South Florida Water Management District

Florida Forever Work Plan

January 1, 2003

Contributors

Christine Carlson
Dolores Cwalino
Fred Davis
Jude Denick
Juan Diaz-Carreras
Andy Edwards
Paul Ellis
William Hefferich
Sally Kennedy
Phil Kochan
Tom McCracken
Kim O’Dell
Steve Reel
Bonnie Rose
Dawn Rose
Wanda Caffie-Simpson
Andrea Stringer
EXECUTIVE SUMMARY

In 1999, the Florida Forever program was created, which authorized the issuance of bonds in an amount not to exceed $3 billion for acquisitions of land and water areas. This revenue is to be used for the purposes of restoration, conservation, recreation, water resource development, historical preservation and capital improvements to the acquired land and water. The program is intended to accomplish environmental restoration, enhance public access and recreational enjoyment, promote long-term management goals and facilitate water resource development.

The water management districts create a five-year plan that identifies projects meeting specific criteria for the Florida Forever program. Each district integrates its surface water improvement and management plans, Save Our Rivers (SOR) land acquisition lists, stormwater management projects, proposed water resource development and water body restoration projects and other activities that support the goals of Florida Forever.

Thirty-five percent of the Florida Forever bond proceeds are distributed annually to the Florida Department of Environmental Protection (FDEP) for land acquisition and capital expenditures in order to implement the priority lists submitted by the water management districts. A minimum of 50 percent of the funding is to be used for land acquisition. The South Florida Water Management District’s annual net share is $33,075,000, of which $25 million will be used for Comprehensive Everglades Restoration Plan (CERP) projects, and $8 million will be used for Kissimmee Restoration projects. Including Florida Forever funding, a total of $195.5 million was spent in fiscal year (FY) 2002 to acquire 26,500 acres of land.

The Florida Forever Work Plan lists and describes the 20 projects eligible for Florida Forever funding in the FY 2003 – 2007 period, as well as nine projects for which the South Florida Water Management District expects to seek reimbursement through Florida Forever in FY 2003. The plan is arranged in sections that correspond to the CERP regions as described in the CERP Guidance Memorandum 012.00.

In addition to the regional project descriptions, the Florida Forever Work Plan provides system-wide and regional descriptions of land use, water quality, water management practices, physical conditions and other characteristics as required by statutes. The work plan includes a report on real estate acquisition activity performed in FY 2002 [Appendix C]. This plan also provides performance measures [Appendix A], CERP Project Management Plans (PMPs) for projects eligible for Florida Forever funding [Appendix B] and an implementation schedule for the CERP [Appendix D].

The majority of this document is being provided exclusively on CD-ROM. This allows for a wider distribution than would be possible with traditional printed copies. Individuals who require paper copies may print them directly from the CD or provide the CD to any duplication service for production.
TABLE OF CONTENTS

Executive Summary

List of Tables

List of Figures

List of Abbreviations and Acronyms

Chapter 1: Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legislation (Florida Forever and Comprehensive Everglades Restoration Plan)</td>
<td>1</td>
</tr>
<tr>
<td>Florida Forever Program</td>
<td>1</td>
</tr>
<tr>
<td>The Florida Forever Act</td>
<td>1</td>
</tr>
<tr>
<td>Save Our Everglades (SOE) Trust Fund</td>
<td>3</td>
</tr>
<tr>
<td>Comprehensive Everglades Restoration Plan (CERP)</td>
<td>4</td>
</tr>
<tr>
<td>Florida Forever Water Management District Work Plan</td>
<td>4</td>
</tr>
<tr>
<td>Florida Forever Performance Measures</td>
<td>9</td>
</tr>
<tr>
<td>Project Rankings, Schedule and Resources</td>
<td>10</td>
</tr>
<tr>
<td>Funding and Manpower Resources</td>
<td>10</td>
</tr>
<tr>
<td>Implementation Schedule</td>
<td>10</td>
</tr>
</tbody>
</table>

Chapter 2: Regional Study Area

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future without Plan Condition - Physical Facilities and Operations - the Central and Southern Florida Flood Control Project (Project Modifications)</td>
<td>13</td>
</tr>
<tr>
<td>Water Quality Problems and Opportunities - Regional Overview</td>
<td>13</td>
</tr>
<tr>
<td>Water Quality Problems and Opportunities - Mercury</td>
<td>15</td>
</tr>
<tr>
<td>Land Use</td>
<td>16</td>
</tr>
<tr>
<td>Study Purpose</td>
<td>17</td>
</tr>
<tr>
<td>Study Scope</td>
<td>17</td>
</tr>
<tr>
<td>Other Studies</td>
<td>18</td>
</tr>
<tr>
<td>Permits and Authorizations</td>
<td>19</td>
</tr>
<tr>
<td>Interim Land Management</td>
<td>19</td>
</tr>
</tbody>
</table>

Chapter 3: Kissimmee Region

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Conditions - Kissimmee Region</td>
<td>21</td>
</tr>
</tbody>
</table>
Chapter 4: Lake Okeechobee Watershed Region

Physical Conditions - Lake Okeechobee Watershed Region

Existing Conditions - Lake Okeechobee Water Management

Water Quality

Future without Plan Condition - Water Quality - Lake Okeechobee

Future without Plan Condition - Physical Facilities and Operations - Manatee Protection

Future without Plan Condition - Physical Facilities and Operations - Lake Okeechobee Regulation Schedule

Future without Plan Condition - Physical Facilities and Operations - Critical Restoration Projects

Lake Okeechobee Water Retention / Phosphorus Removal

Water Quality Problems and Opportunities - Lake Okeechobee

Land Use - Lake Okeechobee Region

Agriculture

Urban

Eligible Comprehensive Everglades Restoration Plan (CERP) Projects

Lake Okeechobee Watershed Project

Chapter 5: Lower West Coast Region

Physical Conditions - Lower West Coast Region

Existing Conditions - Lower West Coast Region Water Management

Problems Related to Water Management

Future without Plan Condition - Physical Facilities and Operations - Critical Restoration Projects

Lake Trafford Restoration

Southern CREW / Imperial River Flowway

Western Tamiami Trail Culverts

Future without Plan Condition - Water Quality - Lower West Coast Region
Water Quality Problems and Opportunities - Lower West Coast Florida Region ... 44

Land Use - Lower West Coast Region ... 45
Caloosahatchee River .. 45
Agriculture .. 45
Big Cypress National Preserve (BCNP) ... 46
Urban Areas .. 47
Fakahatchee Strand State Preserve ... 47
Southern Golden Gate Estates .. 48
Water Conservation Areas (WCAs) ... 48
Everglades National Park (ENP) .. 48
American Indian Reservations .. 48
Agriculture .. 48
Eligible Comprehensive Everglades Restoration Plan (CERP) Projects 49
C-43 Basin Storage Reservoir .. 49
Caloosahatchee Backpumping with Stormwater Treatment Area 49
Southern Golden Gates Estates Hydrologic Restoration 50
Big Cypress / L-28 Interceptor Modifications 50

Chapter 6: Upper East Coast Region ... 51

Physical Conditions - Upper East Coast Region 51
Existing Conditions - Upper East Coast Water Management 52
Surface Water Resources .. 54
Surface Water Inflow and Outflow ... 55
Groundwater Resources .. 56

Future without Plan Condition - Physical Facilities and Operations - Critical
Restoration Projects .. 56
Ten Mile Creek Water Preserve Area ... 56

Future without Plan Condition - Water Quality - Upper East Coast 56
Water Quality Problems and Opportunities - Upper East Coast 57

Land Use .. 58
Upper East Coast .. 58
Agriculture - Upper East Coast .. 58

Eligible Comprehensive Everglades Restoration Plan (CERP) Projects 59
Indian River Lagoon (IRL) .. 59

Chapter 7: Everglades Agricultural Area ... 61

Physical Conditions - Everglades Agricultural Area (EAA) 61
Existing Conditions - Everglades Agricultural Area (EAA) Water Management .. 62
Florida Forever Work Plan

Chapter 8: Everglades, Florida Bay & Keys Region

Physical Conditions - Everglades, Florida Bay & Keys Regions
- Water Conservation Area 1 (WCA-1) .. 73
- Water Conservation Area 2 (WCA-2) .. 73
- Water Conservation Area 3 (WCA-3) .. 74

Existing Conditions - Water Conservation Areas (WCAs) Water Management .. 74

Existing Conditions - Everglades National Park and Florida Bay Water Management .. 77
- Internal Project Structures .. 77
- External Project Inflows ... 78
- Project Structures Controlling Inflow .. 78

Existing Conditions - Florida Keys Water Management .. 78

Future without Plan Condition - Water Quality - Natural Areas .. 78

Future without Plan Condition - Water Quality - Florida Bay .. 79

Future without Plan Condition - Water Quality - Florida Keys .. 80

Future without Plan Condition - Physical Facilities and Operations - Water Conservation Areas (WCAs) and Everglades National Park Rainfall-Based Rainfall Water Delivery Plans .. 80

Future without Plan Condition - Physical Facilities and Operations - Emergency Interim Plan .. 80

Water Quality Problems and Opportunities - Natural Areas .. 81

Water Quality Problems and Opportunities - Florida Bay .. 81

Water Quality Problems and Opportunities - Florida Keys .. 82
Chapter 9: Water Preserve Areas, Miami-Dade County and North Palm Beach County Regions 93

Physical Conditions - Water Preserve Areas, Miami-Dade County and North Palm Beach County Regions 93

Existing Conditions - Water Preserve Areas, Miami-Dade County and North Palm Beach County .. 95

Future without Plan Condition - Water Quality - Water Preserve Areas, Miami-Dade County and North Palm Beach County 97

Future without Plan Condition - Physical Facilities and Operations - Projects ... 97

C-51 ... 97

Northwest Dade Lake Belt Area .. 98

C-111 Project ... 98

Modified Water Deliveries to Everglades National Park 98

East Cape and Homestead Canals .. 99

Interim Plan for Lower East Coast Regional Water Supply 99

Wellfield Expansion in Service Areas 1 and 2 100

Northeastern Broward Secondary Canal Recharge Network 100

Miami-Dade County Utility Aquifer Storage and Recovery (ASR) 100

Selected Elements of L-8 Project .. 100
Minimum Flows and Levels (MFLs) .. 101

Future without Plan Condition - Physical Facilities and Operations -
Critical Restoration Projects .. 101
 C-4 Water Control Structure ... 101
 Western C-11 Water Quality Improvement 101

Water Quality Problems and Opportunities 102

Land Use - Water Preserve Areas, Miami-Dade County and North Palm
 Beach County ... 104
 Agriculture ... 104
 Urban .. 105
 Increased Pressure on Open Land 106

Eligible Comprehensive Everglades Restoration Plan (CERP) Projects 106
 North Palm Beach County Project - Part 1 106
 Acme Basin B Discharge .. 107
 Strazzulla Wetlands .. 107
 Palm Beach County Agricultural Reserve Reservoir - Part 1 107
 Site 1 Impoundment ... 107
 Broward County WPA .. 108
 Eastern C-4 Structure ... 108
 WPA Conveyance .. 108
 Broward County Secondary Canal System 108
 Wastewater Reuse Technology Pilot Project 109
 Biscayne Bay Coastal Wetlands 109
 Bird Drive Recharge Area .. 109

References .. 111

Appendix A: WMD Florida Forever Goals and Performance Measures A-1

Appendix B: Current Florida Forever Eligible Projects B-1

Appendix C: Land Acquisition and Management C-1

Appendix D: Implementation Schedule D-1
LIST OF TABLES

Table 1. Estimated Five-Year SFWMD Real Estate Expenditures for Eligible CERP Projects...7
Table 2. Five-Year Florida Forever Water Management District Work Plan Expenditures Schedule...8
Table B-1. Kissimmee Watershed Water Demands. ...B-6
Table B-2. Acreage and Percentage of Land Use by County Area. ..B-7
Table B-3. Permits in the Kissimmee Watershed. ...B-8
Table B-4. Kissimmee Watershed Related Water Management Planning Efforts. ..B-9
Table B-5. Kissimmee River Restoration Approximate Real Estate Acquisition Information. ...B-16
Table C-1. Acquisition Activity Report (Fiscal Year 2002). ..C-5
Table C-2. Funding and Staffing by Project (Fiscal Year 2002). ...C-21
Table C-3. Save Our Rivers Management Status. ...C-22
LIST OF FIGURES

Figure 1. The Central and Southern Florida Flood Control Project Area. 12
Figure 2. Kissimmee Region. ... 21
Figure 3. Lake Okeechobee Watershed Region. 29
Figure 4. Lower West Coast Region .. 39
Figure 5. Upper East Coast Region. .. 51
Figure 6. Everglades Agricultural Area (EAA). 61
Figure 7. Everglades, Florida Bay and Keys Region. 71
Figure 8. Water Preserve Areas, Miami-Dade County and North Palm Beach County Regions ... 94
Figure B-1. Kissimmee Location Map. .. B-4
Figure B-2. Kissimmee River System. .. B-5
Figure B-3. Kissimmee River Restoration Project Schedule. B-15
Figure C-1. Upper Lakes Land Management Region. C-10
Figure C-2. Kissimmee/Okeechobee Land Management Region. C-12
Figure C-3. East Coast Land Management Region. C-15
Figure C-4. Everglades Land Management Region. C-17
Figure C-5. West Coast Land Management Region. C-19
Figure D-1. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan (Page 1). .. D-3
LIST OF ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac-ft</td>
<td>acre-feet</td>
</tr>
<tr>
<td>ARC</td>
<td>Acquisition and Restoration Council</td>
</tr>
<tr>
<td>ASR</td>
<td>Aquifer Storage and Recovery</td>
</tr>
<tr>
<td>BCNP</td>
<td>Big Cypress National Preserve</td>
</tr>
<tr>
<td>BMPs</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BOD</td>
<td>biochemical oxygen demand</td>
</tr>
<tr>
<td>BOR</td>
<td>Basis of Review</td>
</tr>
<tr>
<td>C&SF Project</td>
<td>Central and Southern Florida Flood Control Project</td>
</tr>
<tr>
<td>CARL</td>
<td>Conservation and Recreation Lands</td>
</tr>
<tr>
<td>CERP</td>
<td>Comprehensive Everglades Restoration Plan</td>
</tr>
<tr>
<td>cfs</td>
<td>cub feet per second</td>
</tr>
<tr>
<td>CREW</td>
<td>Corkscrew Regional Ecosystem Watershed</td>
</tr>
<tr>
<td>CS</td>
<td>Committee Substitute</td>
</tr>
<tr>
<td>CS/CS</td>
<td>Committee Substitute for Committee Substitute</td>
</tr>
<tr>
<td>CUP</td>
<td>Consumptive Use Permit</td>
</tr>
<tr>
<td>CWA District</td>
<td>South Florida Water Management District</td>
</tr>
<tr>
<td>DOF</td>
<td>Division on Forestry</td>
</tr>
<tr>
<td>EAA</td>
<td>Everglades Agricultural Area</td>
</tr>
<tr>
<td>ECB</td>
<td>East Coast Buffer</td>
</tr>
<tr>
<td>EEL</td>
<td>Environmentally Endangered Lands</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EOC</td>
<td>Emergency Operations Center</td>
</tr>
<tr>
<td>ENP</td>
<td>Everglades National Park</td>
</tr>
<tr>
<td>ERP</td>
<td>Environmental Resource Permit</td>
</tr>
<tr>
<td>F.A.C.</td>
<td>Florida Administrative Code</td>
</tr>
<tr>
<td>FAS</td>
<td>Floridan Aquifer System</td>
</tr>
<tr>
<td>FCD</td>
<td>Central and Southern Florida Flood Control District</td>
</tr>
<tr>
<td>FDACS</td>
<td>Florida Department of Agriculture and Consumer Services</td>
</tr>
<tr>
<td>FDCA</td>
<td>Florida Department of Community Affairs</td>
</tr>
<tr>
<td>FDEP</td>
<td>Florida Department of Environmental Protection</td>
</tr>
<tr>
<td>FDOH</td>
<td>Florida Department of Health</td>
</tr>
</tbody>
</table>
FDOT Florida Department of Transportation
FEMA Federal Emergency Management Agency
FFA Florida Forever Act
FFAC Florida Forever Advisory Council
FGFWFC Florida Game and Freshwater Fish Commission
FGS Florida Geological Survey
FPFDD Fort Pierce Farms Drainage District
F.S. Florida Statutes
FWC Florida Fish and Wildlife Conservation Commission
FY Fiscal Year
GCSSF Governor’s Commission for a Sustainable South Florida
GIS Geographic Information System
gpd gallons per day
gpm gallons per minute
IAP Interim Action Plan
IAS Intermediate Aquifer System
IFAS Institute of Food and Agricultural Sciences
IRL Indian River Lagoon
KCOL Kissimmee River Chain of Lake
KICCO Kissimmee Island Cattle Company
KRR Kissimmee River Restoration
LFA Lower Floridan Aquifer
LMD Land Management Department
MCL Maximum Contaminant Level
MFLs Minimum Flows and Levels
mg/L milligrams per liter
mgd million gallons per day
mgy million gallons per year
MOA Memorandum of Agreement
MOU Memorandum of Understanding
MPMP Master Program Management Plan
MS4 Municipal Separate Sewer System
NGVD National Geodetic Vertical Datum
NPDES National Pollution Discharge Elimination System
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPL</td>
<td>National Priorities List</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NSLRDD</td>
<td>North St. Lucie River Drainage District</td>
</tr>
<tr>
<td>NWI</td>
<td>National Wetland Inventory</td>
</tr>
<tr>
<td>NWR</td>
<td>National Wildlife Refuge</td>
</tr>
<tr>
<td>O&M</td>
<td>Operations and Maintenance</td>
</tr>
<tr>
<td>ORV</td>
<td>off-road vehicle</td>
</tr>
<tr>
<td>P-2000</td>
<td>Preservation 2000</td>
</tr>
<tr>
<td>PBC</td>
<td>Palm Beach County</td>
</tr>
<tr>
<td>PCA</td>
<td>Project Cost Agreement</td>
</tr>
<tr>
<td>P.L.</td>
<td>Public Law</td>
</tr>
<tr>
<td>PLRG</td>
<td>Pollution Loading Reduction Goals</td>
</tr>
<tr>
<td>PWS</td>
<td>Public Water Supply</td>
</tr>
<tr>
<td>RAA</td>
<td>Restricted Allocation Area</td>
</tr>
<tr>
<td>Restudy</td>
<td>Central and Southern Florida Flood Control Project Comprehensive Review Study</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse Osmosis</td>
</tr>
<tr>
<td>RTA</td>
<td>Reduced Threshold Areas</td>
</tr>
<tr>
<td>SAS</td>
<td>Surficial Aquifer System</td>
</tr>
<tr>
<td>SB</td>
<td>Senate Bill</td>
</tr>
<tr>
<td>SCG</td>
<td>Sugarcane Growers</td>
</tr>
<tr>
<td>SDWA</td>
<td>Safe Drinking Water Act</td>
</tr>
<tr>
<td>SFRPC</td>
<td>South Florida Regional Planning Council</td>
</tr>
<tr>
<td>SFWMD</td>
<td>South Florida Water Management District</td>
</tr>
<tr>
<td>SFWMM</td>
<td>South Florida Water Management Model</td>
</tr>
<tr>
<td>SJRWMD</td>
<td>St. Johns River Water Management District</td>
</tr>
<tr>
<td>SLE</td>
<td>St. Lucie Estuary</td>
</tr>
<tr>
<td>SOE</td>
<td>Save Our Everglades</td>
</tr>
<tr>
<td>SOR</td>
<td>Save Our Rivers</td>
</tr>
<tr>
<td>SOW</td>
<td>Statement of Work</td>
</tr>
<tr>
<td>SPF</td>
<td>Standard Project Flood</td>
</tr>
<tr>
<td>SR</td>
<td>State Road</td>
</tr>
<tr>
<td>STA</td>
<td>Stormwater Treatment Area</td>
</tr>
<tr>
<td>SWCD</td>
<td>Soil and Water Conservation District</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SWIM</td>
<td>Surface Water Improvement Management</td>
</tr>
<tr>
<td>TCRPC</td>
<td>Treasure Coast Regional Planning Council</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TIITF</td>
<td>Trustees of the Internal Improvement Trust Fund</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>UDB</td>
<td>Urban Development Boundary</td>
</tr>
<tr>
<td>UFA</td>
<td>Upper Floridan Aquifer</td>
</tr>
<tr>
<td>UIC</td>
<td>Underground Injection Control</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>USACE</td>
<td>United States Army Corps of Engineers</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>USDOI</td>
<td>United States Department of Interior</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>USFWS</td>
<td>United States Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>WCA</td>
<td>Water Conservation Area</td>
</tr>
<tr>
<td>WHPA</td>
<td>Wellhead Protection Area</td>
</tr>
<tr>
<td>WMLTF</td>
<td>Water Management Lands Trust Fund</td>
</tr>
<tr>
<td>WPA</td>
<td>Water Preserve/Management Area</td>
</tr>
<tr>
<td>WQC</td>
<td>Water Quality Certification</td>
</tr>
<tr>
<td>WRCA</td>
<td>Water Resource Caution Area</td>
</tr>
<tr>
<td>WRDA</td>
<td>Water Resources Development Act</td>
</tr>
<tr>
<td>WSE</td>
<td>water supply and environmental</td>
</tr>
</tbody>
</table>
Chapter 1
INTRODUCTION

