion away from S-5A/C-51W.
Everglades Agricultural Area Conveyance and Regional Treatment Project (ECART)	Not completed

1.3. Phosphorus Modeling

The phosphorus removal performance of the STAs, EAA Storage Reservoir and treatment areas of Compartments B and C were estimated using the July 5, 2007 release of the Dynamic Model for Stormwater Treatment Areas, Model Version 2 (DMSTA, 09/30/2005), developed for the U.S. Department of the Interior and the U.S. Army Corps of Engineers by W. Walker and R. Kadlec. Outflow phosphorus concentrations are calculated based on:

- daily input data, consisting of flow, phosphorus concentrations, rainfall evapotranspiration (ET), depth (optional) and releases (optional);
- mass and water balances calculated for each time step for each treatment cell or reservoir compartment,
- treatment area configuration, cell size, flow path width, vegetation type, estimates of hydraulic mixing, outflow hydraulics, seepage estimates;
- phosphorus removal rates that can be either user-defined or available within DMSTA based on calibration data sets extracted from numerous vegetation types, phosphorus characteristics and hydraulic regimes of many south Florida wetland treatment systems through early 2005.

DMSTA was used to predict annual and long-term average flow-weighted mean concentrations, with a 365-day averaging period. In addition, STA performance uncertainty analyses were conducted, using the 10%, mean and 90% values of the settling rates for the specific vegetation types. These projections are subject to the assumptions, constraints and limitations of DMSTA modeling and STA operations, including the following.

- DMSTA calibrations are based upon data from fully functional treatment cells with viable vegetation communities that have near optimal performance. The range of treatment characteristics for each vegetation type is summarized in Table 1-2.
- In addition to consideration of the range of calibration treatment characteristics, other important factors not yet incorporated into the model include calcium requirements, antecedent soils, and assumed intensive management, particularly for the enhanced vegetation types.
- DMSTA generates error/warning notices if simulated conditions exceed the range of the calibration characteristics presented in Table 1-3.
- The use of the DMSTA calibration vegetation types, e.g., SAV, assumes that the vegetation will be maintained in the long-term. This assumption may produce overly optimistic long-term performance projections for treatment areas subject to periodic disturbance such as hurricanes, droughts and other extreme conditions.
- DMSTA does not allow a treatment cell to dry out, and hence does not reproduce the vegetative responses and phosphorus dynamics (e.g., post-dry-out spikes) observed in treatment cells that periodically go dry. Hence the phosphorus removal performance simulated for large wetland systems with limited water availability, such as Compartment C, may be overly optimistic. Other methods should be used to estimate

the supplemental water required to either avoid dryout or to estimate the phosphorus performance for these large systems that experience periodic dryout.

- STA performance projections are subject to the complete set of DMSTA assumptions, which can be found at <u>http://www.wwwalker.net/DMSTA/index.htm</u>.
- > Additional uncertainty exists in flow estimates and regional water management.

I dole I II											
Variable	Units	EM	ERG	PE	EW	S	AV	PS	σta	RES	ERV
variable	Units	Min	Max								
Calib Period	days	641	4017	693	4017	693	1522	245	1062	1460	5843
Calib K	m/yr	12	23	27	49	46	64	18	34	1	8
Mean Depth	cm	35	76	38	66	62	87	13	52	90	304
Max Depth	cm	47	131	71	123	75	132	22	65	187	457
Freq Z < 10 cm	%	0%	9%	0%	13%	0%	0%	0%	38%	0%	0%
Hydraulic Load	cm/day	1.1	6.5	3.0	6.9	5.1	12.7	2.8	14.6	0.4	17.6
Residence Time	days	8	66	7	22	5	17	1	19	8	714
Velocity	cm/sec	0.04	0.45	0.16	0.48	0.30	0.64	0.01	1.12	0.05	1.32
Flow/Width	md/2	26	210	69	276	162	374	3	132	68	1135
Areal Load	mg/m2-yr	382	2908	222	1919	1649	5279	142	1447	212	11781
Storage	mg/m2	921	4299	171	1494	903	2959	96	911	200	4994
Inflow Conc	ppb	39	283	17	110	36	153	7	56	78	1144
FWM Outflow Conc	ppb	20	150	8	28	15	57	6	15	50	767
Outflow GeoMean	ppb	19	125	8	21	15	55	5	15	39	725
Marsh GeoMean	ppb	19	128	8	20	16	56	5	15	38	725

Table 1.2. Calibration	Dataset Range	s (Draft from	www.wwwalker.net/dmsta/).
Table 1-2. Calibiation	Dataset Range	5 (Di ait, 110111	www.wwwwaikei.net/unista/).

 Table 1-3: Variable Ranges for Model Applications - Used to Trigger Warning Messages (Draft, from www.wwwalker.net/dmsta/).

	8									
Calibration	K (m/yr)	CV(K)	Depth	n (cm)	Q/W (m2/d)	Conc	(ppb)	Freq Z <	10 cm (%)
Calibration			Min	Max	Min	Max	Min	Max	Min	Мах
EMERG_3	16.8	0.20	35	76	26	210	19.5	800	0%	9%
PEW_3	34.9	0.21	38	66	69	276	8.0	110	0%	13%
SAV_3	52.5	0.16	62	87	162	374	14.9	153	0%	0%
PSTA_3	23.6	0.22	13	60	3	132	5.9	56	0%	38%
RES_3	5.0	0.45	90	304	68	1135	50.3	1144	0%	0%

When evaluating DMSTA results, particular attention needs to be given to the simulated outflow concentration, in that DMSTA does not constrain the reported values to minimum levels observed in the calibration data sets reported in Table 1-2. In other words, the model may forecast outflow concentrations lower than have been observed in the field. Forecast error is inherent when using any simulation model. These errors result from limitations of the calibration datasets (measurement error, short duration, etc.) and other sources that are difficult quantify. information from the to Based on DMSTA website (http://www.wwwalker.net/DMSTA/index.htm) and Walker (personal communication), the DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. In addition, the following disclaimer is offered by the authors of DMSTA:

DMSTA2 is a modeling tool with a constrained range of applicability. It has been developed and calibrated to information specific to South Florida. It is intended for use in evaluating Everglades Protection Project by individuals with experience in hydrologic & water quality

Stepping Up the Pace

everglades nov

ACCELE

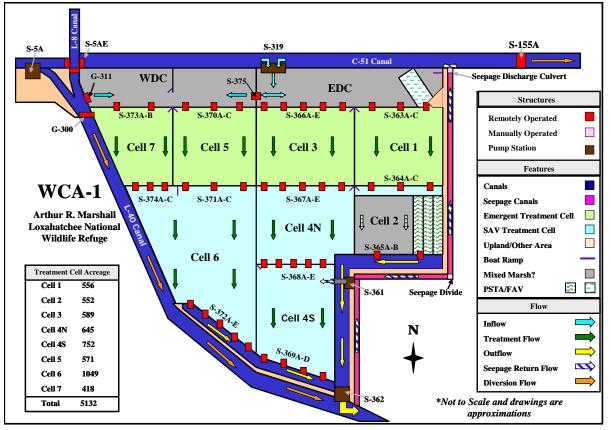
modeling. It should not be exercised in any situation without careful examination of all features, assumptions and calibrations, as they relate to a given application and to the supporting research upon which the calibrations are based. When properly calibrated by the user, the hydraulics portion of DMSTA2 is thought to generate predictions that are adequate for the purpose of simulating phosphorus dynamics. The hydraulic simulations should not be relied upon for designing flood control measures, designing levees, for any other purposes in which life and/or property may be at risk. The user assumes all risks associated with using the model for designing treatment areas or any other purpose.

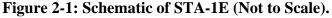
Proper use of DMSTA2 requires thorough understanding of calibration results & limitations & further documentation provided below. Sample input files are for demonstration purposes. None reflect actual designs. Atmospheric deposition, hydraulic, or seepage input values should not be interpreted as defaults or recommended values. While P cycling parameters are suggested for various situations and within well-defined calibration boundaries, users must decide which calibration is appropriate in any situation.

Additional information on the development, calibration and application of DMSTA can be found at: <u>www.wwwalker.net/dmsta</u>.

The development of the daily flow and phosphorus input data sets was described in *Updated STA Inflow Data Sets for the 2010 Period* (Goforth 2007b). Daily rainfall and ET for all the treatment areas except STA-5 and STA-6 were provided by the District as part of the SFWMM modeling. For STA-5 and STA-6, actual rainfall and ET were used based on local gauges. Treatment cell dimensions, hydraulic characteristics and vegetation types were consistent with values used in the 2005 EAA Regional Feasibility Study (ADA/Burns & McDonnell 2005), modified for consistency with updated information obtained from the ongoing Compartments B and C design (Brown & Caldwell 2007, URS 2007). All STA enhancements described in the Everglades *Long-Term Plan* scheduled for completion by the end of 2010 are assumed to be completed (Burns & McDonnell 2003, as amended).

1.4. Revised C-139 Basin Data


Subsequent to the transmittal of the final report *Updated STA Inflow Data Sets for the 2010 Period*, a discrepancy was identified between the flows and loads developed for the C-139 Basin and the data set utilized for the C-139 Basin BMP regulatory program. A review of the method used to develop the regulatory program data set revealed that certain flows and loads from the District's DBHYDRO database were revised to better represent the runoff from the C-139 Basin (Walker 2000). The net effect of this revision was to reduce the annual flow and phosphorus loads from the C-139 Basin to be treated in STA-5 and STA-6 by approximately 5,500 AF/yr and 3,000 kg/yr. For consistency with the regulatory program, the data set and STA inflow data used in this work effort for the C-139 Basin were revised. The revised tables and figures for the C-139 Basin and the inflow data sets for STA-5 and STA-6 are presented in Appendix B, along with the revised summary tables.



2. STA-1E

Working in concert with STA-1W, STA-1E will capture and treat runoff from the C-51 Basin, Acme Basin B, L-8 Basin, S-5A Basin and the East Beach Water Control District. A schematic of STA-1E is presented in **Figure 2-1**. The long-term average annual inflow to STA-1E by source is summarized in **Table 2-1**, which does not include a long-term average of approximately 26,000 AF/yr of flow diverted to the eastern C-51 basin. Although the long-term goal is to treat less inflow in STA-1E than shown in Table 2-1, it is recognized that during the interim period before ECART and the L-8 Basin projects are complete, STA-1E inflows will be higher than the long-term goals. With complete diversion of the L-8 Basin runoff and without implementation of ECART, the long-term average annual inflows to STA-1E will be lower than presented in Table 2-1. It should also be noted that significantly higher phosphorus loads to STA-1E are estimated in the present analysis than in the 2005 EAA Regional Feasibility Study, due principally to higher phosphorus concentrations during the updated period of record, observed following the 2004 hurricanes. A longer period of record will be applied to future STA-1E inflows at that time.

	y of hong term interage innium innow to				
Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)		
S-5A Basin	18,766	3,802	164		
EBWCD	1,028	593	468		
L-8 Basin	8,571	1,019	96		
Acme Basin B	35,066	4,915	114		
C-51W Basin	130,375	31,529	196		
Total	193,818	41,864	175		

Table 2-1: Summary of Long-term Average Annual Inflow to STA-1E.

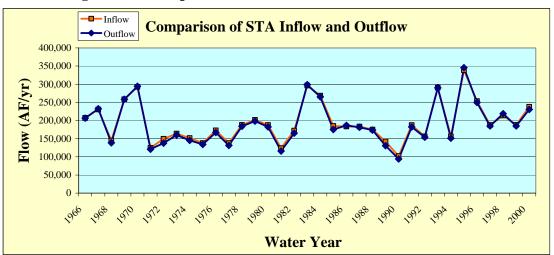
Prior to construction, the existing ground elevation at STA-1E exhibited a slope from the northeast to the southwest of more than 7 feet. When constructed by the U. S. Army Corps of Engineers, the majority of the treatment cells were leveled to minimize hydraulic short-circuiting and areas of deep depths. However, the East and West Distribution Cells were not leveled and still retain the relatively steep slope that existing prior to the STA construction. As a result, the cells are characterized by areas of high ground without wetland vegetation, areas of deep ponds, and an irregular inundation/dry out cycle. Unlike the Buffer Cell of the prototype STA (the Everglades Nutrient Removal Project), phosphorus removal within the East and West Distribution Cells is not anticipated to be reliable. Hence, these cells are not considered as part of the effective treatment area of STA-1E, and were modeled with an effective settling rate of 0.01 m/yr.

A summary of STA-1E phosphorus performance for the 2010 period is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. A long-term flow-weighted mean outflow concentration range of 20-35 ppb was forecast, however this includes years when DMSTA forecast levels that fell below the calibration range of 15 ppb for an SAV system, and hence may be optimistic. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For Cells 2, 4S and 4S, the mean depths were slightly lower than the SAV calibration range. Also for Cell 2, the mean flow/width was slightly lower than the range in the SAV calibration data sets.

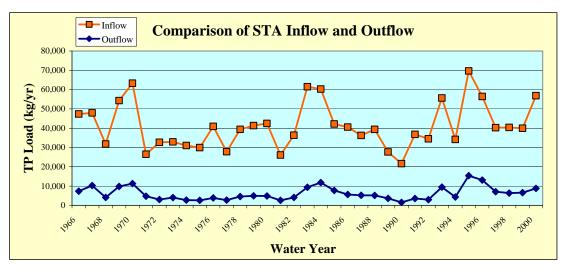
Table 2-2: Summary of DNISTA Results for STA-IE.					
Parameter	Unit	STA-1E			
Effective Treatment Area	acres	5,132			
Average Annual Inf	low				
Volume	AF/yr	193,818			
TP Load	kg/yr	41,864			
TP Concentration	ppb	175			
Average Annual Out	flow				
Volume	AF/yr	190,599			
Flow-weighted Mean TP Concentration	1				
Upper Conf. Limit for Settling Rate	ppb	20 (10)			
Mean Estimate of Settling Rate	ppb	27 (1)			
Lower Conf. Limit for Settling Rate	ppb	35			
Geometric Mean TP Concentration					
Upper Conf. Limit for Settling Rate	ppb	18			
Mean Estimate of Settling Rate	ppb	24			
Lower Conf. Limit for Settling Rate	ppb	32			
TP Load (Using Mean TP Conc.)	kg/yr	6,240			
Diversion Volumes and					
Volume	AF/yr	26,186			
TP Load	kg/yr	4,027			
TP Concentration	ppb	125			

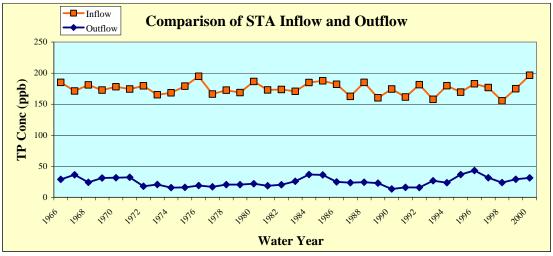
Table 2-2: Summary of DMSTA Results for STA-1E.

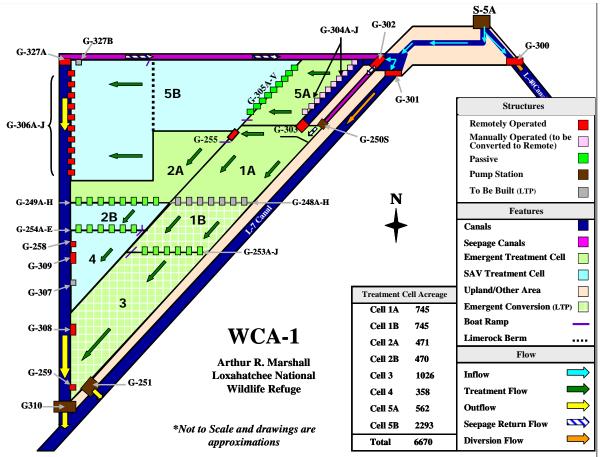
Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.


2. Outflow values highlighted in yellow had one or more years of the 36 years simulated below the low end of the

calibration data set (enumerated by the number in parentheses).


3. Diversions related to STA-1E are directed to eastern C-51.





3. STA-1W

Working in concert with STA-1E, STA-1W will capture and treat runoff from the C-51 Basin, Acme Basin B, L-8 Basin, S-5A Basin and the East Beach Water Control District. A schematic of STA-1W is presented in **Figure 3-1**. The long-term average annual inflow to STA-1W by source is summarized in **Table 3-1**. Although the long-term goal is to treat less inflow in STA-1W than shown in **Table 3-1**, it is recognized that during the interim period before ECART and the L-8 Basin projects are complete, STA-1W inflows will be higher than the long-term goals. With complete diversion of the L-8 Basin runoff and without implementation of ECART, the long-term average annual inflows to STA-1W will be lower than presented in **Table 3-1**.

aD	le 3-1: Summar	y of Long-term	Average Annual	Innow to SIA-	1 .
	Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)	
	S-5A Basin	228,143	45,753	163	
	EBWCD	15,005	8,651	467	
	Total	243,172	54,409	181	

Table 3 1.	Summery of Long term	Average Annual Inflow to STA-1W.	
1 able 3-1.	Summary of Long-term	Average Annual millow to STA-1W.	

A summary of STA-1W phosphorus performance for the 2010 period is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. A long-term flow-weighted mean outflow concentration range of 21-35 ppb was forecast, however this includes years when DMSTA forecast levels that fell below the calibration range of 15 ppb for an SAV system, and hence may be optimistic. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For Cells 2B, 4 and 5B the mean depths and flow/width were slightly below the range of the SAV calibration data sets. For Cell 1A, the flow/width was about 30% above the range of the emergent calibration data sets.

Parameter	Unit	STA-1W
Effective Treatment Area	acres	6,670
Average Annual Inflow		
Volume	AF/yr	243,172
TP Load	kg/yr	54,409
TP Concentration	ppb	181
Average Annual Outflow		
Volume	AF/yr	244,928
Flow-weighted Mean TP Concentration	1	
Upper Conf. Limit for Settling Rate	ppb	21 (4)
Mean Estimate of Settling Rate	ppb	27
Lower Conf. Limit for Settling Rate	ppb	35
Geometric Mean TP Concentration		
Upper Conf. Limit for Settling Rate	ppb	20
Mean Estimate of Settling Rate	ppb	26
Lower Conf. Limit for Settling Rate	ppb	33
TP Load (Using Mean TP Conc.)	kg/yr	8,222
Diversion Volumes and Loads	S	
Volume	AF/yr	0
TP Load	kg/yr	0
TP Concentration	ppb	-
	C1 · 1	. 1

Table 3-2: Summary of DMSTA Results for STA-1W.

Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.

2. Outflow values highlighted in yellow had one or more years of the 36 years simulated below the low end of the calibration data set (enumerated by the number in parentheses).

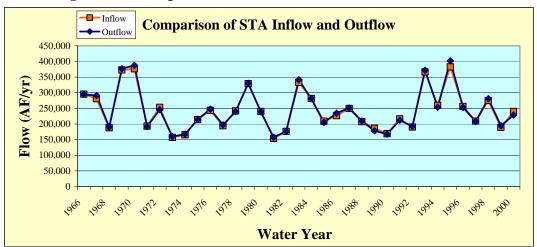
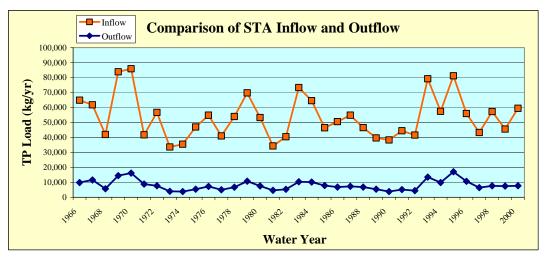
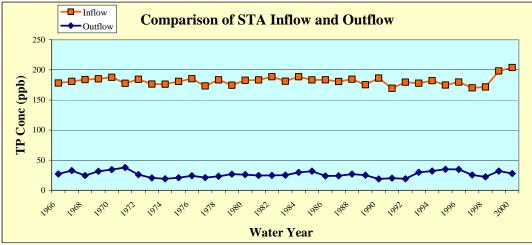
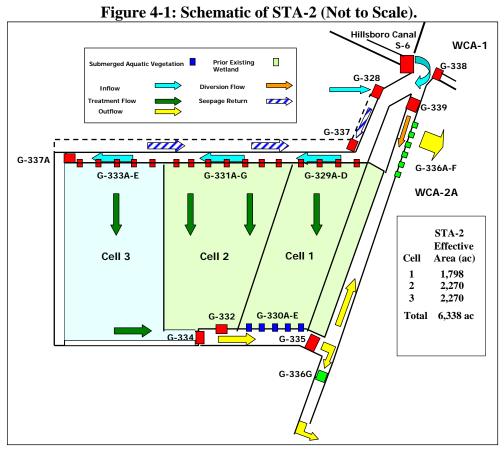




Figure 3-2: Comparison of Inflows and Outflows for STA-1W.



4. STA-2

A schematic of STA-2 is presented in **Figure 4-1**.

When the SFWMM Alt1 simulation was developed, the capability did not exist in the model to re-direct a portion of STA-2 inflows west to Compartment B for treatment, with the result that a phosphorus loading rate (PLR) for STA-2 of 1.6 g/m²/yr was associated with this SFWMM simulation. By comparison for this same SFWMM simulation, the PLR for Compartment B with no re-direction from STA-2 was approximately 0.36 g/m²/yr, indicating available treatment capacity in Compartment B. Consistent with the Compartment B Basis of Design Report (Brown & Caldwell 2007), and because the structural components needed to re-direct water from the S-6 pump station west to Compartment B will be in place upon completion of the Compartment B STA, a portion of STA-2 inflows can in fact be directed to Compartment B in order to reduce the phosphorus loading rate for STA-2. For the purpose of optimizing the treatment performance for the 2010 scenario simulated by the SFWMM Alt1, even though the model did not simulate such a redirection, the District can in reality redirect STA-2 inflows to Compartment B to better balance the PLR among the treatment areas. A PLR of 1.0 g/m²/yr would balance the loading rate between STA-2 and the North Build-out area of Compartment B (the South Build-out will not receive STA-2 re-direction).

Hence for the purpose of optimizing the treatment performance for the 2010 scenario simulated by SFWMM Alt1, a sufficient quantity of STA-2 inflows was re-directed to Compartment B North Build-out in order to achieve a PLR of 1.0 g/m²/yr. It is important to note that a PLR of 1.0 g/m²/yr was used for this analysis as a rough target for balancing the loading rate between STA-2 and Compartment B, specifically the North Build-out area, and not as an ultimate PLR goal for STAs in general. In the future, for example, upon the completion of ECART, the re-distribution of a portion of STA-2 inflows to Compartment B will be re-evaluated to optimize regional benefits. A long-term average annual re-direction of 118,810 AF/yr accomplishes this balanced PLR of 1.0 g/m²/yr for STA-2 and the North Build-out of Compartment B. The PLR for the South Build-out, which will receive the balance of runoff from the S-7/S-2 Basin, is estimated as 0.5 g/m²/yr. The resulting PLR for the entire Compartment B is approximately 0.8 g/m²/yr, indicating some remaining unused treatment capacity in Compartment B even with the above re-distribution scenario. The resulting long-term average annual inflow to STA-2 by source is summarized in **Table 4-1**, showing the inflows before and after the re-direction.

Source	STA-2 Inflows To Achieve a PLR of 1.0 g/m2/yr				
Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)		
WCA-2A Seepage	27,530	509	15		
S-5A Basin	61,148	12,289	163		
ESWCD & 715 Farms	31,129	5,215	136		
S-6/S-2 Basin	181,700	23,661	106		
Inflow Prior to Re-direction	301,507	41,675	112		
Re-direct to Compartment B	-118,810	-16,012	109		
Net Inflow	182,697	25,662	114		

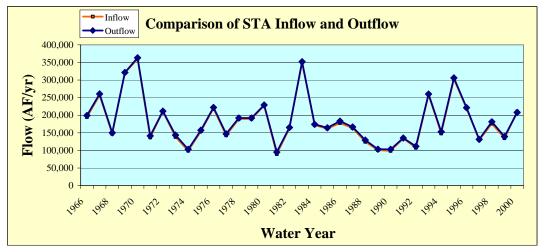
Table 4-1: Long-term Average Annual Inflow to STA-2 For a PLR of 1.0 g/m²/yr.

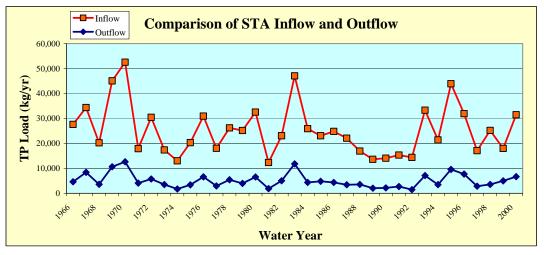
A summary of STA-2 phosphorus performance for the 2010 period with a PLR of $1.0 \text{ g/m}^2/\text{yr}$ is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. A long-term flow-weighted mean outflow concentration range of 19-27 ppb was forecast, however this includes years when DMSTA forecast levels that fell below the calibration range of 15 ppb for an SAV system, and hence may be optimistic. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For Cells 1 and 2, the long-term average inflow concentration was approximately 4% above the range of the prior existing wetland (PEW) calibration data sets. For Cell 3 the mean depth and flow/width were slightly below the range of the SAV calibration data sets.

Table 4-2: Summary of DMSTA Results for STA-2 with a PLR of 1.0 $g/m^2/yr$.

		STA-2 - 1.0
Parameter	Unit	g/m2/yr
Effective Treatment Area	acres	6,338
Average Annual Inflow		
Volume	AF/yr	182,697
TP Load	kg/yr	25,662
TP Concentration	ppb	114
Average Annual Outflow		
Volume	AF/yr	186,047
Flow-weighted Mean TP Concentration	l	
Upper Conf. Limit for Settling Rate	ppb	19 (2)
Mean Estimate of Settling Rate	ppb	22 (1)
Lower Conf. Limit for Settling Rate	ppb	27
Geometric Mean TP Concentration		
Upper Conf. Limit for Settling Rate	ppb	17
Mean Estimate of Settling Rate	ppb	21
Lower Conf. Limit for Settling Rate	ppb	25
TP Load (Using Mean TP Conc.)	kg/yr	5,145
Diversion Volumes and Loads		
Volume	AF/yr	0
TP Load	kg/yr	0
TP Concentration	ppb	_

Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.


2. Outflow values highlighted in yellow had one or more years of the 36 years simulated below the low end of the


calibration data set (enumerated by the number in parentheses).

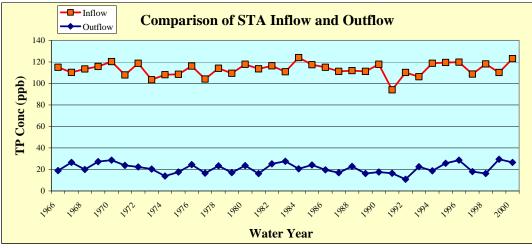


Figure 4-2: Comparison of Inflows and Outflows for STA-2 with a PLR of 1.0 g/m²/yr.

4.1. Sensitivity Analysis: Redirection to Compartment B to Achieve an STA-2 Phosphorus Loading Rate of 1.3 g/m²/yr

An alternative re-direction target was investigated as a sensitivity analysis. An investigation of the performance of STA treatment cells and other Florida treatment wetlands by Juston and DeBusk (2005) identified a PLR of $1.3 \text{ g/m}^2/\text{yr}$ as a potential breakpoint between "well-performing" and "challenged" treatment areas. The simulation of a PLR for STA-2 of 1.3 g/m²/yr was conducted for the purpose of comparing alternatives and does not represent an ultimate PLR goal for STAs. The long-term PLR is just one of many factors that influence the phosphorus removal performance of an STA; others include

- Vegetation type
- ➢ Soil type
- Antecedent land use
- Phosphorus loading history
- Inflow concentrations
- Hurricanes, droughts and other disturbances

As a reference, STA-2 is presently receiving a PLR of $1.34 \text{ g/m}^2/\text{yr}$ and is one of the highest performing STAs, with a long-term average flow-weighted mean of 21 ppb (Pietro et al. 2007). In addition, STA-3/4 has been receiving phosphorus at a PLR averaging $1.5 \text{ g/m}^2/\text{yr}$ and is producing the lowest outflow phosphorus concentration of all the STAs, with a 3-year average flow-weighted mean of 19 ppb (Pietro et al. 2007). These STA performance results suggest that STAs loaded above a PLR $1.3 \text{ g/m}^2/\text{yr}$ may still achieve optimal performance, which could allow a greater inflow to STA-2 than presently modeled, thus increasing the available treatment capacity in Compartment B. A long-term average annual re-direction of 61,225 AF/yr accomplishes this PLR of $1.3 \text{ g/m}^2/\text{yr}$ for the SFWMM Alt1 simulation. The PLR for the North Build-out under this re-direction scenario is estimated as $0.6 \text{ g/m}^2/\text{yr}$. The PLR for the South Build-out, which will receive the balance of runoff from the S-7/S-2 Basin, is estimated as $0.5 \text{ g/m}^2/\text{yr}$. The PLR for the entire Compartment B is approximately $0.6 \text{ g/m}^2/\text{yr}$, well below the $1.3 \text{ g/m}^2/\text{yr}$ value and indicating surplus treatment capacity in Compartment B. Using this re-direction quantity, the long-term average annual inflow to STA-2 by source is summarized in **Table 4-3**.

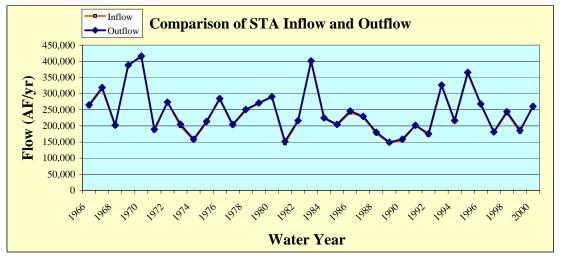
Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)
WCA-2A Seepage	27,530	509	15
S-5A Basin	61,148	12,289	163
ESWCD & 715 Farms	31,129	5,215	136
S-6/S-2 Basin	181,700	23,661	106
Divert to Compartment B	-61,225	-8,322	110
Total	240,282	33,353	113

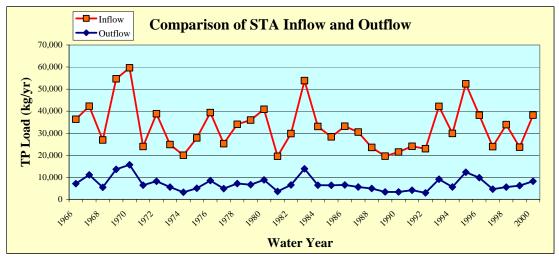
Table 4-3: Long-term Average Annual Inflow to STA-2 For a PLR of 1.3 g/m²/yr.

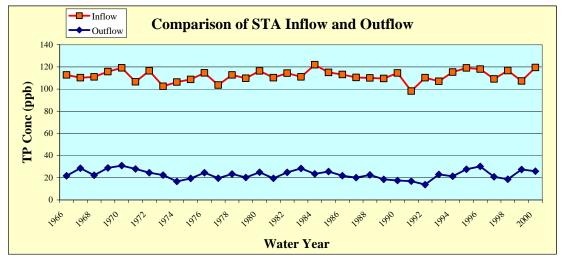
A summary of STA-2 phosphorus performance for the 2010 period with a PLR of $1.3 \text{ g/m}^2/\text{yr}$ is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. A long-term flow-weighted mean outflow concentration range of 19-29 ppb was forecast compared to 19-27 ppb for a PLR of $1.0 \text{ g/m}^2/\text{yr}$, however this includes years when DMSTA forecast levels that fell below the calibration range of 15 ppb for an SAV system, and hence may be optimistic. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For Cells 1 and 2, the long-term average inflow concentration was approximately 3% above the range of the prior existing wetland (PEW) calibration data sets. For Cell 3 the mean depth and flow/width were slightly below the range of the SAV calibration data sets.

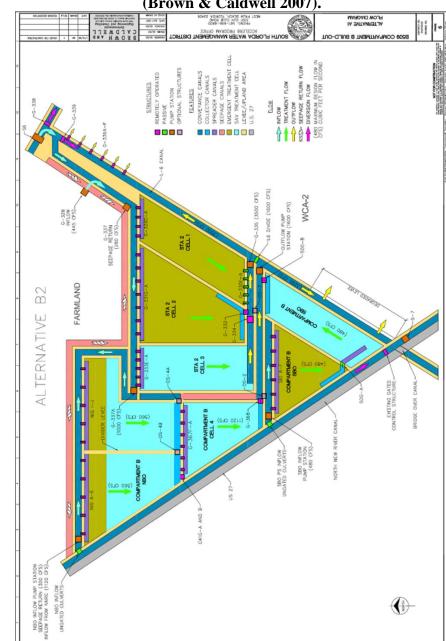
Unit acres	g/m2/yr		
acres	6 2 2 9		
	6,338		
AF/yr	240,282		
kg/yr	33,353		
ppb	113		
AF/yr	243,339		
ppb	19 (1)		
ppb	24		
ppb	29		
ppb	18		
ppb	22		
ppb	28		
kg/yr	7,151		
Diversion Volumes and Loads			
AF/yr	0		
kg/yr	0		
ppb	-		
	kg/yr ppb AF/yr ppb ppb ppb ppb ppb kg/yr AF/yr kg/yr		

Table 4-4: Summary of DMSTA Results for STA-2 with a PLR of 1.3 g/m²/yr.


Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.


2. Outflow values highlighted in yellow had one or more years of the 36 years simulated below the low end of the calibration data set (enumerated by the number in parentheses).





5. Compartment B

A preliminary schematic of the Compartment B Build-out is presented in **Figure 5-1** (Brown & Caldwell 2007).

Figure 5-1: Preliminary Schematic of Compartment B Build-out, Subject to Revision (Brown & Caldwell 2007).

As discussed in Section 4 above, a PLR to STA-2 of 1.0 g/m²/yr would balance the loading rate between STA-2 and the North Build-out area of Compartment B (the South Build-out will not receive STA-2 re-direction). Hence for the purpose of optimizing the treatment performance for the 2010 scenario simulated by SFWMM Alt1, a sufficient quantity of STA-2 inflows was re-directed to Compartment B North Build-out in order to achieve a PLR of 1.0 g/m²/yr. It is important to note that a PLR of 1.0 g/m²/yr was used for this analysis as a rough target for balancing the loading rate between STA-2 and Compartment B, specifically the North Build-out area, and not as an ultimate PLR goal for STAs in general. In the future, for example, upon the completion of ECART, the re-distribution of a portion of STA-2 inflows to Compartment B will be re-evaluated to optimize regional benefits. The resulting long-term average annual inflow to Compartment B by source is summarized in Table 5-1, showing the inflows before and after the re-direction.