LEGISLATION (FLORIDA FOREVER AND COMPREHENSIVE EVERGLADES RESTORATION PLAN)

Florida Forever Program

In 1999, the Florida Forever program was created, which authorized the issuance of bonds in an amount not to exceed $3 billion for acquisitions of land and water areas. This revenue is to be used for the purposes of restoration, conservation, recreation, water resource development, historical preservation and capital improvements to such land and water areas. This program is intended to accomplish environmental restoration, enhance public access and recreational enjoyment, promote long-term management goals and facilitate water resource development.

In addition, the legislation sets forth the criteria for the water management districts to evaluate and recommend projects and financial assistance funding programs to local governments. The provision also provides rulemaking authority to the Florida Department of Environmental Protection (FDEP) and the water management districts for implementation of the Florida Forever Act.

The Florida Forever Act

The Florida Forever Act was created in Section (s.) 259.105, Florida Statutes (F.S.). The Act provides that bond proceeds are to be distributed annually as follows:

- 35 percent ($105 million) to the FDEP for land acquisition and capital expenditures in order to implement the priority lists submitted by the water management districts. A minimum of 50 percent of these funds shall be used for the land acquisitions.

- 35 percent ($105 million) to the FDEP for land acquisition and capital expenditures pursuant to this section. Of these proceeds, a priority is to be given to acquisitions that achieve a combination of conservation goals including protecting Florida’s water resources and natural groundwater recharge. Capital expenditures are not to exceed 10 percent of these funds.

- 22 percent ($72 million) to the Florida Department of Community Affairs (FDCA), to provide grants to local governments through the Florida Communities Trust. From these funds, 8 percent are to be transferred annually to the Land Acquisition Trust Fund for grants awarded under the Florida Recreation Development Assistance Program in s. 375.075, F.S.
• 1.5 percent ($4.5 million) to each of the following: FDEP for the purchase of inholdings and additions to state parks under the jurisdiction of the Division of Recreation and Parks; the Florida Department of Agriculture and Consumer Services (FDACS) Division of Forestry (DOF) to fund acquisitions and inholdings and additions pursuant to this section, along with reforestation plans or sustainable forestry management; the Florida Fish and Wildlife Conservation Commission (FWC) to fund acquisitions and inholdings and additions to land to further the conservation of fish and wildlife; the Florida Greenways and Trails Program to acquire greenways and trails, including railroad rights-of-way and the Florida National Scenic Trail.

All lands acquired pursuant to this section are to be used for “multiple-use” purposes. “Multiple-use” includes outdoor recreational activities pursuant to s. 253.034 and s. 259.032(9)(b), F.S., water resource development projects and sustainable forestry management. Water resource or water supply projects may be allowed only if the following specified conditions are met: minimum flows and levels (MFLs) have been established for those waters, which may incur significant harm to water resources, the project complies with permitting requirements and the project is consistent with the regional water supply plan. The entity which vests title in the lands may designate the lands as single use.

Funding under the two 35 percent provisions mentioned above, is contingent upon the project contributing to the achievement of certain specified goals. Out of the first 35 percent ($105 million) funding provision, the Secretary of FDEP is to ensure that each water management district receives the following percentage of funds: 35 percent ($36.75 million) to the South Florida Water Management District (SFWMD or District); 25 percent to the Southwest Florida Water Management District; 25 percent to the St. John’s River Water Management District; 7.5 percent to the Suwannee River Water Management District; and 7.5 percent to the Northwest Florida Water Management District. An increased priority will be given to such projects that have secured a cost-sharing agreement allocating for the cleanup of point and nonpoint sources of pollution.

According to s. 259.105(3) of the Florida Forever Act, the amount is reduced by the costs of issuing and funding reserve accounts and other expenses associated with bonds. The proceeds of the bonds are to be deposited into the Florida Forever Trust Fund. Based on historical patterns associated with the Preservation 2000 (P2000) Program, costs are estimated to be approximately 10 percent.

Under the second 35 percent funding provision mentioned above, the Acquisition Restoration Council (ARC) accepted applications for eligible project proposals beginning July 1, 2000. Project applications are to contain a minimum of two numeric performance measures that relate directly to overall goals and proof that owners within the acquisition area have been notified of their inclusion in the project. ARC was allowed to use existing rules adopted by the Board of Trustees of the Internal Improvement Trust Fund (TIITF), until amendments to those rules are developed to competitively evaluate, select and rank
projects for Florida Forever funds pursuant to s. 259.105(3)(b). In developing or amending the rules, the council is to give weight to the criteria included in s. 259.105(10). The TIITF are to review the recommendations and adopt rules necessary for the administration of the process. ARC is to review that year’s approved project lists and by the first board meeting in May, the council is to submit the lists to the TIITF. ARC is also required to submit to the TIITF, with its project list, a report containing certain specified information regarding each project listed.

The TIITF or water management district may authorize the granting of a lease, easement or license for the use of certain lands. Particular uses are to be reviewed by the appropriate board and shall be compatible with resource values and management objectives for the land.

The Florida Forever Act allows the TIITF to allow lands identified or acquired under the program to be managed by a private entity in accordance with a contractual arrangement with the acquiring agency. Funding for these contracts may only originate from the documentary stamp tax revenues deposited into the Conservation and Recreation Lands (CARL) Trust Fund and the Water Management District Lands Trust Fund.

Save Our Everglades (SOE) Trust Fund

The Save Our Everglades (SOE) Trust Fund is managed by FDEP pursuant to s. 373.472. Funds in the trust fund, which serves as a repository for state, local and federal project contributions, is to be expended to finance the implementation of the comprehensive plan, as defined in s. 373.470(2)(a). For each of the nine consecutive years beginning with fiscal year 2001-2002, $100 million of state funds are to be deposited into the trust fund ($25 million of which is committed from the Florida Forever program). The Comprehensive Everglades Restoration Plan (CERP) annual report, submitted jointly by the District and FDEP, describes the funding, expenditures and implementation status of the comprehensive plan.

According to the Everglades Restoration Investment Act (s. 373.470(5)(b)), for each year of the two consecutive years beginning with fiscal year 2000-2001, FDEP is to deposit $25 million of the funds allocated to the District by FDEP for the purpose of funding Florida Forever projects (s. 259.105(11)) into the SOE Trust Fund.

The Secretary of FDEP is to release monies within thirty days after receipt of a resolution adopted by the District’s governing board, which identifies and justifies preacquisition costs necessary for the purchase of any lands listed in the District’s 5-year workplan. All funds not used for the purposes in the resolution are to be returned to FDEP. Similarly, the Secretary of FDEP is to release acquisition monies to the District after receipt of a resolution adopted by the governing board.
Comprehensive Everglades Restoration Plan (CERP)

The Central and Southern Florida (C&SF) Project was authorized by Congress in 1948 and modified by subsequent acts to provide flood control, water supply, prevention of saltwater intrusion, and protection of fish and wildlife resources. The design of the project was based on forecasts that significantly underestimated the intensity of land uses and future population growth in Central and South Florida. The demands on the system’s flood protection and water supply capabilities are now much greater than initially anticipated. In addition, South Florida’s natural systems have been degraded by the intensity of land use and water management practices.

In 1994, a multiagency, multidisciplinary team began to reexamine and determine the feasibility of modifying the C&SF Project to restore the Everglades and the South Florida ecosystem, while providing for the other water-related needs of the region, such as urban and agricultural water supply and flood protection. This process was referred to as the Restudy. In 1999, a comprehensive plan to meet these goals was laid out in the Central and Southern Florida Project Comprehensive Review Study, Final Integrated Feasibility Report and Programmatic Environmental Impact Statement (USACE and SFWMD, 1999). The plan was approved with the signing of the Water Resources Development Act of 2000 (WRDA 2000) (Public Law 106-541). WRDA 2000 recognized the comprehensive plan, now referred to as the Comprehensive Everglades Restoration Plan (CERP), as the framework for modifications to the C&SF Project, and requires that implementation be integrated with existing federal and state activities in accordance with WRDA 1996 (Public Law 104-303).

The goals of the CERP are to restore the quantity, quality, timing and distribution of water to the Everglades ecosystem. The CERP includes over 50 projects that involve either structural or operational changes to modify the C&SF Project to achieve these goals. Many projects must be implemented before the hydrologic improvements necessary for ecosystem restoration can begin. The timing and distribution of water by the C&SF Project can be altered only after water storage capacity has been increased, along with any necessary water quality improvements. As each of the components to improve the timing and distribution of water are completed, it is expected that the ecosystem will begin to recover.

It is predicted that native flora and fauna, including threatened and endangered species, will rebound as a result of the restoration of hydrologic conditions. It is also predicted that the frequency of water restrictions for agricultural and urban users will be significantly reduced. The ability to sustain the region’s natural resources, economy and quality of life depends, to a great extent, on the success of the efforts to enhance, protect and better manage the region’s water resources.

Florida Forever Water Management District Work Plan

The requirements for developing the Florida Forever Water Management District Work Plan are contained in s. 373.199, F.S. This provision states that in order to further
the goals of the Florida Forever Act, the water management districts are to create a five-year plan, which identifies projects that meet certain criteria.

In developing their project lists, each water management district is to integrate its surface water improvement and management plans, Save Our Rivers (SOR) land acquisition lists, stormwater management projects, proposed water resource development projects, proposed water body restoration projects and other properties or activities that would assist in meeting the goals of Florida Forever.

The districts’ lists are to include, where applicable, specific information for each project, according to s. 373.199(4),(5), F.S., including: a description of the water body system; an identification of all governmental agencies having jurisdiction over the water body; a description of the land uses within the project area’s drainage basin; a description of strategies for restoring the water body; a listing and synopsis of studies; a description of measures needed to maintain the water body once it has been restored; a schedule for restoration; an estimate of the funding needed to carry out the project; numeric performance measures; a discussion of permitting and regulatory issues; an identification of the proposed public access for projects with land acquisition components; an identification of lands requiring a full fee simple interest and an identification of lands necessary to protect or recharge groundwater. The lists are also to indicate the relative significance of each project, the schedule of activities, the sums of monies earmarked and rankings as much as possible over a five-year planning period.

The initial plan was submitted on June 1, 2001 to the President of the Senate, Speaker of the House of Representatives and Secretary of the FDEP. The initial five-year work plan and any subsequent modifications are to be adopted by each water management district after a public hearing, in accordance with s. 373.139(3), F.S. Each district is to provide at least fourteen days advance notice of the hearing date and is to separately notify each county commission, within which, a proposed work plan project, project modification or addition is located of the hearing date.

In the first plan update, due by January 1, 2002, and each year thereafter, the district is to submit a report of acquisitions completed during the year together with modifications or additions to its five-year work plan. The plans are to also include the status of funding, staffing and resource management for every project funded under the Florida Preservation 2000 Act, the Florida Forever Act and the Water Management Lands Trust Fund (s. 259.101, 259.105 and s. 373.59, F.S.), for which the district is responsible. Also included in the report is a description of land management activity for each project owned by the district. These reporting requirements are included in Appendix C. The Secretary is to submit this report along with the ARC project list as required under s. 259.105, F.S.

The District's Florida Forever Work Plan is centered on the ten volume, 4,033 page Comprehensive Review Study, as approximately 75 percent of the Florida Forever funding the District will receive in order to accomplish its priority list, has been allocated by the Everglades Restoration Investment Act to implement the Comprehensive Plan. The work plan document is arranged in sections providing detail on each of the regions that
comprise the nearly 18,000 square miles of the study area. The CERP Guidance Memorandum 012.00 defines the following set of regions:

1. Kissimmee River Region
2. Lake Okeechobee Region
3. Lower West Coast Region
4. Upper East Coast Region
5. Everglades Agricultural Area (EAA) Region
6. Everglades, Florida Bay and Keys Region
7. Water Preserve Areas Region
8. North Palm Beach County Region
9. Miami-Dade County Region

Note that the Kissimmee River Region is not a CERP region. It is included here because of the significance of the Kissimmee River Restoration project.

The work plan addresses the information requirements listed in the statute for the District’s project list, primarily by study region. The Comprehensive Plan describes this information through applicable subsections described by the following:

1. Physical Condition
2. Existing Conditions
3. Water Quality (future without condition)
4. Physical Facilities and Operations (future without condition)
5. Water Quality Problems and Opportunities
6. Land Use

The work plan briefly describes specific projects that will be eligible for Florida Forever funding in the fiscal year (FY) 2003 – 2007 period. Prior studies, reports and projects, implementation schedule, financial schedule and project descriptions are explained separately.

To put the magnitude of the CERP projects into perspective, Table 1 summarizes estimated District real estate expenditures for FY 2003 – 2007 based on a real estate acquisition strategy, which was developed to support the CERP implementation schedule. The CERP implementation schedule reflects an annual revision as is called for in the MPMP as of July 2001. Only real estate costs are presented in Table 1 because, in the 2003 - 2007 time frame, the District anticipates that Save Our Everglades (SOE) Trust Fund resources will be exclusively used to support real estate acquisitions. The estimated total real estate expenditures for this period is $896.5 million.
Table 1. Estimated Five-Year SFWMD Real Estate Expenditures for Eligible CERP Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Cost (FY2003-FY2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme Basin B</td>
<td>$4,380,000</td>
</tr>
<tr>
<td>Big Cypress/L-28 Modifications</td>
<td>$447,000</td>
</tr>
<tr>
<td>Bird Drive Basin</td>
<td>$38,675,000</td>
</tr>
<tr>
<td>Biscayne Bay Wetlands</td>
<td>$122,830,000</td>
</tr>
<tr>
<td>Broward County Secondary Canals</td>
<td>$1,920,000</td>
</tr>
<tr>
<td>Broward County WPA</td>
<td>$79,663,000</td>
</tr>
<tr>
<td>C-111 Spreader Canal</td>
<td>$35,667,000</td>
</tr>
<tr>
<td>C-43 Reservoir</td>
<td>$62,100,000</td>
</tr>
<tr>
<td>Everglades Agricultural Area Storage Reservoir, Part 2</td>
<td>$222,000</td>
</tr>
<tr>
<td>Florida Keys Tidal Restoration</td>
<td>$51,000</td>
</tr>
<tr>
<td>Indian River Lagoon</td>
<td>$285,113,000</td>
</tr>
<tr>
<td>Lake Okeechobee Watershed</td>
<td>$133,375,000</td>
</tr>
<tr>
<td>LNWR Internal Canal Structures</td>
<td>$345,000</td>
</tr>
<tr>
<td>North Palm Beach County Project, Part 1</td>
<td>$69,253,000</td>
</tr>
<tr>
<td>Site 1 Impoundment</td>
<td>$85,000</td>
</tr>
<tr>
<td>Southern Golden Gate Estates</td>
<td>$22,800,000</td>
</tr>
<tr>
<td>Strazzulla Wetlands</td>
<td>$6,705,000</td>
</tr>
<tr>
<td>Wastewater Reuse Pilot</td>
<td>$1,600,000</td>
</tr>
<tr>
<td>WCA 3 Decompartmentalization, Part 1</td>
<td>$18,164,000</td>
</tr>
<tr>
<td>WPA Conveyance</td>
<td>$13,174,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$896,569,000</td>
</tr>
</tbody>
</table>

The $25 million annual contribution of Florida Forever funds, while a significant contribution, will not be largest source of funds to support CERP. $75 million of general revenue funds will also go to the SOE Trust Fund. District ad valorem funds of $75 million are the next largest contribution. These funds will support both real estate and nonreal estate funding obligations. Other funding sources will mostly or exclusively support real estate acquisition. These include special state appropriations, CARL funds and credits for lands owned by or purchased utilizing local government funds.

Additionally, projects eligible for Florida Forever funding in fiscal year 2003 are each explained in a manner that addresses the elements listed in s. 373.199(4),(5), F.S. These nine projects are presented in the financial schedule (Table 2). Project plans for all projects to be eligible for funding in the period 2003 through 2007 are included in Appendix B of this document.
The distribution of Florida Forever funds to CERP projects has not been specified in Table 2 because Florida Forever represents only about 14 percent ($125 million of $896.5 million) of planned real estate expenditures.

Table 2. Five-Year Florida Forever Water Management District Work Plan Expenditures Schedule

<table>
<thead>
<tr>
<th>Project Title</th>
<th>2003</th>
<th>2003 - 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive Everglades Restoration Plan Proj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper East Coast Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian River Lagoon Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everglades, Florida Bay, Florida Keys Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCA-3 Decompartmentalization, Part 1 Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Preserve Areas Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acme Basin B Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broward County WPA Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strazzulla Wetlands Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Palm Beach County Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Palm Beach County Project, Part 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower West Coast Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-43 Basin Reservoir Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miami-Dade County Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bird Drive Basin Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biscayne Bay Coastal Wetlands Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority 1 - CERP Totals</td>
<td>$25,000,000</td>
<td>$125,000,000</td>
</tr>
<tr>
<td>Water Body Restoration Proj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kissimmee River & Lake Okeechobee Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kissimmee River Restoration</td>
<td>$8,075,000</td>
<td>$40,375,000</td>
</tr>
<tr>
<td>Priority 2 - Restoration Totals</td>
<td>$8,075,000</td>
<td>$40,375,000</td>
</tr>
<tr>
<td>FLORIDA FOREVER TOTALS</td>
<td>$33,075,000</td>
<td>$165,375,000</td>
</tr>
</tbody>
</table>
The water management districts were mandated with jointly providing a report by December 15, 2000 to the Secretary of the FDEP, which established goals and performance measures that were to be used to analyze activities under s. 259.105(3)(a). In accordance with s. 373.1995, F.S., the Secretary forwarded the report for approval to the Board of Trustees of the Internal Improvement Trust Fund (TIITF), the President of the Senate and the Speaker of the House, prior to the beginning of the 2001 regular legislative session. The legislature had the opportunity to reject, modify or take no action regarding the goals and performance measures established by the report. If no action was taken, the goals and performance measures reflected in the report were to be implemented. On December 1, 2000, the districts jointly submitted their Florida Forever Goals and Performance Measures to Secretary Struhs. The goals and performance measures were developed in collaboration with the Florida Forever Advisory Council (FFAC).

The 1999 legislature created the FFAC. The council is composed of seven citizens appointed by the Governor and two ad hoc members of the legislature. Pursuant to s. 259.0345(7), the FFAC submitted a report which was similar to the requirements of the water management districts' report, but was limited in respect to the funding provided under s. 259.105(3)(b), which comprises the 35 percent of each bond issue provided to FDEP for its primary acquisition program.

In the report, the FFAC has grouped the 19 statutory goals into seven objectives and has created one new objective, i.e., Increase the Amount of Open Space Available in Urban Areas. For each objective, several performance measures have been created. The objectives and performance measures were reviewed and discussed by the Senate Natural Resources Committee. The members took no action to revise or reject the FFAC's recommendations.

Although the recommended objectives are very similar to the goals set out in s. 259.105(4), the recommended performance measures differ substantially from the statutory performance measures. Pursuant to s. 259.0345(7), if the legislature fails to take action regarding the FFAC's recommendations, they shall be implemented. In the event that takes place, there would be confusion as to which goals/objectives and performance measures would govern the majority of the program. Accordingly, the FFAC's recommendations are implemented in Senate Bill (S.B.) 1468 of the 2001 legislature, which also repeals the existing goals and performance measures. It should be noted that the FFAC's recommendations, if not altered by the legislature, become effective, but only to guide the FDEP's primary acquisition program. However, if enacted in the Florida Statutes - as was the case, the goals and performance measures apply to both the FDEP and water management districts. The goals and performance measures are included in Appendix A.
PROJECT RANKINGS, SCHEDULE AND RESOURCES

Funding and Manpower Resources

The cost to implement the current schedule falls within the revenues expected under the Comprehensive Plan funding legislation adopted by the legislature. This legislation proposes specific amounts from a variety of sources to fund the plan. The USACE funding for implementing the plan will be obtained through the federal budgeting and appropriations process on an annual basis and will be coordinated with what is being made available in Florida. It is anticipated that adequate manpower resources, both at the USACE and the SFWMD, will be available at planned funding levels.

Implementation Schedule

The Comprehensive Plan is conceptual in nature, consequently any schedule that is developed from that plan will also be conceptual. When the Comprehensive Plan was sent to Congress in 1999 it contained an implementation schedule that was, at the time, the best professional judgement of the Implementation Plan Team as to how the plan could be implemented. In 2000, the Implementation Plan Team began to revise the schedule to take into account new information regarding the projects, the available funding and the nature of the SFWMD-USACE working relationship.

The Implementation Plan Team released a revised implementation schedule in July of 2001 known as UPDATE 1.0. UPDATE 1.0 of the Implementation Schedule as depicted in Appendix D can best be thought of as a master sequencing of the projects. Currently, the Implementation Plan Team is looking at the schedule once again, and is expected to release a version known as UPDATE 2.0 early in 2003. Changes that are likely to affect the schedule may include, but are not limited to, changes in funding levels, changes in performance targets for some projects and changes in planned locations for some projects. The schedule will be continually monitored to ensure that the proposed dates are both realistic and are being achieved.
Chapter 2
REGIONAL STUDY AREA

The study area encompasses approximately 18,000 square miles from Orlando to the Florida Reef Tract with at least 11 major physiographic provinces: Everglades, Big Cypress, Lake Okeechobee, Florida Bay, Biscayne Bay, Florida Reef Tract, nearshore coastal waters, Atlantic Coastal Ridge, Florida Keys, Immokalee Rise and the Kissimmee River Valley. The Kissimmee River, Lake Okeechobee and the Everglades are the dominant watersheds that connect a mosaic of wetlands, uplands, coastal areas and marine areas. The study area includes all or part of the following 16 counties: Monroe, Miami-Dade, Broward, Collier, Palm Beach, Hendry, Martin, St. Lucie, Glades, Lee, Charlotte, Highlands, Okeechobee, Osceola, Orange and Polk.

The Central and Southern Florida Project (C&SF) Project, which was first authorized by Congress in 1948, is a multipurpose project that provides flood control; water supply for municipal, industrial and agricultural uses; prevention of saltwater intrusion; water supply for Everglades National Park (ENP) and protection of fish and wildlife resources throughout the study area. The primary system includes about 1,000 miles each of levees and canals, 150 water control structures and 16 major pump stations. The C&SF Project study area, including CERP projects, is shown on Figure 1.

The Upper St. Johns River Basin has been excluded from this study because it is a separate hydrologic basin, which is not a part of the Everglades and South Florida ecosystems.

The following sections provide details on each of the regions that comprise this large study area. The Comprehensive Everglades Restoration Plan (CERP) Guidance Memorandum 012.00 defines the following set of regions:

1. Kissimmee River Region
2. Lake Okeechobee Region
3. Lower West Coast Region
4. Upper East Coast Region
5. Everglades Agricultural Area (EAA) Region
6. Everglades, Florida Bay and Keys Region
7. Water Preserve Areas Region
8. North Palm Beach County Region
9. Miami-Dade County Region

Note that the Kissimmee River Region is not a CERP region. It is included here because of the significance of the Kissimmee River Restoration project.
Figure 1. The Central and Southern Florida Flood Control Project Area.
FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - THE CENTRAL AND SOUTHERN FLORIDA FLOOD CONTROL PROJECT (PROJECT MODIFICATIONS)

The C&SF Project was authorized by the Flood Control Act of 1948 and modified by subsequent acts, as a plan of improvement for flood control, drainage and other purposes covering a 18,000 square mile area of both Central and southern Florida. A number of efforts are currently underway by the USACE to modify the project for environmental improvement. The chapters that follow list these and other projects.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - REGIONAL OVERVIEW

Many of the regulatory and environmental restoration programs, which are assumed to be in place in 2050, are projected to result in a net improvement in water quality in South Florida. In addition to those assumptions, water quality improvement actions undertaken to comply with the requirements of the Federal Clean Water Act, (Public Law 92-500), are expected to result in improvements in regional water quality necessary to comply with state, tribal and local water quality standards. These water quality improvement actions are implemented by: the United States Environmental Protection Agency (USEPA); the Florida Department of Environmental Protection (FDEP); the South Florida Water Management District (SFWMD or District); the Seminole and Miccosukee Tribes and local governments. Examples of these programs include: Municipal Separate Storm Sewer Systems (MS4) and other National Pollutant Discharge Elimination System (NPDES) point and nonpoint source pollution reduction permitting requirements, Total Maximum Daily Loads (TMDLs) established under Section 303(d) of the Clean Water Act (Public Law 92-500), and Pollutant Load Reduction Goals (PLRGs) established pursuant to the state of Florida’s Surface Water Improvement and Management (SWIM) Act for designated priority water bodies (Section 373.451–459, Florida Statutes).

From a regional perspective, the most comprehensive of these programs is the TMDL program implemented by FDEP and the Seminole and Miccosukee Tribes. Under Section 303(d) of the Clean Water Act, states and tribes are required to identify water bodies within their jurisdictions not meeting water quality standards and rank those water bodies in terms of the severity of the pollution and designated and actual uses of the water bodies. The 303(d)-listed water bodies are to be reported to the USEPA in accordance with Section 305(b) of the Clean Water Act. TMDLs are to be developed for 303(d)-listed water bodies consistent with the priority ranking, and are to be established “at a level necessary to implement the applicable water quality standards with seasonal variations and a margin of safety which takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality.”

In its 2000 report to the USEPA, FDEP identified impaired water bodies in the study area in accordance with the requirements of Section 303(d) of the Federal Clean
Water Act. FDEP has developed a strategy for assessing watersheds (basins) and developing TMDLs and remediation plans for pollutants causing impairment of 303(d)-listed water bodies (FDEP, 1996a and FDEP, 1996b). It should be noted that excessive nutrient loads were typically identified as the most common pollutant causing impairment. FDEP’s statewide strategy for implementing TMDLs involves five-year cycles for basin assessment, monitoring, data analysis and TMDL development, development of basin management plans and implementation of basin management plans. Several key water bodies in South Florida will receive priority for TMDL development, including Lake Okeechobee and the Indian River Lagoon (IRL).

Development and implementation of TMDLs is an essential step for achieving overall ecosystem restoration in South Florida. Water quality restoration targets are necessary for detailed design of Restudy recommended plan components to achieve water quality restoration performance objectives. Further, implementation of basin management plans developed under the TMDL program is necessary to achieve ecological restoration in watersheds “downstream” of recommended plan components.

The triennial review of state and tribal water quality standards performed under Section 303(c) of the Clean Water Act is another essential step for achieving ecosystem restoration in South Florida. States and tribes are required to periodically review their water quality standards to ensure that standards are adequate to protect designated uses of waters. Within the study area, there are no specific numeric water quality criteria for many pollutants (e.g., nutrients and several pesticides) detected in ongoing water quality monitoring activities. The extent of the contribution of such pollutants to overall “impairment” levels in 303(d)-listed water bodies is also unknown. As part of the triennial review process, FDEP and the Seminole and Miccosukee Tribes may propose modifications to existing water quality criteria and propose additional water quality criteria (as appropriate) to protect water resources. Modified and additional water quality criteria should be integrated with future detailed planning and design activities to assure that recommended plan components are operated consistent with water quality restoration targets.

The SFWMD is also developing pollution load reduction goals (PLRGs) for SWIM-listed water bodies. In South Florida, SWIM-listed water bodies include Lake Okeechobee, the IRL and Biscayne Bay. PLRGs are similar to TMDLs in that numeric water quality targets are promulgated and remediation programs are developed. TMDLs and PLRGs are essential water quality restoration targets to be integrated into future detailed planning and design activities for recommended plan components during the implementation period.

The following chapters summarize projected water quality problems and opportunities in study area subregions. Accurately projecting future water quality conditions in the study area is difficult, due to its vast scope, uncertainty in future growth and land use changes, and in part to the lack of comprehensive water quality data indicative of statistically reliable trends (FDEP, 1996a). The following subsections predict water quality changes expected to occur within each of the CERP regions based on current water quality data and descriptions of existing conditions, available trend data, future
population growth projections and the assumed implementation of certain specific regulatory and environmental restoration and water supply projects. Actual improvements in water quality conditions, where projected to occur, depend in large degree upon the successful implementation of the programs and projects included in the future without plan assumptions. For mercury, conditions are projected for the regional system as a whole.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - MERCURY

There is much uncertainty about the sources of mercury in South Florida and the Everglades marsh mercury cycling processes that control mercury bioaccumulation. Controlling mercury contamination of the Everglades ecosystem depends on actions that are beyond the scope of the CERP. The major external source of mercury for the Everglades ecosystem is atmospheric deposition. Some estimate that a high percentage of the mercury deposited into the Everglades could be contributed from local atmospheric emission sources in the urban area (Dvonch, 1998). Others estimate that most of the mercury deposited on the Everglades originates from outside Florida. Research indicates that mercury deposition rates in portions of North America have greatly increased since the turn of the century (Swain, et. al., 1992). Some of this historically accumulated mercury is being recycled by the ecosystem; however, this historical mercury could also be buried beneath the recycling zone by accumulating peat if new sources are shut off.

The effect of this burial process hypothesis has been estimated with a mercury cycling model (Ambrose et al., in press). The model predicts that as little as a 50 percent reduction in atmospheric mercury deposition over the next 50 years (2050) will decrease methylmercury concentrations in Everglades water and fish. Recent and potential future regulatory emission controls may be needed to reduce the atmospheric loading to the system from local sources; however, the significant global atmospheric mercury component is much more difficult to control and will require international agreements.

If control of atmospheric mercury deposition can be affected by decreasing local emission sources in concert with the implementation of the 44,000 acres of stormwater treatment areas (STAs) constructed as part of the Everglades Construction Project (ECP), additional benefits may accrue. However, the complex interactive modeling predictions have not yet been done. The long-term efficiency of the STAs in removing phosphorus and other water quality constituents is presently uncertain, as is the effect of these water quality changes on mercury cycling downstream. Among the key factors that are thought to influence mercury cycling within the Everglades are complex interrelationships involving phosphorus, sulfur, oxygen, carbon, periphyton, peat accretion and sediment redox conditions. There is no scientific consensus as to which of these factors will dominate, and whether the driving factors will be the same throughout all portions of the 4,000 square mile Everglades ecosystem. Given the 80 percent reduction in total phosphorus obtained in the Everglades Nutrient Removal Project during the early years of operation, it is possible that a decrease in the methylation of mercury could occur downstream due to the declining nutrient concentrations to the marsh and the reduced
stimulation of both producers and decomposers. However, it is unclear what effect changes in sulfur forms will have on mercury methylation, and which influence will dominate.

LAND USE

The existing use of land within the study boundaries varies widely from agriculture to high-density multifamily and industrial urban uses. A large portion of South Florida remains natural, although much of it is disturbed land. The dominant natural features are the federally protected ENP and Big Cypress National Preserve (BCNP) at the southernmost tip of the peninsula, Lake Okeechobee and the state protected WCAs in the westernmost reaches of the Lower East Coast counties. Generally, urban development is concentrated along the Lower East Coast from Palm Beach County to Miami-Dade County, in the Central Florida/Orlando area and on the Lower West Coast from Fort Myers to Naples.

Most of the interior of the study area is in agricultural use, which includes sugarcane (the dominant crop) and vegetable farms in the EAA of western Palm Beach County and Hendry County; the Agricultural Reserve Area of Palm Beach County; and the south Miami-Dade agricultural area where vegetable crops dominate, especially tropical varieties. There are citrus groves in every county, but citrus is concentrated in St. Lucie and Martin counties on the east coast and Hendry, Highlands, Collier and Glades counties on the west. Cattle and dairy farms predominate in Glades, Highlands and Okeechobee counties.

In the northern portion of the system, around Orlando, tourism and its attendant service-oriented land uses (for example, hotels, motels, convenience stores and souvenir shops) make up a significant portion of the landscape. Agriculture, however, continues to play an important role in the region, with over two million acres being farmed, half of which is pasture land. The area surrounding Lake Okeechobee is largely rural, with agriculture the prevailing land use. There are over 580,000 acres of irrigated farmland in the EAA (B. Boyd, pers. comm.). Farm products produced there include sugarcane, the predominant crop, rice, row crops and sod. There is also extensive pasture land both west and north of the lake. Directly south of the EAA lie the WCAs. The conservation areas cover 1,372 square miles and consist mainly of sawgrass marshes and tree islands. The 1948 C&SF Project created the WCAs for the conservation of water supplies for the Lower East Coast.

The Upper East Coast is comprised of St. Lucie and Martin counties; the landscape is dominated by agricultural uses. Significant natural resources, the St. Lucie Estuary and IRL, are also contained within this area. Urban land use, which makes up 17 percent of the Upper East Coast, is mainly concentrated along the seaboard coastal and lagoon shorelines. The Lower East Coast extends approximately 100 miles through the coastal portions of Palm Beach, Broward and Miami-Dade counties. Being the most densely populated area in the state, the Lower East Coast is home to one third of the state’s population, more than 4.5 million people. The area is primarily an urban megalopolis, but
it also contains substantial agricultural acreage, particularly in southwestern Miami-Dade County (90,000 acres) and western Palm Beach County (29,000 acres). Rapid population growth and land development practices have resulted in notable western urban sprawl; the predominant land use is single-family residential. The once significant rural population in the western areas of the counties, especially in Miami-Dade and Broward, has practically disappeared, resulting in an urbanized makeup in population. Palm Beach County is not far behind.

The Florida Keys are made up of over 1,700 islands that encompass approximately 100 square miles and includes the largest reef system in the United States. While a majority of the county is designated as conservation land, due to the land falling within ENP, BCNP or the National Key Deer Refuge, land use is primarily either residential or geared towards supporting the region’s main industry (tourism). The county’s fragile natural resources and vulnerability caused the state of Florida to designate the area as an Area of Critical State Concern in 1975; such designation is intended to protect such resources from degradation by strictly regulating development.