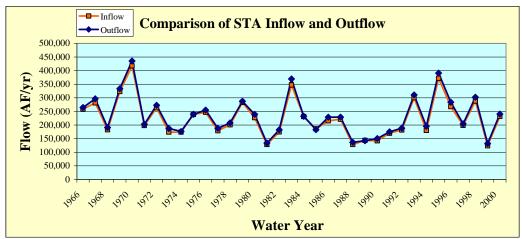
Table 5-1:	Long-term A	verage Annua	I Inflow to	o Comparti	ment B For an S	STA-2 PLR of
1.0 g/m²/yr.						
	Source	Elow (A	(//r) TPI	oad (kg/yr)	TP Conc (nnh)	

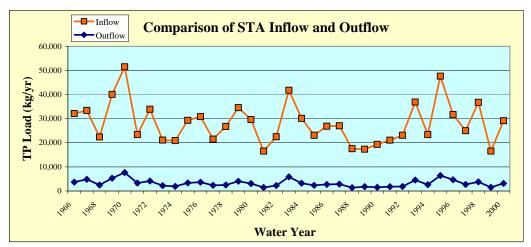
Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)
S-7/S-2 Basin	106,069	12,411	95
Re-direction from S	STA-2		
WCA-2A Seepage	10,848	201	15
S-6/S-2 Basin	71,599	9,324	106
S-5 Basin	24,096	4,843	163
ESWCD & 715			
Farms	12,267	2,055	136
Total	224,879	28,833	104

A summary of Compartment B phosphorus performance for the 2010 period is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. DMSTA forecast long-term average annual phosphorus concentrations of 9.1-14.6 ppb, which are below the minimum of the calibration data sets for SAV (15 ppb), and those forecasts were replaced in Table 5-2 by 15 ppb. The adjusted outflow phosphorus levels in Table 5-2 may still portray optimistic results in that the best performing STA (STA-3/4) is presently averaging about 19 ppb, with a 5 ppb standard deviation on annual values. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For the North and South Build-out cells, the mean depth and flow/width were slightly below the range of the SAV calibration data sets.

Table 5-2: DMSTA Results for Comp. B with an STA-2 PLR of 1 g/m ² /yr.				
Parameter	Unit	Comp. B	Comp. B	Comp. B
i arameter	Omt	North	South	Combined
Effective Treatment Area	acres	5,824	2,796	8,620
Average Annual Inflow				
Volume	AF/yr	177,228	47,651	224,879
TP Load	kg/yr	22,932	5,553	28,833
TP Concentration	ppb	105	94	104
Average Annual Outflow				
Volume	AF/yr	180,541	53,378	233,919
Flow-weighted Mean TP Concentration	1			
Upper Conf. Limit for Settling Rate	ppb	15 (35)	15 (35)	15 (35)
Mean Estimate of Settling Rate	ppb	15 (35)	15 (34)	15 (35)
Lower Conf. Limit for Settling Rate	ppb	15 (27)	15 (25)	15 (27)
Geometric Mean TP Concentration				
Upper Conf. Limit for Settling Rate	ppb	15	15	15
Mean Estimate of Settling Rate	ppb	15	15	15
Lower Conf. Limit for Settling Rate	ppb	15	15	15
TP Load (Using Mean TP Conc.)	kg/yr	3,340	988	4,328
Diversion Volumes and Loads				
Volume	AF/yr	0	0	0
TP Load	kg/yr	0	0	0
TP Concentration	ppb	-	-	-

Table 5-2: DMSTA Results for Comp. B with an STA-2 PLR of 1 g/m²/yr.


Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.


2. Outflow values highlighted in yellow had one or more years of the 35 year simulated below the low end of the calibration data set (enumerated by the number in parentheses). The lowest sustainable STA outflow phosphorus concentration is 19 ppb (STA-3/4), with a standard deviation of 5 ppb.

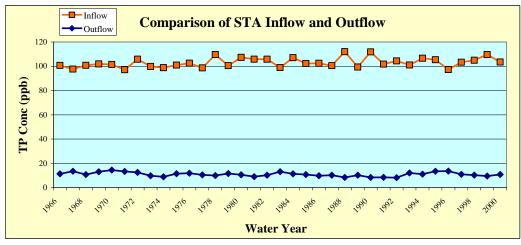


Figure 5-2: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.0 g/m²/yr.

Note: TP concentrations below 15 ppb have not been sustained.

5.1. Sensitivity Analysis: Redirection to Compartment B to Achieve an STA-2 Phosphorus Loading Rate of 1.3 g/m²/yr

An alternative re-direction target was investigated as a sensitivity analysis. An investigation of the performance of STA treatment cells and other Florida treatment wetlands by Juston and DeBusk (2005) identified a PLR of 1.3 g/m²/yr as a potential breakpoint between "well-performing" and "challenged" treatment areas. The simulation of a PLR for STA-2 of 1.3 g/m²/yr was conducted for the purpose of comparing alternatives and does not represent an ultimate PLR goal for STAs. The long-term PLR is just one of many factors that influence the phosphorus removal performance of an STA; others include

- Vegetation type
- > Soil type
- Antecedent land use
- Phosphorus loading history
- Inflow concentrations
- Hurricanes, droughts and other disturbances

As a reference, STA-2 is presently receiving a PLR of $1.34 \text{ g/m}^2/\text{yr}$ and is one of the highest performing STAs, with a long-term average flow-weighted mean of 21 ppb (Pietro et al. 2007). In addition, STA-3/4 has been receiving phosphorus at a PLR averaging $1.5 \text{ g/m}^2/\text{yr}$ and is producing the lowest outflow phosphorus concentration of all the STAs, with a 3-year average flow-weighted mean of 19 ppb (Pietro et al. 2007). These STA performance results suggest that STAs loaded above a PLR $1.3 \text{ g/m}^2/\text{yr}$ may still achieve optimal performance, which could allow a greater inflow to STA-2 than presently modeled, thus increasing the available treatment capacity in Compartment B. A long-term average annual re-direction of 61,225 AF/yr accomplishes this PLR of $1.3 \text{ g/m}^2/\text{yr}$ for the SFWMM Alt1 simulation. The PLR for the North Build-out under this re-direction scenario is estimated as $0.6 \text{ g/m}^2/\text{yr}$. The PLR for the South Build-out, which will receive the balance of runoff from the S-7/S-2 Basin, is estimated as $0.5 \text{ g/m}^2/\text{yr}$. The PLR for the entire Compartment B is approximately $0.6 \text{ g/m}^2/\text{yr}$, well below the $1.3 \text{ g/m}^2/\text{yr}$ value and indicating surplus treatment capacity in Compartment B. Using this re-direction quantity, the long-term average annual inflow to Compartment B by source is summarized in **Table 5-3**.

Table 5-3: Long-term Average Annual Inflow to Compartment B For an STA-2 PLR of
$1.3 \text{ g/m}^2/\text{yr.}$

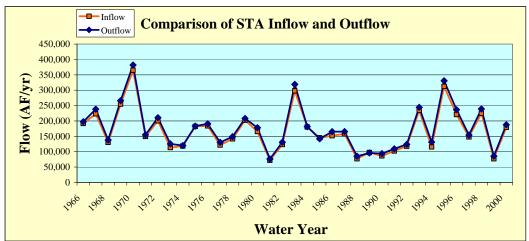
	Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)			
S-	7/S-2 Basin	106,069	12,411	95			
WCA	-2A Seepage	5,590	103	15			
S-	6/S-2 Basin	36,896	4,805	106			
5	S-5 Basin	12,417	2,496	163			
ES	WCD & 715						
	Farms	6,321	1,059	136			
	Total	167,294	20,873	101			

As a reference, STA-2 is presently receiving a PLR of 1.34 g/m²/yr and is one of the highest performing STAs, with a long-term average flow-weighted mean of 21 ppb (Pietro et al. 2007). In addition, STA-3/4 has been receiving phosphorus at a PLR averaging 1.5 g/m²/yr and is producing the lowest outflow phosphorus concentration of all the STAs, with a 3-year average flow-weighted mean of 19 ppb (Pietro et al. 2007). These STA performance results, in combination with the results of this sensitivity analysis, suggest that STAs loaded above a PLR 1.3 g/m²/yr may still achieve optimal performance, which could allow a greater loading to STA-2 than presently modeled, thus increasing the available treatment capacity in Compartment B.

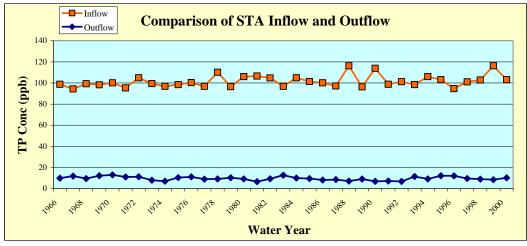
A summary of Compartment B phosphorus performance for the 2010 period with a PLR of $1.3 \text{ g/m}^2/\text{yr}$ to STA-2 is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. As was the case for an STA-2 PLR of $1.0 \text{ g/m}^2/\text{yr}$, DMSTA forecast long-term outflow concentrations below the low end of the SAV calibration data set (15 ppb) and these were set to the low end value, and hence may be optimistic. Judgment should be applied before using these results as a true indicator of long-term performance. By reference, the lowest sustainable outflow concentration from an STA to date is 19 ppb with a standard deviation of 5 ppb for STA-3/4. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For the North and South Build-out cells, the mean depth and flow/width were slightly below the range of the SAV calibration data sets.

Table 5-4: DMSTA Results for Compartment B with an STA-2 PLR of 1.3 g/m2/yr.					
Donomotor	Unit	Comp. B	Comp. B	Comp. B	
Parameter	Unit	North	South	Combined	
Effective Treatment Area	acres	5,824	2,796	8,620	
Average Annual Inflow					
Volume	AF/yr	119,643	47,651	167,294	
TP Load	kg/yr	15,242	5,553	20,873	
TP Concentration	ppb	103	94	101	
Average Annual Outflow					
Volume	AF/yr	124,376	53,378	177,754	
Flow-weighted Mean TP Concentration	1				
Upper Conf. Limit for Settling Rate	ppb	15 (35)	15 (35)	15 (35)	
Mean Estimate of Settling Rate	ppb	15 (35)	15 (34)	15 (35)	
Lower Conf. Limit for Settling Rate	ppb	15 (35)	15 (25)	15 (34)	
Geometric Mean TP Concentration					
Upper Conf. Limit for Settling Rate	ppb	15	15	15	
Mean Estimate of Settling Rate	ppb	15	15	15	
Lower Conf. Limit for Settling Rate	ppb	15	15	15	
TP Load (Using Mean TP Conc.)	kg/yr	2,301	988	3,289	
Diversion Volumes and Loads					
Volume	AF/yr	0	0	0	
TP Load	kg/yr	0	0	0	
TP Concentration	ppb	-	-	-	

Table 5-4: DMSTA Results for Compartment B with an STA-2 PLR of 1.3 g/m2/yr.


Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.

2. Outflow values highlighted in yellow had one or more years of the 35 year simulated below the low end of the calibration data set (enumerated by the number in parentheses). The lowest sustainable STA outflow phosphorus concentration is 19 ppb (STA-3/4), with a standard deviation of 5 ppb.



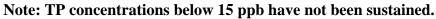


Figure 5-3: Comparison of Inflows and Outflows for Compartment B with an STA-2 PLR of 1.3 g/m2/yr.

6. EAA Storage Reservoir A-1

The network feature of DMSTA was used to model the combined EAA Storage Reservoir A-1 (EAASR A-1) and STA-3/4 system. This simulation generated a daily time series of flow and phosphorus levels from the reservoir back to the EAA for irrigation releases and to STA-3/4 for subsequent treatment. Upon review of the outflow time series to STA-3/4, it was observed that DMSTA was simulating releases during the dry season when the SFWMM results indicated no releases from the reservoir to STA-3/4, e.g., for January-May 1981 DMSTA simulated 12,620 AF in releases when SFWMM had 1,926 AF in releases. Further, the phosphorus concentrations associated with these dry season releases were quite high, exceeding 1,600 ppb. For the purpose of the STA-3/4 inflow, the DMSTA-generated time series was replaced by the daily flows from the SFWMM results and the phosphorus concentrations from DMSTA. Although this won't resolve the high concentrations during the dry seasons, it will reduce the frequency of their occurrence. This new time series was then used in combination with basin runoff flows for an independent DMSTA simulation of STA-3/4 that allowed an uncertainty analysis of the STA performance, using the 10%, mean and 90% values of the effective settling rates for the specific vegetation types within STA-3/4.

Several assumptions were incorporated in the DMSTA modeling of the EAASR A-1:

- ➤ The SFWMM models the EAASR as two reservoir compartments, EARSN and EARSS. These were simulated in DMSTA as a single reservoir cell.
- Many reservoir characteristics were identical to those evaluated during the Basis of Design Report for the EAASR A-1 (Black and Veatch 2006):
 - The effective treatment area of the EAASR A-1 is 15,200 acres
 - \circ The minimum depth for releases is 15.2 cm
 - The outflow weir depth for bypass is 12.5 ft
 - Seepage characteristics
- Other reservoir characteristics include:
 - The average flow width is 4.5 miles which is the average of the east-west width at the north end of EAASR and the width at the south end
 - The mean settling rate for the reservoir calibration data sets (5 m/yr) was used to simulate phosphorus removal in the reservoir.
- Daily rainfall and evapotranspiration from the SFWMM Alt1 scenario were used in the DMSTA simulation.
- Reservoir depths from the SFWMM Alt1 scenario were used in the DMSTA simulation. The depth time series provides an appropriate range of depths in the reservoir, based on model assumptions of footprint and volume, but is not intended as a true estimate of reservoir depth. Reservoir depth time series are not recommended for calculations outside the 2x2, however, the depth time series can be used as a reference for feasibility-level work such as the present analysis.

The daily flow time series from the SFWMM Alt simulation quantifying the flow from the EAASR to STA-3/4 (WCS4S and EVBLSS) were used as outflow time series within the DMSTA simulation of the reservoir.

Using the recent phosphorus concentration of Lake Okeechobee releases as 100 ppb, the long-term average annual inflow to the EAASR A-1 by source is summarized in **Table 6-1**.

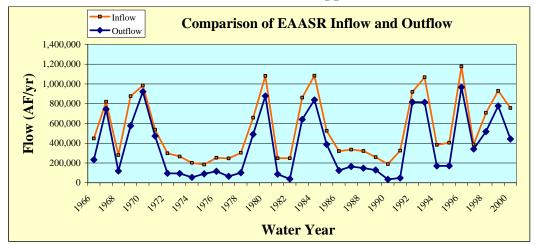
Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)
S-7/S-2 Basin	119,549	14,011	95
S-8/S-3 Basin	97,242	10,012	83
Lake Okee.	323,222	39,862	100
Total	540,013	63,885	96

Generation Generat

A summary of EAASR A-1 phosphorus performance for the 2010 period is presented in the table and figures below. For WY1990, the simulated flow-weighted mean outflow concentration exceeded the inflow concentration, although the outflow loads were only 25% of the inflow loads. A copy of the DMSTA output is presented in Appendix C. No warning or error messages were generated during the DMSTA simulation for the EAASR A-1. However, the minimum simulated depth was 1 cm, indicating that DMSTA numerically prevented dry-out by reducing the rates of ET, seepage, etc. In reality the reservoir would have dried out and phosphorus levels may temporarily increase upon rewetting; depending on how much time passes between rewetting and discharge to the STA, the impact of this temporary increase in phosphorus levels could vary, however, the long-term concentration shown in Table 6-2 may be optimistic.

Table 6-2: <u>Summary of DMSTA Results for EAASR A-1 (Lake TP Conc. of 100 ppb).</u>

Parameter	Unit	EAASR A-1 Note 2
Effective Treatment Area	acres	15,200
Average Annual Inflow		
Volume	AF/yr	540,013
TP Load	kg/yr	63,885
TP Concentration	ppb	96
Average Annual Outflow		
Volume	AF/yr	363,442
Flow-weighted Mean TP Concentration	ı	
Upper Conf. Limit for Settling Rate	ppb	-
Mean Estimate of Settling Rate	ppb	80
Lower Conf. Limit for Settling Rate	ppb	-
Geometric Mean TP Concentration		
Upper Conf. Limit for Settling Rate	ppb	-
Mean Estimate of Settling Rate	ppb	93
Lower Conf. Limit for Settling Rate	ppb	-
TP Load (Using Mean TP Conc.)	kg/yr	35,730
Diversion Volumes and Loads		
Volume	AF/yr	0
TP Load	kg/yr	0
TP Concentration	ppb	-


Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.

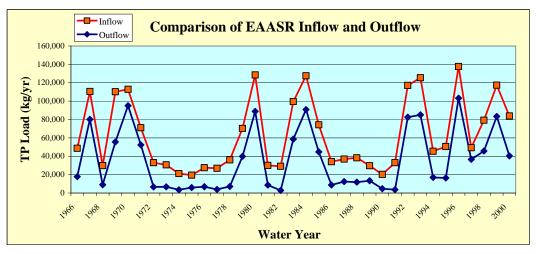

2. Shown are outflows to STA-3/4 after adjustment (see text); total outflows, including irrigation releases, were 514,607 AF/yr and 48,699 kg/yr at 77 ppb.



Figure 6-1: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 100 ppb).

6.1. Sensitivity Analysis: Lake Okeechobee TP Concentration of 150 ppb

As an analysis of the sensitivity of reservoir and STA-3/4 performance to the phosphorus concentration of Lake Okeechobee releases, this section describes the performance of EAASR A-1 if the phosphorus concentration of Lake releases is 150 ppb at the inflow to the reservoir. With this assumption, the long-term average annual inflow to the EAASR A-1 by source is summarized in **Table 6-3**.

one 0-5. Summary of Long-term reverage runnuar minow to Errich						
Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)			
S-7/S-2 Basin	119,549	14,011	95			
S-8/S-3 Basin	97,242	10,012	83			
Lake Okee.	323,222	59,799	150			
Total	540,013	83,822	126			

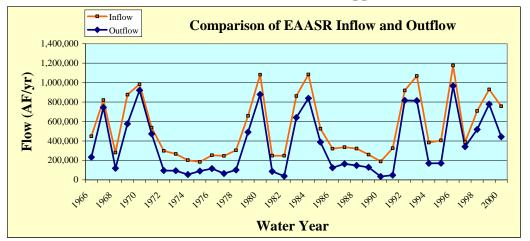
Table 6-3: Summary of Long-term Average Annual Inflow to EAASR.

A summary of EAASR A-1 phosphorus performance for the 2010 period is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. The net effect of assuming a Lake Okeechobee phosphorus concentration of 150 ppb appears to be about 27 ppb at the outflow of the reservoir to STA-3/4, resulting in a long-term average additional 12.1 metric tons/yr of phosphorus to STA-3/4.

No warning or error messages were generated during the DMSTA simulation for the EAASR A-1. However, the minimum simulated depth was 1 cm, indicating that DMSTA numerically prevented dry-out by reducing the rates of ET, seepage, etc. In reality the reservoir would have dried out and phosphorus levels would likely increase upon rewetting; thus the long-term concentration shown in Table 6-4 may be optimistic.

Table 6-4: Summary of DMSTA Results for EAASR A-1 (Lake TP Conc. of 150 ppb).

Parameter	Unit	EAASR A-1
		Note 2
Effective Treatment Area	acres	15,200
Average Annual Inflow		
Volume	AF/yr	540,417
TP Load	kg/yr	83,883
TP Concentration	ppb	126
Average Annual Outflow		
Volume	AF/yr	363,442
Flow-weighted Mean TP Concentration	1	
Upper Conf. Limit for Settling Rate	ppb	-
Mean Estimate of Settling Rate	ppb	107
Lower Conf. Limit for Settling Rate	ppb	-
Geometric Mean TP Concentration		
Upper Conf. Limit for Settling Rate	ppb	
Mean Estimate of Settling Rate	ppb	115
Lower Conf. Limit for Settling Rate	ppb	-
TP Load (Using Mean TP Conc.)	kg/yr	47,791
Diversion Volumes and Loads	8	
Volume	AF/yr	0
TP Load	kg/yr	0
TP Concentration	ppb	-


Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.


2. Shown are outflows to STA-3/4 after adjustment (see text); total outflows, including irrigation releases, were 514,607 AF/yr and 64,262 kg/yr at 101 ppb.

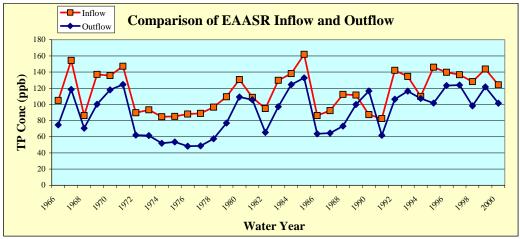
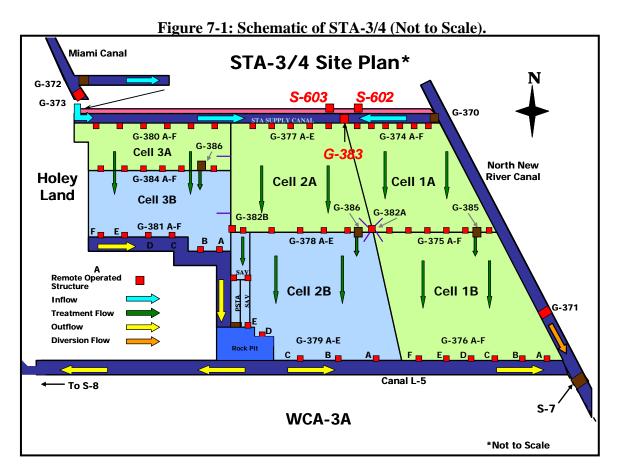


Figure 6-2: Comparison of Inflows and Outflows for EAASR A-1 (Lake TP Concentration of 150 ppb).



7. STA-3/4

A schematic of STA-3/4 is presented in **Figure 7-1B**, showing the two proposed structures (S-602 and S-603) that will allow transfer of water from the EAA Storage Reservoir to the STA.

In developing the *Updated STA Inflow Data Sets*, an assumption had to be made of the flows and phosphorus levels from the EAASR A-1 to STA-3/4. After the DMSTA simulation of the reservoir discussed in Section 6 above, the simulated inflow phosphorus levels were increased 2%, and are summarized in **Table 7-1**.

A summary of STA-3/4 phosphorus performance for the 2010 period is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. A long-term flow-weighted mean outflow concentration range of 16-24 ppb was forecast, however this includes years when DMSTA forecast levels that fell below the calibration range of 15 ppb for an SAV system, and hence may be optimistic. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For Cells 1A and 2A, the mean flow/width

was about 10% above the range of the emergent calibration data sets. For Cell 3B, the mean flow/width was about 30% below the range of the SAV calibration data sets. For the three SAV cells, the simulated mean depths were slightly below the range of the SAV calibration data sets, although the simulated minimum depths were above 30 cm. Diversion around the STA was simulated to provide water supply to downstream users, including the Big Cypress Basin Seminole Indian Reservation.

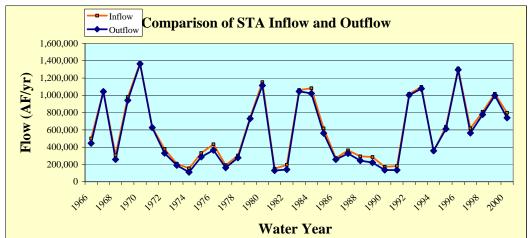
of 100 ppb).						
Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)			
S-7/S-2 Basin	35,102	4,230	98			
S-8/S-3 Basin	132,584	13,383	82			
C-139 Basin	13,201	3,401	209			
SSDD	10,539	1,324	102			
SFCD	24,110	3,363	113			
EAA SR	363,442	35,730	80			
Total	583.360	61.743	86			

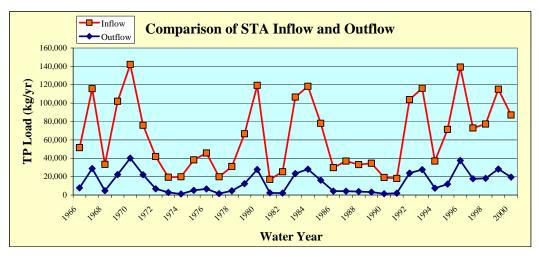
Table 7-1: Summary of Long-term Average Annual Inflow to STA-3/4 (Lake TP Conc of 100 ppb).

Totals are less than the sum of the components due to daily net negative values within the basin.

Table 7-2: Summary of DMSTA Results for STA-3/4 (Lake TP Conc. of 100 ppb).

Parameter	Unit	STA-3/4			
Effective Treatment Area	acres	16,543			
Average Annual Inflow					
Volume	AF/yr	583,360			
TP Load	kg/yr	61,743			
TP Concentration	ppb	86			
Average Annual Outflow					
Volume	AF/yr	568,441			
Flow-weighted Mean TP Concentration					
Upper Conf. Limit for Settling Rate	ppb	16 (20)			
Mean Estimate of Settling Rate	ppb	20 (16)			
Lower Conf. Limit for Settling Rate	ppb	24 (9)			
Geometric Mean TP Concentration					
Upper Conf. Limit for Settling Rate	ppb	14			
Mean Estimate of Settling Rate	ppb	16			
Lower Conf. Limit for Settling Rate	ppb	20			
TP Load (Using Mean TP Conc.)	kg/yr	13,853			
Diversion Volumes and Loads	Diversion Volumes and Loads				
Volume	AF/yr	64,699			
TP Load	kg/yr	7,897			
TP Concentration	ppb	99			


Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.


Outflow values highlighted in yellow had one or more years of the 36 years simulated below the low end of the calibration data set (enumerated by the number in parentheses). The lowest sustainable STA outflow phosphorus concentration is 19 ppb (STA-3/4), with a standard deviation of 5 ppb.
 Diversion is for downstream water supply users.

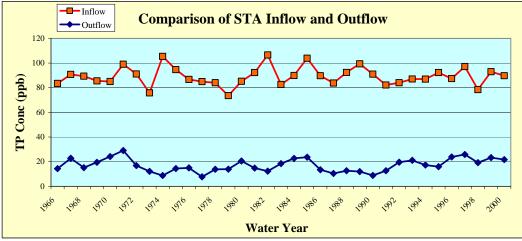


Figure 7-2: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 100 ppb).

Note: TP concentrations below 15 ppb have not been sustained.

7.1. Sensitivity Analysis: Lake Okeechobee TP Concentration of 150 ppb

As an analysis of the sensitivity of STA performance to the phosphorus concentration of Lake Okeechobee releases, this section describes the performance of STA-3/4 if the phosphorus concentration of Lake releases is 150 ppb at the inflow to the EAASR. In developing the *Updated STA Inflow Data Sets*, an assumption had to be made of the flows and phosphorus levels from the EAASR A-1 to STA-3/4. After the DMSTA simulation of the reservoir discussed in Section 6.1 above, the inflow phosphorus levels were increased 2% and are summarized in **Table 7-3**.

01 130 ppb).						
Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)			
S-7/S-2 Basin	35,102	4,230	98			
S-8/S-3 Basin	132,584	13,383	82			
C-139 Basin	13,201	3,401	209			
SSDD	10,539	1,324	102			
SFCD	24,110	3,363	113			
EAA SR	363,442	47,791	107			
Total	583,360	73,804	103			

Table 7-3: Summary of Long-term Average Annual Inflow to STA-3/4 (Lake TP Conc
of 150 ppb).

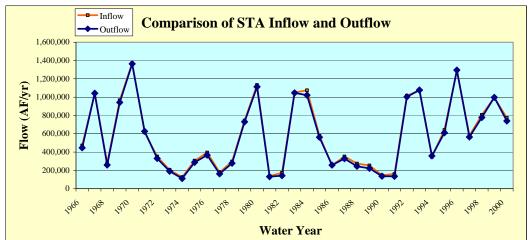
A summary of STA-3/4 phosphorus performance for the 2010 period is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. A long-term flow-weighted mean outflow concentration range of 19-28 ppb was forecast, however this includes years when DMSTA forecast levels that fell below the calibration range of 15 ppb for an SAV system, and hence may be optimistic. These results compare to a simulated range of 16-24 ppb with a concentrations of Lake releases averaging 100 ppb. The net effect of assuming a Lake Okeechobee phosphorus concentration of 150 ppb appears to be about 3 ppb at the outflow of STA-3/4, resulting in a long-term average annual increase of 2.2 metric tons of phosphorus to the Everglades compared to an average Lake release concentration of 100 ppb.

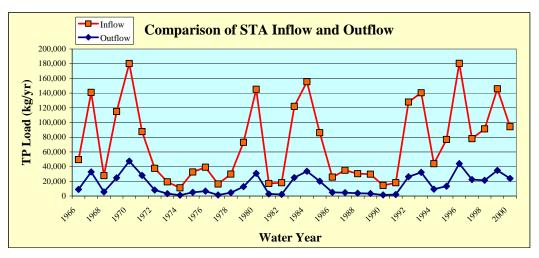
DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For Cells 1A and 2A, the mean flow/width were about 10% above the range of the emergent calibration data sets. For Cell 3B, the mean flow/width was about 30% below the range of the SAV calibration data sets. For the three SAV cells, the simulated mean depths were slightly below the range of the SAV calibration around the STA were simulated to provide water supply to downstream users, including the Big Cypress Basin Seminole Indian Reservation.

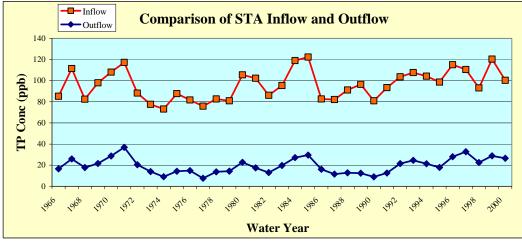
Table 7-4: Summary of DMSTA Results for STA-3/4 (Lake Conc. of 150 ppb).

Parameter	Unit	STA-3/4
Effective Treatment Area	acres	16,543
Average Annual Inflow		
Volume	AF/yr	583,360
TP Load	kg/yr	73,804
TP Concentration	ppb	103
Average Annual Outflow		
Volume	AF/yr	568,441
Flow-weighted Mean TP Concentration	l	
Upper Conf. Limit for Settling Rate	ppb	19 (18)
Mean Estimate of Settling Rate	ppb	23 (13)
Lower Conf. Limit for Settling Rate	ppb	28 (6)
Geometric Mean TP Concentration		
Upper Conf. Limit for Settling Rate	ppb	15
Mean Estimate of Settling Rate	ppb	18
Lower Conf. Limit for Settling Rate	ppb	22
TP Load (Using Mean TP Conc.)	kg/yr	16,056
Diversion Volumes and Loads	6	
Volume	AF/yr	64,699
TP Load	kg/yr	11,971
TP Concentration	ppb	150

Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.


2. Outflow values highlighted in yellow had one or more years of the 36 years simulated below the low end of the calibration data set (enumerated by the number in parentheses). The lowest sustainable STA outflow phosphorus concentration is 19 ppb (STA-3/4), with a standard deviation of 5 ppb.
2. Discrete the set of the se


3. Diversion is for downstream water supply users.



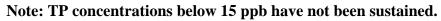


Figure 7-3: Comparison of Inflows and Outflows for STA-3/4 (Lake TP Concentration of 150 ppb).

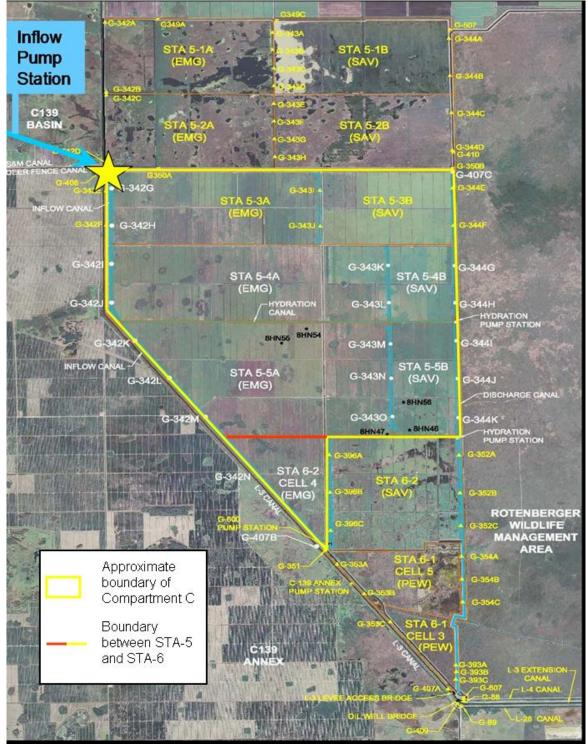
8. STA-5

Inflow data sets for STA-5 and STA-6 utilized the historic flows and phosphorus loads for the WY1995-2007 period. For the purpose of developing the STA-5 inflow data set, STA-5 was assumed to be comprised of the existing 3 flow-ways of STA-5, along with the 4th and 5th flow-ways of Compartment C that are soon to be constructed (see **Figure 8-1**; URS 2007). The combined C-139 Basin and C-139 Annex runoff will likely be distributed to STA-5 and STA-6 in an attempt to balance the phosphorus loading rate among the flow-ways of the STAs (see **Table 8-1**). A summary of inflows to STA-5 is presented in **Table 8-2**.

Flow-way	Area	TP inflow	Flow at PLR	Load	PLR
STA-5 1	2,055	229	28,177	7,945	0.96
STA-5 2	2,055	229	28,177	7,945	0.96
STA-5 3	1,985	229	27,217	7,674	0.96
STA-5 4	2,176	229	29,836	8,413	0.96
STA-5 5	2,669	229	36,595	10,319	0.96
STA-6 3	1,857	178	32,692	7,180	0.96
STA-6 5	652	97	20,970	2,521	0.96
STA-6 2	245	97	7,880	947	0.96
Total	13,694	203	211,544	52,944	0.96

Table 8-1:	Estimate of Inflow	Distribution to	Balance the P	PLR to STA-	5 and STA-6.
	Lounder of millow	Distribution to	Dalance the I		

At this time, it is extremely difficult to forecast the phosphorus removal performance of STA-5. Since the first full water year of operation (2001), the annual inflow concentrations have ranged from 165 ppb to 299 ppb, with a 7-yr average of 235 ppb (Pietro et al. 2007). The phosphorus loading rate has been considerably higher than the other STAs, ranging from 0.94 g/m²/yr to 4.01 g/m²/yr with a 7-yr average of 2.1 g/m²/yr. The long-term outflow concentration has ranged from 82-192 ppb, with a 7-yr average of 105 ppb. These characteristics are more similar to the DMSTA emergent vegetation calibration data set than to the SAV data set, which may be related to different soil type than in the EAA STAs (more mineral content) and less calcium in the inflow waters than the EAA STAs. In consideration of the anticipated reduced phosphorus loading rate when the additional treatment cells within Compartment C begin operation, the 2005 Study estimated the performance of STA-5 using the average performance of two DMSTA simulations:


- 1. Assuming the phosphorus removal downstream cell in each flow-way performs similar to the emergent calibration data set; and
- 2. Assuming the phosphorus removal downstream cell in each flow-way performs similar to the SAV calibration data set.