The southwestern counties of Collier and Lee are the fastest growing in terms of population in the state. Population growth is mainly due to the immigration of retirees, not a high birthrate. The coast has become highly urbanized, with development spreading eastward into agricultural and natural lands. Agriculture is however, a major industry, especially in Lee County where citrus predominates.

STUDY PURPOSE

The purpose of the Restudy was to reexamine the C&SF Project to determine the feasibility of structural or operational modifications to the project essential to the restoration of the Everglades and the South Florida ecosystem, while providing for other water-related needs, such as urban and agricultural water supply and flood protection in those areas served by the project. The intent of the study was to evaluate conditions within the study area and make recommendations to modify the project to restore important functions and values of the Everglades and South Florida ecosystem and plan for the water resources needs of the people of South Florida for the next 50 years.

STUDY SCOPE

The purpose of the Restudy was to develop a Comprehensive Plan for the overall regional C&SF system and the tools necessary to evaluate the Comprehensive Plan, as well as separable and incremental portions of the project. This study represents the first thorough, systemwide update since the project’s original inception. The Comprehensive Plan will include such features as are necessary to provide for the regional water-related needs of the region; including flood control, the enhancement of water supplies and other objectives served by the C&SF Project. This feasibility study included hydrologic modeling, environmental modeling, water quality analyses and water supply studies that refined the information developed in the reconnaissance study. The feasibility study was
conducted to identify a Comprehensive Plan for the C&SF Project and an adaptive implementation and operational strategy based on monitoring, evaluation and modeling.

The Comprehensive Plan presented in this report is similar in scope to that contained in the 1948 Comprehensive Report for the C&SF Project (House Document 80-643). This feasibility report does not include the normal level of detail that is expected from much smaller projects, such as the identification of specific sites for proposed project facilities. The Comprehensive Plan identifies components needed to restore the South Florida ecosystem, which includes the needs of all users, and the formulation process that produced them from the viewpoint of hydrologic impacts of the regional water management system. This report also documents the uncertainties in plan selection and future tasks that will be needed to minimize these uncertainties. Engineering and real estate cost estimates are based on the analyses and assumptions made during the process of formulating and developing the components of the Comprehensive Plan. Uncertainties in design details and uncertainties in the exact location of components could impact future alternative analyses and subsequent design and cost estimates.

OTHER STUDIES

There are a number of ongoing studies being conducted by the USACE and other agencies that may contribute to restoration of the South Florida ecosystem. Some of the major efforts are discussed in this section.

The USACE is currently conducting a feasibility study of Biscayne Bay in order to investigate effects on water circulation, biological communities and water quality of dredging and filling, spoil islands and freshwater inputs in northern Biscayne Bay from existing federal canals. The study would propose solutions to alleviate adverse factors affecting the bay and help to develop guidelines for future management of Biscayne Bay’s natural resources. The nonfederal sponsor is Miami-Dade County.

The South Florida Ecosystem Restoration Task Force observed that the restoration effort needed to be founded on scientific information and mandated that it take an ecosystem approach. In support of this effort, the Science Subgroup completed a report in 1996 entitled South Florida Ecosystem Restoration Scientific Information Needs (Science Subgroup, 1996), which provides information in support of the ecosystem approach. It was the first step in the development of an ecosystem-based South Florida Comprehensive Science Plan that includes monitoring and modeling. The Science Coordination Team (formerly the Science Subgroup) is in the process of developing a series of white papers on key science issues in South Florida. Various agencies, including elements of the U.S. Department of the Interior (USDOI) and the SFWMD are developing several science plans to supply the information needs for ecosystem restoration.

The science plan developed by the Florida Bay Interagency Working Group, initiated by ENP in January 1993, focused upon the research, monitoring and modeling objectives that must be addressed to guide the restoration of Florida Bay. It represents a synthesis of research plans prepared over past years by several federal and state agencies.
The SFWMD has undertaken the development of regional and subregional level water supply plans to provide for better management of South Florida’s water resources. The Lower West Coast Water Supply Plan was completed in April 2000 (SFWMD, 2000). The Lower East Coast Regional Water Supply Plan, which addresses water-related needs and concerns of southeastern Florida through the year 2020 was completed in April 2000 (SFWMD, 2000). The Upper East Coast Water Supply Plan (SFWMD, 1998b), which evaluates future 2020 water demands and supplies for the Upper East Coast of Florida was completed in 1998.

PERMITS AND AUTHORIZATIONS

The timely processing and approval of permits and other regulatory authorizations is critical to completing design and construction on schedule and being able to operate a project once construction has been completed. To ensure that all required authorizations are processed and approved in a coordinated and timely manner, the USACE and SFWMD project managers will include staff, as necessary, from their respective regulatory/permitting organizations and a representative from the FDEP on CERP implementation teams.

The USACE and the SFWMD project managers will maintain close communication and coordination to identify and address any required permit or water quality certification applications and negotiations, as well as any conditions included in these authorizations. Where appropriate, final conditions on a permit or authorization, will be approved by both the USACE and the SFWMD project managers prior to issuance of a draft permit or certification. As this is a federal project, the USACE will not be issuing 404 permits for this effort, rather, a 404(b)(1) evaluation will be performed.

INTERIM LAND MANAGEMENT

The SFWMD Interim Property Management Program is responsible for managing those properties acquired by the SFWMD for future CERP and other projects until such time as the land is needed for construction.

The goals of the Interim Property Management Program are to:

- Protect the natural resource
- Provide on-site management and security for SFWMD owned lands at a minimal cost
- Minimize SFWMD expenses by increasing revenue from non-governmental sources to off-set management, maintenance and resource protection costs
- Generate additional funding for future acquisition
• Minimize impacts to the local agricultural economy by keeping viable agricultural lands in active production for as long as possible

• Minimize fiscal impacts to the local government by keeping lands on the tax roll until they are actually needed for construction

Where appropriate, historical uses of properties, such as grazing, sod, vegetable and sugar cane farming, and nurseries and tree farms, are allowed to continue through the use of reservations, leases or similar agreements. Generally, a competitive bid process is used to solicit proposals and award contracts, which include appropriate cancellation clauses so the land can be quickly made available when it is needed. In some cases, short term leases (5 years or less) are negotiated as part of the acquisition package. Lessees are typically required to actively manage the property, control exotics, provide security for the property, implement applicable best management practices, keep the property and facilities in good repair and condition, obtain all required permits and approvals for their activities, maintain required insurance coverage and pay applicable taxes.

For those lands in their natural state and/or where some type of active interim use is inappropriate, due to the environmental sensitivity of the land, and/or the projected construction timetable for the project, the SFWMD either manages the lands or contracts with another governmental entity to have the lands managed. The SFWMD conducts regular inspections of all its properties on a semi-annual basis. Arrangements are made for exotic control, cleanup, security or other activities as needed.
Chapter 3
KISSLIMMEE REGION

PHYSICAL CONDITIONS - KISSLIMMEE REGION

The Kissimmee Region is comprised of 3,013 square miles and extends from Orlando southward to Lake Okeechobee (Figure 2). The watershed, which is the largest source of surface water to the lake, is about 105 miles long and has a maximum width of 35 miles.

Project works in the basin for flood control and navigation were constructed by the United States Army Corps of Engineers (USACE) as part of the Central and Southern Florida Flood Control Project (C&SF Project). Upper Basin works consist of channels and structures that control water flows through 18 natural lakes into Lake Kissimmee. The Lower Basin includes the channelized Kissimmee River (C-38) as a 56-mile earthen canal extending from Lake Kissimmee to Lake Okeechobee.

Figure 2. Kissimmee Region.
The northern portion of the basin is comprised of many lakes, some of which have been interconnected by canals. This large subbasin, often termed the Upper Basin is bounded on the southern end by State Road (SR) 60, where the largest of the lakes, Lake Kissimmee, drains into C-38.

The Upper Basin is 1,633 square miles and includes Lake Kissimmee and the east and west Chain of Lakes area in Orange and Osceola counties. A 758 square mile Lower Basin includes the tributary watersheds of the Kissimmee River between the outlet in Lake Kissimmee and Lake Okeechobee. The 622 square mile Lake Istokpoga area provides tributary inflow to the Lower Basin.

EXISTING CONDITIONS - KISSIMMEE REGION WATER MANAGEMENT

The system of water control works now in place in the Kissimmee Watershed has been modified from the general C&SF Project plan outlined in the 1948 report to Congress and authorized for construction in 1954. The modifications are associated with the first phase of construction for the Kissimmee River Restoration (KRR) Project completed in February 2001. These modifications were authorized by Congress in the Water Resources Development Act of 1992. The original project was designed to provide flood damage prevention for 30 percent of the standard project flood (SPF). This equates to protection against a five-year flood event. Project modifications associated with the KRR Project maintain these same levels of flood protection. Water levels within the basin are controlled by a complex system of canals and control structures that are managed by the South Florida Water Management District (SFWMD or District) in accordance with regulations prescribed by the Secretary of the Army.

Channels connect the major lakes of the Kissimmee Upper Basin. Most of the channels were excavated by private interests in the 1900's and subsequently enlarged to varying degrees by the congressionally authorized C&SF Project plan. Additional operation and maintenance dredging and canal widening are associated with the KRR project. The first phase of this work was completed in August 2002. The remainder will be completed in 2003/2004.

Nine control structures regulate water levels and flows in the lake system. For more details on the C&SF flood control project refer to the USACE Kissimmee River, Florida - Final Feasibility Report and Environmental Impact Statement (1985). Operational criteria for both basins can be found in the Master Water Control Manual for the Kissimmee River-Lake Istokpoga Basin (1994). These operational criteria have been modified for the KRR project to include an interim regulation schedule for the S-65 structure. This interim schedule was put in place in June 2001 and will remain in effect until a new regulation schedule is put into place for the KRR project. Details regarding regulation schedules for S-65 can be found in the Headwaters Revitalization Plan (1996). From time to time, operations may temporarily deviate from the water control plan. These temporary deviations may be conducted for various purposes, such as control of nuisance aquatic vegetation, lake drawdowns or construction.
Prior to the project, lake outlets within the Upper Basin had been dredged for drainage and navigation, but were uncontrolled and over-drainage often occurred. Dredged outlets did not provide adequate flood control and the Upper Basin did not have enough outlet capacity (sometimes termed “get away” capacity) to remove flood waters within a reasonable time frame to avoid flood impacts.

To provide adequate outlet capacity from the Upper Basin, approximately 15 miles of canal were required immediately downstream of Lake Kissimmee. The length is a function of canal size, the size of the Lake Kissimmee outlet structure size (S-65) and the very flat terrain immediately downstream of the lake.

An earlier project, the Herbert Hoover Dike, around Lake Okeechobee modified the original lower end of the Kissimmee River with a borrow canal immediately upstream of Lake Okeechobee. This 8-mile section of canal, known as Government Cut, was modified and enlarged during construction of the C-38 and is inside the Lake Okeechobee containment levee. This section of canal diverted flow from a downstream portion of the Kissimmee River, creating an isolated remnant of the river known as Paradise Run. Paradise Run, immediately west of Government Cut, retains most of its original topography; however, diversion of natural flows has lowered water levels and former wetland areas have been converted to grazing and pasture land.

Between the outlet channel at the upper end of the Kissimmee River (C-38) and Government Cut at the lower end was a section of river and floodplain known as the central reach. This stretch was approximately 33 miles in length and also provided flood control. During the design phase of the C&SF project, some consideration was given to nonstructural approaches (e.g., levee the uplands from the floodplain); however, channelization was determined to be the most cost effective solution. Combined with Government Cut, the new canal (C-38) provided complete channelization of the entire 56-mile river-floodplain system from Lake Kissimmee to Lake Okeechobee.

The natural fall of the land from Lake Kissimmee to Lake Okeechobee is about 36 feet. Construction of the C-38 canal included construction of six water control structures (S-65, S-65A, S-65B, S-65C, S-65D, S-65E). These structure were distributed from north to south and formed a series of five independent water bodies called pools (Pools A, B, C, D and E). The northernmost structure, S-65, is located at the southernmost end of Lake Kissimmee. The southernmost structure is located just north of Lake Okeechobee. The pools are located between the structures and are referenced using the letter associated with the downstream structure.

The structures along the C-38 canal function as dams and were located to step the canal water level down in increments of approximately 6 feet. In doing so, the natural slope of the river was removed and flat pools (impoundments) resembling stair-steps were created. The water level in each pool was generally held constant with little fluctuation or slope. This management lowered water in the northern reach of each pool and maintained flooded marsh in the southern or lower section of each pool. The resulting water surface area was approximately 7,600 acres.
The C-38 was excavated to a depth of approximately 30 feet. The bottom width varies from 90 feet near Lake Kissimmee to 300 feet just above the S-65D structure. The canal's length, width and water level varied in each pool. The head, or difference in water level above and below each structure, varied from structure to structure with rate of discharge but is typically 6 feet.

This system has been modified by the first phase of construction on the KRR project. This construction was completed in February 2001 and was located in the vicinity of Pools B and C. The first phase of the project backfilled approximately 7 miles of C-38 canal from just north of the S-65B structure south to approximately the Istokpoga Canal. One and one quarter miles of new river channel were dredged to reconnect 14 miles of the historic river that had been bisected by the construction of the C-38 canal. The S-65B structure was demolished creating an interconnected river/floodplain system in the former Pool B and Pool C area.

During the construction of the C-38 canal, a temporary easement was used to obtain areas adjacent to the canal for deposition of dredged material. The material was hydraulically deposited in linear alignments covering some 8,000 acres. The result was spoil piles averaging 15 feet above pre-project topography. The material consisted of hydraulically sifted subsoil sands and clays with limited organic fraction and high percolation rates. The material became part of the property upon which it was deposited. A number of landowners subsequently used the material to fill low areas on their property. At two locations in Okeechobee County, the spoil was used to build flood free, fly-in residential subdivisions. Where material was left undisturbed, xeric vegetation emerged on the deposits.

The spoil material in the vicinity of backfilling activities associated with the KRR project will be used to backfill the C-38 canal. Lands within the 5-year floodplain were acquired in fee. This included acquisition of the spoil material.

The CS&F Project works improved navigation opportunities originally provided in the Congressional Act of 1902. Each water control structure along C-38 includes a 30-foot by 90-foot navigation lock, which can accommodate boats with drafts up to 5.5 feet. The canal provides continuous navigation; however, interpool navigation is limited to daylight hours of lock operations.

Prior to the completion of the first phase of the KRR project, there were approximately 68 miles of river oxbows, often referred to as remnant river channels, between Lake Kissimmee and Lake Okeechobee. These were created when the C-38 canal was dredged through the historic Kissimmee River/Floodplain system. These secondary channels features are of widely varying water depths that receive little to no inflows except from tributaries or through culverts associated with the S-65B, S-65C and S-65D tieback levees.

Since completion of the first phase of the KRR project, 14 miles of river channel have been restored and receive near continuous flows due to the interim operational schedule for the S-65 structure.
Approximately 50 tributaries provide inflow into the Lower Kissimmee Basin. Relatively constricted central channels characterize these tributaries with pasture lands usually extending along the channel. Most channels are covered with vegetation.

FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - KISSIMMEE REGION

Several planned and ongoing environmental restoration projects are expected to be completed, which would beneficially affect water quality in the Kissimmee Watershed. Of particular importance is the Kissimmee River Restoration Project (including the Headwaters Revitalization and Modified Level II Backfilling projects). The Kissimmee River Restoration Project is expected to result in the restoration of approximately 7,200 acres of former wetlands in the vicinity of the Kissimmee Chain of Lakes (USACE, 1996) and at least 28,000 acres of former (drained) wetlands south of Lake Kissimmee (USACE, 1991).

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - KISSIMMEE RIVER RESTORATION

In the future without plan condition, the Kissimmee River Restoration Project will be in place and functioning. The restoration project, authorized by the Water Resources Development Act of 1992, will create a more natural physical environment in the Kissimmee Lower Basin. The major components of the project include the following:

- Reestablishment of inflows from Lake Kissimmee that will be similar to historical discharge characteristics (headwaters component)
- Acquisition of approximately 110,000 acres of land in the lower Kissimmee Chain of Lakes and river valley
- Continuous backfilling of 22 miles of canal
- Removal of two water control structures
- Recarving of 9 miles of new river channel

The Kissimmee Watershed contributes about 30 percent of the water input to Lake Okeechobee. The supply of water to Lake Okeechobee is anticipated to be reduced by about 1.60 percent as a result of the implementation of this project.

As a component to the Kissimmee River Restoration Project, the modification of the Upper Chain of Lakes regulation schedules and associated canal and water control structure modifications, will restore the ability to simulate the historic seasonal flow from Lake Kissimmee to the Lower Basin, and provide higher fluctuations of water levels in the lakes. The project will result in the expansion of the lakes' littoral zones by up to 7,200 acres, and improved habitat to fish and wildlife on lakes Kissimmee, Hatchineha, Cypress,
Tiger and Jackson. The project will also increase spatial and temporal dynamics produced through long-term fluctuations of seasonal water levels.

The Kissimmee River Restoration Project will meet two hydrologic conditions (criteria) that must be reestablished to restore the Lower Basin ecosystem. These conditions are the reestablishment of continuous flow with duration and variability characteristics comparable to prechannelization records and the reestablishment of stage hydrographs that result in floodplain inundation frequencies comparable to prechannelization hydroperiods, including seasonal and long-term variability characteristics.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - KISSIMMEE REGION

By 2050, water quality conditions in the Kissimmee Watershed south of urbanized Orange County, are expected to be improved as compared to existing conditions, due to ongoing and planned ecological restoration programs in the drainage basin. In its 1998 303(d) list, the FDEP identified approximately 25 water bodies or segments of water bodies within the Kissimmee Watershed where water quality was not adequate to sustain designated uses. Several of the 303(d) listed water bodies are actually reaches of the Kissimmee River. Most of the watershed is classified as Class III (“fishable–swimmable”) waters; several water bodies within the watershed are designated Outstanding Florida Waters by the state of Florida. Pollutants and/or water quality criteria identified contributing to impairment of designated use include: low levels of dissolved oxygen (DO), excessive nutrients, coliform bacteria, high biochemical oxygen demand (BOD), several trace metals including mercury (based on fish-consumption advisories), turbidity and un-ionized ammonia.