For comparison purposes, a similar set of simulations were conducted during the present analysis, however, until such time that the STA-5 performance improves, and until performance data for the newly constructed Flow-way 3 is available, the forecast performance will be based on assuming the phosphorus removal of the downstream cell in each flow-way performs similar to the emergent calibration data set.

Figure 8-1: Preliminary Layout of Compartment C Build-out; Subject to Revision (modified from URS 2007).

Table 8-2: Summary of Long-term Average Annual Inflow to STA-5, Including Compartment C Build-out

Compartment C Bund-out.					
Source	TP Conc (ppb)				
C-139 Basin	150,001	42,300	229		

A summary of STA-5 phosphorus performance for the 2010 period is presented in the tables and figures below. Copies of the DMSTA output are presented in Appendix C. For the emergent vegetation scenario, a long-term flow-weighted mean outflow concentration range of 22-47 ppb was forecast, however this includes six of the thirteen years when DMSTA forecast levels that fell below the calibration range of 20 ppb for an emergent system; hence this range may be optimistic, particularly in light of STA-5 performance history. Based on the historic performance of STA-5 and the high degree of uncertainty as to whether these DMSTA forecasts accurately represent actual phosphorus removal within the STAs in Compartment C, it is premature to conclude that there is excess treatment capacity in Compartment C. For the SAV scenario, presented only for comparison and not as a forecast of STA-5 performance, DMSTA forecast long-term outflow concentrations below the low end of the SAV calibration data set (15 ppb) and these were set to the low end value; hence this range is overly optimistic particularly in light of STA-5 performance history. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. For the emergent vegetation scenario no warnings messages were generated. However, DMSTA forecast 7% of the time the depth in the upstream cells was less than 10 cm, indicating the potential for insufficient water availability to maintain the minimum desirable water depth of 15 cm. For the SAV scenario, thirteen messages were generated, identifying that mean depths, flow/widths and outflow phosphorus concentrations were below the range of the SAV calibration data sets. In addition, DMSTA forecast 7% of the time the depth in the upstream cells was less than 10 cm, indicating the potential for insufficient water availability to maintain the minimum desirable water depth of 15 cm.

Parameter	Unit	STA-5 -	STA-5 -
rarailleter	Unit	Emergent	SAV
Effective Treatment Area	acres	10,940	10,940
Average Annual Inflow			
Volume	AF/yr	150,001	150,001
TP Load	kg/yr	42,300	42,300
TP Concentration	ppb	229	229
Average Annual Outflow			
Volume	AF/yr	148,717	148,717
Flow-weighted Mean TP Concentration			
Upper Conf. Limit for Settling Rate	ppb	22 (6)	15 (13)
Mean Estimate of Settling Rate	ppb	32	15 (13)
Lower Conf. Limit for Settling Rate	ppb	47	19 (11)
Geometric Mean TP Concentration			
Upper Conf. Limit for Settling Rate	ppb	20	15
Mean Estimate of Settling Rate	ppb	30	15
Lower Conf. Limit for Settling Rate	ppb	44	17
TP Load (Using Mean TP Conc.)	kg/yr	5,866	2,752
Diversion Volumes and Loads			
Volume	AF/yr	0	0
TP Load	kg/yr	0	0
TP Concentration	ppb	-	-

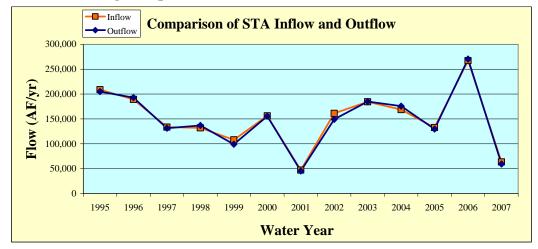
Table 8-3: Summary of DMSTA Results for STA-5, Including Comp. C Build-out.

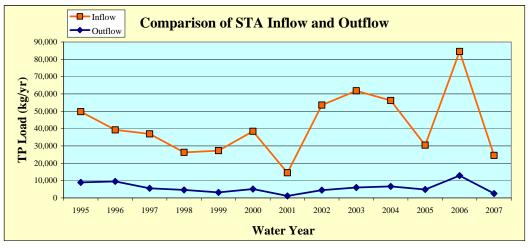
Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value.

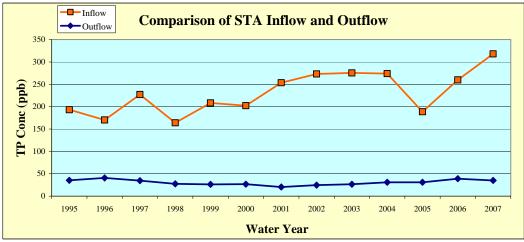
There is associated uncertainty in these predictions and actual performance will vary.

2. Outflow values highlighted in yellow had one or more years

of the 13 years simulated below the low end of the


calibration data set (enumerated by the number in parentheses).


3. Results for SAV in the downstream cells are presented for comparison only; the emergent vegetation scenario is currently used as a forecast for STA-5



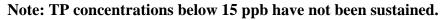
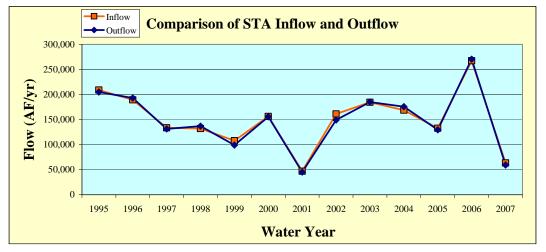
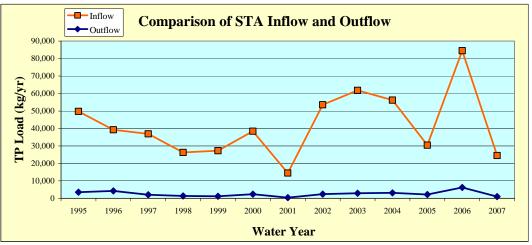


Figure 8-2: Comparison of Inflows and Outflows for STA-5 With Emergent Vegetation in All Cells, Including Compartment C Build-out.





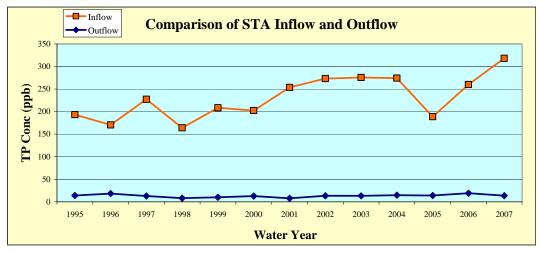


Figure 8-3: Summary of DMSTA Results for STA-5 With SAV in Downstream Cells.

Note: TP concentrations below 15 ppb have not been sustained.

9. STA-6

The combined C-139 Basin and C-139 Annex runoff will be distributed to STA-5 and STA-6 to balance the phosphorus loading rate among the flow-ways of the STAs (see **Table 8-1** above). A summary of the long-term average inflows to STA-6 is presented in **Table 9-1**.

Compartment C Build-out.						
Source	TP Conc (ppb)					
C-139 Basin	20,062	5,657	229			
C-139 Annex	41,480	4,987	97			
Total	61,542	10,644	140			

Table 9-1: Summary of Long-term Average Annual Inflow to STA-6, Including
Compartment C Build-out.

A summary of STA-6 phosphorus performance for the 2010 period is presented in the table and figures below. A copy of the DMSTA output is presented in Appendix C. DMSTA forecast a best case scenario long-term flow-weighted mean phosphorus concentration of 10 ppb which is below the minimum of the calibration data sets for the vegetation in the treatment cells, and that forecast was replaced in Table 9-2 by 13 ppb¹. The adjusted outflow phosphorus levels in Table 9-2 may still portray optimistic results in that the best performing STA (STA-3/4) is presently averaging about 19 ppb, with a 5 ppb standard deviation on annual values. Although the simulated performance appears to suggest additional treatment capacity may available in the 2,754 acres of STA-6, based on the historic performance of STA-5 and the high degree of uncertainty as to whether these DMSTA forecasts accurately represent actual phosphorus removal within the STAs in Compartment C, it is premature to conclude that there is excess treatment capacity in Compartment C. DMSTA generates various warning and error messages based on the simulation results compared to the calibration data sets; these are displayed in the DMSTA results in Appendix C. Eight messages were generated, identifying that mean depths, flow/widths and outflow phosphorus concentrations were below the range of the calibration data sets. In addition, the mean inflow concentration (140 ppb) was above the calibration range for the Prior Existing Wetland (PEW) data sets, further suggesting that the forecast outflow concentration may be optimistic.

¹ For STA-6, two flow-ways have SAV in the downstream cell which has a minimum calibration concentration of 15 ppb, and one has Prior Existing Wetlands (PEW) which has a minimum calibration concentration of 15 ppb. The flow-weighted minimum concentration for the three flow-ways is 13 ppb.

o, meruan	ig comp. c
Unit	STA-6
acres	2,754
AF/yr	61,542
kg/yr	10,644
ppb	140
AF/yr	61,494
ppb	13 (11)
ppb	13 (7)
ppb	17 (1)
Geometric Mean TP Concentration	
ppb	15
ppb	15
ppb	16
kg/yr	986
5	
AF/yr	0
kg/yr	0
ppb	-
	Unit acres AF/yr kg/yr ppb AF/yr ppb ppb ppb ppb ppb kg/yr AF/yr kg/yr

Table 9-2: Summary of DMSTA Results for STA-6, Including Comp. C Build-out.

Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value. There is associated uncertainty in these predictions and actual performance will vary.

2. Outflow values highlighted in yellow had one or more years of the 13 years simulated below the low end of the

calibration data set (enumerated by the number in parentheses). The lowest sustainable STA outflow phosphorus concentration is 19 ppb (STA-3/4), with a standard deviation of 5 ppb.

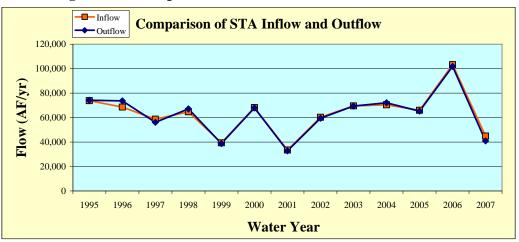
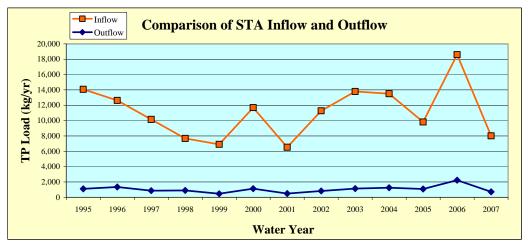
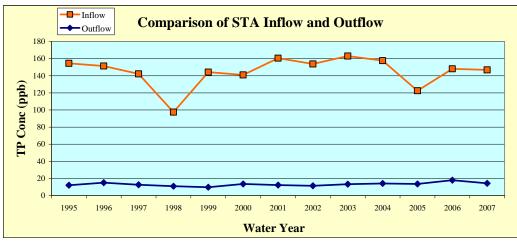




Figure 9-1: Comparison of Inflows and Outflows for STA-6.

Note: TP concentrations below 15 ppb have not been sustained.

10. Summary

A summary of the simulated phosphorus removal performance in the STAs, the EAASR A-1 and the additional treatment areas in Compartments B and C is presented in Table 10-1 below². For Compartment B, DMSTA forecast long-term average annual phosphorus concentrations of 9.1-14.6 ppb, which are below the minimum of the calibration data sets for SAV (15 ppb), and those forecasts were replaced in Table 10-1 by 15 ppb. Similarly for STA-6, DMSTA forecast a best case scenario long-term flow-weighted mean phosphorus concentration of 10 ppb which is below the minimum of the calibration data sets for the vegetation in the treatment cells, and that forecast was replaced in Table 10-1 by 13 ppb^3 . The adjusted outflow phosphorus levels in Table 10-1 may still portray optimistic results in that the best performing STA (STA-3/4) is presently averaging about 19 ppb, with a 5 ppb Simulated long-term average annual outflow standard deviation on annual values. concentrations from the individual STAs and additional treatment areas in Compartments B and C ranged from 13-47 ppb. On a cumulative basis, the simulated long-term average annual concentration ranged from 18-28 ppb. In consideration of the forecast error of $\pm 23\%$, this suggests a potential long-term range of 15-34 ppb for the cumulative long-term average annual outflow concentration. The simulated excellent performance of Compartment B (long-term outflow concentrations of 15 ppb) suggests that excess treatment capacity is available in the treatment areas of Compartment B.

In addition, two sensitivity analyses were evaluated, and the results are summarized below.

STA-2 Inflow Re-direction. Table 10-1 presents results for re-direction of a portion of STA-2 inflows to Compartment B North Build-out sufficient to achieve a balanced long-term phosphorus loading rate (PLR) to STA-2 and the North Build-out of 1.0 g/m²/yr. An alternative simulation was conducted with an STA-2 PLR of 1.3 g/m²/yr, yielding a predicted long-term outflow concentration range for STA-2 of 19-29 ppb compared to 19-27 ppb for a PLR of 1.0 g/m²/yr. The simulated results for Compartment B were essentially the same under both loading scenarios – DMSTA forecast phosphorus concentrations below the lower end of the calibration data sets (15 ppb). The simulation of PLRs of 1.0 g/m²/yr and 1.3 g/m²/yr was conducted for the purpose of comparing alternatives and does not represent ultimate PLR goals for STAs. The long-term PLR is just one of many factors that influence the phosphorus removal performance of an STA; others include vegetation type, soil type, antecedent land use, phosphorus loading history, inflow concentrations, hurricanes, droughts and other disturbances.

³ For STA-6, two flow-ways have SAV in the downstream cell which has a minimum calibration concentration of 15 ppb, and one has Prior Existing Wetlands (PEW) which has a minimum calibration concentration of 15 ppb. The flow-weighted minimum concentration for the three flow-ways is 13 ppb.

 $^{^2}$ These simulated forecasts of STA performance are made for the comparison of alternatives and not for the development of effluent limits. Effluent limits are determined through the State of Florida's issuance of permits for these facilities.

Stepping Up the Pace

ACCELER

evergladesnow.or

Parameter	Unit	STA-1E	STA-1W	STA-2	Comp. B North	Comp. B South	Comp. B Combined	EAASR A-1 Note 3	STA-3/4	STA-5 - Emergent	STA-6	All
Effective Treatment Area	acres	5,132	6,670	6,338	5,824	2,796	8,620	15,200	16,543	10,940	2,754	56,997
						Avera	Average Annual Inflow	flow				
Volume	AF/yr	193,818	243,172	182,697	177,228	47,651	224,879	540,013	219,918	150,001	61,542	1,639,465
TP Load	kg/yr	41,864	54,409	25,662	22,932	5,553	28,833	63,885	26,013	42,300	10,644	265,107
TP Concentration	dqq	175	181	114	105	94	104	96	96	229	140	131
						Averag	Average Annual Outflow	itflow				
Volume	AF/yr	190,599	244,928	186,047	180,541	53,378	233,919	363,442	568,441	148,717	61,494	1,634,145
Flow-weighted Mean TP Concentration	ų											
Upper Conf. Limit for Settling Rate	qdd	20 (10)	21 (4)	19 (2)	15 (35)	15 (35)	15 (35)		16 (20)	22 (6)	13 (11)	18
Mean Estimate of Settling Rate	qdd	27 (1)	72	22 (1)	15 (35)	15 (34)	15 (35)	80	20 (16)	32	13 (7)	22
Lower Conf. Limit for Settling Rate	qdd	35	35	27	15 (27)	15 (25)	15 (27)		24 (9)	47	17 (1)	28
Geometric Mean TP Concentration												
Upper Conf. Limit for Settling Rate	dqq	18	20	17	15	15	15		14	20	15	•
Mean Estimate of Settling Rate	dqq s	24	26	21	15	15	15	93	16	30	15	
Lower Conf. Limit for Settling Rate	qdd	32	33	25	15	15	15		20	44	16	
TP Load (Using Mean TP Conc.)	kg/yr	6,240	8,222	5,145	3,340	988	4,328	35,730	13,853	4,677	986	43,451
					Div	ersion Volur	nes and Load	Diversion Volumes and Loads (See Note 4)	(
Volume	AF/yr	26,186	0	0	0	0	0	0	64,699	0	0	90,885
TP Load	kg/yr	4,027	0	0	0	0	0	0	7,897	0	0	11,924
TP Concentration	ppb	125	I	-	I	I	1	1	96	I	-	106
Notes: 1. The DMSTA forecast error for flow-weighted mean concentrations is approximately +/-23% of the expected value.	flow-weigh	nted mean con	centrations is	approximate	ly +/-23% of t	he expected	value.					
There is associated uncertainty in these predictions and actual performance will vary	in these pre-	edictions and a	actual perform	nance will van	y.							
2. Outflow values highlighted in vellow had one or more vears below the low end of the calibration data set (enumerated by the number in parentheses)	vellow had o	one or more v	ears below the	e low end of t	he calibration	data set (enu	merated by the	ie number in p	arentheses).			
For all areas event CTA-5 and CTA-6	STA-6 at	otal of 35 wat	VW) anon a	2 COU 11010	imulated: for	S Pue S VLS	T A_6 a total	a trial of 35 more than MIVA6 (0) more simulated for STA 5 and STA 6 a trial of 13 more than MIV05 (0) more simulated	WV05 0	T) mara cimul	otod	

Summary of DMSTA Modeling Results.

Updated STA Phosphorus Modeling for the 2010 Period

For all areas except STA-5 and STA-6, a total of 35 water years (WY66-00) were simulated; for STA-5 and STA-6 a total of 13 water years (WY95-07) were simulated.

The lowest sustainable STA outflow phosphorus concentration is 19 ppb (STA-3/4), with a standard deviation of 5 ppb.

4. Diversion around STA-1E is directed to C-51E. Diversion around STA-3/4 is for downstream water supply users. While the SFWMM simulated small diversion volumes of EAA runoff, for the purpose of estimating phosphorus removal performance, these were simulated by DMSTA as being captured in the STAs. 3. Outflows shown from EAASR are outflows to STA-3/4; total outflows, including irrigation releases, were 514,580 AF/yr and 48,699 kg/yr at 77 ppb.

Diversions may occur based on the daily hydraulic and treatment capacity of the treatment areas.

As a reference, STA-2 is presently receiving a PLR of $1.34 \text{ g/m}^2/\text{yr}$ and is one of the highest performing STAs, with a long-term average flow-weighted mean of 21 ppb (Pietro et al. 2007). In addition, STA-3/4 has been receiving phosphorus at a PLR averaging $1.5 \text{ g/m}^2/\text{yr}$ and is producing the lowest outflow phosphorus concentration of all the STAs, with a 3-year average flow-weighted mean of 19 ppb (Pietro et al. 2007). These STA performance results, in combination with the results of this sensitivity analysis, suggest that STAs loaded above a PLR 1.3 g/m²/yr may still achieve optimal performance, which could allow a greater loading to STA-2 than presently modeled, thus increasing the available treatment capacity in Compartment B.

Phosphorus Concentrations for Lake Okeechobee Releases. Table 10-1 presents DMSTA modeling results for the EAASR A-1 and STA-3/4 using an average phosphorus concentration for Lake Okeechobee releases of 100 ppb, which corresponds to recent levels. An alternative simulation was conducted assuming an average phosphorus concentration for Lake Okeechobee releases of 150 ppb. While this assumed 50% increase in concentration increased the simulated phosphorus load to the EAASR A-1 by a long-term average of 20 metric tons/yr, the simulated net increase to STA-3/4 was just over 12 metric tons/yr. The 8 metric ton/yr balance either accumulated in the reservoir storage or was discharged to the EAA to satisfy irrigation demand. DMSTA simulated an increase in the long-term STA-3/4 outflow concentration as about 3 ppb, resulting in a predicted long-term average annual increase of about 2.2 metric tons/yr of phosphorus to the Everglades compared to the simulations that used an average Lake release concentration of 100 ppb.

Relationship to EAA Regional Feasibility Study. A direct comparison between the STA performance estimates of this present analysis and the performance estimates presented in the 2005 EAA Regional Feasibility Study is not recommended for the reasons described in the following sections.

EAA Basin. Unlike the 2005 Study, the SFWMM simulation used in this analysis did not include the completion of the EAA Conveyance and Regional Treatment project (ECART), resulting in approximately 93,000 AF/yr more flow to STA-1W and a similar reduction in flow to Compartment B. In addition, the simulated long-term average annual runoff volume to the STAs and EAASR from the entire EAA increased approximately 40,800 AF/yr compared to the 2005 Study as a result of using the latest version of the SFWMM for the current analyses. Additionally, there is marked variation in the EAA sub-basin runoff volumes. For the S-5A sub-basin, the difference (a long-term increase of approximately 17,000 AF/yr) is attributable to variations in the SFWMM results. Some of the EAA-wide variations are attributable to differences in the assumptions used in the SFWMM, e.g.,

- 1. Land use:
 - a. 2005: All land use has been updated using most recent FLUCCS data (1995), modified in the Lower East Coast urban areas using 2000 aerial photography (2x2 scale).
 - b. 2007: The land use coverage is intermediate between 2000B3 and 2050B3
- 2. Miami Canal Basin

- a. 2005: EAA cells in the Mann Canal Basin between STAS and STA6 are not production cells (shrub Land Use). Then, no irrigation demands are required in this area. Runoff from this area is part of the Miami Canal Basin.
 b. 2007: no such assumption
- 3. STA Sizes

Stepping Up the Pace

ACCELER

- a. 2005: Compartment B = 7,575 ac; Compartment C = 7,571 ac
- b. 2007: Compartment B = 6,722 ac; Compartment C = 6,230 ac
- 4. CERP
 - a. 2005: L-8 reservoir (rock pit located in S-5A Basin) 870 ac 2 ft deep
 - b. 2007: L-8 reservoir 870 ac 44 ft deep

For the S-7/S-2 and S-6/S-2 sub-basins, in addition to approximately 10,300 AF/yr less flows to the STAs and EAASR compared to this analysis as a result in variations in the SFWMM results, the 2005 Study adjusted the simulated runoff from the S-6/S-2 and S-7/S-2 basins to create a uniform average runoff depth for both basins (ADA/B&M 2005). However, for this current analysis, District modeling staff recommended no adjustment of the SFWMM results.

Western Basins. The estimated runoff volume from the C-139 Basin and C-139 Annex increased approximately 12,400 AF/yr compared to the 2005 Study estimates, due primarily to the apparent omission of a portion of the L-2/L-3 Canal flows in the 2005 Study. In addition, during the 2005 Study, a 10% reduction in phosphorus concentration was incorporated to reflect a then-promising trend in basin BMP effectiveness; for the current analysis, District staff recommended no adjustment to the period of record data for BMP implementation. A final difference is that the 2005 Study included STA-6 Section 2 and the upstream cell as part of STA-5, whereas this analysis modeled these cells as part of STA-6.

Eastern Basins. The 2005 Study assumed 100% of the simulated L-8 Basin runoff that was re-directed to the C-51 Canal through S-5AE was not captured in STA-1E; the present analysis assumed only 75% diversion of this L-8 Basin runoff, based on the best professional judgment of actual operating experience, resulting in an increase of approximately 8,600 AF/yr compared to the 2005 Study. The difference in SFWMM version accounted for approximately 6,000 AF/yr less C-51W Basin runoff to STA-1E in this analysis, however, the increase in S-5A Basin runoff to the STA-1 Inflow Basin due to the absence of ECART resulted in a net increase of approximately 22,000 AF/yr to STA-1E compared to the estimate in the 2005 Study.

Lake Okeechobee. The SFWMM simulated a considerably different magnitude and distribution of Lake Okeechobee releases for the current analyses than were simulated for the 2005 Study. Overall, a long-term average of approximately 39,000 AF/yr less Lake releases were simulated in the 2007 SFWMM Alt1 than in the 2005 simulation. The simulated quantity of water supply releases that bypasses the STAs decreased by almost 50,000 AF/yr to a long-term average annual volume of 85,753 AF/yr. Conversely, the quantity of Lake releases that were captured in the EAA Storage Reservoir increased by a long-term average of almost 40,000 AF/yr compared to the 2005 Study.

11. References

- ADA Engineering, Inc. and Burns and McDonnell Engineering Inc. 2005. Everglades Agricultural Area Regional Feasibility Study, prepared for SFWMD. October 2005.
- Black and Veatch 2006. EAA Storage Reservoir A1 Basis of Design Report. Prepared for the South Florida Water Management District. January 2006.
- Brown and Caldwell 2007. Compartment B Build-out Basis of Design Report, prepared for the South Florida Water Management District. July 2007.
- Brown and Caldwell 2007. Compartment B Build-out Preliminary Design Report Stormwater Treatment Area, prepared for the South Florida Water Management District. Oct. 2007.
- Burns & McDonnell, 2003. Final Report, Everglades Protection Area Tributary Basins, Long-Term Plan for Achieving Water Quality Goals; prepared for the South Florida Water Management District, October 2003.
- Goforth, G. and T. Piccone 2001. Baseline Data for the Basin-Specific Feasibility Studies to Achieve the Water Quality Goals for the Everglades. SFWMD. May 2001.
- Goforth G. 2007a. Updated Flow and Phosphorus Data Sets for the ECP Basins Covering the Period May 1, 1994 April 30, 2007. Prepared for the U.S. Army Corps of Engineers and South Florida Water Management District. August 2007.
- Goforth G. 2007b. Updated STA Inflow Data Sets for the 2010 Period. Prepared for the U.S. Army Corps of Engineers and South Florida Water Management District. October 2007.
- Juston, J. and T. DeBusk 2005. Phosphorus Mass Load and Outflow Concentration Relationships in Stormwater Treatment Areas for Everglades Restoration (2/2005 Draft).
- Pietro, K., R. Bearzotti, M. Chimney, G. Germain and N. Iricanin. 2007. Draft STA Performance, Compliance and Optimization; Chapter 5 in the SFER. August 2007.
- URS Corporation 2007. Graphic presented at 8/23/07 Long-Term Plan Quarterly Meeting.
- Walker, W. 2000. Models for Tracking Runoff and Phosphorus Loads from the C-139 Basin. Prepared for the South Florida Water Management District. November 2000.
- Walker, W. and R. Kadlec 2005. Dynamic Model for Stormwater Treatment Areas, prepared for the U. S. Department of Interior and the U. S. Army Corps of Engineers.

Appendix A. SFWMM Model Assumptions

 $2010BCalt1_WMM5.5.2.1_082307v2_out$

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
Climate	 The climatic period of record is from 1965 to 2000. Rainfall estimates have been revised and updated for 1965-2000. Revised evapotranspiration methods have been used for 1965-2000. 	Same as 2010BS
Topography	 Updated November 2001 and September 2003 using latest available information (in NGVD 29 datum). Nov 2001 update (Documented in November 2001 SFWMD memorandum from M. Hinton to K. Tarboton) includes: USGS High Accuracy Elevation data from helicopter surveys collected 1999-2000 for Everglades National Park and Water Conservation Area (WCA) 3 south of Alligator Alley USGS Lidar data (May 1999) for WCA-3A north of Alligator Alley Lindahl, Browning, Ferrari & Helstrom 1999 survey for Rotenberger Wildlife Management Area. Stormwater Treatment Area surveys from 1990s Aerometric Corp. 1986 survey of the 8-1/2 square mile area Includes estimate of Everglades Agricultural Area subsidence Other data as in SFWMM v3.7 FWC survey 1992 for the Holey Land Wildlife Management Area. 	Same as 2010BS
	 September 2003 update includes: Reverting to FWC 1992 survey data for Rotenberger Wildlife Management Area. 	

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
	• DHI gridded data from Kimley –Horn contracted survey of EAA, 2002-2003. Regridded to 2x2 scale for EAA outside of STAs and WMAs.	
Sea Level	Sea level data from six long-term NOAA stations were used to generate a historic record to use as sea level boundary conditions for the 1965 to 2000 evaluation period.	Same as 2010BS
Land Use	• The land use coverage is intermediate between 2000B3 and 2050B3	Same as 2010BS
Natural Area Land Cover (Vegetation)	 Vegetation classes and their spatial distribution in the natural areas comes from the following data: Walsh 1995 aerial photography in Everglades National Park Rutchey 1995 classification in WCA-3B, WCA-3A north of Alligator Alley and the Miami Canal, WCA-2A & 2B Richardson 1990 data for Loxahatchee National Wildlife Refuge FLUCCS 1995 for Big Cypress National Preserve, Holey Land & Rotenberger Wildlife Management Areas & WCA-3A south of Alligator Alley and Miami Canal. (Documented in August 2003 SFWMD memorandum from J. Barnes and K. Tarboton to J. Obeysekera). 	Same as 2010BS
	Lake Okeechobee Service Area	
LOSA Basins	Southern Indian Prairie Basin, S-4, North Lake Shore and Northeast Lake Shore demands and runoff based on AFSIRS (Agricultural Field-Scale Irrigation Requirement Simulation) modeling using 2010 LU projections.	Same as 2010BS
Lake Okeechobee	• Lake Okeechobee Regulation Schedule WSE according to WSE decision trees, with pulse releases in Zone D modeled as Level III pulse	Same as 2010BS

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
	 in upper third of the zone, Level II pulse in middle third of the zone, and Level I pulse in the lower third of the zone, when the decision tree calls for regulatory releases to the estuaries in that zone. WSE thresholds derived from the Class Limit Adjustment (CLA) WSE modification: Increase the frequency of Pulse Releases in Zone D of WSE. Modified WSE thresholds for zone D1 to improve utilization of EAA reservoir. Lake Okeechobee Supply Side management policy for Lake Okeechobee Service Area water restriction cutbacks as per rule 40E-21 and 40E-22 in September, 2001 (13.0-10.5 ft. SSM trigger line). Emergency flood control backpumping to Lake Okeechobee from the Everglades Agricultural Area. Kissimmee River Restoration and Headwaters Revitalization Project are complete. Lake Okeechobee and St. Lucie Estuaries. Environmental deliveries to WCA-3A according to Rainfall Driven Operations as means of operating the EAA Reservoirs. Lake Okeechobee BMP makeup water deliveries to WCAs are not made. Adaptive protocols are included. 	
Acceler8 Projects	 Acceler8 Projects On Line by 2010 – See A8 Website. C44 Reservoirs: 9315 acres, depth 5 .ft. C43 Reservoirs: 11000 acres, depth 15 ft. EAA Reservoirs- A-1 Reservoir simulated as two interconnected compartments. Compartment 1: irrigation, 9600 acres, depth 12 ft. Compartment 2: environment 6400 acres, depth 	Same as 2010BS

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
	 12 ft. WPA's Site 1 Impoundment: 1660 acres; depth 8 ft. C-9 Impoundment: 1739 acres; depth 4 ft. C-11 Impoundment: 1730 acres; depth 4 ft. Acme Basin B discharge to C51W and then to STA1E WCA-3A/3B Seepage Management Area 	
Caloosahatchee River Basin	 Caloosahatchee River Basin irrigation demands and runoff were estimated using the AFSIRS method based on 2010 land use. Public water supply daily intake from the river is included in the analysis. C43 reservoir supplements basin irrigation needs and estuarine environmental needs. 	Same as 2010BS •
St. Lucie Canal Basin	 St. Lucie Canal Basin demands estimated using the AFSIRS method based on 2010 land use. Basin demands include the Florida Power & Light reservoir at Indiantown. C44 reservoir supplements basin irrigation needs and estuarine environmental needs. 	• Same as 2010BS
Seminole Brighton Reservation	 Brighton reservation demands were estimated using AFSIRS method based on existing planted acreage in a manner consistent with that applied to other basins not in the distributed mesh of the SFWMM. The 2 in 10 demand set forth in the Seminole Compact Work plan equals 2,262 MGM (million gallons/month). AFSIRS modeled 2 in 10 demands equaled 2,383 MGM. While estimated demands, and therefore deliveries, for every month of simulation do not equate to monthly entitlement quantities as per Table 7, Agreement 41-21 (Nov. 1992), tribal rights to these quantities are 	Same as 2010BS

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
	 preserved. Supply-side Management applies to this agreement. 	
Seminole Big Cypress Reservation	 Big Cypress Reservation irrigation demands and runoff were estimated using the AFSIRS method based on existing planted acreage in a manner consistent with that applied to other basins not in the distributed mesh of the SFWMM. The 2 in 10 demand set forth in the Seminole Compact Work Plan equals 2,606 MGM. AFSIRS modeled 2 in 10 demands equaled 2,659 MGM. While estimated demands, and therefore deliveries, for every month of simulation do not equate to monthly entitlement quantities as per the District's Final Order and Tribe's Resolution establishing the Big Cypress Reservation entitlement, tribal rights to these quantities are preserved. Supply-side Management applies to this agreement 	Same as 2010BS
Seminole Hollywood Reservation	 Hollywood Reservation demands are set forth under VI. C of the Tribal Rights Compact. Tribal sources of water supply include various bulk sale agreements with municipal service suppliers. 	Same as 2010BS

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
Everglades Agricultural Area	 Everglades Agricultural Area irrigation demands are simulated using climatic data for the 36 year period of record and a soil moisture accounting algorithm, with parameters calibrated to match historical regional supplemental deliveries from Lake Okeechobee. SFWMM EAA runoff and irrigation demand response to rainfall was calibrated for 1984- 95 and verified for 1979-1983/1996-2000. No runoff reduction adjustment was necessary to account for Best Management Practices (BMPs). 	Same as 2010BS
Everglades Construction Project Stormwater Treatment Areas	 STA-1E: 5132 acres total treatment area STA-1W: 6670 acres total treatment area STA-2: 6430 acres total treatment area STA 2 Cell 4: 1,902 acres total treatment area STA-3/4: 16543 acres total treatment area STA-5: 4110 acres total treatment area STA 5 Flowway 3: 1,985 acres total treatment area STA-6: 870 acres total treatment area STA 6 Section 2: 1,387 acres total treatment area Operation of STAs assumes maintenance of a 6" minimum depth. 	 Same as 2010BS, plus: Buildout STA B: 6,722 acres total treatment area. Source 100% EAA runoff Buildout STA C: 6,230 acres total treatment areas. Source 139 Basin and Annex
Holey Land Wildlife WMA	 As per Memorandum of Agreement between the FWC and the District. 	Same as 2010BS
Rotenberger Wildlife WMA	• Interim Operational Schedule as defined in the Operation Plan for Rotenberger (SFWMD Jan 2002).	Same as 2010BS
	Water Conservation Areas	
Water Conservation Area 1 (ARM Loxahatchee	• Current C&SF Regulation Schedule. Includes regulatory releases to tide through LEC canals.	Same as 2010BS

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
National Wildlife Refuge)	• No net outflow to maintain minimum stages in the LEC Service Area canals (salinity control), if water levels are less than minimum operating criteria of 14 ft. The bottom floor of the schedule (Zone C) is the area below 14 ft. Any water supply releases below the floor will be matched by an equivalent volume of inflow from Lake Okeechobee.	
Water Conservation Area 2 A&B	 Current C&SF regulation schedule. Includes regulatory releases to tide through LEC canals. No net outflow to maintain minimum stages 	Same as 2010BS
	in the LEC Service Area canals (salinity control), if water levels in WCA-2A are less than minimum operating criteria of 10.5 ft. Any water supply releases below the floor will be matched by an equivalent volume of inflow from Lake Okeechobee.	
Water Conservation Area 3 A&B	• Current C&SF regulation schedule. Includes regulatory releases to tide through LEC canals.	Same as 2010BS
	• No net outflow to maintain minimum stages in the LEC Service Area canals (salinity control), if water levels are less than minimum operating criteria of 7.5 ft in WCA-3A. Any water supply releases below the floor will be matched by an equivalent volume of inflow from Lake Okeechobee.	
	• Structural and operational modifications for L-67 canal conveyance and S-355 structures as in the federally authorized Modified Water Deliver Project.	
	Rainfall driven operational criteria for determining timing of deliveries to and discharges from WCA-3A and WCA-3B.	
	Lower East Coast Service Areas	1
Public Water	• 2010 projections based upon permitted	Same as 2010BS

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
Supply and Irrigation	 allocation to utilities by 2005, with 2010 well field distribution and inclusion of utility ASR. Irrigation demands are based upon existing land use (updated through 2010) and calculated using AFSIRS, reduced to account for landscape and golf course areas irrigated using reuse water and landscape areas irrigated using public water supply. 	
Other Natural Areas	 For the Northwest Fork of the Loxahatchee River, the District operates the G-92 structure and associated structures to provide approximately 50 cfs over Lainhart Dam to the Northwest Fork, when sufficient water is available in C-18 Canal. Flows to Pond Apple Slough through S-13A are adjusted in the model to approximate measured flows at the structure. Flows to Biscayne Bay are simulated through Snake Creek, North Bay, the Miami River, 	Same as 2010BS
-	Central Bay and South Bay.	G 0010DG
Features	• C-4 Impoundment – 843.5 acres	Same as 2010BS
Upper East Coast Operational CERP	• L-8 Reservoir: 870 acres, depth 44 ft.	Same as 2010BS
We	estern Basins and Big Cypress National Pres	serve
Western Basins	• Estimated and updated historical inflows from western basins at two locations: G-136 and G-406. The G-406 location represents potential inflow from the C-139 Basin into STA 5. Data for the period 1978 - 2000 is the same as the data used for the C-139 Basin Rule development. (Documented in June 2002 SFWMD memorandum from L. Cadavid and L. Brion to J. Obeysekera).	Same as 2010BS

Feature	2010 Base Condition Assumptions	2010BCAlt1 Proposed Action
Big Cypress National Preserve	• Tamiami Trail culverts are not modeled in SFWMM due to the coarse (2x2 mile) model resolution.	Same as 2010BS
	Everglades National Park and Florida Ba	y
Everglades National Park	 Water deliveries to Everglades National Park are based upon Everglades Rain-driven operations. 8.5 SMA as per the federally authorized Alternative 6D of the 8.5 SMA project. Northern C111 project (2002 IOP EIS) Southern C111 project modeled per C-111 Project 1994 GRR 	Same as 2010BS
Regio	n-wide Water Management and Related Op	erations
Water Shortage Rules	• The existing condition reflects the existing water shortage policies in 2005 as reflected in South Florida Water Management District Chapters 40E-21 and 40E-22, FAC	Same as 2010BS

Appendix B. Revised C-139 Basin Data Sets and Inflow Data Sets for STA-5 and STA-6

Revisions to Updated Flow and Phosphorus Data Sets for the ECP Basins Covering the Period May 1, 1994 – April 30, 2007

Table 10-4. Discharge Summa					ily for Kunon South of STA-5.					
Water	Annual Data					Monthly Data				
	Volume		TP Load	TP Conc	Month	Volume		TP Load	TP Conc	
Year	ac-ft	hm ³	kg	ppb		ac-ft	hm ³	kg	ppb	
1995	236,266	291.429	56,337	193	Jan	3,845	4.742	633	133	
1996	214,503	264.585	45,070	170	Feb	3,268	4.031	389	96	
1997	151,440	186.798	42,427	227	Mar	3,172	3.913	467	119	
1998	149,152	183.976	30,171	164	Apr	1,280	1.579	177	112	
1999	122,058	150.556	31,376	208	May	2,028	2.502	399	159	
2000	168,779	208.186	41,889	201	Jun	7,874	9.712	3,093	318	
2001	2,738	3.377	973	288	Jul	14,733	18.173	4,592	253	
2002	23,349	28.800	12,450	432	Aug	13,787	17.006	4,036	237	
2003	39,061	48.181	13,824	287	Sep	18,917	23.333	5,916	254	
2004	37,633	46.420	16,457	355	Oct	15,740	19.415	4,323	223	
2005	30,165	37.208	10,475	282	Nov	8,364	10.317	2,013	195	
2006	86,124	106.232	44,042	415	Dec	4,900	6.044	1,020	169	
2007	11,530	14.222	6,274	441	Annual	97,907	120.767	27,059	224	
Min.	2,738	3.377	973	-						
Max.	236,266	291.429	56,337	-						
Ave.	97,907	120.767	27,059	224						

Table 10-4: Discharge Sum	mary for Runoff South of STA-5.
---------------------------	---------------------------------

Table 10-5: Discharge Summary for C-139 Basin.

Water	Annual Data					Monthly Data			
Year	Volume		TP Load	TP Conc	Month	Volume TP		TP Load	TP Conc
I Cal	ac-ft	hm ³	kg	ppb		ac-ft	hm ³	kg	ppb
1995	274,099	338.095	62,190	184	Jan	6,599	8.139	861	106
1996	236,150	291.286	48,600	167	Feb	5,790	7.142	778	109
1997	169,113	208.598	45,933	220	Mar	5,669	6.992	785	112
1998	174,689	215.475	36,375	169	Apr	2,055	2.535	284	112
1999	141,167	174.127	36,900	212	May	3,495	4.311	603	140
2000	212,472	262.080	53,978	206	Jun	17,386	21.446	6,134	286
2001	56,877	70.156	16,908	241	Jul	28,144	34.715	9,006	259
2002	204,663	252.448	67,405	267	Aug	32,235	39.762	9,282	233
2003	229,260	282.788	77,697	275	Sep	39,752	49.034	12,861	262
2004	209,423	258.319	69,154	268	Oct	30,010	37.017	7,978	216
2005	195,834	241.557	44,976	186	Nov	14,335	17.682	3,456	195
2006	353,264	435.745	109,000	250	Dec	10,136	12.503	1,774	142
2007	85,883	105.935	30,303	286	Annual	195,607	241.278	53,801	223
Min.	56,877	70.156	16,908	-				·	
Max.	353,264	435.745	109,000	-					
Ave.	195,607	241.278	53,801	223					

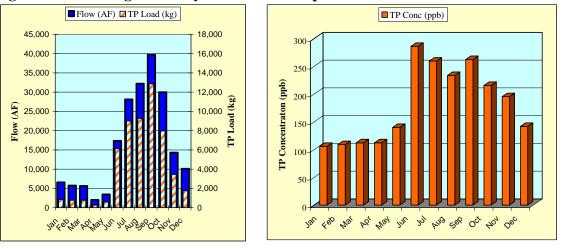
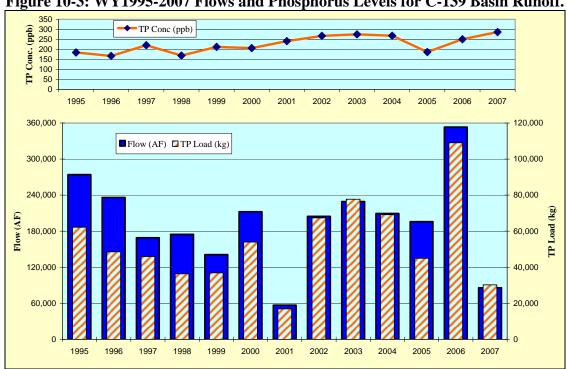



Figure 10-2: Average Monthly Flows and Phosphorus Levels for C-139 Basin Runoff.

	This Update			2005 Update			Difference		
Basin	Flow	-	TP Conc	Flow	-	TP Conc	Flow		TP Conc
	AF/yr	kg/yr	ppb	AF/yr	kg/yr	ppb	AF/yr	kg/yr	ppb
S-5A	254,957	51,729	164	277,225	53,171	155	-22,268	-1,442	9
S-6/S-2	284,089	38,023	109	297,002	36,210	99	-12,913	1,813	10
S-7/S-2	237,451	28,179	96	235,812	22,976	79	1,639	5,203	17
S-8/S-3	294,685	29,909	82	309,172	31,199	82	-14,487	-1,290	0
L-8	182,520	22,050	98	171,673	19,743	93	10,847	2,307	5
C-51W	125,326	30,222	196	125,543	19,599	127	-217	10,623	69
Acme Basin B	31,813	4,703	120	33,519	4,892	118	-1,706	-189	2
East Beach Water Control District	16,471	9,938	489	14,490	9,347	523	1,981	591	-34
East Shore Water Control District and 715 Farms	28,608	4,748	135	27,933	4,279	124	675	469	10
South Shore Drainage District	12,785	1,644	104	9,358	1,235	107	3,427	409	-3
South Florida Conservancy District	29,314	4,255	118	24,047	3,658	123	5,267	597	-6
C-139	195,607	53,801	223	265,072	64,101	196	-69,465	-10,300	27
C-139 Annex	41,486	4,987	97	39,627	4,830	99	1,859	157	-1
Total	1,735,112	284,188	133	1,830,473	275,240	122	-95,361 -5%	8,948 3%	11 9%

Table 11-1: Comparison of Annual Average Flow and Phosphorus Data

Water Year	Volume	TP Load	TP Conc.
Water Tear	ac-ft	kg	ppb
1995	236,529	56,368	193
1996	214,503	45,070	170
1997	151,440	42,427	227
1998	149,152	30,171	164
1999	122,058	31,376	208
2000	176,867	44,149	202
2001	53,197	16,642	254
2002	182,608	61,521	273
2003	209,265	71,031	275
2004	190,713	64,536	274
2005	150,075	34,933	189
2006	302,638	97,068	260
2007	71,783	28,149	318
Min. Annual	53,197	16,642	-
Max. Annual	302,638	97,068	-
Ave. Annual	170,064	47,957	229

Table 5-1: Annual Runoff from the C-139 Basin to STA-5 and STA-6.

Revisions to Updated STA Inflow Data Sets for the 2010 Period

Table 7-22: Estimate of Inflow Distribution to Balance PLR.

Iusie			Distribution	o Bulunce	
Flow-way	Area	TP inflow	Flow at PLR	Load	PLR
STA-5 1	2,055	229	28,177	7,945	0.96
STA-5 2	2,055	229	28,177	7,945	0.96
STA-5 3	1,985	229	27,217	7,674	0.96
STA-5 4	2,176	229	29,836	8,413	0.96
STA-5 5	2,669	229	36,595	10,319	0.96
STA-6 3	1,857	178	32,692	7,180	0.96
STA-6 5	652	97	20,970	2,521	0.96
STA-6 2	245	97	7,880	947	0.96
Total	13,694	203	211,544	52,944	0.96

Table 7-23: Summary of Long-term Average Annual Inflow to STA-5.

Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)
C-139 Basin	150,001	42,300	229

Lusie	-24. Annual			Phosphorus
Water Year	Volume (acre-feet)	TP Load Load (kg)	TP Conc. (ppb)	Loading Rate (g/m2/yr)
1995	208,626	49,719	193	1.12
1996	189,198	39,753	170	0.90
1997	133,575	37,422	227	0.85
1998	131,557	26,612	164	0.60
1999	107,659	27,675	208	0.63
2000	156,002	38,940	202	0.88
2001	46,922	14,679	254	0.33
2002	161,066	54,263	273	1.23
2003	184,578	62,652	275	1.42
2004	168,215	56,922	274	1.29
2005	132,370	30,812	189	0.70
2006	266,936	85,617	260	1.93
2007	63,315	24,828	318	0.56
Min. Annual	46,922	14,679	-	0.33
Max. Annual	266,936	85,617	-	1.93
Ave. Annual	150,001	42,300	229	0.96

Table 7-24: Annual Runoff to STA-5 from All Sources.

 Table 7-25:
 Summary of Long-term Average Annual Inflow to STA-6.

Source	Flow (AF/yr)	TP Load (kg/yr)	TP Conc (ppb)
C-139 Basin	20,062	5,657	229
C-139 Annex	41,480	4,987	97
Total	61,542	10,644	140

Table 7-26: Annual Runoff to STA-6 from All Sources.

				Phosphorus
Water Year	Volume	TP Load	TP Conc.	Loading
	(acre-feet)	Load (kg)	(ppb)	Rate (g/m2/yr)
1995	69,389	11,637	136	1.04
1996	61,742	9,876	130	0.89
1997	58,061	10,112	141	0.91
1998	63,676	7,581	97	0.68
1999	38,669	6,833	143	0.61
2000	67,230	11,624	140	1.04
2001	33,106	6,528	160	0.59
2002	59,264	11,103	152	1.00
2003	68,608	13,640	161	1.22
2004	69,357	13,344	156	1.20
2005	65,222	9,772	121	0.88
2006	101,432	18,352	147	1.65
2007	44,295	7,970	146	0.72
Min. Annual	33,106	6,528	-	0.59
Max. Annual	101,432	18,352	-	1.65
Ave. Annual	61,542	10,644	140	0.96

Table 9-1: Comparison of Current Data Sets to 2005 EAA R	RFS Values.
--	--------------------

Basin or Source Years Water Flow AF/yr Flow kg/yr TP Load ppb TP Conc AF/yr Flow AF/yr TP Load Kg/yr TP C kg/yr TP Conc AF/yr TP Load AF/yr TP C kg/yr TP Load Kg/yr TP C AF/yr Kg/yr TP Conc Kg/yr TP Load AF/yr TP Conc AF/yr TP Load AF/yr TP C Kg/yr Kg/yr TP Conc Kg/yr TP Load AF/yr TP Conc Kg/yr TP Conc AF/yr TP Conc Kg/yr TP Concoccon Kg/yr TP Conc Kg/yr <		2005 EAA RFS ¹ This Analysis					is	
Years AF/yr kg/yr ppb AF/yr kg/yr pp EAA Basin Runoff Discharge to STAs S	Basin or Source	Water						TP Conc
Discharge to STAs S-5A Basin 1966-2000 291,096 55,256 154 308,058 61,844 16 S-6/S-2 Basin 1966-2000 123,6624 23,6624 23,827 97 181,700 23,661 100 S-7/S-2 Basin 1966-2000 107,624 17,460 83 132,584 13,383 82 Subtotal 1966-2000 07,654 111,770 112 763,513 115,528 12 Discharge to EAASR Discharge to EAASR 97,742 10,012 83 84/5-3 881 1966-2000 59,784 5,910 80 97,242 10,012 83 S-8/S-3 Basin 1966-2000 0 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 S-2/S-6/S-7 Basin 1966-2000 29,1096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 23,499		Years	AF/yr	kg/yr	ppb		kg/yr	ppb
Discharge to STAs S-5A Basin 1966-2000 291,096 55,256 154 308,058 61,844 16 S-6/S-2 Basin 1966-2000 123,624 28,827 97 181,700 23,661 10 S-7/S-2 Basin 1966-2000 170,624 17,460 83 132,584 13,383 82 Subtotal 1966-2000 72,078 7,235 81 119,549 14,011 95 S-7/S-2 Basin 1966-2000 53,784 5,910 80 97,242 10,012 83 S-8/S-3 Basin 1966-2000 0 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-8/S-3 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-5A Basin 1966-2000 24,945 84,9131 90 400,246 56,509 10 S-2/S-6/S-7 Basin 1966-2000								
S-5A Basin 1966-2000 291,096 55,256 154 308,058 61,844 16 S-6/S-2 Basin 1966-2000 109,310 10,747 80 141,171 16,640 96 S-8/S-3 Basin 1966-2000 170,624 17,460 83 132,584 13,383 82 Subtotal 1966-2000 87,654 111,790 112 763,513 115,528 12 Discharge to EAASR 119,549 14,011 95 86,73 Basin 1966-2000 72,078 7,235 81 116,791 24,023 90 S-bA Basin 1966-2000 13,862 13,145 81 216,791 24,023 90 S-bA Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 S-bA Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 S-bA Basin 1966-2000 29,197 1,053 124,652 3,913 85 S-bA Basin 1966-200								
S-6/S-2 Basin 1966-2000 236,624 28,327 97 181,700 23,661 10 S-7/S-2 Basin 1966-2000 109,310 10,747 80 141,171 16,640 96 S-8/S-3 Basin 1966-2000 807,654 111,790 112 763,513 115,528 12 Discharge to EAASR S-7/S-2 Basin 1966-2000 59,784 5,910 80 97,242 10,012 83 Subtotal 1966-2000 59,784 5,910 80 97,242 10,012 83 Subtotal 1966-2000 0 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-4/S-3 Basin 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000	S-5A Basin	1966-2000				308.058	61.844	163
S-7/S-2 Basin 1966-2000 109,310 10,747 80 141,171 16,640 96 Subtotal 1966-2000 170,624 17,460 83 132,584 13,383 86 Subtotal 1966-2000 72,078 7,235 81 119,549 14,011 95 S-8/S-3 Basin 1966-2000 59,784 5,910 80 97,242 10,012 83 Subtotal 1966-2000 131,862 13,145 81 216,791 24,023 90 Discharge to Lake Okeechobee - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 S-4/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 S-5/S Basin 1966-2000 29,197 3,267 91 24,652 3,056 16 S-2/S-6/S-7 Basin 1966-2000 23,493 23,455 23,495 23,495 23,495 23,						-	-	106
S-8/S-3 Basin 1966-2000 170,624 17,400 83 132,584 13,383 82 Subtotal 1966-2000 72,078 7,235 81 119,549 14,011 95 S-7/S-2 Basin 1966-2000 59,784 5,910 80 97,242 10,012 83 Subtotal 1966-2000 131,862 131,455 81 216,791 24,023 99 Discharge to Lake Okeechobee 5 5.48 81 216,67,71 24,652 3,056 10 S-8/S-3 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-8/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins Total from EAA Basins 5 5 5,54 6,509 10 S-2/S-6/S-7 Basin 1966-2000 23,499 23,815 82 234,955 23,913 82 S-2/S-6/S-7 Basin 1966-2000 21,458 107 10,04,956<							,	96
Subtotal 1966-2000 807,654 111,790 112 763,513 115,528 12 Discharge to EAASR S-7/S-2 Basin 1966-2000 59,784 5,910 80 97,242 10,012 83 Subtotal 1966-2000 59,784 5,910 80 97,242 10,012 83 Subtotal 1966-2000 13,862 13,145 81 216,791 24,023 90 Discharge to Lake Okeechobee S-5A Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-4/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 Catal from EAA Basins S-5A Basin 1966-2000 29,1096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 23,419 23,815 82 234,955 23,913 82 Total 1966-2000 10,512 9,386 500								82
S-7/S-2 Basin 1966-2000 72,078 7,235 81 119,549 14,011 95 S-8/S-3 Basin 1966-2000 59,784 5,910 80 97,242 10,012 83 Subtotal 1966-2000 131,862 13,145 81 216,791 24,023 93 S-5A Basin 1966-2000 0 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 24,945 2,822 92 17,826 2,197 10 S-8/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 15,212 9,386 500 16,033 9,244 40 SSDD 1966-2000 15,212 9,386 500 16,						-	-	123
S-7/S-2 Basin 1966-2000 72,078 7,235 81 119,549 14,011 96 S-b/S-3 Basin 1966-2000 59,784 5,910 80 97,242 10,012 83 S-b/S-3 Basin 1966-2000 0 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-8/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 S-5A Basin 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 244,499 23,815 82 234,955 23,913 83 Total 1966-2000 291,096 500 16,033 9,244 46 ESWCD 1966-2000 19,512 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 10,559 1,390 107 10,539 1,32			,				,	
S-8/S-3 Basin 1966-2000 59,784 5,910 80 97,242 10,012 83 Subtotal 1966-2000 131,862 13,145 81 216,791 24,023 90 S-5A Basin 1966-2000 0 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-8/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins Total from EAA Basins 1966-2000 234,499 23,815 82 234,955 23,913 83 S-5A Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 0 -	S-7/S-2 Basin	1966-2000				119,549	14,011	95
Subtotal 1966-2000 131,862 13,145 81 216,791 24,023 90 Discharge to Lake Okeechobee S-5A Basin 1966-2000 0 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-8/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins S-5A Basin 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 155,212 9,386 500 16,033 9,244 46 ESWCD 1966-2000 15,212 9,386 500 16,033 9,244 10 <						-	-	83
Discharge to Lake Okeechobee 1 S-5A Basin 1966-2000 0 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-8/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins S-5A Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins S-5A Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Discharge to STAs Discharge to STAs Discharge to STAs EBWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms Discharge to STAs Discharge to Lake Okeechobee EBWCD 1966-2000 0 - 3,801 479 10	Subtotal			,		-		90
S-5A Basin 1966-2000 0 - 1,697 341 16 S-2/S-6/S-7 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 Subtotal 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins S-5A Basin 1966-2000 291,096 55,256 154 309,754 62,185 16 S-SA Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 942,3815 82 214,955 128,007 11 Chapter 298 districts and 715 Farms Discharge to STAs Discharge to STAs 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 21,145 3,183 122 24,110 3,363 11						-, -	1	
S-2/S-6/S-7 Basin S-8/S-3 Basin 1966-2000 24,946 2,822 92 17,826 2,197 10 S-8/S-3 Basin 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins S-5A Basin 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 234,499 23,815 82 23,955 23,913 83 Total 1966-2000 234,499 23,815 82 23,4955 23,913 83 Total 1966-2000 29,816 500 16,033 9,244 46 ESWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/15 Farms 1966-2000 19,418 4,588 122 31,129 5,215 13 SDD 1966-2000 21,145 3,183 122 24,110 3,363 11 SUbtotal 1966-2000 0 0 </td <td>S-5A Basin</td> <td></td> <td></td> <td></td> <td>-</td> <td>1 697</td> <td>341</td> <td>163</td>	S-5A Basin				-	1 697	341	163
S-8/S-3 Basin Subtotal 1966-2000 4,091 445 88 5,129 518 82 Subtotal 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD715 Farms 1966-2000 15,212 9,386 500 16,033 9,244 46 SSDD 1966-2000 21,145 3,183 122 24,110 3,363 11 SWCD/715 Farms 1966-2000 76,734 18,547 196 81,810 19,146 19 EBWCD 1966-2000 0 0 - 3,801			-		92			100
Subtotal 1966-2000 29,037 3,267 91 24,652 3,056 10 Total from EAA Basins S-5A Basin 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 968,553 128,202 107 1,004,956 142,607 11 Chapter 298 districts and 715 Farms Discharge to STAs EBWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 31,129 5,215 13 SDD 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 47			,	,		-		82
Total from EAA Basins Total from EAA Basins S-5A Basin 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 968,553 128,202 107 1,004,956 142,607 11 Chapter 298 districts and 715 Farms Discharge to STAs EBWCD 1966-2000 19,521 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 31,129 5,215 13 SSDD 1966-2000 21,145 3,183 122 24,110 3,363 11 Discharge to Lake Okeechobee EBWCD 1966-2000 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD								100
S-5A Basin 1966-2000 291,096 55,256 154 309,754 62,185 16 S-2/S-6/S-7 Basin 1966-2000 442,958 49,131 90 460,246 56,509 10 S-8/S-3 Basin 1966-2000 234,499 23,815 82 23,955 23,913 83 Total 1966-2000 968,553 128,202 107 1,004,956 142,607 11 Chapter 298 districts and 715 Farms Discharge to STAs 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 19,59 1,390 107 10,539 1,324 10 SSDD 1966-2000 11,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SCDD 1966-2000 0 0 - 3,801 479	Odbioldi	1000 2000			-	24,002	0,000	100
S-2/S-6/S-7 Basin S-8/S-3 Basin 1966-2000 442,958 49,131 90 460,246 56,509 10 S-8/S-3 Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 968,553 128,202 107 1,004,956 142,607 11 Discharge to STAs EBWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 10,559 1,390 107 10,539 1,324 10 SFCD 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,44 43 10 SCD 1966-2000 0 0 -	S-5A Basin	1966-2000				309 754	62 185	163
S-8/S-3 Basin 1966-2000 234,499 23,815 82 234,955 23,913 83 Total 1966-2000 968,553 128,202 107 1,004,956 142,607 11 Chapter 298 districts and 715 Farms Discharge to STAs EBWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 31,129 5,215 13 SSDD 1966-2000 21,145 3,183 122 24,110 3,363 11 SEVCD/715 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,44 43 10 SFCD			,			-		100
Total 1966-2000 968,553 128,202 107 1,004,956 142,607 11 Chapter 298 districts and 715 Farms EBWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 31,129 5,215 13 SSDD 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,801 4			,			-	,	
Chapter 298 districts and 715 Farms Discharge to STAs EBWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 EBWCD 1966-2000 29,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 20,21,445 3,183 122 2,4110 3,363 11 Subtotal 1966-2000 0 0 - EBWCD 1966-2000 0 - 487 278 46 EBWCD 1966-2000 0 - - Colspan= 2 - - - - - - - - - - - <td></td> <td></td> <td>,</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>			,	-				
Discharge to STAs EBWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 31,129 5,215 13 SSDD 1966-2000 10,559 1,390 107 10,539 1,324 10 SFCD 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 26,734 18,547 196 81,810 19,146 19 Discharge to Lake Okeechobee EBWCD 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,801 479 10 SVDD/715 Farms 1966-2000 0 0 - 5,996 990 13 EBWCD 1966-2000 15,212 9,386 500 </td <td>TOLAI</td> <td></td> <td></td> <td>,</td> <td></td> <td>1,004,956</td> <td>142,007</td> <td>115</td>	TOLAI			,		1,004,956	142,007	115
EBWCD 1966-2000 15,212 9,386 500 16,033 9,244 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 31,129 5,215 13 SSDD 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 76,734 18,547 196 81,810 19,146 19 Discharge to Lake Okeechobee 467 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,801 479 10 SUD 1966-2000 0 0 - 5,996 990 13 EBWCD 1966-2000 15,212<		CI						
ESWCD/715 Farms 1966-2000 29,818 4,588 125 31,129 5,215 13 SSDD 1966-2000 10,559 1,390 107 10,539 1,324 10 SFCD 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 76,734 18,547 196 81,810 19,146 19 Discharge to Lake Okeechobee EBWCD 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,844 43 10 SFCD 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 15,212 9,386 500<		1066 2000				16.022	0.244	467
SSDD 1966-2000 10,559 1,390 107 10,539 1,324 10 SFCD 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 76,734 18,547 196 81,810 19,146 19 Discharge to Lake Okeechobee EBWCD 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 1,363 190 11 SUbtotal 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 15,212 9,386 500 16,520				-		-		
SFCD 1966-2000 21,145 3,183 122 24,110 3,363 11 Subtotal 1966-2000 76,734 18,547 196 81,810 19,146 19 Discharge to Lake Okeechobee 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,44 43 10 SFCD 1966-2000 0 0 - 1,363 190 11 SUbtotal 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 15,519 1,390 107 10,883 1,367 1				-		-		
Subtotal 1966-2000 76,734 18,547 196 81,810 19,146 19 Discharge to Lake Okeechobee Discharge to Lake Okeechobee 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 344 43 10 SFCD 1966-2000 0 0 - 1,363 190 11 Subtotal 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 10,559 1,390 107 10,883 1,367 10 SFCD 1966-2000 21,145 3,183 122 25,			· ·					
Discharge to Lake Okeechobee EBWCD 1966-2000 0 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,44 43 10 SFCD 1966-2000 0 0 - 1,363 190 11 Subtotal 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 SSDD 1966-2000 15,212 9,386 500 16,520 9,522 46 SSDD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 21,145 3,183 122 25,473 <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>			· ·			-		
EBWCD 1966-2000 0 - 487 278 46 ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 3,44 43 10 SFCD 1966-2000 0 0 - 344 43 10 SECD 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 34,931 5,694 13 SSDD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 C-139 to L2/L-	Subtotal		,			81,810	19,140	190
ESWCD/715 Farms 1966-2000 0 0 - 3,801 479 10 SSDD 1966-2000 0 0 - 344 43 10 SFCD 1966-2000 0 0 - 1,363 190 11 Subtotal 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms EBWCD 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 34,931 5,694 13 SSDD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 C-139 to L2/L-3 Varies 159,030 39,111 199 170,06	FBWCD		_			/87	278	462
SSDD 1966-2000 0 0 - 344 43 10 SFCD 1966-2000 0 0 - 1,363 190 11 Subtotal 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms EBWCD 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 34,931 5,694 13 SSDD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000			-		_			
SFCD 1966-2000 0 0 - 1,363 190 11 Subtotal 1966-2000 0 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms EBWCD 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 34,931 5,694 13 SSDD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0						,	-	102
Subtotal 1966-2000 0 - 5,996 990 13 Total from Ch. 298 Districts and 715 Farms EBWCD 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 34,931 5,694 13 SSDD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR			-	-	_		-	
Total from Ch. 298 Districts and 715 Farms EBWCD 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 34,931 5,694 13 SSDD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97					-			
EBWCD 1966-2000 15,212 9,386 500 16,520 9,522 46 ESWCD/715 Farms 1966-2000 29,818 4,588 125 34,931 5,694 13 SSDD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97	Subtotal		-	-	- -		990	134
ESWCD/715 Farms 1966-2000 29,818 4,588 125 34,931 5,694 13 SSDD 1966-2000 10,559 1,390 107 10,883 1,367 10 SFCD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97	5014/00						0.500	407
SSDD 1966-2000 10,559 1,390 107 10,883 1,367 10 SFCD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97				-		-		467
SFCD 1966-2000 21,145 3,183 122 25,473 3,553 11 Total 1966-2000 76,734 18,547 196 87,806 20,136 18 Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>132</td>				-		-		132
Total 1966-2000 76,734 18,547 196 87,806 20,136 18 Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97				-		-		102
Western Basins C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to STA-3/4 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td>113</td>						,		113
C-139 to L2/L-3 Varies 159,030 39,111 199 170,064 47,957 22 C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97	i otal	1966-2000				87,806	20,136	186
C-139 to STA-3/4 1966-2000 13,204 2,958 182 13,201 3,401 20 C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97	C 120 to 1.0/1.0	Voriaa				170.004	47.057	200
C-139 to EAA Irrig. 1966-2000 4,383 969 179 4,385 1,130 20 USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97							-	
USSC SDR Unit 2 1998-2005 0 0 - 0 0 - C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97						,		
C-139 Annex Varies 40,176 4,873 98 41,480 4,987 97				_	179		-	209
					-			-
T TOTAL T VALUES 1 Z 10.793 1 47.911 1 179 1 229 130 1 57.475 1 20								
	i otai	varies	216,793	47,911		229,130	57,475	203
	0.54.11/2 11 071	1000 0000				400.075	04 500	400
								196
								196
								96
					103			99
					-			99
L-8 to L-8 Rock Pit 1966-2000 0 0 - 17,461 2,135 99	L-8 to L-8 Rock Pit	1966-2000	0	0	-	17,461	2,135	99
L-8 to C-51 East 1966-2000 36,256 3,548 79 25,712 3,173 10	L-8 to C-51 East	1966-2000	36,256	3,548	79	25,712	3,173	100
Acme Basin B 1966-2000 34,887 4,850 113 35,066 4,915 11	Acme Basin B	1966-2000	34,887	4,850	113	35,066	4,915	114
		1966-2000	283,496	41,477	119		61,809	137
Total Runoff Varies 1,545,576 236,137 124 1,688,009 282,026 13	Total Runoff	Varies	1,545,576	236,137	124	1,688,009	282,026	135

2005 EAA RFS values came from Appendix D "Inflow Data Sets for the Period 2010-2014"

Table 9-1: Comparison of Current Data Sets to 2005 EAA RFS Values (Cont'd).

Basin or Source	Water		2005 EAA RFS ¹ This Analysis				
		Flow	TP Load	TP Conc	Flow	TP Load	TP Conc
	Years	AF/yr	kg/yr	ppb	AF/yr	kg/yr	ppb
			echobee Re				
		w-Through I		STA Inflow	S		
S-351	1966-2000	1,551	132	69	16	2	100
S-352	1966-2000	19	2	104	0	0	-
S-354	1966-2000	26,581	2,115	65	0	0	-
Subtotal	1966-2000	28,150	2,250	65	16	2	100
			Supply Bypa	isses			
S-351	1966-2000	11,484	1,189	84	18,559	2,527	110
S-352	1966-2000	14,184	2,227	127	21,054	3,439	132
S-354	1966-2000	109,279	9,391	70	46,140	5,271	93
Subtotal	1966-2000	134,947	12,807	77	85,753	11,237	106
		Total Flow	-Through R	eleases			
S-351	1966-2000	13,035	1,321	82	18,575	2,529	110
S-352	1966-2000	14,203	2,229	127	21,054	3,439	132
S-354	1966-2000	135,860	11,506	69	46,140	5,271	93
Total	1966-2000	163,097	15,056	75	85,769	11,239	106
	Lake Okeed			A Storage F			
S-351	1966-2000	131,928	16,689	103	139,761	17,233	100
S-354	1966-2000	152,793	16,958	90	183,461	22,629	100
Total	1966-2000	284,721	33,647	96	323,222	39,862	100
		otal Lake C					
S-351	1966-2000	144,963	18,010	101	158,336	19,762	101
S-352	1966-2000	14,203	2,229	127	21,054	3,439	132
S-354	1966-2000	288,653	28,464	80	229,601	27,900	99
Total	1966-2000	447,819	48,703	88	408,991	51,101	101
	E	EAA Storage	e Reservoir	Releases			
S-2/S-6/S-7 Irrig.	1966-2000	105,115			95,323	9,007	77 ²
S-3/S-8 Irrig.	1966-2000	74,911			72,835	6,882	77
STA-3/4	1966-2000	233,685			363,442	34,340	77
Total	1966-2000	413,711			531,600	50,229	77
		Seepag	e from WC	A-2A			
WCA-2A seepage	1966-2000	27,530	509	15	27,530	509	15
		Total Volu	mes and TF	P Loads			
Direct STA Inflow	Varies	1,562,245		109	1,639,453	264,464	131
To EAA SR	1966-2000	416,583	46,792	91	540,013	63,885	96
To Lake Okeechobee	1966-2000	100,968	12,424	100	87,656	11,017	102
Other Destinations	1966-2000	44,249	5,132	94	139,482	18,504	108
Total (w/ L-8 Basin)	Varies	2,124,045		104	2,406,604	357,870	121
Total (w/o L-8 Basin)	Varies	2,015,858	260,807	105	2,212,830	334,174	122

¹ 2005 EAA RFS values came from Appendix D "Inflow Data Sets for the Period 2010-2014"

² Assumes 76.6 ppb TP concentration from EAA Storage Reservoir; Lake O=100 ppb

Table 9-2: Comparison of Basin Runoff to the STAs, Compartments B and C, and the
EAA Storage Reservoir.