Kissimmee River Restoration projects are expected to reduce net pollution loading to the Kissimmee River and in downstream Lake Okeechobee through the restoration of remnant wetlands presently used as agricultural lands currently contributing pollutants to wetlands. Restored wetlands will also have a pollutant assimilation function, resulting in improved water quality in downstream water bodies (tributaries and oxbows). Additional ongoing land acquisition activities by the SFWMD will supplement ongoing environmental restoration projects (SFWMD, 1997a).

The extent of urbanization in the vicinity of the cities of Orlando and Kissimmee, north of the Kissimmee Chain of Lakes is expected to increase. While new developments must comply with water quality treatment requirements for storm water runoff, the net load of pollutants, particularly those typically associated with urban storm water runoff contributed to the watershed north of the Kissimmee Chain of Lakes is expected to increase. Most of this increased pollution load is expected be retained in the Kissimmee Chain of Lakes and not enter the Kissimmee River – Lake Okeechobee system. Urbanization and attendant pollution loads in the region are not expected to increase significantly south of Lake Kissimmee.
LAND USE - KISSIMMEE REGION

Orlando, at the headwaters of the Kissimmee Watershed, is the primary economic and transportation center in the area. Once the center of the state’s orange production, the local economy of Orlando and the surrounding area now focuses on tourism. Kissimmee, located in Osceola County, is located 8 miles east of Disney World and 17 miles south of Orlando, and is influenced largely by tourism activities in the Orlando area. The other major incorporated area of Osceola County, the city of St. Cloud, is primarily a retirement community.

Land uses in the Upper Basin around the perimeters of Lakes Kissimmee, Hatchineha, Cypress, Rosalie, Tiger and Jackson are primarily pasture, some agriculture and a large amount of wetlands. Marinas, fish camps and various public facilities, such as boat launching sites and picnic areas, are located around the lakes. Development is more intense upstream of Cypress Lake, particularly in the Lake Tohopekaliga – East Lake Tohopekaliga (Toho) chain. Lake Kissimmee State Park is on the extreme northwestern periphery of Lake Kissimmee and the Three Lakes Wildlife Management Area and Prairie Lakes Preserve border the southeastern half of Lake Kissimmee. The 45,000-acre Kissimmee Prairie State Reserve is directly east of Avon Park in Pool B. Small residential and commercial areas are also scattered around most of the lakes.

Agriculture continues to play an important role in the region. In the Lower Basin, most of the area between Lake Kissimmee and Lake Okeechobee is in fewer than fifty large, private land holdings and several hundred subdivided property holdings. Agriculture remains the primary land use activity within the Lower Basin, being dominated by extensive beef cattle production and dairy activities.

The Avon Park Air Force Bombing Range is located within the Highlands County portion of the Lower Basin. This 107,000-acre federal facility is used both as a training facility for Armed Forces personnel and as a management area for wetlands adjacent to the Kissimmee River.

Lower Basin lands have undergone substantial change over the last twenty years. Most notable is the conversion of unimproved pasture land to improved pasture at an accelerated pace during the period 1958 to 1972.

In the Upper Basin, most of the development susceptible to flood damage is urban, where damage is primarily a function of the depths of flooding inside structures or the stage of flooding. Single family residential land use is the primary type of development affected by flooding in the Upper Basin. Major affected areas are located around the towns of Kissimmee and St. Cloud, which cover only six percent of the damage susceptible flood-prone area but account for almost half of the basin’s standard project flood damage. Other affected areas include Lake Hart, Lake Mary Jane, Pells Cove, Hidden Lake, Lake Hatchineha, Lake Alligator, Lake Rosalie and the area west of the southern part of Lake Kissimmee. Existing average annual equivalent flood damages in the Upper Basin are estimated to be $1,226,100 (8 ¾ percent rate).
In the Lower Basin, mobile homes located around Pool E are the primary areas that would be affected by flooding. Although this land use would account for most of the damages from a standard project flood and 100-year event, it is not susceptible to damage during smaller floods. Other damages occur due to the duration of flooding on pasture land. Although agricultural use is the primary land use in the Lower Basin, flood damages are relatively minor for this activity due to the short duration of flooding, a result of the existing project works. Existing average annual equivalent damages in the Lower Basin are estimated to be $97,700 (8 ¾ percent rate).

Agriculture

Osceola, Polk, Highlands and Okeechobee counties were included in this region. More than two million acres in these counties are farmed, with more than half of this area devoted to pasture land (UFBEBR, 1995). Much of this acreage is likely categorized as unique farmland based upon its location, growing season and high value crops, including citrus. Almost a quarter of a million acres in the Kissimmee Watershed are irrigated (UFBEBR, 1995), requiring a dependable water supply. Large farms characterize this region, with relatively low productivity per acre. These four counties are among the top five counties in Florida for cattle production, both beef and dairy (FASS, 1996a). More than 200,000 acres are used for citrus production. Approximately 11,000 people are employed in agricultural production and services representing a payroll of approximately $21 million (UFBEBR, 1995). The market value of all agricultural products in this region totals approximately $575 million (UFBEBR, 1995).
Chapter 4
LAKE OKEECHOBEE WATERSHED REGION

PHYSICAL CONDITIONS - LAKE OKEECHOBEE WATERSHED REGION

Lake Okeechobee lies 30 miles west from the Atlantic coast and 60 miles east from the Gulf of Mexico in the central part of the peninsula. Lake Okeechobee is a broad shallow lake occurring as a bedrock depression (Figure 3). The large, roughly circular lake, with a surface area of approximately 730 square miles, is the principal natural reservoir in southern Florida.

Figure 3. Lake Okeechobee Watershed Region.

The lake’s largest outlets include the St. Lucie Canal eastward to the Atlantic Ocean and the Caloosahatchee Canal and River to the Gulf of Mexico. The four major agricultural canals – the West Palm Beach, Hillsboro, North New River and Miami canals - have a smaller capacity, but are used whenever possible to release excess water to the Water Conservation Areas (WCAs), south of the lake, when storage and discharge capacity are available. When regulatory releases from the lake are required, excess water...
can be passed to the three WCAs up to the capacity of the pumping stations and agricultural canals, with the remainder going to the Atlantic Ocean and Gulf of Mexico.

The waters of the lake are impounded by a system of encircling levees, which form a multi-purpose reservoir for navigation, water supply, flood control and recreation. Pumping stations and control structures in the levee along Lake Okeechobee are designed to move water either into or out of the lake as needed.

Other surface water bodies include the Kissimmee River, Fisheating Creek and Taylor Creek that flow into the lake from the north; the Caloosahatchee River that flows out of the lake to the west; the St. Lucie and West Palm Beach canals that flow out of the lake to the east; and the Hillsboro, North New River and Miami canals that flow out of the lake to the south. The hydroperiod of the lake is partially controlled, permitting water levels to fluctuate with flood and drought conditions and the demand for water supply.

EXISTING CONDITIONS - LAKE OKEECHOBEE WATER MANAGEMENT

Historically, water levels in Lake Okeechobee were probably much higher than they are today (Brooks, 1974), perhaps as high as 6.1 meters (20 feet) NGVD (National Geodetic Vertical Datum). Prior to large scale development and construction of the Herbert Hoover Dike, the lake had no channeled outflows and water overflowed the lake as sheet flow to the south and east. This resulted in a much larger and broader littoral zone and marsh ecosystem to the north and west than the existing one. Today, as the primary reservoir of the Central and Southern Florida Flood Control Project, Lake Okeechobee is capable of storing 2.7 million acre-feet of water between stages of 3.2 meters (10.5 feet) above msl and the top of the regulation schedule at 5.3 meters (17.5 feet) above msl.

Water levels in the lake are managed according to a regulation schedule developed by the South Florida Water Management District (SFWMD or District) and the United States Army Corps of Engineers (USACE). The schedule is designed to maintain a low level of 4.7 meters (15.5 feet) during the wet season in order to provide storage capacity for excessive amounts of rainfall and to prevent flooding in surrounding areas. The stage at the end of the wet season is regulated at a maximum of 5.3 meters (17.5 feet) in order to store water for the dry season. The Caloosahatchee and St. Lucie canals are the primary outlets for release of flood waters when the lake is above regulation stages.

A series of structures are situated around the lake, which provide flood protection, control drainage and facilitate navigation. The USACE operates the primary structures and navigation locks around the lake and is responsible for maintenance of the schedule. The SFWMD operates and maintains the secondary water control structures and pump stations.

Historically Lake Okeechobee's regulation schedule was developed primarily to meet flood control and water supply objectives, the primary purposes for construction of the C&SF Project. The environmental concerns for the lake's littoral zone and wildlife
habitat and the downstream estuaries have generally been compromised in order to meet the water supply needs of South Florida.

Trimble and Marban (1988) performed an analysis of the Lake Okeechobee regulation schedule, which incorporated a trade off analysis framework and resulted in the recommendation of a schedule known as “Run 25.” This schedule reduced the water quality impacts associated with regulatory discharges to the St. Lucie and Caloosahatchee estuaries by reducing the need to discharge large volumes of freshwater from the lake, without significantly impacting existing flood control, water supply and environmental benefits. Run 25 was approved by the District's Governing Board in December 1991 and approved on a two year interim basis by the USACE in May of 1992. A new regulation schedule for the lake was formally adopted by USACE in July 2000. This water supply and environmental (WSE) schedule uses climate forecasting to determine the volumes of water to release from the lake under flood control circumstances, and has the potential to provide environmental benefits for the lake and downstream systems, while not sacrificing water supply. The extent of the benefits will depend in part on specific adaptive management protocols that are presently being developed by the District.

The enactment of the Lake Okeechobee Protection Act (LOPA) (Section 373.4595, Florida Statutes) in 2000 also advanced restoration efforts. This act provides an umbrella that captures many lake restoration efforts. It will significantly enhance mandates restoring and protecting the lake using a phased, watershed-based approach to reduce phosphorus loading to the lake and downstream receiving waters. Fulfilling this act will require a great deal of cooperation among government agencies and the public. To facilitate the execution of the Lake Okeechobee Protection Plan, an interagency committee was formed with individuals from the Florida Department of Environmental Protection (FDEP), the Florida Department of Agriculture and Consumer Services (FDACS) and the SFWMD. The agencies are currently planning and implementing numerous management activities in the watershed to reduce phosphorus loading to the lake. These include: the construction of surface water storage reservoirs and stormwater treatment areas; the restoration of isolated wetlands; the development and implementation of best management practices to control nonpoint sources of pollution; the continuation of research and monitoring to ensure projects are designed and implemented to optimize success; the removal of phosphorus-rich sediment from tributaries to Lake Okeechobee; and the implementation of a sediment management feasibility study to determine whether or not it is feasible to reduce internal loading from the lake sediments. More current information regarding the status of the LOPA activities can be found in the Lake Okeechobee Protection Program Annual Report to the Legislature (SFWMD, 2001a, 2001b).

Water Quality

Lake Okeechobee may be considered a naturally eutrophic water body that is tending to become hypereutrophic, due primarily from nutrient inputs from the Kissimmee River and the Taylor Creek basins. Water quality conditions in the upper Chain of Lakes area appear to be improving, primarily due to rerouting of wastewater flows from the river
to reuse and ground-water discharge sites. However, large quantities of nutrients are still discharged from Lake Toho to Lake Kissimmee and other downstream receiving waters. Water quality improves from Lake Kissimmee to near Lake Okeechobee, where the channel flows mostly through unimproved rangeland; however, pollutant loadings increase as cattle and dairies grow more numerous near the lake. Because the lake's phosphorus is internally recycled and a vast reservoir of the nutrient is stored in groundwater, as well as wetland and canal sediments, phosphorus within the lake may not reach acceptable levels for many decades or even a century.

According to the 1996 305(b) report (FDEP, 1996) for Lake Okeechobee, the major pollution sources for the lake include runoff from ranch and dairy operations in the north where pollution has elevated phosphorus and coliform bacteria concentrations. In the south, historic backpumping of runoff from row crops and sugarcane has elevated nutrient and pesticide levels. The backpumping has mostly ceased but still occurs when water in the primary canal of the Everglades Agricultural Area (EAA) reaches 13 feet (flood-control levels). As a result, depending on location and seasonal rainfall or drought, the lake receives varying amounts of nutrients, substances creating high biological oxygen demand (BOD), bacteria and toxic materials. Other pollutants include high levels of total dissolved solids, unionized ammonia, chloride, color and dissolved organic chemicals.

Biological sampling indicated variable but generally eutrophic conditions. In recent years, several widespread algal blooms (one covering about 100 square miles) and at least one major fish kill (all of which were widely publicized) launched the environmental community and governmental agencies into intense investigation and analysis of the lake's problems. The Lake Okeechobee Technical Advisory Committee, formed to assess the situation and recommend solutions, determined that phosphorus from dairies and agriculture was a major cause of the noxious algal blooms and that levels should be reduced by 40 percent. A few others contended that the secondary cause of increased phosphorus is the flooding of hundreds of acres of perimeter wetlands after the SFWMD decided in the late 1970's to raise the lake's water level. The higher level also reduced valuable fish-spawning grounds and waterfowl feeding and nesting habitat.

The 1997 and 2002 Surface Water Improvement and Management (SWIM) plan updates reported that phosphorus load reductions had occurred, but the 40 percent reduction in loads was not achieved. It recommended the implementation of programs and projects to improve the lake and watershed water quality situation. Even with the implementation of these programs and projects, nutrient loads to Lake Okeechobee have not decreased significantly. The highest inflow phosphorus concentrations continue to be found in the S-154 and S-191 basins where dairies are abundant and the majority of the out-of-compliance Works of the District (WOD) sites are found. Phosphorus loading is far in excess of the amount considered for a healthy Lake Okeechobee ecosystem and current model data predict that it may take decades before in-lake phosphorus concentrations will respond to reduced external loads.

The federal Clean Water Act (Title 33, Chapter 26, Subchapter III, Section 1313(d)), requires that each state develop total maximum daily loads (TMDLs) for each water-quality-limited segment reported. A TMDL reflects the total pollutant loading, from
all contributing sources, that a water segment can receive without exceeding its capacity to assimilate the pollutant loads and still meet applicable water quality standards. The phosphorus TMDL established for Lake Okeechobee is 140 metric tons (based on a 5-year rolling average) to achieve an in-lake target phosphorus concentration of 40 parts per billion in the pelagic zone of the lake (FDEP, 2000). The restoration target was determined using computer models developed based on past research performed by the SFWMD using SWIM funds. This target will support a healthy lake system, restore the designated uses of Lake Okeechobee, and allow the lake to meet applicable water quality standards.

FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - LAKE OKEECHOBEE

Several watershed and in-lake cleanup projects are currently proposed. These include flow diversion projects for four chapter 298 water control districts established under Florida Statutes (F.S.), diversion of flows from the 715 Farms area, and a critical project authorized pursuant to Section 528 of the Water Resources Development Act of 1996 – the Lake Okeechobee Water Retention/Phosphorus Removal Critical Project) to incrementally reduce inputs of nutrients to the lake. However, to sustain water quality improvements brought about by in-lake cleanup projects, pollutant source reduction programs, via agricultural land acquisition, and implementation of best management practices (BMPs) in the lake watershed must be implemented concurrently. The FDEP, is at present, developing a Total Daily Maximum Load (TMDL) pollutant loading program, which is expected to result in additional pollutant load reduction activities in watersheds flowing to Lake Okeechobee.

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - MANATEE PROTECTION

The West Indian manatee (Trichechus manatus) is listed as a federally endangered species and is one of the most endangered species in Florida. As a response to recent manatee mortality trends associated with water control structures, this project will provide operational changes and implement the installation of a manatee protection system at seven sector gates at navigational locks near Lake Okeechobee. The beneficial outcome of this project will be the reduction of risk, injury and mortality of the manatee. The seven sector gates include S-193 at Okeechobee and S-310 at Clewiston on Lake Okeechobee; St. Lucie Lock and Port Mayaca Lock on the St. Lucie Canal; and Moore Haven Lock, Ortona Lock and W. P. Franklin Lock on the Caloosahatchee River. The mechanism proposed would use hydroacoustic and pressure sensitive devices that will immediately stop the gates when an object is detected between the closing gates. These systems will transmit an alarm and signal to stop the gate movement when a manatee is detected. When an object or manatee activates the gate sensors, the gate will stop and open approximately six inches to release a manatee. As a result, a manatee will be able to travel between the open gates. After the gate opens, the operator can fully close the gate unless an object remains between the gates. Then the opening process will repeat the cycle as the sensors
are activated again. Due to these structural modifications, manatees will be at a significantly less risk as they encounter locks with a sector gate. The future without plan condition assumes that the automatic gate sensor devices are installed on these lock sector gates.

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - LAKE OKEECHOBEE REGULATION SCHEDULE

Lake Okeechobee has undergone numerous changes since the initial construction of Herbert Hoover Dike. Today, the Lake Okeechobee's water level is managed to provide a range of desired purposes including, flood protection, water supply and environmental protection using “regulation schedules.” In 1995, the SFWMD requested the USACE to study a range of regulation schedules intended to be more responsive to lake ecosystem, down stream users and receiving water bodies. Those studies are currently underway. Due to the uncertainty of the recommendation that will result from that study, the Restudy assumed the current schedule, known as Run 25, for hydrologic modeling of the future without plan condition.

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - CRITICAL RESTORATION PROJECTS

Lake Okeechobee Water Retention / Phosphorus Removal

The project consists of design and construction of stormwater treatment areas (STAs) in the Taylor Creek Basin (200 acres) and in the Nubbin Slough Basin (1,100 acres) and the restoration of isolated wetland sites on ten agricultural parcels in the Okeechobee watershed. The purpose of the project is to capture and attenuate peak flows from portions of the watershed and to improve water quality. The total project cost is estimated to be $16.3 million according to the project cooperation agreement entered into by the SFWMD and the USACE on January 7, 2000. More information is available regarding this critical project at www.saj.usace.army.mil/projects/index.html.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - LAKE OKEECHOBEE

Lake Okeechobee is a Class I water body (potable water supply) according to Florida Administrative Code (F.A.C.) rule. Class I water bodies generally have the most stringent surface water quality and pollution control criteria in Florida. However, water quality data for Lake Okeechobee indicate that the lake is in a eutrophic condition, primarily due to excessive nutrient loads from agricultural sources both north and south of the lake.
The main tributary to Lake Okeechobee is the Kissimmee River. As stated above, several water bodies within the Kissimmee River Watershed, including segments of the river itself, are impaired to various levels. Degradation of water quality in the Kissimmee River Watershed contributes to downstream degradation in Lake Okeechobee. Lower reaches of the Kissimmee River contribute high levels of nutrient loading to Lake Okeechobee.