	1994 C	onceptual D	Design ¹	Т	his Analysi	S
Source Basin	Flow	TP Load	TP Conc	Flow	TP Load	TP Conc
	AF/yr	kg/yr	ppb	AF/yr	kg/yr	ppb
S-5A	195,342	50,631	210	308,058	61,844	163
S-6/S-2	131,676	23,166	143	181,700	23,661	106
S-7/S-2	155,734	19,211	100	223,454	24,415	89
S-8/S-3	187,020	47,290	205	200,833	19,831	80
Total EAA	669,772	140,298	170	914,044	129,751	115
Ch. 298 Districts/715 Farms	24,857	6,156	201	81,810	19,146	190
C-51W	105,376	24,042	185	130,375	31,529	196
L-8	0	0	-	8,571	1,019	96
C-139	97,605	28,693	238	183,265	51,358	227
C-139 Annex	0	0	-	41,480	4,987	97
Acme Basin B	0	0	-	35,066	4,915	114
WCA-2A	27530.11	509.37586	15	27,530	509	15
Lake Okeechobee ²	254,571	21,364	68	217,536	20,554	77
Effective Treatment Area		39,690			56,997	
Total Inflows	1,179,711	221,062	152	1,639,677	263,769	130

¹ Assumed 20% reduction in EAA runoff.

² Calculated as 60% of EAA SR discharge to STA-3/4, equivalent to percentage of Lake inflows.

Table 9-3: Summary of Inflows to the STAs and EAA Storage Reservoir for STA-2
PLR of 1.0 g/m ² /vr.

		ER 01 1.0 g /	l l		
	Effective	Inflow	Inflow	Inflow	Phosphorus
STA	Treatment Area	Volume	TP Load	TP Conc.	Loading
•	acres	(acre-feet)	Load (kg)	(ppb)	Rate (g/m2/yr)
	00103		Load (kg)	(ppb)	Rate (g/mz/yr)
STA-1E	5,132	193,818	41,864	175	2.02
STA-1W	6,670	243,172	54,409	181	2.02
STA-2	6,338	182,713	25,664	114	1.00
Compartment B	8,620	225,073	28,509	103	0.82
STA-3/4 ¹	16,543	583,360	60,353	84	0.90
STA-5 (incl. Comp. C)	10,940	150,001	42,300	229	0.96
STA-6 (incl. Comp. C)	2,754	61,542	10,644	140	0.96
Total Inflow to STAs	56,997	1,639,679	263,743	130	1.14
	45.000	540.040	00.005		
EAA SR A-1	15,200	540,013	63,885	96	1.04
Total	72,197	2,179,692	327,628	122	1.12
Total	12,191	2,179,092	327,028	122	1.12

¹ Assumes 76.6 ppb TP concentration from EAA Storage Reservoir; Lake O=100 ppb

Receiving	20	2005 EAA RFS ¹			This Analysis		
Water	Flow	TP Load	TP Conc	Flow	TP Load	TP Conc	
Body	AF/yr	kg/yr	ppb	AF/yr	kg/yr	ppb	
STA-1E	171,800	27,030	128	193,818	41,864	175	
STA-1W	131,400	25,800	160	243,172	54,409	181	
STA-2	180,700	20,300	91	182,713	25,664	114	
Compartment B	291,100	44,100	123	225,073	28,509	103	
STA-3/4	585,500	65,920	91	583,360	60,353	84	
STA-5 (incl. Comp. C)	159,030	39,111	199	150,001	42,300	229	
STA-6 (incl. Comp. C)	40,176	4,873	98	61,542	10,644	140	
EAA SR	416,900	50,000	97	540,013	63,885	96	
Total Inflows	1,976,606	277,134	114	2,179,692	327,628	122	

(STA 2 DI D of 1.0 $g/m^2/ym$) 0 1. C e T., ei 4. 2005 EAADES Value • . .

¹ For comparison, inflows from the EAA RFS Alternative 1 for the 2010-2014 Period are presented. Alternative 1 included additional facilities to transfer S-5A Basin runoff to the west.

Table 9-5: Comparison of STA Inflows to 1994 Conceptual Design Values, Excluding
Compartments B and C for STA-2 PLR of 1.0 g/m ² /yr.

Receiving	1994 C	onceptual		T	his Analysi	S
Water	Flow	TP Load	TP Conc	Flow	TP Load	TP Conc
Body	AF/yr	kg/yr	ppb	AF/yr	kg/yr	ppb
STA-1E	124,900	29,500	191	193,818	41,864	175
STA-1W	142,853	37,701	214	243,172	54,409	181
STA-2 (excl. Comp. B)	174,641	33,764	157	182,713	25,664	114
STA-3/4	604,753	87,200	117	583,360	60,353	84
STA-5 (excl. Comp. C)	87,000	28,000	261	56,353	15,890	229
STA-6 (excl. Comp. C)	18,034	4,388	197	28,850	3,468	96
Total Inflows	1,152,181	220,553	155	1,288,266	201,649	127

Table 9-6: Comparison of STA Inflows to 1994 Conceptual Design Values, Including Compartments B and C for STA-2 PLR of 1.0 g/m²/yr.

Receiving	1	994 Conce	ptual Desig	n		This Ar	nalysis	
Water	Eff. Tr.	Flow	TP Load	TP Conc	Eff. Tr.	Flow	TP Load	TP Conc
Body	Area (ac)	AF/yr	kg/yr	ppb	Area (ac)	AF/yr	kg/yr	ppb
STA-1E	5,132	124,900	29,500	191	5,132	193,818	41,864	175
STA-1W	6,670	142,853	37,701	214	6,670	243,172	54,409	181
STA-2 (incl. Comp. B)	6,338	174,641	33,764	157	14,958	407,786	54,173	108
STA-3/4	16,543	604,753	87,200	117	16,543	583,360	60,353	84
STA-5 (incl. Comp. C)	4,110	87,000	28,000	261	10,940	150,001	42,300	229
STA-6 (incl. Comp. C)	897	18,034	4,388	197	2,754	61,542	10,644	227
Total Inflows	39,690	1,152,181	220,553	155	56,997	1,639,679	263,743	130

Appendix C. DMSTA Output

					SI	A-1	E							
OMSTA2- Inputs & Outpu	ts		Project:	STA 1E EIS									del Release:	
put Variable	Units	Value	Case Descr	iption:								(Current Date:	10/19
lesign Case Name nput Series Name	-	All EIS Alt1 TS_All_EIS_Alt1	All cells Inflows to	cells 1-4 incre	eased by 4%	(approx. 6,40	0 ac-ft/yr) for	seepage rec	ycle from we	st flow path				
Starting Date for Simulation	-	05/01/65 04/30/00	East Distri West Distr	bution Cell m ibution Cell n	odeled as twi nodeled as tw	o cells in para lo cells in par	llel; minimal t allel; minimal	treatment in I treatment in	EDC (K=0.01 WDC (K=0.0	m/yr) 1 m/yr)				
tarting Date for Output tegration Steps Per Day	-	05/01/65	Simulation T		Uncertainty									I
lumber of Iterations Jutput Averaging Interval	- days	0 365	Output Vari FWM Outflo	w C (nnh)	Mean 26.5	Lower CL 35.0	Upper CL 19.8		Diagnostics H20 Balance	Error Mean	& Max	0.0%	0.0%	
flow Conc Scale Factor ainfall P Conc	- ppb	1 10	GM Outflow Load Reduc	r C (ppb) ction %	24.1 85%	32.2 80%	17.8 89%		Iterations &	ce Error Mear Convergence		0.0%	0.0%	
tmospheric P Load (Dry) ell Number>	mg/m2-yr	20	Bypass Loa 2	d (%)	0.0% 4	5	6	7		or Messages 9	10	4	12	
ell Label	-	EDCE	1	2	EDCW	3	4N	4S	8 WDCW	7	WDCE	5	6	1
egetation Type flow Fraction ownstream Cell Number	>	0.215903431	EMG_3	SAV_3	none 0.3869894	EMG_3	SAV_3	SAV_3	0.1678194	EMG_3	none 0.2292878	EMG_3	SAV_3	
urface Area	km2	2 0.95	3 2.25	2.23	5 0.95	6 2.38	7 2.61	3.04	9 1.17	12 1.69	11.00 1.17	12.00 2.31	4.25	
lean Width of Flow Path umber of Tanks in Series	km -	0.66	1.55 3.0	1.55 3.0	0.66	1.55 3.0	1.55 3.0	1.55 3.0	0.75 0.5	1.61 3.0	0.75	1.18 3.0	0.75 3.0	
finimum Depth for Releases elease 1 Series Name	cm													
elease 2 Series Name utflow Series Name														
epth Series Name utflow Control Depth	cm	38.1	38.1	38.1	91.44	38.1	38.1	38.1	99.06	38.1	38.1	38.1	38.1	
utflow Weir Depth utflow Coefficient - Exponent	cm	4	4	4	4	4	4	4	4	4	4	4	4	
utflow Coefficient - Intercept ypass Depth	- cm	1	1	1	1	1	1	1	1	1	1	1	1	
aximum Inflow aximum Outflow	hm3/day hm3/day													
flow Seepage Rate	(cm/d) / cm cm									0.0054 69			0.0057 94	1
flow Seepage Control Elev flow Seepage Conc	ppb	0.0095	0.0042	0.0042	0.0095			0.0054	0.01	20	0.01		20	
utflow Seepage Rate utflow Seepage Control Elev	(cm/d) / cm cm	-137	-137	-99	-87			-38	-15		-76			
lax Outflow Seepage Conc eepage Recycle to Cell Number	ppb -	20 1	20 1	20 1	20 4			20 7	20		20			
eepage Recycle Fraction eepage Discharge Fraction		1	1	1	1			1						
itial Water Column Conc itial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	
itial Water Column Depth 0 = Conc at 0 g/m2 P Storage	cm ppb	50 3	50 3	50 3	50 3	50 3	50 3	50 3	50 3	50 3	50 3	50 3	50 3	
1 = Conc at 1 g/m2 P storage 2 = Conc at Half-Max Uptake	ppb ppb	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	
= Net Settling Rate at Steady State 1 = Saturated Uptake Depth	m/yr cm	0.0	16.8 40	52.5 40	0.0	16.8 40	52.5 40	52.5 40	0.0	16.8 40	0.0	16.8 40	52.5 40	
2 = Lower Penalty Depth 3 = Upper Penalty Depth	cm	100	100	100	100	100 200	100 200	100	100	100	100	100	100	
utput Variables	Units	1	2	3	4	5	6	7	8	9	10	11	12	Ove
ecution Time un Date	sec/yr	53.97 10/19/07	55.57 10/19/07	57.37 10/19/07	58.48 10/19/07	59.86 10/19/07	61.40 10/19/07	62.80 10/19/07	64.23 10/19/07	65.66 10/19/07	66.83 10/19/07	68.34 10/19/07	70.03	70 10/1
tarting Date for Simulation	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/0
tarting Date for Output nding Date		04/30/00	04/30/00	04/30/00	04/30/00	04/30/00	04/30/00	04/30/00	04/30/00	04/30/00	04/30/00	04/30/00	04/30/00	04/3
lutput Duration ell Label	days	12784 EDCE	12784	12784 2	12784 EDCW	12784 3	12784 4N	12784 4S	12784 WDCW	12784	12784 WDCE	12784 5	12784 6	123 To
ownstream Cell Label etwork Simulation Name		1 none	2 none	Outflow none	3 none	4N none	4S none	Outflow none	7 none	6 none	5 none	6 none	Outflow none	no
imulation Type urface Area	- km2	Uncerta 0.95	Uncerta 2.25	Uncerta 2.23	Uncerta 0.95	Uncerta 2.38	Uncerta 2.61	Uncerta 3.04	Uncerta 1.17	Uncerta 1.69	Uncerta 1.17	Uncerta 2.31	Uncerta 4.25	Unc 25
ean Rainfall ean ET	cm/yr cm/yr	142.94 129.66	142.94 129.66	142.94 129.21	142.94 129.66	142.94 129.66	142.94 129.66	142.94 129.66	142.94 129.66	142.94 129.66	142.94 129.26	142.94 129.44	142.94 129.66	14 12
ell Inflow Volume ell Inflow Load	hm3/yr kg/yr	51.7 9045.2	63.4 8665.7	57.1 5367.2	92.6 16212.8	92.7 15464.8	93.0 11999.6	93.4 5135.4	40.2 7030.7	35.5 6230.2	54.9 9605.9	49.3 8670.3	86.1 9508.1	23 418
ell Inflow Conc reated Outflow Volume	ppb hm3/vr	175 63.4	137 57.1	94 52.3	175 92.7	167 93.0	129 93.4	55 93.8	175 35.5	176 36.5	175 49.3	176 49.6	110 89.0	173
reated Outflow Load reated FWM Outflow Conc	kg/yr ppb	8665.7 137	5367.2 94	1545.8 30	15464.8 167	11999.6 129	5135.4 55	2069.9 22	6230.2 176	3977.4 109	8670.3 176	5530.6 111	2624 29	62 26
pper Confidence Limit ower Confidence Limit	ppb	136.7 136.6	102.4 84.3	37.8 22.6	166.8 166.8	136.7 119.7	67.1 43.6	29.8 16.3	175.6 175.6	120.8 96.0	175.8 175.8	123.4 98.0	38.8 22.0	35
otal Outflow Volume + Bypass otal Outflow Load + Bypass	hm3/yr kg/yr	63.4 8665.7	57.1 5367.2	52.3 1545.8	92.7 15464.8	93.0 11999.6	93.4 5135.4	93.8 2069.9	35.5 6230.2	36.5 3977.4	49.3 8670.3	49.6 5530.6	89.0 2623.8	23 623
otal FWM Outflow Conc ypass Load	ppb	136.7	93.9 0	29.5	166.8	129.0	55.0 0	22.1	175.6	109.1	175.8	111.4 0	2023.0 29.5 0	26
ypass Load ypass Load laximum Inflow	kg/yr % hm3/d	0% 0.25	0% 0.28	0% 0.27	0% 0.44	0% 0.44	0% 0.45	0% 0.45	0% 0.19	0% 0.18	0% 0.26	0% 0.25	0% 0.44	0.
laximum Outflow	hm3/d	0.28	0.27	0.26	0.44	0.45	0.45	0.46	0.18	0.19	0.25	0.25	0.45	1.1
urface Load Reduction oad Trapped in Sediments	kg/yr kg/yr	744 0	3299 2689	3821 3640	867 0	3465 3545	6864 6952	3170 3124	801 0	2253 2325	936 0	3140 3218	6884 7077	356 325
verall Load Reduction ower Confidence Limit	%	4% 0.0	38% 0.3	71% 0.7	5% 0.0	22% 0.2	57% 0.5	60% 0.6	11% 0.1	36% 0.3	10% 0.1	36% 0.3	72% 0.7	85 80
pper Confidence Limit aily Geometric Mean	% ppb	0.0 102.6	0.4 88.3	0.8 23.9	0.0 141.7	0.3 122.7	0.6 46.8	0.6 16.5	0.1 166.9	0.4 102.7	0.1 163.2	0.4 108.9	0.8 22.1	89 #N
utflow Geo Mean - Composites pper Confidence Limit	ppb ppb	134.8 134.8	91.5 100.2	27.1 35.1	165.9 165.9	126.6 134.7	51.2 63.4	20.0 27.3	175.1 175.1	106.0 118.2	175.4 175.4	108.6 121.0	26.7 35.7	24 32
ower Confidence Limit requency Outflow Conc > 10 ppb	ppb %	134.7 100%	81.7 100%	20.5 100%	165.9 100%	116.9 100%	40.0 100%	14.6 100%	175.1 100%	92.5 100%	175.4 100%	94.7 100%	19.7 100%	17
requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	%	100%	100% 100%	83% 0%	100% 100%	100% 100%	100% 53%	47% 0%	100% 100%	100% 100%	100% 100%	100% 100%	83% 0%	97 75
req Outflow Volume > 10 ppb 5th Percentile Outflow Conc	% ppb	100%	100%	100% 39.96	100%	100%	100% 73.96	96% 30.84	100%	100%	100%	100%	100% 40.74	10
lean Biomass P Storage torage Increase / Net Removal	mg/m2	737 2063%	3758	1639 0%	937	4673	2677	1033	1003 2891%	4323	813 2801%	4379 0%	1679 0%	24 0
et Storage Turnover Rate nit Area P Load	1/yr mg/m2-vr	0.0	11.1	34.8 2402	0.0	11.1 6485	34.8 4595	34.8 1687	0.0	11.1 3682	0.0 8210	11.1 3751	34.7	18
nit Area P Removal ean Water Load	mg/m2-yr mg/m2-yr cm/d	0 14.9	1194 7.7	1629 7.0	0 26.7	1487	4595 2662 9.8	1026	0	1374 5.7	0 12.8	1392	1666 5.5	13
ax Water Load	cm/d	25.9	12.5	12.0	46.5	18.6	17.2	14.9	16.4	10.7	22.4	10.7	10.3	4.
ean Depth inimum Depth	cm cm	68 59.8	53 46.5	51 42.0	94 92.8	59 50.6	59 50.2	58 49.5	98 83.9	47 42.1	58 42.2	53 41.7	68 57.1	6
aximum Depth equency Depth < 10 cm	cm %	76.1 0%	60.2 0%	59.6 0%	97.8 0%	67.9 0%	68.1 0%	69.1 0%	100.7 0%	54.0 0%	69.5 0%	62.6 0%	82.2 0%	7 0.0
ow/Width RT Days	m2/day days	214 4.6	112 6.9	101 7.3	384 3.5	164 5.5	164 6.0	165 7.0	147 10.4	60 8.2	200 4.5	114 9.1	314 12.3	17
ean Velocity eepage Outflow / Total Outflow	cm/sec %	0.37 0%	0.24 0%	0.23 0%	0.47 0%	0.32 0%	0.32 0%	0.33 0%	0.17 12%	0.15 0%	0.40 10%	0.25 0%	0.53 0%	0. 4
elease 1 Outflow Volume elease 2 Outflow Volume	hm3/yr hm3/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0
5th Percentile Outflow Volume 5th Percentile Outflow Load	hm3/d kg/d	0.2 35.8	0.2 23.8	0.2 8.2	0.4 64.4	0.4	0.4	0.4	0.2 26.7	0.2	0.2 36.7	0.2 25.4	0.4	1
imulated / Specified Mean Depth	%	35.8 #N/A #N/A	23.8 #N/A #N/A	8.2 #N/A #N/A	64.4 #N/A #N/A	53.4 #N/A #N/A	25.9 #N/A #N/A	11.3 #N/A #N/A	26.7 #N/A #N/A	18.4 #N/A #N/A	36.7 #N/A #N/A	25.4 #N/A #N/A	14.3 #N/A #N/A	26 111 111
elease 1 Demand Met elease 2 Demand Met	%	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#1
utflow Demand Met ange Check - Mean Depth	%	#N/A	#N/A	#N/A 0.82	#N/A	#N/A	#N/A 0.94	#N/A 0.94	#N/A	#N/A	#N/A	#N/A	#N/A	11
ange Check - Freq Depth < 10 cm ange Check - Flow/Width	1			0.62										1
ange Check - Inflow Conc ange Check - Outflow Conc	1													
ater Balance Error ass Balance Error	%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.0
arning or Error Messages		Cell# 3 Depth out Cell# 3 Flow/Widtl	of calib. range fo	or SAV_3: 51 v:	s. 62 - 87 cm	-		0.0170						0.0
		Cell# 6 Depth out				marcedy								

STA-1W

DMSTA2- Inputs & Output	uts		Project:	STA 1W EIS	<u>, , , , , , , , , , , , , , , , , , , </u>							el Release: urrent Date:	07/05/07
Input Variable Design Case Name	Units	Value EIS Alt1	Case Descrip	otion: th Long Term F	lan Enhancor	ients							
Input Series Name Starting Date for Simulation		TS_EIS_Alt1 05/01/65	Include all S	-5A Basin and	EBWCD Rund	off	V to CTA	A/ 09/ +-	ostork for	path of STA-1E			
Ending Date for Simulation	-	04/30/00	Distribution	or outriows from	n STA-1 KaD a	issigned 91	% 10 STA-11	/V, 9% to w	esterly flow	path of STA-TE			
Starting Date for Output Integration Steps Per Day	-	05/01/65 4	Simulation Ty	pe:	Uncertainty A	nalysis							
Number of Iterations Output Averaging Interval	- days	0 365	Output Varial FWM Outflow	ble	Mean 27.2	Lower CL 34.7	Upper CL 21.2		Diagnostic H20 Balan	<u>s</u> ce Error Mean & Max	0.0%	0.0%	
Inflow Conc Scale Factor Rainfall P Conc	-	1 10	GM Outflow Load Reduct	C (ppb)	25.9 85%	33.2 81%	20.1 88%		Mass Bala	nce Error Mean & Ma & Convergence	x -0.2%	0.4%	
Atmospheric P Load (Dry)	ppb mg/m2-yr	20	Bypass Load	(%)	0.0%			_	Warning/E	rror Messages	3		
Cell Number> Cell Label		1 1A	2 1B	3	4 2A	5 2B	6	7 5A	8 5B	9 10	11	12	
Vegetation Type Inflow Fraction	>	EMG_3 0.377211394	SAV_3	SAV_3	EMG_3 0.194752624	SAV_3	SAV_3	EMG_3 0.428036	SAV_3		-		
Downstream Cell Number Surface Area	- km2	2 3.02	3 3.02	4.15	5 1.91	6 1.90	1.45	8 2.28	9.28				
Mean Width of Flow Path	km2	1.10	1.10	1.10	2.40	2.00	1.30	1.78	2.34				
Number of Tanks in Series Minimum Depth for Releases	- cm	2.0	2.0	2.0	2.0	2.0	2.0	2.0	3.0				
Release 1 Series Name Release 2 Series Name Outflow Series Name													
Depth Series Name Outflow Control Depth	cm	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.1				
Outflow Weir Depth Outflow Coefficient - Exponent	cm	4	4	4	4	4	4	4	4				
Outflow Coefficient - Intercept	-	1	1	1	1	1	1	1	1				
Bypass Depth Maximum Inflow	cm hm3/day												
Maximum Outflow Inflow Seepage Rate	hm3/day (cm/d) / cm	0.0035	0.0018	0.0023							-		
Inflow Seepage Control Elev Inflow Seepage Conc	cm ppb	172 20	172 20	185 20									
Outflow Seepage Rate	(cm/d) / cm	20	20	0.0014	0.0016	0.0016	0.0021	0.0156	0.0049				
Outflow Seepage Control Elev Max Outflow Seepage Conc	cm ppb			-60 20	-46 20	-46 20	-46 20	-46 20	-46 20		1		
Seepage Recycle to Cell Number Seepage Recycle Fraction	-							1 0.91	1 0.8		1		
Seepage Discharge Fraction	- ppb	30	30	30	30	30	30	30	30		+	<u> </u>	
Initial P Storage Per Unit Area	mg/m2	500	500	500	500	500	500	500	500		1		
Initial Water Column Depth C0 = Conc at 0 g/m2 P Storage	cm ppb	200 3	200 3	200	200	200 3	200	200 3	200		+		
C1 = Conc at 1 g/m2 P storage C2 = Conc at Half-Max Uptake	ppb	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300		1		
K = Net Settling Rate at Steady State Z1 = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40	52.5 40	16.8 40	52.5 40	52.5 40	16.8 40	52.5 40		1		
Z2 = Lower Penalty Depth	cm	100	100	100	100	100	100	100	100		1		
Z3 = Upper Penalty Depth	cm	200	200	200	200	200	200	200	200			· · · · ·	
Output Variables Execution Time	Units sec/yr	1 10.34	2 10.89	3 11.43	4 11.97	5 12.51	6 13.06	7 13.60	8 14.29	9 10	11	12	Overall 14.29
Run Date Starting Date for Simulation	1	10/14/07 05/01/65	10/14/07 05/01/65	10/14/07 05/01/65	10/14/07 05/01/65	10/14/07 05/01/65	10/14/07 05/01/65	10/14/07 05/01/65	10/14/07 05/01/65				10/14/07 05/01/65
Starting Date for Output Ending Date	-	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00				05/01/65 04/30/00
Output Duration	days	12784	12784	12784	12784	12784	12784	12784	12784				12784
Cell Label Downstream Cell Label		1A 1B	1B 3	3 Outflow	2A 2B	2B 4	4 Outflow	5A 5B	5B Outflow				Total
Network Simulation Name Simulation Type	1	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta				none Uncerta
Surface Area	km2	3.02	3.02	4.15	1.91	1.90	1.45	2.28 134.86	9.28				27.00
Mean Rainfall Mean ET	cm/yr cm/yr	134.86 129.94	134.86 129.94	134.86 129.94	134.86 129.83	134.86 129.75	134.86 129.62	123.08	134.86 127.31				134.9 128.4
Cell Inflow Volume Cell Inflow Load	hm3/yr kg/yr	113.2 20538.8	140.1 17144.4	142.2 9134.7	58.5 10604.1	57.5 7703.7	56.6 3185.7	128.5 23306.2	117.1 16256.8				300.2 54449
Cell Inflow Conc Treated Outflow Volume	ppb hm3/yr	181 140.1	122 142.2	64 143.7	181 57.5	134 56.6	56 55.7	181 117.1	139 102.7				181.4 302.1
Treated Outflow Load	kg/yr	17144.4	9134.7	4098.6	7703.7	3185.7	1649.1	16256.8	2474.0				8222
Treated FWM Outflow Conc Upper Confidence Limit	ppb ppb	122 128.4	64 74.7	29 36.7	134 143.1	56 68.3	30 38.4	139 145.2	24 29.9				27.2 34.7
Lower Confidence Limit Total Outflow Volume + Bypass	ppb hm3/yr	115.2	53.7 142.2	21.8 143.7	123.1 57.5	45.2 56.6	22.8 55.7	131.7 117.1	19.5 102.7				21.2 302.1
Total Outflow Load + Bypass Total FWM Outflow Conc	kg/yr ppb	17144.4 122.4	9134.7 64.2	4098.6 28.5	7703.7 133.9	3185.7 56.2	1649.1 29.6	16256.8 138.8	2474.0 24.1				8221.6 27.2
Bypass Load Bypass Load	kg/yr %	0	0	0%	0%	0	0	0	0				0.0
Maximum Inflow	hm3/d	0.49	0.58	0.59	0.25	0.25	0.26	0.55	0.52				1.29
Maximum Outflow Surface Load Reduction	hm3/d kg/yr	0.58 3835	0.59 8010	0.60 5036	0.25 2900	0.26 4518	0.26	0.52 7049	0.50 13783		-		1.36 46228
Load Trapped in Sediments Overall Load Reduction	kg/yr %	4014 17%	8150 47%	5171 55%	2767 27%	4486 59%	1544 48%	2895 30%	12673 85%				41699 85%
Lower Confidence Limit Upper Confidence Limit	%	0.1	0.4	0.5	0.2	0.5	0.4	0.3	0.8				81% 88%
Daily Geometric Mean	ppb	109.6	54.6	22.3	140.0	50.3	22.9	158.3	19.5				#N/A
Outflow Geo Mean - Composites Upper Confidence Limit	ppb	120.8 126.9	61.9 72.6	27.2 35.2	131.8 141.3	53.6 65.5	28.0 36.5	136.0 142.6	22.8 28.4				25.9 33.2
Lower Confidence Limit Frequency Outflow Conc > 10 ppb	ppb %	113.3 100%	51.4 100%	20.7 100%	120.8 100%	42.8 100%	21.5 100%	128.6 100%	18.4 100%				20.1 100%
Frequency Outflow Conc > 20 ppb Frequency Outflow Conc > 50 ppb	%	100%	100%	94% 0%	100%	100% 67%	94% 0%	100% 100%	72% 0%				100% 89%
Freq Outflow Volume > 10 ppb 95th Percentile Outflow Conc	%	100%	100%	100%	100%	100%	100%	100%	99%				100%
Mean Biomass P Storage	ppb mg/m2	132.52 4183	77.77 2708	36.96 1245	144.45 4551	69.23 2354	37.97 1063	153.73 3986	31.14 1360		1		35 2309
Storage Increase / Net Removal Net Storage Turnover Rate	% 1/yr	0% 11.1	0% 34.9	0% 35.0	0% 11.2	0% 35.1	0% 35.1	0% 11.2	0% 35.1				0% 23.4
Unit Area P Load Unit Area P Removal	mg/m2-yr mg/m2-yr	6810 1331	5684 2702	2199 1245	5561 1451	4049 2357	2198 1065	10243 1272	1751 1365				2016 1544
Mean Water Load	cm/d	10.3	12.7	9.4	8.4	8.3	10.7	15.5	3.5				3.0
Max Water Load Mean Depth	cm/d cm	16.2 67	19.2 69	14.3 70	13.2 44	13.3 45	17.6 48	24.3 46	5.6				4.8 55
Minimum Depth Maximum Depth	cm cm	59.5 77.1	61.0 78.6	61.9 80.1	37.1 51.3	37.3 53.6	37.5 59.0	33.1 61.1	28.6 60.1				43 66
Frequency Depth < 10 cm Flow/Width	% m2/day	0% 282	0% 349	0% 354	0% 67	0% 79	0% 119	0% 198	0% 137				0.0% 205.3
HRT Days Mean Velocity	days cm/sec	6.6 0.48	5.4	7.5	5.3 0.17	5.4	4.5	3.0	13.3				17.9
Seepage Outflow / Total Outflow	%	0%	0%	2%	2%	2%	2%	1%	3%				3%
Release 1 Outflow Volume Release 2 Outflow Volume	hm3/yr hm3/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00				0.0 0.0
95th Percentile Outflow Volume 95th Percentile Outflow Load	hm3/d kg/d	0.6 73.9	0.6 42.8	0.6 19.9	0.2 34.6	0.2 15.8	0.2 8.4	0.5 75.5	0.5 13.0				1.3 41.3
Simulated / Specified Mean Depth Release 1 Demand Met	%	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A				#N/A #N/A
Release 2 Demand Met	%	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				#N/A
Outflow Demand Met Range Check - Mean Depth	%	#N/A	#N/A	#N/A	#N/A	#N/A 0.72	#N/A 0.77	#N/A	#N/A 0.74				#N/A 3
Range Check - Freq Depth < 10 cm Range Check - Flow/Width	-	1.34				0.49	0.74		0.85				0
Range Check - Inflow Conc Range Check - Outflow Conc	-												0
Water Balance Error	%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%				0.00%
Mass Balance Error Warning or Error Messages	%			0.01% nge for EMG_3: 2		0.02% 2/day	0.01%	-0.42%	-0.01%		1		-0.17% 7
		Cell# 5 Depth o	ut of calib. range f	or SAV_3: 45 vs. nge for SAV_3: 7	62 - 87 cm								
		Cell#6 Depth o	ut of calib. range f	or SAV_3: 48 vs. nge for SAV_3: 1	62 - 87 cm								
		Cell#8 Depth o	ut of calib. range f	or SAV_3: 46 vs.	62 - 87 cm								
		Udi# 8 Flow/Wi	um out of calib. ra	nge for SAV_3: 1	or vs. 162 - 374 n	⊪∠/day							

STA-2 With PLR of 1.0 g/m2/yr

DMSTA2- Inputs & Outp	uts		Project:	STA 2 EIS									el Release:	07/05
nput Variable	Units	Value	Case Descrip	tion:	-							U	urrent Date:	10/14/2
Design Case Name nput Series Name		EIS Alt1 TS_EIS_Alt1	Inflow time s	WY 1966-2000 series includes	, allowance of 3	8 cfs (27,50	0 ac-ft/yr) s	eepage fro	m WCA-2A	to Supply C	Canal			
Starting Date for Simulation		05/01/65 04/30/00	PLR = 1.0 g	/m2/yr										
Starting Date for Output	-	05/01/65	Circula		Lineart	e e h e ir	_	_	_	_				
ntegration Steps Per Day Number of Iterations		4 0	Simulation Typ Output Variat	ole	Uncertainty A Mean	Lower CL	Upper CL		Diagnostic					
Dutput Averaging Interval	days	365	FWM Outflow GM Outflow 0	C (ppb)	22.4	26.9	18.9		H20 Balan	e Error Me	an & Max	0.0%	0.0%	
nflow Conc Scale Factor Rainfall P Conc	- ppb	1 10	Load Reducti	on %	20.5 80%	24.8 76%	17.2 83%		Iterations &	Converge		0.1% 2	0.2% 0.2%	
Atmospheric P Load (Dry) Cell Number>	mg/m2-yr	20	Bypass Load 2	(%)	0.0%	5	6	7	Warning/E 8	rror Messag	ges 10	4	12	
Cell Label		1	2	3						_				
/egetation Type nflow Fraction	->	PEW_3 0.283710055	PEW_3 0.358144973	SAV_3 0.358144973										
Downstream Cell Number Surface Area	- km2	7.28	9.19	9.19										
Mean Width of Flow Path	km	1.58	2.00	2.00										
lumber of Tanks in Series Animum Depth for Releases	- cm	3.0	3.0	6.0										
Release 1 Series Name Release 2 Series Name														
Release 2 Series Name Dutflow Series Name														
Depth Series Name Dutflow Control Depth	cm	52.73	29.26	29.87										
Outflow Weir Depth	cm													
Dutflow Coefficient - Exponent Dutflow Coefficient - Intercept		4	4	4										
Sypass Depth	cm													
Aaximum Inflow Aaximum Outflow	hm3/day hm3/day													
nflow Seepage Rate nflow Seepage Control Elev	(cm/d) / cm cm	0.008												
nflow Seepage Conc	ppb	20						1		1				
Outflow Seepage Rate Outflow Seepage Control Elev	(cm/d) / cm cm	0.004 -61	0.006 -61	0.00337 -30				1		1				
Aax Outflow Seepage Conc Seepage Recycle to Cell Number	ppb	20	20 2	20 3										
Seepage Recycle Fraction	-	1	1	3										
Seepage Discharge Fraction hitial Water Column Conc	- ppb	30	30	30										
nitial P Storage Per Unit Area	mg/m2	500	500	500										
nitial Water Column Depth C0 = Conc at 0 g/m2 P Storage	cm ppb	200 3	200	200									<u> </u>	
C1 = Conc at 1 g/m2 P storage	ppb	22 300	22 300	22 300										
C2 = Conc at Half-Max Uptake C = Net Settling Rate at Steady State	ppb m/yr	34.9	34.9	52.5				1		1				
21 = Saturated Uptake Depth 22 = Lower Penalty Depth	cm cm	40 100	40 100	40 100										
Z3 = Upper Penalty Depth	cm	200	200	200					L					
Output Variables	Units	1	2	3	4	5	6	7	8	9	10	11	12	Overa
xecution Time Run Date	sec/yr	3.74 10/14/07	4.46 10/14/07	5.60 10/14/07										5.60 10/14/0
starting Date for Simulation		05/01/65	05/01/65	05/01/65										05/01/6
Starting Date for Output Ending Date	:	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00										05/01/6
Dutput Duration	days	12784	12784	12784										12784
Jell Label Downstream Cell Label		1 Outflow	2 Outflow	3 Outflow										Total
Network Simulation Name	-	none Uncerta	none Uncerta	none Uncerta										none
Simulation Type Surface Area	km2	7.28	9.19	9.19										Uncert 25.66
Mean Rainfall Mean ET	cm/yr cm/yr	129.37 129.37	129.37 129.37	129.37 129.37										129.4 129.4
Cell Inflow Volume	hm3/yr	64.0	80.8	80.8										225.5
Cell Inflow Load Cell Inflow Conc	kg/yr ppb	7286.0 114	9197.5 114	9197.5 114										25681 113.9
Freated Outflow Volume Freated Outflow Load	hm3/yr	67.9 1732.0	80.8 2082.1	80.8 1330.8										229.5 5145
Freated FWM Outflow Conc	kg/yr ppb	25	26	16										22.4
Jpper Confidence Limit .ower Confidence Limit	ppb ppb	31.1 21.1	31.4 21.4	18.9 14.7										26.9 18.9
Fotal Outflow Volume + Bypass	hm3/yr	67.9	80.8	80.8										229.5
Fotal Outflow Load + Bypass Fotal FWM Outflow Conc	kg/yr ppb	1732.0 25.5	2082.1 25.8	1330.8 16.5										5144.9 22.4
Bypass Load	kg/yr	0 0%	0 0%	0 0%										0.0 0.0
Bypass Load Maximum Inflow	% hm3/d	0.34	0.43	0.43										1.21
Maximum Outflow Surface Load Reduction	hm3/d kg/yr	0.35 5783	0.44 7523	0.44 8000										1.23
oad Trapped in Sediments	kg/yr	5729	7150	8066										20944
Overall Load Reduction ower Confidence Limit	%	76% 0.7	77% 0.7	86% 0.8										80% 76%
Jpper Confidence Limit Daily Geometric Mean	% ppb	0.8	0.8	0.9										83% #N/A
Dutflow Geo Mean - Composites	ppb	23.4	23.6	14.7										20.5
Jpper Confidence Limit .ower Confidence Limit	ppb ppb	28.9 19.2	29.1 19.4	16.9 13.1										24.8 17.2
requency Outflow Conc > 10 ppb	%	100%	100%	92%										100%
requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	%	69% 0%	75% 0%	19% 0%										92% 53%
req Outflow Volume > 10 ppb Isth Percentile Outflow Conc	% ppb	97% 31.74	98% 32.52	60% 21.33										90% 29
Mean Biomass P Storage	mg/m2	1186	1172	879										1071
Storage Increase / Net Removal Net Storage Turnover Rate	% 1/yr	0% 23.2	0% 23.2	0% 34.9										0% 26.7
Jnit Area P Load Jnit Area P Removal	mg/m2-yr mg/m2-yr	1001 787	1001 778	1001 878										1001 816
Mean Water Load	cm/d	2.4	2.4	2.4								_		2.4
/lax Water Load /lean Depth	cm/d cm	4.7 58	4.7 50	4.7										4.7 52
Ainimum Depth	cm	55.2	41.4	41.4										45
/laximum Depth Frequency Depth < 10 cm	cm %	64.4 0%	61.0 0%	61.0 0%										62 0.0%
low/Width IRT Days	m2/day days	111 24.2	111 20.6	111 20.6										110.7 21.7
lean Velocity	cm/sec	0.22	0.26	0.26										0.25
Seepage Outflow / Total Outflow Release 1 Outflow Volume	% hm3/yr	0%	0%	0%										0%
Release 2 Outflow Volume	hm3/yr	0.00	0.00	0.00										0.0
5th Percentile Outflow Volume 5th Percentile Outflow Load	hm3/d kg/d	0.3 10.0	0.4 12.3	0.4 8.1										1.1 30.4
Simulated / Specified Mean Depth Release 1 Demand Met	%	#N/A #N/A	#N/A #N/A	#N/A #N/A										#N/A #N/A
Release 2 Demand Met	%	#N/A	#N/A	#N/A										#N/A
Dutflow Demand Met Range Check - Mean Depth	%	#N/A	#N/A	#N/A 0.80										#N/A 1
Range Check - Freq Depth < 10 cm	-													0
Range Check - Flow/Width Range Check - Inflow Conc	-	1.04	1.04	0.68										1 2
Range Check - Outflow Conc Vater Balance Error	- %	0.00%	0.00%	0.00%										0.009
Vater Balance Error Aass Balance Error	%	0.04%	0.04%	0.22%										0.119
		Collin 1 Julian C	onc out of calib. ra	nge for PEW 3:	114 vs 8 - 110 pp	b								4
arning or Error Messages		Cell#2 Inflow C	onc out of calib. ra	nge for PEW 2-	114 vs. 8 - 110	6								

DMSTA2- Inputs & Output	uts		Project:	STA 2 EIS									el Release: Irrent Date:	07/05
nput Variable	Units	Value	Case Descrip	tion:)									
Design Case Name nput Series Name	1	EIS Alt1 1.3 IS_EIS_Alt1_1	Inflow time :	WY 1966-2000 series includes	, allowance of 3	88 cfs (27,50)0 ac-ft/yr) s	eepage fro	m WCA-2A	to Supply C	Canal			
Starting Date for Simulation Ending Date for Simulation	:	05/01/65 04/30/00	PLR = 1.3 g	/m2/yr										
tarting Date for Output ntegration Steps Per Day	:	05/01/65 4	Simulation Ty	De.	Uncertainty A	nalvsis								
Number of Iterations		0	Output Varial	ole	Mean	Lower CL	Upper CL		Diagnostic	<u>s</u>		0.001		
Dutput Averaging Interval nflow Conc Scale Factor	days	365 1	FWM Outflow GM Outflow (C (ppb)	23.8 22.4	29.4 27.9	19.3 18.0		Mass Bala	ce Error Me nce Error N	lean & Max	0.0% 0.1%	0.0% 0.1%	
Rainfall P Conc Atmospheric P Load (Drv)	ppb mg/m2-yr	10 20	Load Reduct Bypass Load	ion %	79% 0.0%	74%	83%		Iterations & Warning/E	& Converge rror Messa	nce des	2	0.8%	
Cell Number>		1	2	3	4	5	6	7	8	9	10	11	12	
/egetation Type	>	PEW_3	PEW_3	SAV_3			-							
nflow Fraction Downstream Cell Number		0.283710055	0.358144973	0.358144973										
Surface Area Mean Width of Flow Path	km2 km	7.28	9.19 2.00	9.19 2.00										
lumber of Tanks in Series		3.0	3.0	6.0										
Ainimum Depth for Releases Release 1 Series Name	cm													
Release 2 Series Name Outflow Series Name														
Depth Series Name				29.87										
Outflow Control Depth Outflow Weir Depth	cm cm	52.73	29.26											
Dutflow Coefficient - Exponent Dutflow Coefficient - Intercept	:	4	4	4										
Bypass Depth Aaximum Inflow	cm hm3/day													
Aaximum Outflow	hm3/day													
nflow Seepage Rate nflow Seepage Control Elev	(cm/d) / cm cm	0.008												
nflow Seepage Conc Dutflow Seepage Rate	ppb (cm/d) / cm	20 0.004	0.006	0.00337										
Dutflow Seepage Control Elev	cm	-61	-61	-30										
Aax Outflow Seepage Conc Seepage Recycle to Cell Number	ppb -	20 1	20 2	20 3										
Seepage Recycle Fraction Seepage Discharge Fraction	1	1	1	1										
nitial Water Column Conc nitial P Storage Per Unit Area	ppb	30 500	30 500	30 500										
nitial Water Column Depth	mg/m2 cm	200	200	200										
C0 = Conc at 0 g/m2 P Storage C1 = Conc at 1 g/m2 P storage	ppb ppb	3 22	3 22	3 22			7				7	7	1	
C2 = Conc at Half-Max Uptake K = Net Settling Rate at Steady State	ppb m/yr	300 34.9	300 34.9	300 52.5										
Z1 = Saturated Uptake Depth	cm	40	40	40										
22 = Lower Penalty Depth 23 = Upper Penalty Depth	cm cm	100 200	100 200	100 200										
Dutput Variables	Units	1	2	3	4	5	6	7	8	9	10	11	12	Overal
Execution Time Run Date	sec/yr	3.77 10/14/07	4.46 10/14/07	5.63 10/14/07										5.63 10/14/0
starting Date for Simulation		05/01/65	05/01/65	05/01/65										05/01/6
Starting Date for Output Ending Date	:	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00										05/01/6
Dutput Duration Cell Label	days	12784 1	12784 2	12784 3										12784 Total
Downstream Cell Label		Outflow	Outflow	Outflow										-
Vetwork Simulation Name Simulation Type	:	none Uncerta	none Uncerta	none Uncerta										none Uncert
Surface Area Mean Rainfall	km2 cm/yr	7.28	9.19 129.37	9.19 129.37										25.66 129.4
Vean ET Cell Inflow Volume	cm/yr	129.37	129.37	129.37										129.4
Cell Inflow Load	hm3/yr kg/yr	84.1 9469.4	106.2 11953.8	106.2 11953.8										296.6 33377
Cell Inflow Conc Freated Outflow Volume	ppb hm3/yr	113 87.7	113 106.2	113 106.2										112.5 300.2
Freated Outflow Load Freated FWM Outflow Conc	kg/yr	2443.3 28	2969.7 28	1738.4										7151 23.8
Jpper Confidence Limit	ppb ppb	34.7	34.8	16 19.7										29.4
Lower Confidence Limit Total Outflow Volume + Bypass	ppb hm3/yr	22.2 87.7	22.3 106.2	13.9 106.2										19.3 300.2
Fotal Outflow Load + Bypass Fotal FWM Outflow Conc	kg/yr ppb	2443.3 27.9	2969.7 28.0	1738.4 16.4										7151.3 23.8
Bypass Load	kg/yr	0	0	0										0.0
Bypass Load Maximum Inflow	% hm3/d	0% 0.39	0% 0.50	0% 0.50										0.0 1.39
Maximum Outflow Surface Load Reduction	hm3/d kg/yr	0.40	0.50 9437	0.50										1.41 26226
Load Trapped in Sediments Overall Load Reduction	kg/yr	7121 74%	8895 75%	10380 85%										26396 79%
ower Confidence Limit	%	0.7	0.7	0.8										74%
Jpper Confidence Limit Daily Geometric Mean	% ppb	0.8	0.8	0.9 8.8										83% #N/A
Dutflow Geo Mean - Composites Jpper Confidence Limit	ppb	26.4 33.2	26.4 33.2	15.1 18.3										22.4 27.9
ower Confidence Limit	ppb ppb	20.8	20.9	12.7										18.0
Frequency Outflow Conc > 10 ppb Frequency Outflow Conc > 20 ppb	%	100% 92%	100% 92%	94% 17%										100% 97%
requency Outflow Conc > 50 ppb req Outflow Volume > 10 ppb	% %	0% 100%	0% 100%	0% 70%										72% 99%
35th Percentile Outflow Conc	ppb	33.79	33.91	21.10										29
Mean Biomass P Storage Storage Increase / Net Removal	mg/m2 %	1472 0%	1457 0%	1130 0%										1344 0%
Vet Storage Turnover Rate Jnit Area P Load	1/yr mg/m2-yr	23.3 1301	23.3 1301	35.0 1301										26.8 1301
Jnit Area P Removal Mean Water Load	mg/m2-yr cm/d	978	968	1130										1029
Aax Water Load	cm/d	5.4	5.4	5.4										5.4
/lean Depth /linimum Depth	cm cm	61 57.3	55 46.9	55 46.9										56 50
Aaximum Depth requency Depth < 10 cm	cm %	66.4 0%	64.3 0%	64.3 0%										65 0.0%
Flow/Width	m2/day	146	145	145										145.5
IRT Days //ean Velocity	days cm/sec	19.1 0.28	17.3 0.31	17.3 0.31										17.8 0.30
eepage Outflow / Total Outflow telease 1 Outflow Volume	% hm3/yr	0%	0%	0%					-					0%
telease 2 Outflow Volume	hm3/yr	0.00	0.00	0.00										0.0
5th Percentile Outflow Volume 5th Percentile Outflow Load	hm3/d kg/d	0.4 12.7	0.5 15.6	0.5 9.7										1.3 38.1
Simulated / Specified Mean Depth Release 1 Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A										#N/A #N/A
Release 2 Demand Met Dutflow Demand Met	%	#N/A #N/A	#N/A #N/A	#N/A #N/A										#N/A #N/A
Range Check - Mean Depth	-	mw/A.	miN/A	#N/A 0.88										1
Range Check - Freq Depth < 10 cm Range Check - Flow/Width	1			0.90										0 1
Range Check - Inflow Conc Range Check - Outflow Conc		1.03	1.03											2
Vater Balance Error	%	0.00%	0.00%	0.00%										0.00%
Mass Balance Error Varning or Error Messages	70	0.02% Cell# 1 Inflow C	0.03% onc out of calib. ra	0.14% inge for PEW_3:	113 vs. 8 - 110 pp	ь								0.079
		Cell# 2 Inflow C	onc out of calib. ra	inge for PEW_3: or SAV_3: 55 vs.	113 vs. 8 - 110 pp	b								

Compartm DMSTA2- Inputs & Outpu				COMP B EIS			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						el Release
													el Release irrent Date
nput Variable Design Case Name	Units -	Value NBO EIS Alt1	Case Descrip Analysis for	WY 1966-2000)								
nput Series Name Starting Date for Simulation	- T	S_NBO_EIS_A 05/01/65	Receives re	-directed inflow	from STA-2 u	up to 1,000 c	fs						
Ending Date for Simulation Starting Date for Output	:	04/30/00 05/01/65	-										
ntegration Steps Per Day Number of Iterations		4 0	Simulation Ty Output Varial	ble	Uncertainty A Mean	Lower CL	Upper CL		Diagnostic	s			
Dutput Averaging Interval nflow Conc Scale Factor	days -	365 1	FWM Outflow GM Outflow	C (ppb)	11.1 10.6	13.9 13.3	9.1 8.7		Mass Bala	nce Error N	ean & Max lean & Max	0.0% 0.1%	0.0% 0.1%
Rainfall P Conc Atmospheric P Load (Dry)	ppb mg/m2-yr	10 20	Load Reduct Bypass Load	ion % (%)	89% 0.0%	87%	91%		Iterations a Warning/E	& Converge rror Messa	nce ges	3	0.0%
ell Number>	-	1 NBO1	2 NBO2	3 Cell 4	4	5	6	7	8	9	10	11	12
egetation Type Iflow Fraction	>	EMG_3 1	SAV_3	SAV_3									
ownstream Cell Number urface Area	- km2	2 4.35	3 11.53	7.70									
lean Width of Flow Path lumber of Tanks in Series	km -	6.50 3.0	5.00 3.0	2.50 3.0									
finimum Depth for Releases telease 1 Series Name	cm												
telease 2 Series Name Outflow Series Name													
epth Series Name utflow Control Depth	cm	38.1	38.1	42.7									
outflow Weir Depth outflow Coefficient - Exponent	cm	4	4	4									
outflow Coefficient - Intercept ypass Depth	- cm	1	1	1									
faximum Inflow faximum Outflow	hm3/day hm3/day										1		
flow Seepage Rate flow Seepage Control Elev	(cm/d) / cm cm	0.033 48	0.0124 48	0.0064 60									
nflow Seepage Conc	ppb (cm/d) / cm	75 0.0045	75 0.0017	75									
Outflow Seepage Control Elev Max Outflow Seepage Conc	cm ppb	42 20	42 20								1		
eepage Recycle to Cell Number eepage Recycle Fraction	-	1 0.75	1 0.75										
eepage Discharge Fraction	- ppb	30	30	30									
hitial Water Column Conc hitial P Storage Per Unit Area hitial Water Column Depth	mg/m2 cm	500 200	500 200	500 200							1		
C0 = Conc at 0 g/m2 P Storage C1 = Conc at 1 g/m2 P storage	ppb ppb	3 22	3 22	3 22		1			1		1		
2 = Conc at Half-Max Uptake = Net Settling Rate at Steady State	ppb ppb m/yr	300 16.8	300 52.5	300 52.5									
1 = Saturated Uptake Depth 2 = Lower Penalty Depth	cm	40	40 100	40 100									
3 = Upper Penalty Depth	cm	200	200	200		I			I		I		
utput Variables	Units sec/yr	1 5.31	2 6.00	3 6.71	4	5	6	7	8	9	10	11	12
un Date arting Date for Simulation	-	10/14/07 05/01/65	10/14/07 05/01/65	10/14/07 05/01/65									
tarting Date for Output nding Date	-	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00									
utput Duration ell Label	days	12784 NBO1	12784 NBO2	12784 Cell 4									
ownstream Cell Label etwork Simulation Name		NBO2 none	Cell 4	Outflow									
mulation Type Irface Area	- km2	Uncerta 4.35	Uncerta 11.53	Uncerta 7.70									
ean Rainfall	cm/yr	128.59	128.59	128.59									
ean ET ell Inflow Volume ell Inflow Load	cm/yr hm3/yr	133.76 218.8 22948.8	133.76 221.7 18768.9	133.76 222.1 4844.3									
eated Outflow Volume	kg/yr ppb	105 221.7	85	4044.3 22 222 7									
reated Outflow Load	hm3/yr kg/yr	18768.9 85	4844.3	2461.1									
eated FWM Outflow Conc oper Confidence Limit	ppb ppb	88.8	27.0	11 13.9									
ower Confidence Limit otal Outflow Volume + Bypass	ppb hm3/yr	79.7	17.5 222.1	9.1 222.7									
otal Outflow Load + Bypass otal FWM Outflow Conc	kg/yr ppb	18768.9 84.6	4844.3 21.8	2461.1 11.1									
ypass Load ypass Load	kg/yr %	0	0	0 0%									
laximum Inflow laximum Outflow urface Load Reduction	hm3/d hm3/d	1.00 1.01 4203	1.01 1.03 13925	1.03 1.04 2383									
anace Load Reduction bad Trapped in Sediments verall Load Reduction	kg/yr kg/yr	4475	14406	2711									
Iverall Load Reduction ower Confidence Limit Ipper Confidence Limit	%	18% 0.1	74% 0.7 0.8	49% 0.5 0.5									
pper Contidence Limit aily Geometric Mean utflow Geo Mean - Composites	ppb	0.2 79.0 84.0	0.8 16.5 20.8	0.5 7.3 10.6									
pper Confidence Limit	ppb ppb ppb	84.0 88.3 78.8	20.8 26.0 16.6	10.6 13.3 8.7									
requency Outflow Conc > 10 ppb	ppb % %	78.8 100% 100%	16.6 100% 64%	64%									
requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	%	100% 100% 100%	64% 0% 99%	0% 0% 57%									
eq Outflow Volume > 10 ppb th Percentile Outflow Conc an Biomass P Storage	ppb	100% 88.11 3227	99% 26.51 1247	57% 13.19 351				_					
ean Biomass P Storage torage Increase / Net Removal et Storage Turnover Rate	mg/m2 % 1/vr	0% 11.2	1247 0% 35.1	351 0% 35.1									
nit Area P Load hit Area P Removal	1/yr mg/m2-yr mg/m2-yr	5276 1029	35.1 1628 1249	35.1 629 352									
ean Water Load	mg/m2-yr cm/d	1029 13.8 22.9	5.3	7.9									
ax Water Load ean Depth nimum Depth	cm/d cm	49	8.8 53 47.3	13.3 64 55.0									
aximum Depth	cm cm	39.7 56.2	62.1	74.9									
equency Depth < 10 cm pw/Width	% m2/day	0% 92	0% 121	0% 243									
T Days an Velocity	days cm/sec	3.6 0.22	10.1 0.26	8.0 0.44									
lease 1 Outflow / Total Outflow	% hm3/yr	0%	0%	0%									
elease 2 Outflow Volume 5th Percentile Outflow Volume	hm3/yr hm3/d	0.00 0.9	0.00 0.9	0.00									
5th Percentile Outflow Load mulated / Specified Mean Depth	kg/d %	75.2 #N/A	21.7 #N/A	11.4 #N/A									
elease 1 Demand Met elease 2 Demand Met	%	#N/A #N/A	#N/A #N/A	#N/A #N/A									
utflow Demand Met ange Check - Mean Depth	% -	#N/A	#N/A 0.86	#N/A									
ange Check - Freq Depth < 10 cm ange Check - Flow/Width	1		0.75										
ange Check - Inflow Conc ange Check - Outflow Conc				0.74									
/ater Balance Error	%	0.00%	0.00%	0.00%									
lass Balance Error /aming or Error Messages			A A A A A A A A A A A A A A A A A A A	or SAV_3: 53 vs.	00 07								

Compartment B North Build-out With STA-2 PLR of 1.0 g/m2/yr

Compartment B South Build-out

DMSTA2- Inputs & Outpu	uts Units	Value	Project: Case Descrip	COMP B EIS									el Release: urrent Date:	07/05/0 10/14/200
Design Case Name Input Series Name	- TS	SBO EIS Alt1 S_SBO_EIS_A	Analysis for	WY 1966-200 flow from S-7/S) S-2 Basin									
starting Date for Simulation Inding Date for Simulation	-	05/01/65 04/30/00												
Starting Date for Output ntegration Steps Per Day	-	05/01/65 4	Simulation Ty	pe:	Uncertainty A	nalysis								
Number of Iterations Dutput Averaging Interval	- days	0 365	Output Varial FWM Outflow	<u>ble</u> v C (ppb)	Mean 12.3	Lower CL 14.6	10.6		Diagnostic H20 Balan	ce Error Me	an & Max	0.0%	0.0%	
nflow Conc Scale Factor Rainfall P Conc	- ppb	1 10	GM Outflow Load Reduct		11.0 85%	13.0 83%	9.5 87%		Mass Bala Iterations &	nce Error N & Converge	lean & Max nce	0.0%	0.0%	
Atmospheric P Load (Dry) Cell Number>	mg/m2-yr	20	Bypass Load 2	(%) 3	0.0% 4	5	6	7	Warning/E 8	rror Messa 9	ges 10	3 11	12	
Cell Label Vegetation Type	>	SBO1 EMG_3	SBO2 SAV 3											
Inflow Fraction Downstream Cell Number	-	1												
Surface Area Mean Width of Flow Path Number of Tanks in Series	km2 km	5.98 2.00	5.34 1.50 3.0											
Minimum Depth for Releases Release 1 Series Name	cm	3.0	3.0											
Release 2 Series Name Dutflow Series Name														
Depth Series Name Dutflow Control Depth	cm	38.1	38.1											
Outflow Conflict Depth Outflow Coefficient - Exponent	cm	4	4											
Outflow Coefficient - Intercept Bypass Depth	- - cm	1	1											
Maximum Inflow	hm3/day													
Maximum Outflow nflow Seepage Rate	hm3/day (cm/d) / cm	0.0133	0.0164											
nflow Seepage Control Elev nflow Seepage Conc	cm ppb (cm/d) / cm	53 75	63 15											
Dutflow Seepage Rate Dutflow Seepage Control Elev Max Outflow Seepage Conc	(cm/d) / cm cm													
Seepage Recycle to Cell Number	ppb -													
Seepage Recycle Fraction Seepage Discharge Fraction	-													
Initial Water Column Conc Initial P Storage Per Unit Area	ppb mg/m2	30 500	30 500											
Initial Water Column Depth C0 = Conc at 0 g/m2 P Storage	cm ppb	200	200											
C1 = Conc at 1 g/m2 P storage C2 = Conc at Half-Max Uptake	ppb ppb	22 300	22 300											
K = Net Settling Rate at Steady State Z1 = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40											
Z2 = Lower Penalty Depth Z3 = Upper Penalty Depth	cm cm	100 200	100 200											
Output Variables	Units	1	2	3	4	5	6	7	8	9	10	11	12	Overall
Execution Time Run Date	sec/yr	3.83 10/14/07	4.54 10/14/07											4.54 10/14/07
Starting Date for Simulation Starting Date for Output	-	05/01/65 05/01/65	05/01/65 05/01/65											05/01/65 05/01/65
Ending Date Output Duration	- days	04/30/00 12784	04/30/00 12784											04/30/00 12784
Cell Label Downstrearn Cell Label		SBO1 SBO2	SBO2 Outflow											Total
Network Simulation Name Simulation Type	1	none Uncerta	none Uncerta											none Uncerta
Surface Area Mean Rainfall	km2 cm/yr	5.98 128.59	5.34 128.59											11.32 128.6
Mean ET Cell Inflow Volume	cm/yr hm3/yr	133.76 58.8	133.76 61.5											133.8 58.8
Cell Inflow Load Cell Inflow Conc	kg/yr ppb	5557.2 94	2543.9 41											5557 94.5
Treated Outflow Volume Treated Outflow Load	hm3/yr kg/yr	61.5 2543.9	65.8 810.8											65.8 811
Treated FWM Outflow Conc Upper Confidence Limit	ppb ppb	41 48.2	12 14.6											12.3 14.6
Lower Confidence Limit Total Outflow Volume + Bypass	ppb hm3/yr	34.9 61.5	10.6 65.8											10.6
Total Outflow Load + Bypass Total FWM Outflow Conc	kg/yr ppb	2543.9 41.4	810.8 12.3											810.8 12.3
Bypass Load Bypass Load	kg/yr %	0	0 0%											0.0
Maximum Inflow Maximum Outflow	hm3/d hm3/d	0.41	0.42											0.41 0.43
Surface Load Reduction Load Trapped in Sediments	kg/yr kg/yr	3013 3430	1733 1978											4746 5407
Overall Load Reduction Lower Confidence Limit	%	54% 0.5	68% 0.7											85% 83%
Upper Confidence Limit Daily Geometric Mean	% ppb	0.6	0.7											87% #N/A
Outflow Geo Mean - Composites Upper Confidence Limit	ppb ppb	39.1 46.0	11.0 13.0											11.0 13.0
Lower Confidence Limit Frequency Outflow Conc > 10 ppb	ppb ppb %	32.6	9.5											9.5
Frequency Outflow Conc > 20 ppb Frequency Outflow Conc > 20 ppb	%	100%	0%											3% 0%
Freq Outflow Volume > 10 ppb 95th Percentile Outflow Conc	% ppb	100% 48.11	62% 14.66											62% 15
Mean Biomass P Storage Storage Increase / Net Removal	mg/m2 %	1803	371											1127
Net Storage Turnover Rate Unit Area P Load	1/yr ma/m2-yr	11.1 929	35.0 476											14.8 491
Unit Area P Removal Mean Water Load	mg/m2-yr cm/d	573 2.7	370											491 478 1.4
Max Water Load Max Depth	cm/d cm	6.9 47	7.9											3.6 49
Winimum Depth Maximum Depth	cm cm	39.0 61.2	41.5 67.6											49 40 64
viaximum Depth Frequency Depth < 10 cm Flow/Width	cm % m2/day	0% 81	0%											0.0% 95.5
-low width HRT Days Mean Velocity	m2/day days cm/sec	17.6 0.20	112 16.5 0.25											95.5 34.8 0.22
Mean Velocity Seepage Outflow / Total Outflow Release 1 Outflow Volume	%	0%	0%											0%
Release 2 Outflow Volume	hm3/yr hm3/yr	0.00	0.00											0.0
95th Percentile Outflow Volume 95th Percentile Outflow Load	hm3/d kg/d	0.3 14.3	0.4 5.2											0.4 5.2
Simulated / Specified Mean Depth Release 1 Demand Met	%	#N/A #N/A	#N/A #N/A											#N/A #N/A
Release 2 Demand Met Dutflow Demand Met	% %	#N/A #N/A	#N/A #N/A											#N/A #N/A
Range Check - Mean Depth Range Check - Freq Depth < 10 cm			0.84											1
Range Check - Flow/Width Range Check - Inflow Conc	1		0.69											1 0
Range Check - Outflow Conc Nater Balance Error	- %	0.00%	0.83											1 0.00%
Mass Balance Error Varning or Error Messages	%	0.03% Cell# 2 Depth o	0.01%	or SAV_3: 52 vs.	62 - 87 cm	I			l					0.03%
-		Cell# 2 Flow/Wi	dth out of calib. ra	nge for SAV_3: 1	12 vs. 162 - 374 m 12 vs. 15 - 153 p	n2/day								