Another important tributary to the lake is the Taylor Creek/Nubbin Slough Basin. The Taylor Creek/Nubbin Slough Basin contributes high levels of nutrient loading, low levels of DO and elevated coliform bacteria and turbidity levels to the lake. The Taylor Creek/Nubbin Slough Basin contributes only 4 percent of the total volume of inflows to Lake Okeechobee, but accounts for approximately 29 percent of the total phosphorus inflow loads.

Eight segments of Lake Okeechobee are also included on the Section 303(d) list. Water quality parameters/criteria causing impairment at eight different monitoring locations in Lake Okeechobee include: excessive nutrients, low levels of DO and high concentrations of unionized ammonia, iron, chlorides and coliform bacteria. The Fisheating Creek and C-41 basins on the northwest side of the lake also contributes pollutants, causing impairment in Lake Okeechobee.

Water quality in Lake Okeechobee is expected to slowly improve between 1999 and 2050. Field and laboratory studies of phosphorus stored in lake sediments indicate that sediment bound phosphorus is a dominant pollutant affecting lake water quality (Reddy et al., 1995). Currently, the average cumulative phosphorus load to the lake exceeds the Surface Water Improvement and Management Plan target by approximately 100 tons per year (SFWMD, 1997f). Phosphorus loads to the lake eventually become sequestered in lake sediments. The phosphorus in these sediments, which has accumulated over time from excessive external loads, is frequently resuspended (primarily by wind-aided mixing: Havens, 1997) and will tend to maintain a high phosphorus concentration in the water column, even if all sources of phosphorus in the contributing watershed are controlled consistent with regulatory and watershed management programs. Although short-term water quality conditions in Lake Okeechobee are not expected to improve, in place pollutant reduction programs in the lower Kissimmee River and Taylor Creek/Nubbin Slough basins are expected to result in long-term reduction in Lake Okeechobee water column nutrient concentrations.

Urban development in the Lake Okeechobee Watershed and nonpoint source pollution loading associated with urban storm water runoff is not expected to increase significantly by 2050.

LAND USE - LAKE OKEECHOBEE REGION

Lake Okeechobee has traditionally been a key source of water supply for irrigated crops around the lake including the EAA, the Caloosahatchee River Basin and Martin and
St. Lucie counties (Upper East Coast). Continued access to this source of water is considered vital to sustaining agriculture in the surrounding regions.

Agriculture

The area is rural in character, with most lands dedicated to agriculture, very generally sugarcane is the predominant crop in the south, row crops and sugarcane in the east and pasture land with dairy production in the north. Urban areas, which are generally few and modest in population, service the agriculture sector, as well as the tourists who come to the lake to fish, hunt and enjoy other recreational pursuits.

Urban

A significant use of land outside the agricultural context is for urban development. Six incorporated communities are situated around the lake and range in population from approximately 1,400 to 16,000.

The Brighton Seminole Indian Reservation occupies a large area of land west of the lake in Glades County. The southern end of this reservation is near the Herbert Hoover Dike just north of Lakeport.

Major transportation corridors around the perimeter of Lake Okeechobee include several highways and railroads. County Road 78 parallels the lake along its western and northern shores from Moore Haven to Okeechobee. From Okeechobee, State Highway 98/441 follows the northern and eastern portion of the lake to Pahokee. County Road 715 then follows the Herbert Hoover Dike from Pahokee to Belle Glade, where State Highway 27 follows the southern lake area back to Moore Haven and County Road 78. In many cases, these highways are within 1.6 kilometers (one mile) of the Herbert Hoover Dike, and are often within 15 meters (50 feet).

Railroad corridors in the Lake Okeechobee area include the Florida East Coast Railway and the South Central Florida Railroad. The East Coast Railway is located along the eastern part of the lake where it comes very near to the Herbert Hoover Dike. The South Central Florida Railroad travels along the southern end of the lake, where it comes within 1.6 kilometers (one mile) of the Herbert Hoover Dike.

ELIGIBLE COMPREHENSIVE EVERGLADES RESTORATION PLAN (CERP) PROJECTS

Lake Okeechobee Watershed Project

The Lake Okeechobee Watershed Project consists of four separable elements including: North of Lake Okeechobee Storage Reservoir, Taylor Creek/Nubbin Slough Storage and Treatment Area, Lake Okeechobee Watershed Water Quality Treatment Facilities and Lake Okeechobee Tributary Sediment Dredging. These components were
combined for an opportunity to generate a more efficient design of the components and address the interdependencies and trade-offs between the different components. More detailed information is available at www.evergladesplan.org.
Chapter 5
LOWER WEST COAST REGION

PHYSICAL CONDITIONS - LOWER WEST COAST REGION

The Lower West Coast Region covers approximately 4,000 square miles in Lee, Hendry, Glades and Collier counties and a portion of Charlotte County, in addition to 1205 square miles in the Big Cypress Basin (Figure 4). This area is generally bounded by Charlotte County to the north, Lake Okeechobee and the Everglades Agricultural Area (EAA) to the east, the Big Cypress National Preserve (BCNP) to the south, and the Gulf of Mexico to the west. The area is characterized by the sandy flatlands region of Lee County, which give way to sandy though more rolling terrain in Hendry County; and the coastal marshes and mangrove swamps of Collier County.

The Caloosahatchee River Basin includes an area of 860 square miles (550,900 acres) in parts of Lee, Glades, Charlotte and Hendry counties. From a hurricane gate on the southwest shore of Lake Okeechobee at Moore Haven, the Caloosahatchee Canal drains westerly for about 5 miles through a very flat terrain into Lake Hicpochee. From
Chapter 5: Lower West Coast Region

there the canal joins the upper reach of the Caloosahatchee River. On its way to the Gulf of Mexico, the river is controlled by navigation locks at Ortona (15 miles downstream from Moore Haven) and at Olga near Fort Myers. Downstream from Ortona Lock, many tributaries join the river along its course to the gulf. The Caloosahatchee River serves as a portion of the cross-state Okeechobee Waterway, which extends from Stuart on the east coast via the St. Lucie Canal, through Lake Okeechobee and the Caloosahatchee River to Fort Myers on the Gulf of Mexico. The river has been straightened by channelization through most of its 65-mile course from the Moore Haven Lock to Fort Myers.

The J. N. “Ding” Darling National Wildlife Refuge (NWR) Complex includes Pine Island NWR, Island Bay NWR, Matlacha Pass NWR and Caloosahatchee NWR, all located on the lower west coast. The health of the estuarine ecosystem they embody is directly tied to the water quality, quantity and timing of flows from the Caloosahatchee Watershed and those watersheds which drain into the Caloosahatchee River (i.e., Kissimmee River and Lake Okeechobee watersheds).

Big Cypress Swamp spans approximately 1,205 square miles (771,000 acres) from southwest of Lake Okeechobee to the Ten Thousand Islands in the Gulf of Mexico. The 570,000-acre Big Cypress National Preserve (BCNP) was established by Public Law, 93-440 in 1974, to protect natural and recreational values of the Big Cypress Watershed, and to allow for continued traditional uses, such as hunting, fishing and oil and gas production. It was also established to provide an ecological buffer zone and protect Everglades National Park’s (ENP) water supply. In 1988, Congress passed the BCNP Addition Act (Additions), which added 228 square miles (146,000 acres) to the preserve.

EXISTING CONDITIONS - LOWER WEST COAST REGION

WATER MANAGEMENT

Inflows from Lake Okeechobee and runoff from within its own basin supply the Caloosahatchee River. The freshwater portion of the river (C-43 Canal) extends westward from Moore Haven, on Lake Okeechobee, through LaBelle, to the Franklin Lock and Dam (S-79). The C-43 Canal is part of the Lake Okeechobee Waterway, providing navigation between the east and west coasts of Florida. West of S-79, the river mixes freely with estuarine water as it empties into the Gulf of Mexico (SFWMD, 1995; SFWMD, 1997). C-43 is 45 miles long, averages 20 to 30 feet deep and ranges from 150 to 450 feet wide. The Ortona Lock and Dam (S-78), located approximately 27 miles upstream of S-79, separates the freshwater portion of the river into the East and West Caloosahatchee basins. Roughly 40 percent of the drainage area is in the east basin, and the remaining 60 percent is in the west basin. The total drainage area to the river between S-77 and S-79 is about 880 square miles (CDM, 1991).

The Lower West Coast Region is part of the Lake Okeechobee Service Area. The Lake Okeechobee Service Area subbasins lie at critical intermediary points in the water management system of South Florida. The needs of the Okeechobee subbasin for flood protection and drainage services affect inflows to the Caloosahatchee Estuary. Excessive
discharges of freshwater to the Caloosahatchee Estuary are caused by regulatory releases from Lake Okeechobee and runoff from each local watershed (SFWMD, 1997).

The Lake Okeechobee regulation schedule determines the timing and quantity of water that is released from the lake into the Caloosahatchee River, depending on lake water surface elevation and season. When lake levels exceed the highest allowable elevation (generally during flooding rainfall events), rapid releases of large volumes of water occur down both the Caloosahatchee River and St. Lucie Canal. At intermediate elevations, lower continuous releases of water occur. Timing and duration of releases are set by a targeted discharge volume from Lake Okeechobee, which in turn is set according to the lake level. Maximum water releases through the Caloosahatchee may be up to 9,300 cubic feet per second (cfs). Lake Okeechobee regulatory releases are made after the peak of the local inflow has passed. Minor rainfall events lead to smaller, pulsed discharges, intended to mimic natural rainfall events.

Continuous discharges to the Caloosahatchee and St. Lucie estuaries have caused documented negative effects on estuarine ecology (Chamberlain et al., 1995; Haunert and Startzman, 1985; Chamberlain and Hayward, 1996). Research has shown that prolonged releases, even at the modest rates, transform the estuarine systems into freshwater habitats within three to four weeks. The dramatic and rapid changes in salinity, and associated siltation caused by the release of suspended solids and precipitation of dissolved organic matter at the freshwater/saltwater interface, can produce long-term negative effects on these estuaries. In addition, continuous flow releases at these levels tend to create critically low benthic oxygen concentrations at the transitional zone between freshwater and the ocean or gulf. High, continuous releases generate even more problems, because of greater potential for environmental disruption and associated public concern. Even with a thorough understanding of these major environmental concerns, flood control remains a major purpose of the man-made structures, and regulatory discharges are sometimes necessary because of the high risk of loss of life and property associated with high lake stages and hurricane generated waves and tides.

The Big Cypress Swamp is a recognized physiographic province in southwestern Florida. It is a source of recharge for the shallow aquifers of South Florida and is important to the integrity of the water resources in the western part of ENP. Congress recognized the hydrological features of the swamp and established BCNP. The water regimen of the area largely determines the patterns in which temperate and tropical vegetative communities and their related wildlife species occur. During the wet season (summer and fall) when heavy rains lead to widespread surface inundation, the almost imperceptible slope of the land creates an overland sheetflow. During the dry season (winter and spring) natural surface water flows are confined to the lower elevations of strands, swamps and sloughs. The BCNP has been mapped by the USFWS as part of the national wetlands inventory. The majority of BCNP lands are classified as wetlands; exceptions are scattered hardwood hammocks, some pinelands and artificially filled areas. The Big Cypress Region is essentially a rain-driven hydrologic unit, and for the most part, it is not dependent on adjacent land for water flow. Only three small areas (approximately five percent of the BCNP) receive flows from external drainages. These areas include less than 5 square miles in the Okaloacoochee Slough, about 30 square miles in the Mullet
Slough component of the Everglades drainage, and approximately 40 square miles in the southeastern corner of the BCNP, along the western boundary of the Shark River Slough.

Problems Related to Water Management

During the annual November to April dry season, little water is released into the river from the lake, resulting in low flows and low water levels in the upper Caloosahatchee. Two problems may develop as a consequence: First, low flow may lead to development of an occasional severe algal bloom in the river above Franklin Lock (S-79) and Dam. The city of Fort Myers and Lee County both have municipal water intakes in this area. Short-term high rates of discharge from Lake Okeechobee are used to break up the blooms by the United States Army Corps of Engineers (USACE) whenever requested by the South Florida Water Management District (SFWMD or District) (USACE, 1991). During the extreme driest months (April-May) river flow may drop to near zero. When this occurs, navigation lockages through the W. P. Franklin Lock (S-79) allow a saltwater wedge to move upstream. If salt intrusion is too severe, the SFWMD requests the USACE to flush out the saltwater with a short-term high rate of discharge from Lake Okeechobee. During a declared water shortage period, the SFWMD requests the USACE to go to reduced hours of lockages (USACE, 1991).

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - CRITICAL RESTORATION PROJECTS

Lake Trafford Restoration

Lake Trafford is located in north Collier County and is the largest lake south of Lake Okeechobee with a surface area of approximately 1,500 acres. It is the headwaters of the Corkscrew Swamp Sanctuary to the southwest, the Corkscrew Regional Ecosystem Watershed (CREW) to the west, and the Florida Panther National Wildlife Refuge to the south. Lake Trafford has poor water quality, extensive muck accumulations, loss of native submergent plant communities and numerous fish kills. The project involves removal of approximately 8.5 million cubic yards of loose, flocculent organic sediments that blanket the bottom of the lake and transport of these sediments to a sediment disposal site through a temporary pipeline. The total project cost is $17.5 million according to the project cooperation agreement entered into by the SFWMD and the USACE on January 7, 2000. More information is available regarding this critical project at www.saj.usace.army.mil/projects/index.html.

Southern CREW / Imperial River Flowway

The project is located in southern Lee County bordering the western boundary of the Corkscrew Regional Ecosystem Watershed (CREW). The environmentally sensitive area east of Bonita Springs has been altered by the construction of roads, house pads, agricultural berms and ditches. These alterations have resulted in restriction of historical
sheetflow, unnatural water impoundment and flooding, increased pollutant loading to the Imperial River and Estero River and disruption of natural wetland functions. The project involves acquisition of approximately 4,670 acres and restoration of historic sheetflow by removal of canal and road berms, home pads and ditches. The project also involves replacement of the Imperial Bonita Estates Bridge and modifications to the Kehl Canal Weir.

The project is divided into the following 3 phases: Phase I consists of construction of the Kehl Canal Weir Modification. Phase II consists of land acquisition and restoration of historic flows over Sections 25, 26, 35, 36 and the SE 1/4 of Section 24, T47S, R26E, approximately 2,720 acres. Phase III consists of land acquisition and restoration of historic flows over Sections 32, 33 and 34, T47S, R26E and the flowway starting at Section 32 downstream to Matheson Street, approximately 2,040 acres. The estimated project cost is $26.1 Million, of which $12.1 million will be cost-shared under a PCA with the USACE and the remaining $14 million for land acquisition will be cost-shared under a separate agreement with the United States Department of the Interior (USDOI). Additional information is available at www.saj.usace.army.mil/projects/index.html.

Western Tamiami Trail Culverts

The project is located on the Tamiami Trail (US 41) in Collier County between State Road (SR) 92 and 50 Mile Bend (a distance of approximately 43 miles). In 1928, the Tamiami Trail was completed between Miami and Naples. To obtain fill material for the roadbed, a borrow canal was excavated on the northern side of the road alignment. The effect of the Tamiami Trail and adjacent borrow canal has been to intercept existing north-south flowways to the BCNP and channels flows through a few bridges/culverts. The purpose of this project is to increase the number of north-south flowways by adding culverts at locations that will restore natural hydropatterns. The installation of approximately 80 culverts under Tamiami Trail and Loop Road will improve sheetflow of surface water within Ten Thousand Islands National Wildlife Refuge, BCNP and ENP. The total project cost of the restoration elements is estimated at $8.4 million according to the project cooperation agreement entered into by the SFWMD and the USACE. Additional information is available at www.saj.usace.army.mil/projects/index.html.

FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - LOWER WEST COAST REGION

The SFWMD's Caloosahatchee Water Management Plan is the main watershed management program that is likely to result in water quality improvement activities in the basin (SFWMD, 2001). In the future, although implementation of new Lake Okeechobee regulation schedules and the Caloosahatchee Water Management Plan will reduce pollutant loading to the Caloosahatchee River/Estuary, in general, water quality conditions throughout the basin in the future without plan condition, are expected to be similar to current water quality conditions.
The District has identified the S-190 Structure (a gated culvert at the confluence of the North and West feeder canals) as a water control structure discharging into the Everglades Protection Area, that requires an assessment of pollution loads and the development of a water quality improvement strategy. This strategy must be in accordance with the non-Everglades Construction Project (ECP) structures requirement of the Everglades Forever Act (EFA). SFWMD water quality data (SFWMD, 1998a) indicate that agricultural areas upstream of the Seminole Reservation, contribute significant nutrient loads (particularly phosphorus) into the canal system, that drains into the North and West feeder canals and ultimately across the northeast corner of BCNP. Water quality improvements required under the EFA are to be completed by December 31, 2006, to assure that all water quality standards are met in the Everglades Protection Area.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - LOWER WEST COAST FLORIDA REGION

The Florida Department of Environmental Protection (FDEP) listed approximately 14 water body segments in the Caloosahatchee River Basin and in downstream coastal waters on its 1998 303(d) list. Water quality parameters of concern include excessive nutrients, coliform bacteria, biochemical oxygen demand (BOD) and depressed levels of dissolved oxygen (DO). As with the Big Cypress Basin, the number of monitoring locations in coastal waters of the region used to prepare the 305(b) Report is probably inadequate to accurately characterize the extent of water quality degradation in coastal areas. Extensive urban development (Fort Myers and vicinity, Cape Coral) at the mouth of the Caloosahatchee River contributes significant point and nonpoint source pollution loads into coastal canals and downstream into the Caloosahatchee Estuary.

In 2050, water quality conditions in the upper (eastern) and central portions of the watershed are expected to be unchanged compared to existing conditions. Water quality in downstream coastal areas is expected to decline as a result of increased population growth and urban and agricultural development. Water quality impacts from increased agricultural development are anticipated be most readily observed in downstream areas of the watershed. The projected increase in population growth in urban areas of the Caloosahatchee River Basin is expected to exacerbate existing water quality problems in coastal waters, particularly those associated with wastewater discharges. Offsetting the coastal development and inland agricultural development water quality impacts is the implementation of a different regulatory schedule for Lake Okeechobee, which is expected to improve water quality conditions in the Caloosahatchee River and estuary by reducing the frequency and volume of large quantities of nutrient/sediment laden Lake Okeechobee flood regulation waters.

The Big Cypress Basin (the watershed of BCNP) includes agricultural areas west of the EAA, the Seminole Tribe’s Big Cypress Reservation, most of the Miccosukee Tribe of Indians’ reservation lands, and developed areas of the west coast, including Naples and Marco Island. Five water body segments within the Big Cypress Basin were included on the FDEP 1998 303(d) list. Pollutants/constituents of concern include excessive nutrients, coliform bacteria, BOD, mercury (based on fish consumption advisories) and low levels
of DO. It should be noted, that none of the 303(d) list sites are within the BCNP. However, the L-28 Interceptor Canal, on the east side of the Big Cypress Basin, was listed as use-impaired due to elevated nutrient levels and low levels of DO. It should be further noted, that due to the scarcity of ambient monitoring sites in coastal waters of the basin, actual water quality problems are likely to be more severe in coastal waters, than as described in the FDEP 1996 305(b) report, due to development pressure and point and nonpoint source pollution loading in developing areas.

Poor water quality and excessive drainage into the BCNP via the existing canal system constitute the most significant water quality impacts facing the BCNP, both now and in the future. It should be noted that the canals contributing pollutants into BCNP are not part of the C&SF Project. Existing pollution loads entering the BCNP from northwestern areas of the watershed (Big Cypress Seminole Indian Reservation, C-139 Basin and C-139 Annex agricultural areas) are expected to be reduced in 2050 through the implementation of planned and ongoing water quality improvement projects.

LAND USE - LOWER WEST COAST REGION

Caloosahatchee River

The Caloosahatchee River Region has 169,660 acres of urban land, largely fixed single family units (69,172 acres) and an almost equal number of acres in some stage of construction. There are 355,125 acres of agriculture with improved and unimproved pastures (163,348 acres), citrus groves (92,410 acres) and sugarcane (67,628 acres) predominant. Various types of rangeland make up 51,663 acres of land use. The category of barren land has 10,000 acres. This includes spoil and borrow areas (7,090 acres) and rural land in transition (2,377 acres). Transportation, communication and utilities comprise 16,280 acres.

Rangeland and agriculture dominate land use in the basin, particularly the upper portion (FDEP, 1996). The freshwater portion of the Caloosahatchee River Region is mostly agricultural. The only urban areas are the cities of LaBelle, Alva and Moore Haven (CDM, 1991). Land use adjacent to the Caloosahatchee River Estuary is largely residential and urban with the city of Cape Coral on its northern bank and the highly urbanized city of Fort Myers on its south bank. Both of these communities have experienced rapid growth, with even more growth anticipated in the near future (SFWMD, 1997).

Agriculture

Glades and Lee counties are included in this region. Almost one-half million acres are farmed in the Caloosahatchee River Basin, and approximately three-fourths of that area is pasture land (UFBEBR, 1995). Large farms averaging 1,800 acres, characterize the region, with relatively low productivity per acre (UFBEBR, 1995). Glades County ranks eighth in the state of Florida for cattle production (FASS, 1996a). Citrus production in the Caloosahatchee River Basin covers more than 20,000 acres (FASS, 1996b) and is
currently increasing. Much of this acreage is likely categorized as unique farmland based upon its location, growing season and high value citrus crops.

Almost 5,000 people are employed in agricultural production and services, and the payroll totals approximately $5 million (UFBEBR, 1995). Agricultural products in this region have a total market value of more than $135 million (UFBEBR, 1995).

More than 77,000 acres of farmland are irrigated in the Caloosahatchee River Basin (UFBEBR, 1995). Reliable water supply is a major concern in this region, which has traditionally relied upon water deliveries through the Caloosahatchee River from Lake Okeechobee. Irrigation demands can be expected to increase as additional land is used for citrus production.

Big Cypress National Preserve (BCNP)

Roadways in South Florida often obtain necessary roadfill from excavation of a parallel canal, resulting in both an elevated obstruction to natural drainage patterns and rerouting of flow in open canals. Such drainage alterations in the BCNP include the Tamiami Trail (U.S. 41), Interstate 75 (Alligator Alley), County Route 839 (Turner River Road), County Route 841 (Birdon Road), County Route 94 (Loop Road) and numerous smaller roads. State Road 29, a north-south road, parallels the western boundary just outside of the BCNP, although its borrow canal is just within the boundary of the BCNP. Extending northward from the Tamiami Trail along the eastern boundary of the BCNP, the L-28 Levee forms the boundary between the Everglades and Big Cypress drainage. Although the levee is located immediately outside of the BCNP boundary, it is significant to the hydrology of the BCNP. The L-28 Interceptor Canal cuts through the extreme northeastern corner of the BCNP. This canal rapidly drains the agriculturally active lands north of the BCNP.

Oil and gas are currently produced from two active fields in the BCNP. A portion of the Bear Island field lies within the Okaloacoochee Slough in the northwestern corner of the BCNP. The Raccoon Point field is located in the northeastern corner of the original BCNP and north of the Jetport site.

The Miami-Dade-Collier Transition and Training Airport, popularly known as the Jetport, occupies a 32 square mile site just north of the Tamiami Trail and adjacent to the eastern boundary of the BCNP. Although originally intended as an international airport, it is currently used only for limited training activities. Construction required 3 million cubic yards of fill excavated from 7 pits, ranging from 30 to 40 feet deep and covering 65 acres of surface area just west and south of the Jetport runways. Since all structures must be elevated above the seasonal high water levels, fill material must be excavated from borrow pits. Numerous such pits exist within the BCNP, ranging in size and depth, depending upon the extent of the development.

Off-road vehicle (ORV) usage in the BCNP is regulated by the National Park Service and is permitted by the enabling legislation to the extent that it does not
significantly harm the environment. Areas open to use are designated and permits are required, with a maximum of 2000 permits to be issued per year. The Preserve is currently transitioning to a designated trail system wherein ORV use will be permitted only on designated trails. In areas where the trails are in place, users are restricted to them. In areas where trails are not yet in place, access may still be limited, and access will be from designated points only. Approximately 50 miles out of a planned 400 miles of trails are currently designated.

Some 38,700 acres, totaling six percent of the BCNP's original boundary, are nonfederal lands. These nonfederal lands consist of 12,236 acres of School Board lands including one section in each township set aside for schools, 23,488 acres of Jetport Authority lands, 1,514 acres of county roads and 1,271 acres of private lands. Nonfederal lands within the Additions have not yet been completely defined.

Agriculture within the original boundary of the BCNP is minimal. Farming is known to be more extensive within the Additions, but until the lands are formally transferred to the federal government, these agriculturally-impacted areas will not be completely defined.

Five active “life” leases, cover grazing rights on approximately 29,000 acres in the northwestern corner of the original preserve. All leases are located north of Alligator Alley. The leases can only be renewed by the permittee or spouse and are not transferable. These are gradually being phased out as lessees curtail operations or leases are relinquished.

Public Law (P.L.) 93-440 provides that members of the Miccosukee Tribe of Indians of Florida and members of the Seminole Tribe of Florida shall be permitted, subject to reasonable regulations established by the Secretary, to continue their usual and customary use and occupancy of federal or federally acquired lands and waters within the BCNP, including hunting, fishing, trapping on a subsistence basis and traditional tribal ceremonies.

Urban Areas

Naples, Marco Island and Everglades City comprise the three largest urban areas within the Big Cypress Region. All three cities are on the west coast, and Naples is among the fastest growing urban areas in the United States. It has developed into a significant retirement destination with extensive residential and business center construction. Water supply demands to meet this fast growing and developing urban area are rapidly increasing.

Fakahatchee Strand State Preserve

The Fakahatchee Strand, located just west of the BCNP, is included in the area designated by the state of Florida as an Area of Critical State Concern. It is the recipient of
the flow of the Okaloacoochee Slough, which cuts across the extreme northwestern corner of the BCNP and crosses under State Road 29 into the strand.

Southern Golden Gate Estates

West of the Fakahatchee Strand State Preserve and south of Interstate 75 is the Southern Golden Gate Estates. The area was planned as a large residential subdivision and construction began in the 1960's. The building of roads and several drainage canals in this 94 square mile area has affected the areas environmental quality, by over-draining the watershed, sending harmful freshwater discharges to the estuaries, increasing frequency of forest fires and reducing aquifer storage (SFWMD, 1996).

Water Conservation Areas (WCAs)

The BCNP is bounded on the east by WCA-3A, which is managed by the SFWMD. Water is impounded in the Conservation Area and released to ENP and BCNP on predetermined schedules. The L-28 Levee forms the boundary between WCA-3A and the BCNP.

Everglades National Park (ENP)

The southern and portions of the eastern boundary of the BCNP abut ENP. The BCNP’s southern boundary forms a “stair-step” pattern that distinguishes the wetland environment of the BCNP and the estuarine environment of the ENP. The Stair-Step area receives flows from the BCNP enroute to the estuarine environment of the ENP.

American Indian Reservations

Two American Indian reservations abut the BCNP. The Seminole Tribe is along the eastern part of the BCNP's northern boundary, and the Miccosukee Tribe is along the eastern boundary of the BCNP.

Agriculture

A persistent southward progression of agricultural development presents an external threat to the water quality and quantity of the Okaloacoochee Slough and Mullet Slough drainages. Expanding agricultural development is now located along the BCNP's northern boundary.

Hendry and Collier counties are included in this region. More than 800,000 acres are farmed in the Big Cypress Region, and almost half of that area is pasture land. The region is characterized by moderate to large farms producing more than $600 per acre in market value (UFBEBR, 1995). Hendry County ranks third in the state of Florida for cattle production (FASS, 1996a). Approximately 70,000 acres of sugar were harvested in 1996 (FASS, 1996d). Hendry County ranks third in the state for acres of citrus with over
100,000 acres, while Collier County is ninth with over 36,000 acres (FASS, 1996b). Citrus production in the Big Cypress Region is currently increasing. The Big Cypress Seminole Indian Reservation is located in this region along the northern boundary of the BCNP. The reservation includes some citrus groves and row crops, as well as pasture land.

More than 17,000 people are employed in agricultural production and services, and the payroll totals approximately $16 million. Agricultural products in this region have a total market value of more than $525 million. Hendry and Collier counties rank third and fourth in Florida for market value of agricultural products (UFBEBR, 1995).

ELIGIBLE COMPREHENSIVE EVERGLADES RESTORATION PLAN (CERP) PROJECTS

C-43 Basin Storage Reservoir

This project is the first part of the C-43 Basin Storage Reservoir and ASR component. The project includes an above ground reservoir with a total storage capacity of approximately 160,000 acre-feet located in the C-43 Basin in Hendry, Glades or Lee Counties. The purpose of this project is to capture C-43 Basin runoff and releases from Lake Okeechobee. The reservoir will be designed for water supply benefits, some flood attenuation to provide environmental water supply deliveries to the Caloosahatchee Estuary, and water quality benefits to reduce salinity and nutrient impacts of runoff to the estuary. It is assumed that, depending upon the location of the reservoir and pollutant loading conditions in the watershed, the reservoir could be designed to achieve significant water quality improvements, consistent with appropriate pollution load reduction targets. More detailed information is available at www.evergladesplan.org.

Caloosahatchee Backpumping with Stormwater Treatment Area

This project includes pump stations and a stormwater treatment area (STA) with a total capacity of approximately 20,000 acre-feet located in the C-43 Basin in Hendry and Glades Counties. The purpose of this feature is to capture excess C-43 Basin runoff, to be used to augment regional system water supply. Backpumping will only occur after estuary and agricultural/urban demands have been met in the basin, and when water levels in the C-43 storage reservoir exceed 6.5 feet above grade. Further, Lake Okeechobee water levels must be within a specified range to accept this water and not impact ecological resources. When these conditions are met, a series of pump stations will back-pump excess water from the reservoir and the C-43 Basin to Lake Okeechobee after treatment through a stormwater treatment area. The stormwater treatment area will be designed to meet Lake Okeechobee phosphorus and other pollutant load reduction targets consistent with the surface water improvement and management (SWIM) plan for the Lake, and targets that may be developed for the Lake and the watershed where the facility is to be built. More detailed information is available at www.evergladesplan.org.
Southern Golden Gates Estates Hydrologic Restoration

This project includes a combination of spreader channels, canal plugs, road removal and pump stations in the lower west coast region, south of I-75 and north of U.S. 41 between the Belle Meade Area and the Fakahatchee Strand State Preserve. The purpose of this project is to restore and enhance the wetlands in Golden Gate Estates and in adjacent public lands by reducing overdrainage. Implementation of the restoration plan will also improve the water quality of coastal estuaries by moderating the large salinity fluctuations caused by freshwater point discharge of the Fahka Union Canal. The plan will also aid in protecting the City of Naples’ eastern Golden Gate wellfield by improving groundwater recharge. More detailed information is available at www.evergladesplan.org.

Big Cypress / L-28 Interceptor Modifications

This project includes modification of levees and canals, water control structures, pumps and stormwater treatment areas with a total storage capacity of 7,600 acre-feet located within and adjacent to the Miccosukee and Seminole Indian Reservations in Collier and Hendry Counties. The purpose of this project is to reestablish sheetflow from the West Feeder Canal across the Big Cypress Reservation and into the Big Cypress National Preserve, maintain flood protection on Seminole Tribal lands and ensure that inflows to the North and West Feeder Canals meet applicable water quality standards. Consistency with the Seminole Tribe’s Conceptual Water Conservation System master plan will be maintained. More detailed information is available at www.evergladesplan.org.
Chapter 6
UPPER EAST COAST REGION

PHYSICAL CONDITIONS - UPPER EAST COAST REGION

The Upper East Coast Region encompasses approximately 1,139 square miles and includes most of Martin and St. Lucie counties, as well as a portion of eastern Okeechobee County (Figure 5). Martin and St. Lucie counties are bounded to the east by the Atlantic Ocean, and Lake Okeechobee borders a substantial portion of Martin County. Urban development is primarily located along the coastal areas while the central and western portions are used primarily for agriculture where the main products are citrus, truck crops, sugarcane and beef and dairy products.

The land is generally flat, ranging in elevation from 15 to 60 feet NGVD (National Geodetic Vertical Datum) in the western portion with an average elevation of 28 feet. The coastal area ranges from sea level to 25 feet. The coastal sand hills adjacent to the Atlantic Intracoastal Waterway are higher than most parts of the county and reach a maximum elevation of 60 feet. This feature is known as the Atlantic Coastal Ridge.
The natural drainage has been significantly altered by the construction of canals, drainage ditches and numerous water control structures, which predominately direct storm water discharge to the east coast. The area contains the Central and Southern Florida Flood Control Project (C&SF Project) canals C-23, C-24 and C-25 drainage basins and the drainage area served by C-44 (St. Lucie Canal).

The St. Lucie Canal is Lake Okeechobee’s eastern outlet, extending 25.5 miles from Port Mayaca to the city of Stuart, where it terminates at the South Fork of the St. Lucie River. The St. Lucie River Basin is part of a much larger southeastern Florida basin that drains over 8,000 square miles. The St. Lucie River, composed of the North and South forks, lies in Martin and St. Lucie counties in the northeastern portion of the basin. The South Fork is a relatively short stretch of river. The North Fork, designated as an aquatic preserve by the state of Florida, begins south of Fort Pierce and flows past the city of Port St. Lucie to the St. Lucie River Estuary.

The St. Lucie Estuary is part of a larger estuarine system known as the Indian River Lagoon (IRL). The lagoon has been designated an estuary of national significance and is a component of the United States Environmental Protection Agency (USEPA) sponsored National Estuary program. The lagoon is also designated as a state priority water body for protection and restoration under the state’s Surface Water Improvement and Management (SWIM) Act. The SWIM plan identifies excessive freshwater runoff from the St. Lucie Estuary Watershed as a problem within the St. Lucie Estuary.

Much of the St. Lucie River has been channelized and many drainage canals empty into the river, particularly the St. Lucie Canal, C-23 and C-24. The St. Lucie Canal, the largest overflow canal for Lake Okeechobee, is a navigation channel 8 feet deep and 100 feet wide connecting the Atlantic Intracoastal Waterway in Stuart with Lake Okeechobee at Port Mayaca.

EXISTING CONDITIONS - UPPER EAST COAST WATER MANAGEMENT

The St. Lucie Estuary is located on the southeast coast of Florida, encompassing portions of both Martin and St. Lucie counties within the watershed. The two forks of the St. Lucie Estuary, the North Fork and South Fork, flow together near the Roosevelt Bridge at the city of Stuart, and then flow eastward approximately 6 miles to the IRL and Atlantic Ocean at the St. Lucie Inlet. Tidal influences in the North Fork reach 15 miles north of Stuart in Five-Mile Creek, and to a water control structure on Ten-Mile Creek just west of the Florida Turnpike at Gordy Road. Tidal influences in the South Fork extend about 8 miles south of Stuart to the St. Lucie Lock and Dam on the St. Lucie Canal. Tidal influence also extends into the extremes of the nearby Old South Fork tributary (Morris, 1987).

The estuary is divided into three major areas, the inner estuary, composed of the North and South forks; the mid-estuary, consisting of the area from the juncture of the North and South forks to Hell’s Gate, and the outer estuary extending from Hell’s Gate to
the St. Lucie Inlet. The main body of the North Fork is about 4 miles long, with a surface area of approximately 4.5 square miles and a total volume of 998.5×10^6 cubic feet at mean sea level. The South Fork is approximately half the size of the North Fork with a surface area of about 1.9 square miles and a volume of 468.7×10^6 cubic feet. The mid-estuary extends approximately 5 miles from the Roosevelt Bridge to Hell’s Gate and has an area and volume similar to the North Fork (4.7 square miles and 972.7×10^6 cubic feet) (Haunert and Startzman, 1985).

Surface sediment composition within the estuary has been mapped by the SFWMD (Haunert, 1988). Sediment composition within the St. Lucie Estuary is influenced by hydrodynamics and is somewhat correlated to depth. Sand substrates, with little organic content, are found along the shallow shorelines of the estuary and in the St. Lucie Canal. This reflects the impacts of wave turbulence and rapid currents. Substrates comprised of mud and moderate quantities of sand are present in areas that are more typically low energy environments, but subjected to occasional high energy events. Mud substrates are found in low energy areas, such as dredged areas and the deeper portions of the estuary. These mud sediments often contain high concentrations of organic materials.