Input Series Name	тs_	Value BO EIS Alt1 1 NBO_EIS_Alt1	Receives re	tion: WY 1966-2000 -directed inflow	, from STA-2 ι	up to 1,000 c	fs							
tarting Date for Simulation	-	05/01/65												
Ending Date for Simulation Starting Date for Output	-	04/30/00 05/01/65												
ntegration Steps Per Day		4	Simulation Ty	pe:	Uncertainty A	nalysis								
Number of Iterations	-	0	Output Variat	de	Mean	Lower CL	Upper CL		Diagnostic	<u>s</u>	0	0.000	0.004	
Dutput Averaging Interval Inflow Conc Scale Factor	days	365	FWM Outflow GM Outflow 0	C (ppb)	9.3 8.7	10.9 10.1	8.1 7.6		H20 Balan Moss Rolo	ce Error Me	an & Max lean & Max	0.0% 0.1%	0.0%	
Rainfall P Conc	ppb	10	Load Reducti	on %	91%	89%	92%		Iterations &	& Converge	nce	3	0.0%	
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Load	(%)	0.0%	_		_	Warning/E			4		
Cell Number> Cell Label		1 NBO1	2 NBO2	3 Cell 4	4	5	6	7	8	9	10	11	12	
Vegetation Type	>	EMG_3	SAV_3	SAV_3										
nflow Fraction		1	-			1			1					
Downstrearn Cell Number Surface Area	km2	2 4.35	3 11.53	7.70										
Mean Width of Flow Path	km	6.50	5.00	2.50										
Number of Tanks in Series	-	3.0	3.0	3.0										
Minimum Depth for Releases Release 1 Series Name	cm													
Release 2 Series Name														
Outflow Series Name														
Depth Series Name Outflow Control Depth	cm	38.1	38.1	42.7										
Outflow Weir Depth	cm	00.1	00.1											
Outflow Coefficient - Exponent	-	4	4	4										
Outflow Coefficient - Intercept Bypass Depth	- cm	1	1	1										
Maximum Inflow	hm3/day					1		1	1	1				
Maximum Outflow	hm3/day	0.000	0.0101	0.0001		<u> </u>			<u> </u>					
nflow Seepage Rate nflow Seepage Control Elev	(cm/d) / cm cm	0.033 48	0.0124	0.0064 60		1		1	1	1				
Inflow Seepage Conc	ppb	75	75	75		1		1	1	1				
Outflow Seepage Rate	(cm/d) / cm cm	0.0045	0.0017			1		1	1	1				
Outflow Seepage Control Elev Max Outflow Seepage Conc	cm ppb	42	42			1			1					
Seepage Recycle to Cell Number	-	1	1			1			1					
Seepage Recycle Fraction Seepage Discharge Fraction	-	0.75	0.75			1		1	1	1				
Initial Water Column Conc	ppb	30	30	30		1			1					
Initial P Storage Per Unit Area	mg/m2	500	500	500		1		1	1	1				
Initial Water Column Depth C0 = Conc at 0 g/m2 P Storage	cm	200	200	200		<u> </u>			ł					
C1 = Conc at 1 g/m2 P storage	ppb ppb	3 22	3 22	22		1		1	1	1				
C2 = Conc at Half-Max Uptake	ppb	300	300	300		1			1					
K = Net Settling Rate at Steady State Z1 = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40	52.5 40		1		1	1	1				
Z2 = Lower Penalty Depth	cm	100	100	100		1		1	1	1				
Z3 = Upper Penalty Depth	cm	200	200	200	I	I		I	I		L			
Output Variables	Units	1	2	3	4	5	6	7	8	9	10	11	12	o
Execution Time	sec/yr	5.31	6.00	6.71										(
Run Date Starting Date for Simulation	-	10/15/07 05/01/65	10/15/07 05/01/65	10/15/07 05/01/65										10 05
Starting Date for Output		05/01/65	05/01/65	05/01/65										05
Ending Date		04/30/00	04/30/00	04/30/00										04
Output Duration Cell Label	days	12784 NBO1	12784 NBO2	12784 Cell 4										1
Downstream Cell Label		NBO2	Cell 4	Outflow										
Network Simulation Name	-	none	none	none										
Simulation Type Surface Area	- km2	Uncerta 4.35	Uncerta 11.53	Uncerta 7.70										U 2
Mean Rainfall	cm/yr	128.59	128.59	128.59										1
Mean ET	cm/yr	133.76	133.76	133.76					-					1
Cell Inflow Volume Cell Inflow Load	hm3/yr kg/yr	147.7 15252.8	151.1 11490.9	152.3 2522.9										1
Cell Inflow Conc	ppb	103	76	17										1
Treated Outflow Volume Treated Outflow Load	hm3/yr kg/yr	151.1 11490.9	152.3 2522.9	153.4 1419.8										1
Treated Outflow Load Treated FWM Outflow Conc	кg/yr ppb	76	2522.9	9										1
Upper Confidence Limit	ppb	81.2	20.1	10.9										
Lower Confidence Limit Total Outflow Volume + Bypass	ppb hm3/yr	70.1	13.8 152.3	8.1 153.4		-			-					1
Total Outflow Load + Bypass	hm3/yr kg/yr	11490.9	2522.9	1419.8										14
Total FWM Outflow Conc	ppb	76.1	16.6	9.3										
Bypass Load Bypass Load	kg/yr %	0 0%	0 0%	0 0%										
Maximum Inflow	hm3/d	0.82	0.84	0.85										
Maximum Outflow	hm3/d	0.84	0.85	0.86										(
Surface Load Reduction Load Trapped in Sediments	kg/yr kg/yr	3777 4118	8968 9514	1103 1466										1:
Overall Load Reduction	% %	25%	78%	44%										
Lower Confidence Limit	%	0.2	0.8	0.5										8
Upper Confidence Limit Daily Geometric Mean	ppb	68.0	0.8	5.3										#
Dutflow Geo Mean - Composites	ppb	74.8	15.3	8.7										
Jpper Confidence Limit Lower Confidence Limit	ppb	80.3 68.5	18.6 12.8	10.1 7.6										
Frequency Outflow Conc > 10 ppb	ppb %	100%	97%	7.6										:
Frequency Outflow Conc > 20 ppb	%	100%	8%	0%										
Frequency Outflow Conc > 50 ppb Freq Outflow Volume > 10 ppb	%	100% 100%	0% 82%	0% 40%										
95th Percentile Outflow Conc	ppb	81.41	20.30	11.51										
Mean Biomass P Storage	mg/m2	2971	825	190										1
Storage Increase / Net Removal Net Storage Turnover Rate	% 1/yr	0% 11.2	0% 35.0	0% 35.1										
Jnit Area P Load	mg/m2-yr	3506	997	328										é
	mg/m2-yr	947	825	190										6
Unit Area P Removal	cm/d	9.3 18.9	3.6 7.3	5.4 11.0										
Unit Area P Removal Mean Water Load			49	58										
Unit Area P Removal Mean Water Load Max Water Load Mean Depth	cm/d cm	46												
Unit Area P Removal Wean Water Load Max Water Load Wean Depth Minimum Depth	cm cm	38.4	44.1	50.4										
Unit Area P Removal Wean Water Load Max Water Load Wean Depth Waximum Depth Maximum Depth	cm cm	38.4 53.2	44.1 58.5	70.6										
Unit Area P Removal Wean Water Load Wax Water Load Wean Depth Winimum Depth Maximum Depth Frequency Depth < 10 cm	cm cm cm %	38.4	44.1	50.4 70.6 0% 167										c
Jnit Area P Removal Wean Water Load Wean Water Load Wean Depth Winimum Depth Forguency Depth < 10 cm Forguency Depth < 10 cm ForwWidth HRT Days	cm cm % m2/day days	38.4 53.2 0% 62 4.9	44.1 58.5 0% 83 13.6	70.6 0% 167 10.7										0
Jnit Area P Removal Mean Water Load Wean Depth Minimum Depth Maximum Depth Frequency Depth < 10 cm Jow/Width HT Days Mean Velocity	cm cm % m2/day days cm/sec	38.4 53.2 0% 62 4.9 0.16	44.1 58.5 0% 83 13.6 0.20	70.6 0% 167 10.7 0.33										1
Jnit Area P. Removal Wean Water Load Wean Depth Winimum Depth Maximum Depth Fequency Depth < 10 cm Tow/Width HRT Days Wean Velocity Seepage Outlow / Total Outflow	cm cm % m2/day days	38.4 53.2 0% 62 4.9	44.1 58.5 0% 83 13.6	70.6 0% 167 10.7										1
Jnit Aras P Removal Wan Water Load Wan Water Load Wan Depth Waimum Depth Prequency Depth < 10 cm ProwWrdah Wan Velocity Sengage Outlow / Total Outlow Relases 2 Outlow Volume Relases 2 Outlow Volume	cm cm % m2/day days cm/sec % hm3/yr hm3/yr	38.4 53.2 0% 62 4.9 0.16 0% 0.00 0.00	44.1 58.5 0% 83 13.6 0.20 0% 0.00 0.00	70.6 0% 167 0.33 0% 0.00 0.00										1
Jnit Area P Removal Wean Water Load Wean Depth Wanimum Depth Wanimum Depth Prequency Depth < 10 cm ProwWidth HRT Days Wean Velocity / Total Outflow Resease 1 Outflow / Volume Release 2 Outflow Volume	cm cm % m2/day days cm/sec % hm3/yr hm3/yr hm3/d	38.4 53.2 0% 62 4.9 0.16 0% 0.00 0.00 0.7	44.1 58.5 0% 83 13.6 0.20 0% 0.00 0.00 0.7	70.6 0% 167 10.7 0.33 0% 0.00 0.00 0.7										1
Unit Area P Removal Wean Water Load Wean Water Load Wean Depth Wanimum Depth Terguency Depth - 10 cm ToiswWidth HRT Daya Sengago Cultica V Total Dutflow Sengago Cultica V Total Dutflow Sengago Cultica V Johnson Stelases 2 A Johnson V Johnson Sth Percentile Outflow Volume	cm cm % m2/day days cm/sec % hm3/yr hm3/yr hm3/d kg/d	38.4 53.2 0% 62 4.9 0.16 0% 0.00 0.00 0.7 54.8	44.1 58.5 0% 83 13.6 0.20 0% 0.00 0.00 0.7 14.0	70.6 0% 167 10.7 0.33 0% 0.00 0.00 0.7 8.0										1
Unit Area P Removal Wean Water Load Wean Water Load Wean Depth Wanimum Depth Terguency Depth - 10 cm SowWidth HRT Days Hean Velocity Sease 20 Julion Volume 35th Percentile Outflow Volume	cm cm % m2/day days cm/sec % hm3/yr hm3/yr hm3/d kg/d % %	38.4 53.2 0% 62 4.9 0.16 0% 0.00 0.00 0.7 54.8 #N/A #N/A	44.1 58.5 0% 83 13.6 0.20 0% 0.00 0.00 0.7 14.0 #N/A #N/A	70.6 0% 167 0.33 0% 0.00 0.00 0.7 8.0 #N/A #N/A										0 1 2 (
Unit Area P. Removal Wean Water Load Waar Water Load Wean Depth Mean Depth Mean Depth the Common Sector Sector Sector Sector Hard To aya Wean Velocity Seepage Cuttor Votante Selase 2 Autor Votante Selase 2 Autor Votante Selase 2 Autor Votante Sim Percentile Outflow Votante Sim Percentile Outflow Votante Sim Percentile Outflow Votante Selase 2 Demand Met Release 2 Demand Met	cm cm m2/day days cm/sec % hm3/yr hm3/yr hm3/d kg/d % %	38.4 53.2 0% 62 4.9 0.16 0% 0.00 0.00 0.7 54.8 #N/A #N/A	44.1 58.5 0% 83 13.6 0.20 0% 0.00 0.7 14.0 #N/A #N/A #N/A	70.6 0% 167 10.7 0.33 0% 0.00 0.00 0.7 8.0 #N/A #N/A #N/A										0 1 : : : : : : : : : : : : : :
Unit Area P Removal Mean Water Load Mean Water Load Mean Depth Maximum Depth Maximum Depth Maximum Depth Her Toaya Mean Velocity Seepage Outflow / Total Outflow Release 2 Author Volume Skin Percentile Outflow Volume Skin Percentile Outflow Volume Skin Percentile Outflow Load Sin Parentile Outflow Load Sin Percentile Outflow Load Sin State Sin State S	cm cm % m2/day days cm/sec % hm3/yr hm3/yr hm3/d kg/d % %	38.4 53.2 0% 62 4.9 0.16 0% 0.00 0.00 0.7 54.8 #N/A #N/A	44.1 58.5 0% 83 13.6 0.20 0% 0.00 0.00 0.7 14.0 #N/A #N/A	70.6 0% 167 0.33 0% 0.00 0.00 0.7 8.0 #N/A #N/A										01120

Compartment B North Build-out With STA-2 PLR of 1.3 g/m2/yr DMSTA2- Inputs & Outputs Project: COMP B EIS Model Release: 07/05/07

Check - Outflow Co

DMSTA2- Inputs & Outp			Project:	PROJECT_E				.C 1	1-1	.00	հեր		del Release:	07/05/0
Input Variable	Units	Value	Caro Dana	tion								С	urrent Date:	10/16/20
Design Case Name	-	A1	Case Descrip Compartme	nt A-1										
Input Series Name Starting Date for Simulation		TS_A1 01/01/65	15,200 acre Inflow volum	s (from A8) nes, outflow vol	umes, and de	oths from Si	WMM sime	ulation						
Ending Date for Simulation Starting Date for Output	:	04/30/00 05/01/65	Reservoir se	ettling rate = 5.0 hobee deliverie) m/yr (Goforth									
Integration Steps Per Day	-	4	Simulation Ty	pe:		Law- C	Line C'		Dise					
Number of Iterations Output Averaging Interval	- days	0	Output Variat FWM Outflow	v C (ppb)	Mean 84.5	Lower CL #N/A	Upper CL #N/A		Diagnostic H20 Balan		an & Max	0.0%	0.0%	
Inflow Conc Scale Factor Rainfall P Conc	- ppb	1 10	GM Outflow 0 Load Reducti	C (ppb)	93.1 18%	#N/A #N/A	#N/A #N/A		Mass Bala Iterations &	nce Error N	lean & Max	0.0% 2	0.0% 0.5%	
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Load		0.0%			_	Warning/E	rror Messa	ges	0		
Cell Number> Cell Label		1	2	3	4	5	6	7	8	9	10	11	12	
Vegetation Type Inflow Fraction	>	none 1												
Downstream Cell Number	-													
Surface Area Mean Width of Flow Pa	km2 km	61.54 6.70												
Number of Tanks in Series Minimum Depth for Releases	- cm	1.0 15											+	
Release 1 Series Name Release 2 Series Name	um	IRRIG												
Outflow Series Name		TO_STA												
Depth Series Name Outflow Control Depth	cm	A1_DEPTH												
Outflow Weir Depth Outflow Coefficient - Exponent	cm	1.5												
Outflow Coefficient - Intercept		8												
Bypass Depth Maximum Inflow	cm hm3/day													
Maximum Outflow Inflow Seepage Rate	hm3/day	9.05233												
Inflow Seepage Control Elev	(cm/d) / cm cm													
Inflow Seepage Conc Outflow Seepage Rate	ppb (cm/d) / cm	0.00081							1					
Outflow Seepage Control Elev Max Outflow Seepage Conc	cm	6 100							1					
Seepage Recycle to Cell Number	ppb -	1												
Seepage Recycle Fraction Seepage Discharge Fraction		0.75												
Initial Water Column Conc Initial P Storage Per Unit Area	ppb mg/m2	105 525												
Initial Water Column Depth	cm	150								L				
C0 = Conc at 0 g/m2 P Storage C1 = Conc at 1 g/m2 P storage	ppb ppb	3 150							1					
C2 = Conc at Half-Max Uptake K = Net Settling Rate at Steady State	ppb m/yr	5.0												
Z1 = Saturated Uptake Depth	cm	40							1					
Z2 = Lower Penalty Depth Z3 = Upper Penalty Depth	cm cm	100 400												
Output Variables	Units	1	2	3	4	5	6	7	8	. 9	10	11	12	Overal
Execution Time	sec/yr	1.53		, in the second			L		ГŤ					1.53
Run Date Starting Date for Simulation		10/16/07 01/01/65												10/16/07 01/01/65
Starting Date for Output Ending Date	-	05/01/65 04/30/00												05/01/65 04/30/00
Output Duration	days	12784												12784
Cell Label Downstream Cell Label		1 Outflow												Total
Network Simulation Name Simulation Type	:	EAASR_NET Base											1 1	EAASR_NE Base
Surface Area Mean Rainfall	km2	61.54 130.73												61.54
Mean ET	cm/yr cm/yr	125.71												130.7 125.7
Cell Inflow Volume Cell Inflow Load	hm3/yr kg/yr	666.6 63931.8		540417.2										666.6 63932
Cell Inflow Conc Treated Outflow Volume	ppb	96 470.5		381414.6										95.9 470.5
Treated Outflow Load	hm3/yr kg/yr	39773.0		301414.0										39773
Treated FWM Outflow Conc Upper Confidence Limit	ppb ppb	85 #N/A												84.5 #N/A
Lower Confidence Limit Total Outflow Volume + Bypass	ppb hm3/yr	#N/A 656.9												#N/A 656.9
Total Outflow Load + Bypass	kg/yr	52742.5												52742.5
Total FWM Outflow Conc Bypass Load	ppb kg/yr	80.3 0												80.3 0.0
Bypass Load Maximum Inflow	% hm3/d	0% 14.75												0.0 14.75
Maximum Outflow	hm3/d	10.09												10.09
Surface Load Reduction Load Trapped in Sediments	kg/yr kg/yr	25998 12095												24159 12095
Overall Load Reduction Lower Confidence Limit	%	18% #N/A												18% #N/A
Upper Confidence Limit Daily Geometric Mean	%	#N/A 68.2							-					#N/A #N/A
Outflow Geo Mean - Composites	ppb	93.1												93.1
Upper Confidence Limit Lower Confidence Limit	ppb ppb	#N/A #N/A												#N/A #N/A
Frequency Outflow Conc > 10 ppb Frequency Outflow Conc > 20 ppb	%	100% 100%												100% 100%
Frequency Outflow Conc > 50 ppb	%	92%												100%
Freq Outflow Volume > 10 ppb 95th Percentile Outflow Conc	% ppb	72% 683.91												72% 684
Mean Biomass P Storage Storage Increase / Net Removal	mg/m2	406												406
Net Storage Turnover Rate	1/yr	16.9												16.9
Unit Area P Load Unit Area P Removal	mg/m2-yr mg/m2-yr	1039 197												1039 197
Mean Water Load Max Water Load	cm/d cm/d	3.0 24.0												3.0 24.0
Mean Depth	cm	198												198
Minimum Depth Maximum Depth	cm cm	1.0 387.2												1 387
Frequency Depth < 10 cm Flow/Width	% m2/day	12% 272												12.1% 272.4
HRT Days	days	66.7												66.7
Mean Velocity Seepage Outflow / Total Outflow	cm/sec %	0.16 1%												0.16 2%
Release 1 Outflow Volume Release 2 Outflow Volume	hm3/yr hm3/yr	186.46 0.00												186.5 0.0
95th Percentile Outflow Volume	hm3/d	9.1												9.1
95th Percentile Outflow Load Simulated / Specified Mean Depth	kg/d %	746.8 100%												746.8 1.0
Release 1 Demand Met Release 2 Demand Met	%	90%												0.9
Release 2 Demand Met Outflow Demand Met	% %	#N/A 105%												#N/A 1.0
	-													0
Range Check - Mean Depth														
Range Check - Mean Depth Range Check - Freq Depth < 10 cm Range Check - Flow/Width	:													0
Range Check - Mean Depth Range Check - Freq Depth < 10 cm		0.00%												

EAASR With Lake Okeechobee TP=100 ppb

DMSTA2- Inputs & Outp	uts		Project:	PROJECT_E	AASR_STA34	_NETWORF	(_EIS						el Release: urrent Date:	
nput Variable	Units	Value	Case Descrip											
Design Case Name nput Series Name	-	A1 150 TS_A1_150	Compartme 15,200 acre	s (from A8)										
Starting Date for Simulation Ending Date for Simulation	1	01/01/65 04/30/00	Inflow volum Reservoir se	nes, outflow vo ettling rate = 5.	lumes, and de 0 m/yr (Goforti	pths from SF h 2006)	WMM simi	ulation						
Starting Date for Output Integration Steps Per Day	1	05/01/65 4	Lake inflow Simulation Ty	= 150 ppb										
Number of Iterations Dutput Averaging Interval	-	0 365	Output Varial FWM Outflow	ble	Mean 112.3	Lower CL #N/A	Upper CL #N/A		Diagnostic		ean & Max	0.0%	0.0%	
Inflow Conc Scale Factor	days -	1	GM Outflow	C (ppb)	114.7	#N/A	#N/A		Mass Bala	Ince Error N	fean & Max	0.0%	0.0%	
Rainfall P Conc Atmospheric P Load (Dry)	ppb mg/m2-yr	10 20	Load Reduct Bypass Load		17% 0.0%	#N/A	#N/A			& Converge rror Messa	ges	2 0	0.8%	
Cell Number> Cell Label	-	1	2	3	4	5	6	7	8	9	10	11	12	I
Vegetation Type Inflow Fraction	>	none 1												
Downstream Cell Number Surface Area	- .km2	61.54												
Mean Width of Flow Pa	▼ km	6.70												
Number of Tanks in Series Minimum Depth for Releases	- cm	15												
Release 1 Series Name Release 2 Series Name		IRRIG												
Dutflow Series Name Depth Series Name		TO_STA A1_DEPTH												
Outflow Control Depth Outflow Weir Depth	cm cm													
Dutflow Coefficient - Exponent Dutflow Coefficient - Intercept	-	1.5 8												
Bypass Depth	cm	0												
Maximum Inflow Maximum Outflow	hm3/day hm3/day	9.05233												
nflow Seepage Rate nflow Seepage Control Elev	(cm/d) / cm cm		_											
nflow Seepage Conc Dutflow Seepage Rate	ppb (cm/d) / cm	0.00081										1		
Outflow Seepage Control Elev Max Outflow Seepage Conc	cm ppb	6 100												
Seepage Recycle to Cell Number	-	1										1		
Seepage Recycle Fraction Seepage Discharge Fraction	-	0.75												
Initial Water Column Conc Initial P Storage Per Unit Area	ppb mg/m2	105 525										1		
nitial Water Column Depth C0 = Conc at 0 g/m2 P Storage	cm ppb	150 3												
C1 = Conc at 1 g/m2 P storage C2 = Conc at Half-Max Uptake	ppb	150										1		
K = Net Settling Rate at Steady State	m/yr	5.0 40										1		
Z1 = Saturated Uptake Depth Z2 = Lower Penalty Depth	cm cm	100										1		
Z3 = Upper Penalty Depth	cm	400		I	·	I	I	I	I		I		I	
Dutput Variables Execution Time	Units sec/yr	1 1.56	2	3	4	5	6	7	8	9	10	11	12	Ove 1.
Run Date Starting Date for Simulation	-	10/16/07 01/01/65												10/1 01/0
Starting Date for Output		05/01/65 04/30/00												05/0
Ending Date Dutput Duration	days	12784												12
Cell Label Downstream Cell Label		1 Outflow												T
Network Simulation Name Simulation Type	1	AASR_NET 1 Base	50										EA	ASR Bi
Surface Area Mean Rainfall	km2 cm/yr	61.54 130.73												61 13
Vean ET Cell Inflow Volume	cm/yr hm3/yr	125.71 666.6												12
Cell Inflow Load	kg/yr	83883.4												83
Cell Inflow Conc Treated Outflow Volume	ppb hm3/yr	126 470.5												12 47
Treated Outflow Load Treated FWM Outflow Conc	kg/yr ppb	52848.7 112												52 11
Upper Confidence Limit Lower Confidence Limit	ppb ppb	#N/A #N/A												#1 #1
Total Outflow Volume + Bypass	hm3/yr	656.9												65
Total Outflow Load + Bypass Total FWM Outflow Conc	kg/yr ppb	69304.8 105.5												693 10
Bypass Load Bypass Load	kg/yr %	0 0%												0
Maximum Inflow Maximum Outflow	hm3/d hm3/d	14.75 10.09												14 10
Surface Load Reduction Load Trapped in Sediments	kg/yr kg/yr	33175 14901												31
Overall Load Reduction	%	17% #N/A												11
Upper Confidence Limit	%	#N/A												#1
Daily Geometric Mean Dutflow Geo Mean - Composites	ppb ppb	81.8 114.7												#1 11
Upper Confidence Limit Lower Confidence Limit	ppb ppb	#N/A #N/A												1# #1
Frequency Outflow Conc > 10 ppb Frequency Outflow Conc > 20 ppb	%	100% 100%												10 10
Frequency Outflow Conc > 50 ppb Freq Outflow Volume > 10 ppb	%	93% 72%												10
5th Percentile Outflow Conc	ppb	806.27												8
Mean Biomass P Storage Storage Increase / Net Removal	mg/m2 %	508 3%												5
Net Storage Turnover Rate Unit Area P Load	1/yr mg/m2-yr	16.7 1363												10
Unit Area P Removal Mean Water Load	mg/m2-yr cm/d	242 3.0												2
Max Water Load Max Depth	cm/d cm	24.0 198												2
Minimum Depth Maximum Depth	cm	1.0												3
requency Depth < 10 cm	%	12%												12
low/Width IRT Days	m2/day days	272 66.7												27 6
Aean Velocity Seepage Outflow / Total Outflow	cm/sec %	0.16												0
Release 1 Outflow Volume Release 2 Outflow Volume	hm3/yr	186.46												18
5th Percentile Outflow Volume	hm3/yr hm3/d	9.1												g
95th Percentile Outflow Load Simulated / Specified Mean Depth	kg/d %	1022.9 100%												10: 1
Release 1 Demand Met Release 2 Demand Met	% %	90% #N/A												(#1
Outflow Demand Met Range Check - Mean Depth	%	105%												1
Range Check - Freq Depth < 10 cm	-													
Range Check - Flow/Width Range Check - Inflow Conc	-													
Range Check - Outflow Conc Water Balance Error	- %	0.00%												0.0
Mass Balance Error	%	0.01%						1		1				0.0

EAASR With Lake Okeechobee TP=150 ppb

out Variable	Unite	Value	Case Docorio	ation:								Cu	urrent Date
out Variable Isign Case Name	Units -	Value STA34 ind	Case Descrip STA-3/4 sta	ind alone									
ut Series Name rting Date for Simulation		TS_STA34_inc 01/01/65	Lake Okeed	ibuted uniform! hobee deliverie	es at 100 ppb								
ding Date for Simulation arting Date for Output	:	04/30/00 05/01/65	PSTA Demo Used EAAS	o in Cell 2B mo R inflows from	deled as SAV, network simul	_3 ation to run	uncertainty	analysis					
egration Steps Per Day Imber of Iterations	1	4	Simulation Ty Output Variat	pe:	Uncertainty A Mean	nalysis Lower CL	Upper CL		Diagnostic	s			
tput Averaging Interval ow Conc Scale Factor	days	365	FWM Outflow GM Outflow (v C (ppb)	19.8 16.2	23.7 19.5	16.4 13.6		H20 Balan	ce Error Me nce Error M		0.0%	0.0%
nospheric P Load (Dry)	ppb	10	Load Reducti	ion %	77%	73%	81%		Iterations &	& Converger	nce	2	0.2%
Il Number>	mg/m2-yr	20 1	Bypass Load 2	(%)	0.0%	5	6	7	vvarning/E 8	rror Messag 9	10 10	11	12
Label etation Type	>	1A EMG_3	1B SAV_3	2A EMG_3	2B SAV_3	3A EMG_3	3B SAV_3						
ow Fraction vnstream Cell Number	1	0.394547543		0.328598199		0.276854							
rface Area an Width of Flow Path	km2 km	12.30 3.42	14.12 4.50	10.29 2.89	11.72 4.02	8.72 4.88	9.83 4.88						
mber of Tanks in Series	-	3.42	4.50	3.0	4.02	4.00	4.00						
imum Depth for Releases lease 1 Series Name	cm												
lease 2 Series Name tflow Series Name													
pth Series Name tflow Control Depth	cm	38.1	38.1	38.1	38.1	38.1	38.1						
tflow Weir Depth	cm					4							
utflow Coefficient - Exponent utflow Coefficient - Intercept	-	4	4 1	4 1	4	1	4 1		1				
oass Depth ximum Inflow	cm hm3/day								1				
ximum Outflow ow Seepage Rate	hm3/day (cm/d) / cm												
ow Seepage Control Elev ow Seepage Conc	cm ppb												
tflow Seepage Rate	(cm/d) / cm	0.0058	0.0029	0.0014		0.0038			1				
tflow Seepage Control Elev ax Outflow Seepage Conc	cm ppb	16 20	40 20	-67 20	20	-64 20	20		1				
apage Recycle to Cell Number apage Recycle Fraction	1	1 0.5	0.5	3 0.5	0.5	5 0.5	0.5		1				
epage Discharge Fraction ial Water Column Conc	- ppb	52	12	55	15	55	15						
ial P Storage Per Unit Area ial Water Column Depth	mg/m2 cm	2400 60	615 60	2400 60	615 60	2400 60	615 60		1				
= Conc at 0 g/m2 P Storage	ppb	3	3	3 22	3 22	3 22	3						
= Conc at 1 g/m2 P storage = Conc at Half-Max Uptake	ppb ppb	300	300	300	300	300	300		1				
Net Settling Rate at Steady State = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40		1				
= Lower Penalty Depth = Upper Penalty Depth	cm cm	100 200	100 200	100 200	100 200	100 200	100 200						
tput Variables	Units	1	2	3	4	5	6	7	. 8	9	10	11	12
cution Time	sec/yr	16.50 10/29/07	18.03 10/29/07	19.62 10/29/07	21.34 10/29/07	24.37 10/29/07	25.76 10/29/07						
ting Date for Simulation	÷	01/01/65	01/01/65	01/01/65	01/01/65	01/01/65	01/01/65						
rting Date for Output ling Date		05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00						
tput Duration I Label	days	12784 1A	12784 1B	12784 2A	12784 2B	12784 3A	12784 3B						
wnstream Cell Label twork Simulation Name		1B none	Outflow none	2B none	Outflow none	3B none	Outflow none						
nulation Type rface Area	- km2	Uncerta 12.30	Uncerta 14.12	Uncerta 10.29	Uncerta 11.72	Uncerta 8.72	Uncerta 9.83						
an Rainfall	cm/yr	129.99	129.99	129.99	129.99	129.99	129.99						
an ET I Inflow Volume	cm/yr hm3/yr	134.33 284.1	133.93 278.4	134.02 236.6	133.88 233.0	132.61 199.4	133.69 192.5						
Inflow Load Inflow Conc	kg/yr ppb	24219.9 85	15548.5 56	20171.5 85	12980.4 56	16995.1 85	10631.1 55						
ated Outflow Volume ated Outflow Load	hm3/yr kg/yr	278.4 15548.5	276.5 5422.8	233.0 12980.4	232.5 4588.2	192.5 10631.1	192.1 3841.9						
ated FWM Outflow Conc	ppb	56 60.7	20 23.6	56 60.5	20 23.7	55 59.8	20 23.8						
per Confidence Limit wer Confidence Limit	ppb ppb	50.5	16.3	50.5	16.4	50.3	16.7						
tal Outflow Volume + Bypass tal Outflow Load + Bypass	hm3/yr kg/yr	278.4 15548.5	276.5 5422.8	233.0 12980.4	232.5 4588.2	192.5 10631.1	192.1 3841.9						
tal FWM Outflow Conc pass Load	ppb kg/vr	55.9 0	19.6 0	55.7 0	19.7 0	55.2 0	20.0 0						
bass Load ximum Inflow	kg/yr % hm3/d	0% 1.83	0% 1.81	0% 1.52	0% 1.52	0% 1.28	0% 1.27						
ximum Outflow	hm3/d	1.81	1.81	1.52	1.52	1.27	1.27						
face Load Reduction ad Trapped in Sediments	kg/yr kg/yr	8775 8503	10148 10435	7255 7034	8392 8683	6497 5612	6789 7033						
erall Load Reduction ver Confidence Limit	% %	36% 0.3	65% 0.6	36% 0.3	65% 0.6	37% 0.3	64% 0.6						
per Confidence Limit	% ppb	0.4	0.7	0.4	0.7	0.4	0.7						
flow Geo Mean - Composites per Confidence Limit	ppb ppb ppb	50.6 56.1	16.0	50.4 55.8	16.1 19.4	50.0 55.0	16.7 19.9						
ver Confidence Limit	ppb	44.8	13.4	44.7	13.5	44.7	14.1						
equency Outflow Conc > 10 ppb equency Outflow Conc > 20 ppb	%	100% 100%	92% 31%	100% 100%	92% 31%	100% 100%	94% 33%						
equency Outflow Conc > 50 ppb eq Outflow Volume > 10 ppb	%	64% 100%	0% 89%	64% 100%	0% 90%	61% 100%	0% 91%						
th Percentile Outflow Conc	ppb mg/m2	65.56 2181	24.59 751	65.64 2158	24.76 753	65.54 2035	24.52 728						
rage Increase / Net Removal	%	1%	1%	1%	1% 34.4	1%	1%						
Storage Turnover Rate Area P Load Area P Removal	1/yr mg/m2-yr mg/m2.yr	1969	1101	1960	1108	1950 644	1082 716						
an Water Load	mg/m2-yr cm/d	691 6.3	739 5.4	684 6.3	741 5.4	6.3	5.4						
k Water Load an Depth	cm/d cm	14.9 56	12.8 54	14.8 55	12.9 53	14.7 46	12.9 48						
imum Depth ximum Depth	cm cm	37.9 77.8	33.8 75.4	37.2 77.6	33.1 74.2	30.8 64.5	30.4 67.1						
juency Depth < 10 cm //Width	% m2/day	0%	0%	0%	0%	0% 112	0%						
Г Days	days	8.8	10.0	8.8	9.8	7.4	9.0						
in Velocity page Outflow / Total Outflow	cm/sec %	0.47 2%	0.36 0%	0.47 1%	0.35 0%	0.28 3%	0.26 0%						
ase 1 Outflow Volume ase 2 Outflow Volume	hm3/yr hm3/yr	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00						
Percentile Outflow Volume Percentile Outflow Load	hm3/d kg/d	1.5	1.5 33.7	1.3 77.0	1.3 28.6	1.1 63.1	1.1 23.8						
ulated / Specified Mean Depth ease 1 Demand Met	%	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A						
ease 2 Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A						
flow Demand Met Ige Check - Mean Depth	~	#N/A	#N/A 0.87	#N/A	#N/A 0.86	#N/A	#N/A 0.78						
inge Check - Freq Depth < 10 cm inge Check - Flow/Width	1	1.08		1.07	0.98		0.67						
nge Check - Inflow Conc		1.00		1.07	0.00		3.07						
nge Check - Outflow Conc ater Balance Error	- %	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%						
ss Balance Error	%			0.02% nge for EMG_3: 2		-0.03%	0.03%						-
rning or Error Messages				or SAV 3: 54 vs.									
				nge for EMG_3: 2		12/day							

STA-3/4 With Lake Okeechobee TP=100 ppb

put Variable	Units	Value	Case Descrip	otion:									urrent Date:
esign Case Name out Series Name		STA34 ind 150 STA34_ind_1	STA-3/4 sta Inflows distr	ind alone ibuted uniform	ly based on an	a							
arting Date for Simulation Iding Date for Simulation	:	01/01/65 04/30/00	Lake Okeed	chobee deliveri o in Cell 2B ma	es at 150 ppb								
arting Date for Output egration Steps Per Day		05/01/65 4	Simulation Ty		Uncertainty A	nalysis		analysis					
umber of Iterations utput Averaging Interval	- days	0 365	Output Varial FWM Outflow		Mean 22.9	Lower CL 27.8	Upper CL 18.7		Diagnostic H20 Balan	<u>s</u> e Error Me	an & Max	0.0%	0.0%
low Conc Scale Factor ainfall P Conc	- ppb	1 10	GM Outflow (Load Reduction	C (ppb)	18.3 78%	22.3 73%	15.1 82%			nce Error M Converger		0.0% 2	0.0% 0.8%
mospheric P Load (Dry) Il Number>	mg/m2-yr	20	Bypass Load 2		0.0%	5	6	7	Warning/E 8	rror Messag	jes 10	7	12
I Label getation Type	->	1A EMG_3	1B SAV_3	2A EMG_3	2B SAV_3	3A EMG 3	3B SAV 3			-			
w Fraction wnstream Cell Number	÷	0.394547543	5AV_5	0.328598199	3AV_3	0.276854	5AV_5						
face Area an Width of Flow Path	km2 km	12.30 3.42	14.12 4.50	10.29 2.89	11.72 4.02	8.72 4.88	9.83 4.88						
hber of Tanks in Series mum Depth for Releases	- cm	3.0	3.0	3.0	3.0	3.0	3.0			-			
ease 1 Series Name ease 2 Series Name	cin												
flow Series Name oth Series Name													
low Control Depth	cm cm	38.1	38.1	38.1	38.1	38.1	38.1						
flow Coefficient - Exponent flow Coefficient - Intercept	-	4	4	4	4	4	4						
ass Depth kimum Inflow	cm hm3/dav				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1							
kimum Outflow ow Seepage Rate	hm3/day (cm/d) / cm												
low Seepage Control Elev	cm												
low Seepage Conc tflow Seepage Rate tflow Seepage Control Elev	ppb (cm/d) / cm	0.0058	0.0029	0.0014		0.0038							
x Outflow Seepage Conc	cm ppb	16 20	40 20	-67 20	20	20	20						
epage Recycle to Cell Number epage Recycle Fraction		1 0.5	0.5	3 0.5	0.5	5 0.5	0.5						
al Water Column Conc	- ppb	52	12	55	15	55	15	-	-				
al P Storage Per Unit Area al Water Column Depth	mg/m2 cm	2400 60	615 60	2400 60	615 60	2400 60	615 60						
= Conc at 0 g/m2 P Storage = Conc at 1 g/m2 P storage	ppb	3 22	3 22	3 22	3 22	3 22	3 22						
= Conc at Half-Max Uptake Net Settling Rate at Steady State	ppb m/yr	300 16.8	300 52.5	300 16.8	300 52.5	300 16.8	300 52.5					1	
= Saturated Uptake Depth = Lower Penalty Depth	cm cm	40 100	40 100	40 100	40 100	40 100	40 100						
= Upper Penalty Depth	cm	200	200	200	200	200	200						
tput Variables	Units sec/yr	1 20.89	2 22.67	3 24.31	4 26.41	5 28.48	6 30.23	7	8	9	10	11	12
Date ting Date for Simulation		10/29/07 01/01/65	10/29/07 01/01/65	10/29/07 01/01/65	10/29/07 01/01/65	10/29/07 01/01/65	10/29/07 01/01/65						
ting Date for Output ing Date		05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00						
put Duration Label	days	12784 1A	12784 1B	12784 2A	12784 2B	12784 3A	12784 3B						
vnstream Cell Label work Simulation Name		1B none	Outflow none	2B none	Outflow none	3B none	Outflow none						
ulation Type face Area	- km2	Uncerta 12.30	Uncerta 14.12	Uncerta 10.29	Uncerta 11.72	Uncerta 8.72	Uncerta 9.83						
an Rainfall an ET	cm/yr cm/yr	129.99 134.33	129.99 133.93	129.99 134.02	129.99 133.88	129.99 132.61	129.99 133.69						
Inflow Volume Inflow Load	hm3/yr kg/yr	284.1 28982.0	278.4 18813.0	236.6 24137.6	233.0 15696.9	199.4 20336.7	192.5 12815.5						
I Inflow Conc ated Outflow Volume	ppb hm3/yr	102 278.4	68 276.5	102 233.0	67 232.5	102 192.5	67 192.1						568440.6
ated Outflow Load ated FWM Outflow Conc	kg/yr ppb	18813.0 68	6294.7 23	15696.9 67	5324.9 23	12815.5 67	4436.6 23						
er Confidence Limit er Confidence Limit	ppb ppb	73.4 61.2	27.7 18.6	73.1 61.0	27.9 18.7	72.0 60.6	27.9 19.0						
al Outflow Volume + Bypass al Outflow Load + Bypass	hm3/yr kg/yr	278.4 18813.0	276.5 6294.7	233.0 15696.9	232.5 5324.9	192.5 12815.5	192.1 4436.6						
al FWM Outflow Conc ass Load	ppb kg/yr	67.6 0	22.8 0	67.4 0	22.9 0	66.6 0	23.1 0						
ass Load imum Inflow	% hm3/d	0% 1.83	0% 1.81	0% 1.52	0% 1.52	0% 1.28	0% 1.27						
imum Outflow ace Load Reduction	hm3/d kg/yr	1.81	1.81	1.52	1.52	1.27	1.27 8379						
d Trapped in Sediments rall Load Reduction	kg/yr %	9857 35%	12785	8141 35%	10636	6478 37%	8601 65%						
er Confidence Limit er Confidence Limit	%	0.3 0.4	0.6 0.7	0.3 0.4	0.6 0.7	0.3 0.4	0.6 0.7						
ly Geometric Mean tflow Geo Mean - Composites	ppb ppb	57.0 59.4	13.0 18.1	56.5 59.1	13.1 18.2	56.3 58.0	13.0 18.7						
er Confidence Limit er Confidence Limit	ppb ppb	65.9 52.4	22.1 14.8	65.4 52.2	22.2 14.9	63.8 51.8	22.6 15.6						
uency Outflow Conc > 10 ppb uency Outflow Conc > 20 ppb	%	100% 100%	92% 44%	100% 100%	92% 47%	100% 100%	94% 47%						
quency Outflow Conc > 50 ppb Outflow Volume > 10 ppb	%	72% 100%	0% 91%	69% 100%	0% 92%	67% 100%	0% 92%						
Percentile Outflow Conc n Biomass P Storage	ppb mg/m2	85.51 2531	30.26 922	85.65 2501	30.43 924	85.17 2352	30.32 892						
age Increase / Net Removal Storage Turnover Rate	% 1/yr	1% 11.1	1% 34.4	1% 11.1	1% 34.4	1% 11.1	1% 34.4						
Area P Load Area P Removal	mg/m2-yr mg/m2-yr	2356 801	1332 905	2345 791	1340 908	2333 743	1304 875						
an Water Load Water Load	cm/d cm/d	6.3 14.9	5.4 12.8	6.3 14.8	5.4 12.9	6.3 14.7	5.4 12.9						
n Depth mum Depth	cm cm	56 37.9	54 33.8	55 37.2	53 33.1	46 30.8	48 30.4						
imum Depth juency Depth < 10 cm	cm %	77.8 0%	75.4 0%	77.6 0%	74.2 0%	64.5 0%	67.1 0%						
/Width Days	m2/day days	228 8.8	170 10.0	225 8.8	159 9.8	112 7.4	108 9.0						
n Velocity page Outflow / Total Outflow	cm/sec %	0.47	0.36	0.47	0.35	0.28	0.26						
ase 1 Outflow Volume ase 2 Outflow Volume	70 hm3/yr hm3/yr	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00						
Percentile Outflow Volume	hm3/d kg/d	1.5 117.3	1.5 40.5	1.3 97.6	1.3 34.5	1.1 80.1	1.1 28.4						
ulated / Specified Mean Depth	%	#N/A	#N/A	97.6 #N/A #N/A	#N/A	#N/A #N/A	#N/A						
ease 1 Demand Met ease 2 Demand Met	% %	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A						
ilow Demand Met ge Check - Mean Depth ge Check - Freg Depth < 10 cm	70	#N/A	#N/A 0.87	#IWA	#N/A 0.86	#N/A	#N/A 0.78						
ige Check - Freq Depth < 10 cm ige Check - Flow/Width ige Check - Inflow Conc		1.08		1.07	0.98		0.67						
ge Check - Inflow Conc ge Check - Outflow Conc er Balance Error	- - %	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%						
er Balance Error s Balance Error ning or Error Messages	%	0.03%	0.02%	0.03%	0.00% 0.02% 228 vs. 26 - 210 m	-0.03%	0.00%	Call# 4	wWidth out of a	alb range (SAV 2 100	ur 160 m	m2/day
and or Error messages			th out of calib. ra It of calib. range for	ngon or EMG_3: 2 or SAV 3: 54 vs.		arddy					SAV_3: 159 _3: 48 vs. 62		m2/day m2/day

STA-3/4 With Lake Okeechobee TP=150 ppb

DMSTA2- Inputs & Outpu	ts		Project:	STA 5 EIS								1	Model Release: Current Date:	07/05/
nput Variable Design Case Name	Units	Value EIS Alt1 EMG	Case Descr	iption: banded to Incl	udo Euli Do 3	d out of Co	outmost C						Surrenit Date:	10/19/20
nput Series Name	-	TS_EIS_Alt1	Downstrea	anded to Incl am cells consi	ide Full Buil idered as EM	d-out of Comp G_3; Inflows	artment C are C-139 Ba	Isin						
Starting Date for Simulation Ending Date for Simulation	-	05/01/94 04/30/07												
Itarting Date for Output Integration Steps Per Day	-	05/01/94	Simulation T	1000	Uncertainty	Analysie						_		
lumber of Iterations		4 0	Output Varia	able	Mean	Lower CL	Upper CL		Diagnostics					
Dutput Averaging Interval nflow Conc Scale Factor	days -	365 1	FWM Outflow GM Outflow		32.0 30.2	46.5 44.3	21.7 20.2			e Error Mean ce Error Mear		0.0%	0.0%	
Rainfall P Conc Atmospheric P Load (Dry)	ppb	10 20	Load Reduce Bypass Loa	ction %	86% 0.0%	80%	91%		Iterations &	Convergence or Messages		3 0	0.1%	
Cell Number>	mg/m2-yr	1	2 pypass Loa	3	4	5	6	7	wanning/En	9	10	11	12	
Cell Label	-	1A	1B EMG 3	2A	2B	3A	3B EMG 3	4A	4B EMG 3	5A	5B EMG 3			
/egetation Type nflow Fraction	>	EMG_3 0.190896424	EMG_3	EMG_3 0.1908964	EMG_3	EMG_3 0.1843939	EMG_3	EMG_3 0.1922898	EMG_3	EMG_3 0.2415235	EMG_3			
Downstream Cell Number Surface Area	- km2	2 3.38	4.94	4 3.38	4.94	6 4.31	3.72	8 6.52	1.86	10 7.73	2.79			
Aean Width of Flow Path Number of Tanks in Series	km	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	2.34 3.0	2.34 3.0			
Inimum Depth for Releases	cm	3.0	3.0	5.0	3.0	5.0	5.0	5.0	3.0	5.0	5.0			
Release 1 Series Name Release 2 Series Name														
Outflow Series Name Depth Series Name														
Outflow Control Depth	cm	38.1	60.96	38.1	60.96	38.1	60.96	38.1	60.96	38.1	60.96			
Dutflow Weir Depth Dutflow Coefficient - Exponent	cm -	4	4	4	4	4	4	4	4	4	4			
Outflow Coefficient - Intercept lypass Depth	- cm	1	1	1	1	1	1	1	1	1	1			
faximum Inflow	hm3/day													
Maximum Outflow nflow Seepage Rate	hm3/day (cm/d) / cm													
nflow Seepage Control Elev	cm													
Dutflow Seepage Rate	(cm/d) / cm	0.0075	0.0075											
Dutflow Seepage Control Elev Max Outflow Seepage Conc	cm ppb	-46 20	-38 20											
Seepage Recycle to Cell Number Seepage Recycle Fraction		1	2											
Seepage Discharge Fraction														
nitial Water Column Conc nitial P Storage Per Unit Area nitial Water Column Depth	ppb mg/m2 cm	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200			
C0 = Conc at 0 g/m2 P Storage C1 = Conc at 1 g/m2 P storage	ppb	3	3 22	3 22	3 22	3 22	3 22	3 22	3 22	3 22	3 22			
C2 = Conc at Half-Max Uptake	ppb	300	300	300	300	300	300	300	300	300	300			
X = Net Settling Rate at Steady State 21 = Saturated Uptake Depth	m/yr cm	16.8 40	16.8 40	16.8 40	16.8 40	16.8 40	16.8 40	16.8 40	16.8 40	16.8 40	16.8 40			
2 = Lower Penalty Depth 3 = Upper Penalty Depth	cm cm	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200			
		200	2	3		5	6	7	8	9	10	11	12	Owerel
Output Variables Execution Time	Units sec/yr	19.62	20.46	21.31	22.16	22.92	23.77	24.62	25.46	26.31	27.16		12	Overal 27.16
tun Date starting Date for Simulation		10/18/07 05/01/94	10/18/07 05/01/94	10/18/07 05/01/94	10/18/07 05/01/94	10/18/07 05/01/94	10/18/07 05/01/94	10/18/07 05/01/94	10/18/07 05/01/94	10/18/07 05/01/94	10/18/07 05/01/94			10/18/0 05/01/9
tarting Date for Output inding Date	-	05/01/94 04/30/07	05/01/94 04/30/07	05/01/94 04/30/07	05/01/94 04/30/07	05/01/94 04/30/07	05/01/94 04/30/07	05/01/94 04/30/07	05/01/94 04/30/07	05/01/94 04/30/07	05/01/94 04/30/07			05/01/9 04/30/0
Dutput Duration	days	4748	4748	4748	4748	4748	4748	4748	4748	4748	4748			4748
Cell Label Downstream Cell Label		1A 1B	1B Outflow	2A 2B	2B Outflow	3A 3B	3B Outflow	4A 4B	4B Outflow	5A 5B	5B Outflow			Total
Vetwork Simulation Name Simulation Type	:	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta			none Uncerta
Surface Area	km2	3.38	4.94	3.38	4.94	4.31	3.72	6.52	1.86	7.73	2.79			43.58
Mean Rainfall Mean ET	cm/yr cm/yr	127.21 131.28	127.21 131.30	127.21 131.23	127.21 131.30	127.21 131.23	127.21 131.30	127.21 130.99	127.21 131.30	127.21 131.02	127.21 131.30			127.2 131.2
Cell Inflow Volume Cell Inflow Load	hm3/yr kg/yr	35.3 8081.3	35.2 3096.5	35.3 8081.3	35.2 3679.6	34.1 7806.1	34.0 2827.4	35.6 8140.3	35.4 2026.2	44.7 10224.6	44.4 2711.2		150124.5	185.2 42334
Cell Inflow Conc	ppb	229	88	229	104	229	83	229	57	229	61			228.6
Freated Outflow Volume Freated Outflow Load	hm3/yr kg/yr	35.2 3096.5	35.0 945.5	35.2 3679.6	35.0 1114.1	34.0 2827.4	33.8 1074.8	35.4 2026.2	35.3 1227.4	44.4 2711.2	44.3 1504.1		148716.7	183.4 5866
Freated FWM Outflow Conc	ppb	88 102.9	27 37.1	104 124.9	32 47.1	83 104.0	32 47.2	57 76.0	35 50.7	61 80.2	34 49.8			32.0 46.5
Jpper Confidence Limit ower Confidence Limit	ppb ppb	72.8	19.3	83.9	21.3	63.8	21.1	41.8	23.4	44.8	22.8			21.7
Fotal Outflow Volume + Bypass Fotal Outflow Load + Bypass	hm3/yr kg/yr	35.2 3096.5	35.0 945.5	35.2 3679.6	35.0 1114.1	34.0 2827.4	33.8 1074.8	35.4 2026.2	35.3 1227.4	44.4 2711.2	44.3 1504.1			183.4 5865.9
Fotal FWM Outflow Conc Bypass Load	ppb kg/yr	87.9 0	27.0 0	104.5 0	31.8 0	83.2 0	31.8 0	57.3 0	34.8 0	61.0 0	33.9 0			32.0 0.0
Sypass Load	%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%			0.0
Aaximum Inflow Aaximum Outflow	hm3/d hm3/d	0.17 0.17	0.17 0.17	0.17 0.17	0.17 0.17	0.17 0.17	0.17 0.17	0.17 0.18	0.18 0.18	0.22 0.22	0.22 0.22			0.90 0.91
Surface Load Reduction .oad Trapped in Sediments	kg/yr kg/yr	5153 3956	2405 2133	4402 4514	2566 2727	4979 5121	1753 1874	6114 6328	799 860	7513 7767	1207 1298			36468 36579
Verall Load Reduction	%	62% 0.6	69%	54% 0.5	70%	64% 0.5	62%	75%	39% 0.3	73%	45%			86% 80%
ower Confidence Limit Jpper Confidence Limit	%	0.7	0.6 0.7	0.6	0.7	0.7	0.5 0.7	0.8	0.4	0.7 0.8	0.5			91%
aily Geometric Mean Outflow Geo Mean - Composites	ppb ppb	91.1 82.9	22.6 25.6	110.0 97.2	26.8 30.2	84.7 76.8	26.6 30.1	55.5 52.5	29.2 32.6	59.7 56.0	28.4 31.9			#N/A 30.2
Jpper Confidence Limit	ppb	97.7 68.0	35.4 18.2	117.4 77.2	45.0 19.9	96.8 58.3	45.1 19.8	70.2	47.8	74.2	47.1 21.2			44.3 20.2
requency Outflow Conc > 10 ppb	ppb %	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%			100%
requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	% %	100% 100%	92% 0%	100% 100%	100% 0%	100% 100%	100% 0%	100% 54%	100% 0%	100% 62%	100% 0%			100% 100%
req Outflow Volume > 10 ppb	%	100% 115.68	100% 33.33	100% 128.72	100% 39.59	100% 108.26	100% 39.61	100% 76.17	100% 43.65	100% 80.98	100% 42.22			100% 40
I5th Percentile Outflow Conc Mean Biomass P Storage	ppb mg/m2	3607	1369	4143	1744	3692	1587	3025	1451	3129	1462			2618
Storage Increase / Net Removal Net Storage Turnover Rate	% 1/yr	0% 4.2	0% 4.1	0% 4.2	0% 4.1	0% 4.2	0% 4.1	0% 4.2	0% 4.1	0% 4.2	0% 4.1			0% 4.2
Init Area P Load Init Area P Removal	mg/m2-yr mg/m2-yr	2391 1170	627 432	2391 1335	745 552	1810 1188	759 503	1249 971	1088 462	1322 1004	971 465			971 839
fean Water Load	cm/d	2.9	2.0	2.9	2.0	2.2	2.5	1.5	5.2	1.6	4.4			1.2
lax Water Load lean Depth	cm/d cm	5.1 42	3.5 55	5.1 42	3.5 55	3.9 41	4.5 55	2.7 41	9.4 55	2.8 40	7.9 55			2.1 47
linimum Depth Iaximum Depth	cm cm	1.4 51.7	22.8 62.0	1.2 51.7	22.6 62.0	1.2 51.4	23.2 61.9	1.2 51.7	23.7 62.1	1.2 49.9	23.7 61.6			10 56
requency Depth < 10 cm	%	7%	0%	7%	0%	7%	0%	7%	0%	7%	0%			4.2%
low/Width IRT Days	m2/day days	62 14.5	62 28.4	62 14.5	62 28.4	60 19.0	60 22.1	62 27.6	62 10.6	52 25.3	52 12.6			59.3 40.4
lean Velocity eepage Outflow / Total Outflow	cm/sec %	0.17 0%	0.13	0.17 0%	0.13	0.17	0.12	0.18	0.13	0.15	0.11 0%			0.15 0%
elease 1 Outflow Volume	hm3/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.0
telease 2 Outflow Volume 5th Percentile Outflow Volume	hm3/yr hm3/d	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.2	0.00 0.2			0.0 0.8
5th Percentile Outflow Load Simulated / Specified Mean Depth	kg/d %	15.4 #N/A	4.6 #N/A	18.8 #N/A	5.6 #N/A	15.6 #N/A	5.5 #N/A	11.8 #N/A	6.3 #N/A	15.7 #N/A	7.7 #N/A			29.7 #N/A
telease 1 Demand Met	%	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			#N/A
Release 2 Demand Met Dutflow Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A			#N/A #N/A
Range Check - Mean Depth Range Check - Freq Depth < 10 cm	-													0
	-													0
Range Check - Flow/Width														
	-	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%			0

STA-5 With Emergent Vegetation in All Cells

DMSTA2- Inputs & Outpu	its		Project:	STA 5 EIS									del Release: Current Date:	
nput Variable Design Case Name	Units	Value EIS Alt1 SAV	Case Descr	iption:	ude Full Pris	d-out of Com	artment C					(Jurrent Date:	10/
Jesign Case Name nput Series Name Starting Date for Simulation	-	TS_EIS_Alt1 05/01/94	Downstrea	anded to inc am cells cons	idered as SA	d-out of Com V_3; Inflows a	ire C-139 Ba	sin						
Ending Date for Simulation Starting Date for Output	-	04/30/07 05/01/94												
ntegration Steps Per Day Number of Iterations	-	4	Simulation T	ype:	Uncertainty Mean	Analysis Lower CL	Linner Cl		Disgonation					
Number of iterations Dutput Averaging Interval nflow Conc. Scale Eactor	days	365	Output Vari FWM Outflo	ow C (ppb)	14.1	19.0	Upper CL 11.0			e Error Mean		0.0%	0.0%	
Rainfall P Conc	ppb	1 10	GM Outflow Load Reduc	ction %	12.8 94%	17.3 92%	10.0 95%		Iterations &	Convergence		0.0%	0.0% 0.0%	
Atmospheric P Load (Dry) Cell Number>	mg/m2-yr	20	Bypass Loa	id (%)	0.0%		¢	7	Warning/Err	or Messages	10	13 11	12	
Cell Label	-	1A EMG 3	1B	2A EMG_3	2B	5 3A EMG 3	3B	4A EMG 3	4B	5A EMG 3	5B		12	1
egetation Type flow Fraction	» -	0.190896424	SAV_3	0.1908964	SAV_3	0.1843939	SAV_3	0.1922898	SAV_3	0.2415235	SAV_3			
Jownstream Cell Number Surface Area	- km2	2 3.38	4.94	4 3.38	4.94	6 4.31	3.72	8 6.52	1.86	10 7.73	2.79			
fean Width of Flow Path lumber of Tanks in Series	km -	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	2.34 3.0	2.34 3.0			
Inimum Depth for Releases Release 1 Series Name	cm													1
telease 2 Series Name Dutflow Series Name														
lepth Series Name														
Outflow Control Depth Outflow Weir Depth	cm cm	38.1	60.96	38.1	60.96	38.1	60.96	38.1	60.96	38.1	60.96			
Outflow Coefficient - Exponent Outflow Coefficient - Intercept	:	4	4	4	4	4	4	4	4	4	4			
sypass Depth faximum Inflow	cm hm3/day													
Maximum Outflow nflow Seepage Rate	hm3/day (cm/d) / cm													
flow Seepage Control Elev	cm													
nflow Seepage Conc Dutflow Seepage Rate	ppb (cm/d) / cm	0.0075	0.0075											
Outflow Seepage Control Elev Max Outflow Seepage Conc	cm ppb	-46 20	-38 20								1			
Seepage Recycle to Cell Number Seepage Recycle Fraction	1	1	2											
Seepage Discharge Fraction	- ppb	30	30	30	30	30	30	30	30	30	30			
nitial Water Column Colic nitial P Storage Per Unit Area nitial Water Column Depth	mg/m2	500 200	500 200	500 200	500 200	500 200	500 200	500 200	500 200	500 200	500 200			
C0 = Conc at 0 g/m2 P Storage	cm ppb	3	3	3	3	3	3	3	3	3	3			
C1 = Conc at 1 g/m2 P storage C2 = Conc at Half-Max Uptake	ppb ppb	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300			
I = Net Settling Rate at Steady State I = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40			
2 = Lower Penalty Depth 3 = Upper Penalty Depth	cm cm	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200			
Output Variables	Units	1	2	3	4	5	6	7	8	9	10	11	12	0
Execution Time Run Date	sec/yr	104.39 10/18/07	106.39 10/18/07	109.70 10/18/07	113.24 10/18/07	115.93 10/18/07	118.78 10/18/07	122.16 10/18/07	124.39 10/18/07	127.55 10/18/07	133.55 10/18/07			13
starting Date for Simulation		05/01/94	05/01/94 05/01/94	05/01/94	05/01/94 05/01/94	05/01/94	05/01/94 05/01/94	05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94			05
Starting Date for Output Inding Date		04/30/07	04/30/07	04/30/07	04/30/07	04/30/07	04/30/07	04/30/07	04/30/07	04/30/07	04/30/07			04
Dutput Duration Cell Label	days	4748 1A	4748 1B	4748 2A	4748 2B	4748 3A	4748 3B	4748 4A	4748 4B	4748 5A	4748 5B			1
ownstream Cell Label letwork Simulation Name		1B none	Outflow none	2B none	Outflow none	3B none	Outflow none	4B none	Outflow none	5B none	Outflow none			,
Simulation Type Surface Area	- km2	Uncerta 3.38	Uncerta 4.94	Uncerta 3.38	Uncerta 4.94	Uncerta 4.31	Uncerta 3.72	Uncerta 6.52	Uncerta 1.86	Uncerta 7.73	Uncerta 2.79			Ur 4
fean Rainfall fean ET	cm/yr cm/yr	127.21 131.28	127.21 131.30	127.21 131.23	127.21 131.30	127.21 131.23	127.21 131.30	127.21 130.99	127.21 131.30	127.21 131.02	127.21 131.30			1
Cell Inflow Volume	hm3/yr	35.3	35.2	35.3	35.2	34.1	34.0	35.6	35.4	44.7	44.4			1
Cell Inflow Load Cell Inflow Conc	kg/yr ppb	8081.3 229	3096.5 88	8081.3 229	3679.6 104	7806.1 229	2827.4 83	8140.3 229	2026.2 57	10224.6 229	2711.2 61			4
reated Outflow Volume reated Outflow Load	hm3/yr kg/yr	35.2 3096.5	35.0 389.4	35.2 3679.6	35.0 415.3	34.0 2827.4	33.8 434.0	35.4 2026.2	35.3 626.7	44.4 2711.2	44.3 723.9			1
reated FWM Outflow Conc Jpper Confidence Limit	ppb ppb	88 102.9	11 13.8	104 124.9	12 15.1	83 104.0	13 16.9	57 76.0	18 25.3	61 80.2	16 23.0			
ower Confidence Limit Total Outflow Volume + Bypass	ppb hm3/yr	72.8	9.3	83.9	9.8	63.8 34.0	10.3	41.8	13.0 35.3	44.8	12.2			
otal Outflow Load + Bypass otal FWM Outflow Conc	kg/yr	3096.5 87.9	389.4 11.1	3679.6 104.5	415.3 11.9	2827.4 83.2	434.0 12.8	2026.2 57.3	626.7 17.8	2711.2	723.9			2
Sypass Load	ppb kg/yr	0	0	0	0	0	0	0	0	0	0			
ypass Load faximum Inflow	% hm3/d	0% 0.17	0% 0.17	0% 0.17	0% 0.17	0% 0.17	0% 0.17	0% 0.17	0% 0.18	0% 0.22	0% 0.22			ġ
Maximum Outflow Surface Load Reduction	hm3/d kg/yr	0.17 5153	0.17 2872	0.17 4402	0.17 3264	0.17 4979	0.17 2393	0.18 6114	0.18 1399	0.22 7513	0.22 1987			3
oad Trapped in Sediments Overall Load Reduction	kg/yr %	3956 62%	2832 87%	4514 54%	3426 89%	5121 64%	2515 85%	6328 75%	1460 69%	7767 73%	2079 73%			3
ower Confidence Limit Ipper Confidence Limit	%	0.6	0.9	0.5 0.6	0.9	0.5	0.8 0.8	0.7 0.8	0.7 0.7	0.7 0.8	0.7			9
laily Geometric Mean Jutflow Geo Mean - Composites	ppb ppb	91.1 82.9	6.2 10.2	110.0 97.2	6.3 10.8	84.7 76.8	7.0	55.5 52.5	10.9 16.0	59.7 56.0	9.7 14.8			1
Jpper Confidence Limit	ppb	97.7	12.7	117.4	13.8	96.8	15.4	70.2	22.8	74.2	20.8			
ower Confidence Limit requency Outflow Conc > 10 ppb	ppb %	68.0 100%	8.6 62%	77.2 100%	8.9 69%	58.3 100%	9.3 77%	38.0 100%	11.8 92%	40.7 100%	11.1 85%			8
requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	% %	100% 100%	0% 0%	100% 100%	0% 0%	100% 100%	0% 0%	100% 54%	15% 0%	100% 62%	15% 0%			
req Outflow Volume > 10 ppb 5th Percentile Outflow Conc	% ppb	100% 115.68	54% 13.65	100% 128.72	60% 14.97	100% 108.26	66% 16.63	100% 76.17	88% 24.09	100% 80.98	84% 21.99			3
Mean Biomass P Storage Storage Increase / Net Removal	mg/m2 %	3607	570 0%	4143	687 0%	3692	668 0%	3025 0%	773 0%	3129 0%	734 0%			2
let Storage Turnover Rate Init Area P Load	⁷⁶ 1/yr mg/m2-yr	4.2	13.1 627	4.2	13.1 745	4.2	13.1 759	4.2	13.2 1088	4.2	13.2 971			
Init Area P Removal	mg/m2-yr	1170	573	1335	694	1188	675	971	784	1004	744			
Mean Water Load Max Water Load	cm/d cm/d	2.9 5.1	2.0 3.5	2.9 5.1	2.0 3.5	2.2 3.9	2.5 4.5	1.5 2.7	5.2 9.4	1.6 2.8	4.4 7.9			
fean Depth finimum Depth	cm cm	42 1.4	55 22.8	42 1.2	55 22.6	41 1.2	55 23.2	41 1.2	55 23.7	40 1.2	55 23.7			
faximum Depth requency Depth < 10 cm	cm %	51.7 7%	62.0 0%	51.7 7%	62.0 0%	51.4 7%	61.9 0%	51.7 7%	62.1 0%	49.9 7%	61.6 0%			
Regarding Depart of the diff	m2/day days	62 14.5	62 28.4	62 14.5	62 28.4	60 19.0	60 22.1	62 27.6	62 10.6	52 25.3	52 12.6			
fean Velocity	cm/sec	0.17	0.13	0.17	0.13	0.17	0.12	0.18	0.13	0.15	0.11			
eepage Outflow / Total Outflow elease 1 Outflow Volume	hm3/yr	0.00	0.00	0.00	0%	0.00	0.00	0.00	0%	0.00	0.00			
telease 2 Outflow Volume 5th Percentile Outflow Volume	hm3/yr hm3/d	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.1	0.00 0.2	0.00 0.2			
5th Percentile Outflow Load imulated / Specified Mean Depth	kg/d %	15.4 #N/A	1.9 #N/A	18.8 #N/A	2.1 #N/A	15.6 #N/A	2.3 #N/A	11.8 #N/A	3.5 #N/A	15.7 #N/A	4.0 #N/A			1
elease 1 Demand Met elease 2 Demand Met	%	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A			1
Outflow Demand Met Range Check - Mean Depth	%	#N/A	#N/A 0.89	#N/A	#N/A 0.89	#N/A	#N/A 0.89	#N/A	#N/A 0.89	#N/A	#N/A 0.88			
Range Check - Freq Depth < 10 cm	-													
tange Check - Flow/Width tange Check - Inflow Conc	1		0.38		0.38		0.37		0.38		0.32			
tange Check - Outflow Conc Vater Balance Error	- %	0.00%	0.75	0.00%	0.80	0.00%	0.86	0.00%	0.00%	0.00%	0.00%			0
lass Balance Error Varning or Error Messages	%	0.00% Cel# 2 Depth out	0.00%	-0.02%	0.00%	-0.01%	0.00%	-0.01%	0.00%	-0.01%	0.00% 3: 62 vs. 162	374 m2/day	_	-(
		Cel# 2 Flow/Widt Cel# 2 Outflow C	h out of calib. ran	nge for SAV_3:	62 vs. 162 - 374	1 m2/day		Cell# 10 Dept	h out of callb. rai	nge for SAV_3:	_3. 62 vs. 162 · 55 vs. 62 · 87 c V_3: 52 vs. 162	m		
		Cell# 4 Depth out	of calib. range fo	or SAV_3: 55 v	s. 62 - 87 cm			Lever of Piow.			vs. 162	and millionly		
		Cell# 4 Outflow C		range for SAV_3	: 12 vs. 15 - 15									
		Cell#6 Depth out Cell#6 Flow/Widt	h out of calib. ran	nge for SAV_3:	60 vs. 162 - 374	1 m2/day								
		Cell# 6 Outflow C	onc out of calib.	range for SAV_3 or SAV_3: 55 v	: 13 vs. 15 - 15	i3 ppb								1

STA-5 With SAV in the Downstream Cells

STA-6

uto.		Designate	CTA C FIC								Mand	al Dalaasa	07/05/0
Jts		Project:	STA 6 EIS										
Units -	Value EIS Alt1	Case Descrip	tion:										
	TS_EIS_Alt1	Inflows are a	mixture of C-	139 Basin and (C-139 Anne	x (USSO)							
	04/30/07												
-	4	Simulation Typ	De:	Uncertainty An	alysis								
- davs	0 365	Output Variab FWM Outflow	C (ppb)	Mean 12.9	Lower CL 16.9	Upper CL 10.2		Diagnostics H20 Balance	s ce Error Me	an & Max	0.0%	0.0%	
-	1	GM Outflow C	(ppb)	12.4	16.3	9.8		Mass Balar	nce Error M	ean & Max	0.0%	0.0%	
рро mg/m2-yr	20	Bypass Load	(%)	0.0%		5576				jes	8		
	3	2	3	4	5	6	7	8	9	10	11	12	
>	PEW_3 0.0865	PEW_3 0.2301	EMG_3 0.6835	SAV_3		-							
-			4	5.62									
km	0.61	1.31	1.14	2.39									
- cm	3.0	3.0	3.0	3.0									
cm	28.3464	35.3568	38.1	48.8									
- cm	4	4	4	4									
- cm	1	1	1	1									
hm3/day													
(cm/d) / cm													
ppb													
(cm/d) / cm cm													
ppb													
-													
ppb	30	30	30	30									
cm	200	200	200	200									
ppb	3 22	3 22	3 22	3 22									
ppb	300	300	300	300									
cm	40	40	40	40									
cm cm	100 200	100 200	100 200	100 200									
Units	1	2	3	4	5	6	7	8	9	10	11	12	Overall
sec/yr	9.15 10/18/07	9.92 10/18/07	10.69	11.46 10/18/07									11.46
-	05/01/94	05/01/94	05/01/94	05/01/94									05/01/94
-	04/30/07	04/30/07	04/30/07	04/30/07									04/30/07
days	4748 3	4748 5	4748 2	4748 4									4748 Total
	Outflow	Outflow	4	Outflow none									- none
-	Uncerta	Uncerta	Uncerta	Uncerta									Uncerta 11.47
cm/yr	129.55	129.55	129.55	129.55									129.5
cm/yr hm3/yr	6.6	17.5	51.9	51.9									130.7 76.0
kg/yr ppb	921.5 140	2451.2 140	7281.1 140	4779.1 92									10654 140.2
hm3/yr	6.6	17.5	51.9	51.8									75.9
ppb	17	16	92	11									12.9
ppb	12.4	12.2	81.5	9.2									16.9 10.2
hm3/yr kg/yr	6.6 108.5	17.5 282.5	51.9 4779.1	51.8 586.0									75.9 977.1
ppb	16.5	16.2	92.1	11.3									12.9
%	0%	0%	0%	0%									0.0
hm3/d	0.03	0.08	0.23	0.23									0.34
kg/yr kg/yr	813 846	2169 2256	2502 2575	4193 4378									9677 10055
%	88% 0.8	88% 0.8	34% 0.3	88% 0.9									91% 88%
%	0.9	0.9	0.4	0.9									93%
ppb	16.0	15.6	89.9	10.8									#N/A 12.4
ppb	12.0	11.8	79.1	8.8									16.3 9.8
%	100%	100%	100%	62%									92% 8%
%	0%	0%	100%	0%									0% 72%
ppb	20.11	19.54	107.88	13.59									15
%	0%	0%	0%	0%									1487 0%
1/yr mg/m2-yr	929	928	3269	851									7.7 929
mg/m2-yr cm/d	852	854	1156	780									876
cm/d	3.0	3.0	10.5	4.2									3.0
cm	12.3	19.3	23.2	33.8									47 27
cm %	43.2 0%	46.7 0%	62.7 0%	56.1 0%									54 0.0%
m2/day	29	37	125	59									64.3 26.2
cm/sec	0.09	0.10	0.28	0.14									0.15
hm3/yr	0.00	0.00	0.00	0.00									0%
hm3/d	0.0	0.1	0.2	0.2									0.0 0.3
kg/d	0.5	1.2	19.8	2.6									4.2 #N/A
%	#N/A	#N/A	#N/A	#N/A									#N/A #N/A
%	#N/A	#N/A #N/A	#N/A #N/A	#N/A									#N/A
													2
1	0.43	0.53		0.37									3 2
-			0.00%	0.76									1
%	0.00%	0.00%	0.00%	0.00%									0.00%
		th out of calib. rar	ge for PEW_3:	29 vs. 69 - 276 m2/	day								8
	Cell#1 Inflow Co												
	Cell#1 Inflow C Cell#2 FlowWi Cell#2 Inflow C	th out of calib. rar	ige for PEW_3: 1 inge for PEW_3:	37 vs. 69 - 276 m2/ 140 vs. 8 - 110 ppt	day								
		Units Value - 158.41 - 158.5.41 - 0.0007	Value Case Descrip EIS Att 050194 STA-6 3 flow att 050194 - EIS Att 050194 STA-6 3 flow att 050194 - 0.00017 STA-6 3 flow att 000174 - 0.000174 Other 000174 - 0.000174 Other 0.000174 - 0.000174 Other 0.000174 Other 0.000174 - - - Other 0.000174 Other 0.000174 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Units Value Case Description: - ESR Att 060194 STA-6.3 flow-ways 1000s are a mixture of C- 000,004 - 0.0000 Different are mixture of C- 000,004 days 1 GM Control are bits 0.0000 Different are mixture of C- 0000 days 3 2 2 - - 3 2 2 - - 3 2 2 - - 3 3 3 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Units Value Case Description: - TSA-5 3100x-wags TSA-5 3100x-wags - 000104 TSA-5 3100x-wags Uniterate and Mute of C-139 Basin Advama Mute Advamute Advama Mute Advamute Advamute	Units Value Case Description: - TSS Att STA6 3 flow-ways - - 050104 - - - - 0 - - - - - 0 - <	Inits Value Case Description TS.B4 3 Browways TS.H4 3 Browways TS.H4 3 Browways Initial and C-139 Aeeee (USSO) Description Description Initial and C-139 Aeeee (USSO) Description Description Description Initial and C-139 Aeeee (USSO) Description Description Description Description Initial and C-139 Aeeee (USSO) Description Description Description Description Description Initial and C-139 Aeeee (USSO) Description Description Description Description Description Description Initial and C-139 Aeeee (USSO) Description Description Description Description Description Description Initial and C-139 Aeeee (USSO) Description Description Description Description Description Description Description Initial and C-139 Aeeee Description Description Description Description Description Initial and C-139 Aeeee Description Description Description Description	Units Vetw Case Description: - FES AIT (MAS 3000* (MAS 0007) 	Value Des Description:	Note Cale beside 1 TS 65, 10 1 TS 70, 10 TS 70, 10 <td></td> <td></td> <td>Unit with the set of the level of t</td>			Unit with the set of the level of t