While the estuary encompasses about 8 square miles, the watershed covers an area of almost 775 square miles. The watershed is divided into eight basins; five major basins and three minor ones. Three of these major basins, the C-23, C-24 and C-44, represent basins now linked to the estuary by components of the Central and South Florida Flood Control Project. In addition to drainage from within the C-44 Basin, the C-44 Canal (St. Lucie Canal) also conveys flood control discharges from Lake Okeechobee to the St. Lucie Estuary. The other two major basins, the North Fork, and Tidal Basin, include numerous connections to the St. Lucie Estuary.

Agricultural drainage and residential development have extensively modified the watershed of the entire St. Lucie Estuary. One major effect of these man-made alterations in the landscape and water management practices is increased drainage, manifested by a lowered groundwater table and dramatic changes in how storm water runoff is introduced to the estuary. Typically, when a watershed is highly drained, like the St. Lucie Estuary Watershed, all three runoff factors (quality, quantity and timing) are negatively affected. From a yearly cycle perspective, the quantity of water drained to the estuary is increased, the water quality is degraded and the seasonal distribution of runoff is altered, such that dry season flows are of less magnitude and frequency and wet season flows are of greater magnitude and more frequent. The vast majority of runoff occurs within the first three days after a rainfall event, rather than over an extended period of time. Water quality is degraded, especially by increased amounts of nutrients and suspended solids. The increased nutrients in the St. Lucie Estuary have increased primary productivity within the system to the point where unhealthy levels of dissolved oxygen (DO) occur on a regular basis in the inner estuary.

The dramatic increase in sediment load has contributed significantly to the build-up of muck throughout the system. The sandy sediment loads, like those that build up in the Palm City area, are from primarily high discharge events. However, it is the increased organics coming from high levels of chlorophyll a and floating aquatics, introduced from
the canals combining with highly organic fine suspended sediments that flocculate out at the freshwater-saltwater interface, that lead to the formation of muck. As a result, the benthic environment of the estuary is a favorable habitat for mostly pollution tolerant organisms. In addition, the rapid introduction of freshwater causes salinity fluctuations that are not conducive to developing or maintaining a healthy estuarine plant and animal community. The overall result of these changes is the loss of important habitats.

The St. Lucie Estuary has received increased inflows over the last 100 years because of these modifications to the watershed. Extreme salinity fluctuations and ever-increasing inflows have contributed to major changes in the structure of the communities within the estuary, such as seagrass and oyster losses. Phillips (1961) described the marine plants in the St. Lucie Estuary. At the time, mangroves were abundant in the North and South forks and seagrasses, although stressed, were still found in many areas of the estuary. Today, the presence of seagrasses is severely limited and ephemeral. Oyster populations in the estuary are virtually nonexistent due to the continual exposure to low salinities and lack of suitable substrate (clean hard objects) for larval recolonization (Haunert and Startzman, 1980 and 1985).

Regulatory discharges from the C-44 Canal have been documented to adversely impact the St. Lucie Estuary by depressing the salinity range far below the normal range, and by transporting large quantities of suspended materials into the estuary. Sedimentation problems in relation to C-44 Canal discharges were recognized as early as the 1950’s (Gunter and Hall, 1963). While current monthly average flows from the watershed to the St. Lucie Estuary seldom exceed 2,500 cubic feet per second (cfs), regulatory releases from the C-44 Canal alone have produced flows in excess of 7,000 cfs. The quantity of suspended solid material passing Structure S-80 has reached a peak of 8,000 tons a day when daily discharges reached near 7,000 cfs in 1983. Much of this material passes through the estuary and into the IRL or Atlantic Ocean (Haunert, 1988). It was recognized then that these discharges transported sand, as well as very fine, organic rich suspended material to the estuary.

Surface Water Resources

Prior to development, most of the Upper East Coast Planning Area was characterized by nearly level, poorly drained lands subject to frequent flooding. The natural surface drainage systems included large expanses of sloughs and marshes, such as St. Johns Marsh, Allapattah Slough (also referred to as Allapattah Flats) and Cane Slough. Drainage systems with higher conveyance included the North and South forks of the St. Lucie River, Ten Mile Creek, Five Mile Creek, the Loxahatchee River and Bessey Creek. Minor creeks include Danforth, Fraiser, Hidden River, Willoughby, Krueger, Mapps and Warner. Most of these surface water systems, especially those with poor drainage, have been altered to make the land suitable for development and to provide flood control.

Since the early 1900s, numerous water control facilities have been constructed to make this region suitable for agricultural, industrial and residential use. The St. Lucie Canal (C-44) was constructed between 1916 and 1924 to provide an improved outlet for
Lake Okeechobee floodwaters. From 1918 to 1919, the Fort Pierce Farms Drainage District (FPFDD) and the North St. Lucie River Drainage District (NSLRDD) were formed to provide flood control and drainage for citrus production in eastern and northeastern St. Lucie County. The C-25 Canal (also known as Belcher Canal) provided a drainage outlet for the FPFDD, as well as limited flood protection for western areas of the basin. The C-24 Canal (also known as the Diversion Canal) provided drainage and limited flood protection west of the NSLRDD protection levee. The C-23 Canal provided water control in Allapattah Flats during the dry season. However, large areas continued to be under water for months at a time during the wet season.

Although the primary function of the C&SF Project was for flood control and drainage, the drainage network formed by the C&SF Project canals and the secondary canals and ditches has become an important source of irrigation water and frost protection for agriculture. In general, water stored in the canals is replenished by rainfall, groundwater inflow and withdrawals from the Floridan Aquifer System (FAS) when needed.

Prior to the large-scale expansion of citrus in the 1960s, storage in the drainage network in St. Lucie County was adequate to meet irrigation demands. However, the drainage and development of the large marsh areas in western St. Lucie County have depleted much of the surface water storage. The lowering of water tables also reduced the amount of water in groundwater storage. The reduced surface and groundwater storage coupled with increased acreages of citrus have resulted in inadequate supplies of surface water to meet demands during droughts. Therefore, an equitable distribution of the available surface water in the C-23, C-24 and C-25 basins is maintained by limiting the invert elevation of irrigation culverts and the intake elevation of pumps to a minimum of 14.0 feet NGVD. Artesian well water from the FAS is used as an irrigation supplement when surface water supplies become limited. Due to the high mineral content of the Floridan aquifer, this water is generally blended with surface water before it is used as irrigation water.

Surface Water Inflow and Outflow

Within the Upper East Coast Planning Area basins, essentially all surface water inflows and outflows are derived from rainfall. The exception to this is the St. Lucie Canal (C-44), which also receives water from Lake Okeechobee. In addition, most of the flows and stages in the region’s canals are regulated for water use and flood protection. The amount of stored water is of critical importance to both the natural ecosystems and the developed areas in the Upper East Coast Planning Area. Management of surface water storage capacity involves balancing two conflicting conditions. When there is little water in storage, drought conditions may occur during periods of insufficient rainfall. Conversely, when storage is at capacity, flooding may occur due to excessive rainfall, especially during the wet season. Management of surface water systems is one of the main factors affecting movement of water through the regional hydrologic cycle.
Groundwater Resources

A distinctive feature of South Florida’s hydrologic system is the aquifer system and its use for water supply. Two vast aquifer systems, the Surficial Aquifer System (SAS) and the FAS, underlie the Upper East Coast Planning Area. Groundwater inflows from outside the planning area form an insignificant portion of recharge to the SAS. Rainfall is the main source of recharge, and because of this, long-term utilization of this source must be governed by local and regional recharge rates. The FAS, on the other hand, receives most of its recharge from outside of the Upper East Coast Planning Area. This fact must also be incorporated into long-term planning decisions. Within an individual aquifer, hydraulic properties and water quality may vary both vertically and horizontally. Groundwater supply potential varies greatly from one place to another.

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - CRITICAL RESTORATION PROJECTS

Ten Mile Creek Water Preserve Area

The project is located just south of Ten Mile Creek in St. Lucie County. Ten Mile Creek is the largest subbasin delivering water to the North Fork of the St. Lucie River Estuary (SLE). The SLE discharges into the IRL, which is the most biologically diverse estuary in North America and has been designated as an Outstanding Florida Water. The entire lagoon is endangered due to increased runoff from watershed drainage fluctuations. Excess storm water from drainage improvements is causing radical fluctuations of the salinity of the SLE resulting in elimination of viable habitat suitable for oysters, seagrasses and marine fish spawning.

The project involves acquisition of approximately 920 acres of land and construction of a water preserve area to attenuate flows and improve water quality discharge to the SLE/IRL. The project features a two-stage detention system consisting of a Water Preserve Area (WPA) and polishing cell. A series of large pumps will deliver water from Ten Mile Creek into the WPA during high water at a rate of 380 cfs. Water will be stored in the 550 acre WPA and then metered out through a 40 cfs spillway into a polishing cell of 134 acres. The deep-water storage cell will allow for storage of up to 5,000 acre-feet. The total estimated project cost is $29.1 million according to the project cooperation agreement entered into by the SFWMD and the USACE on January 7, 2000. More information is available regarding this critical project at www.saj.usace.army.mil/projects/index.html.

FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - UPPER EAST COAST

Several ongoing watershed management/planning programs in the Upper East Coast and IRL area are expected to be completed, which would beneficially affect water
quality conditions in the St. Lucie River and Estuary, IRL and other freshwater water bodies in the area. The SFWMD IRL SWIM team has developed numerous programs and objectives to improve water quality conditions in the area. Many of the water quality remediation activities being implemented by the SWIM plan focus on reducing agricultural pollutant loads in the IRL Watershed and urban/suburban pollutant loads in the rapidly developing coastal region surrounding the St. Lucie Estuary and IRL. Implementation of more environmentally sensitive Lake Okeechobee regulation schedules should also reduce pollutant loading to the St. Lucie Estuary/IRL systems. The IRL National Estuary Program, jointly administered by the USEPA and the state of Florida will also result in water quality improvement activities and a reduction of pollutant loads to the IRL in the future. In summary, as a result of these ongoing watershed management programs, water quality in the Upper East Coast is expected to improve in the future.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - UPPER EAST COAST

The Upper East Coast Region includes Martin and St. Lucie counties and a small portion of Okeechobee County. The principal water body is the IRL, which includes the St. Lucie River. The Upper East Coast is hydrologically connected to the Everglades and Florida Bay ecosystems through the C-44 (St. Lucie) Canal. The IRL is a SWIM priority water body. Most of the Upper East Coast Watershed consists of Class III waters; however, there are small areas of Class II waters (shellfish propagation or harvesting) within the watershed. Class II waters are generally afforded greater protection than Class III waters. Currently, nine locations in the St. Lucie (C-44) Canal, the North and South forks of the St. Lucie River, and several subbasins draining to the IRL are listed by the Florida Department of Environmental Protection (FDEP) on the 1998 303(d) list of impaired water bodies. Pollutants/constituents causing impairment include: low levels of DO, excessive nutrients, high levels of total suspended solids (TSS), high biochemical oxygen demand (BOD), coliform bacteria and mercury (based on fish consumption advisories). There are an additional eight monitoring locations in the southern IRL area also included on the 1998 303(d) list. In addition to the above-listed constituents, copper and turbidity were identified to be causing use impairment at some of the monitoring sites.

Overall, water quality conditions in the Upper East Coast and the IRL are expected to be somewhat improved by 2050, compared to existing conditions. Lake Okeechobee freshwater discharges via the St. Lucie Canal (C-44) alter ambient salinity levels and deliver nutrients and other pollutants contained in Lake Okeechobee water and runoff from localized sources (agricultural and urban) to the estuary. The C-23/C-24/C-25 Canal system in St. Lucie County facilitates drainage to sustain agricultural (primarily citrus groves) and urban development in the vicinity of those canals. Implementation of a different regulation schedule for Lake Okeechobee is also expected to improve water quality conditions in the IRL Estuary by reducing the frequency and volume of freshwater delivered to the estuary. It is also expected that agricultural nonpoint source pollution loads delivered to the estuary via secondary and tertiary canals connected to C&SF Project canals will be reduced compared to existing conditions through the implementation of agricultural best management practices (BMPs) and the conversion of some agricultural
lands to other uses (e.g., conservation, urban/suburban development). The efforts of the IRL Save Our Rivers (SOR) project and St. Lucie County Mosquito Control have significantly improved water quality in the eastern lagoon through the use of mosquito impoundments.

The extent of urbanization in the watershed is expected to increase by 2050. New growth and development in the watershed will be regulated to comply with water quality regulations governing point and nonpoint source discharges; however, the net pollution load contributed to the St. Lucie River and the IRL system from these sources is expected to increase compared to existing conditions. Ongoing and planned pollutant load reduction activities in the Upper East Coast Region should help offset additional pollutant loads expected to occur from future urbanization.

LAND USE

Upper East Coast

The record of human existence in the Upper East Coast Region spans approximately 8,000 years. The lagoon system provided the Indians and early settlers with food, materials for tools and their major means of transportation. In the late 1800s, the IRL Region was already established as a major area of commerce (tourism, fisheries, shipping and agriculture). The lagoon was used for safe harbor and transportation of cargo, especially citrus.

At present, the dominant land use in the basin is agriculture (covering approximately 45 percent of the basin). Agricultural activities include 228,000 acres of (NRCS, 1994). The present urban land use (17 percent of the basin) is concentrated along the coast and the lagoon shorelines. Urban growth is rapidly extending westward, replacing agricultural land. Future land use patterns indicate that this trend will continue as urbanization intensifies along the coast, especially in the southern counties (Swain and Bolohassen, 1987). Present forested uplands and wetlands comprise 11 and 18.8 percent of the basin, respectively.

Agriculture - Upper East Coast

Martin and St. Lucie counties are included in this region. Almost one half million acres are farmed (UFBEBR, 1995). St. Lucie and Martin counties rank first and eighth, respectively, among Florida counties for number of acres of citrus (FASS, 1996b). Although this area is known primarily for its citrus production, many acres are used for pasture land. Farms average 600 acres in size with moderate productivity per acre (UFBEBR, 1995). More than 7,500 people are employed in agricultural production and services with a payroll of approximately $9.5 million (UFBEBR, 1995). The market value of all agricultural products in this region totals approximately $362 million (UFBEBR, 1995). Approximately 200,000 acres are irrigated (UFBEBR, 1995) requiring a dependable water supply. Lake Okeechobee has traditionally been the water source for this region.
ELIGIBLE COMPREHENSIVE EVERGLADES RESTORATION PLAN (CERP) PROJECTS

Indian River Lagoon (IRL)

The Comprehensive Plan includes a series of above-ground basin storage reservoir elements, to control water delivery rates and volumes to the St. Lucie River and Estuary and to enhance water supply for agriculture, along with some water quality improvements. The plan recommended in the Final IRL Feasibility Study includes some of the above-ground storage reservoirs outlined in the Comprehensive Plan, but also includes a series of stormwater treatment areas, natural storage and water quality areas, a muck remediation site and benthic habitat restoration through substrate enhancement. The recommended reservoirs have a planned capacity of 127,170 acre-feet in addition to the stormwater treatment areas and natural storage areas. The nature of the desired benefits in the Indian River Lagoon area, as it relates to CERP, has not changed. The IRL Study recommends a means to achieve the water quality objectives through structural and non-structural components. More detailed information is available at www.evergladesplan.org.
Chapter 7
EVERGLADES AGRICULTURAL AREA

PHYSICAL CONDITIONS - EVERGLADES AGRICULTURAL AREA (EAA)

The lands located immediately south and southeast of the Lake Okeechobee in the South Florida Water Management District (SFWMD or District) are known as the Everglades Agricultural Area (EAA) (Figure 6). This area of about 700,000 acres consists of rich, fertile agricultural land. A large portion of the EAA is devoted to the production of sugarcane. The average ground elevation is about 12 feet. The occurrence of surface water in the area is now a direct result of the construction of the numerous conveyance and drainage canals. The primary canals consist of the Miami, the North New River, the Hillsboro and the West Palm Beach canals, which traverse the area north to south, and the Bolles and Cross canals, which extend east to west. Water levels and flows are stringently manipulated in the canals to achieve optimum crop growth.

Figure 6. Everglades Agricultural Area (EAA).
EXISTING CONDITIONS - EVERGLADES AGRICULTURAL AREA (EAA) WATER MANAGEMENT

The existing drainage/irrigation system within the EAA is a complicated network of canals, levees, control structures and pumps. The original six major canals, (West Palm Beach, Hillsboro, Miami, North New River, Cross and Bolles canals), built in the 1920s, still serve to drain the EAA although each canal underwent major improvements during the 1960s. Historically the EAA has depended upon the flood storage capacity of Lake Okeechobee to the north and the Everglades Water Conservation Areas (WCAs) to the south as a means of removing excess drainage water from the EAA. Prior to adoption of the Interim Action Plan (IAP) in 1979, the northern one-third of the EAA was routinely backpumped directly into Lake Okeechobee through the S-2, S-3 and S-4 pump stations located on the south shore of the lake. The eastern and southern two-thirds of the EAA drained water south to the WCAs via pump stations S-5A, S-6, S-7 and S-8.

Under the current IAP, drainage from the S-2 and S-3 basins is now also routed south to the WCAs. Approximately 82 percent of the EAA land area (i.e., S-2, S-3, S-5A, S-6, S-7 and S-8 basins) now pump excess drainage waters into the three WCAs via pump stations S-5A, S-6, S-7 and S-8. Nine much smaller Chapter 298 Drainage Districts also currently discharge surface water runoff into Lake Okeechobee. As a result, the EAA depends on the flood storage capacity of the WCAs, and to a lesser extent, on Lake Okeechobee, as a means to remove water from the basin.

The growers remove runoff water from their lands by pumping to the six Central and Southern Florida Flood Control Project (C&SF Project) canals serving the EAA. Growers in general are allowed a maximum removal rate that is determined by a runoff formula and is almost always in excess of the basinwide design rate of three-quarters of an inch of runoff per day (Cooper, 1989). This amount was based on the following three considerations:

1. Not all land in the basin would be in agricultural production at one time.
2. Some of the land would be planted to water tolerant crops.
3. The canals in the basin have some storage capacity.

Although the capacity of the canal system is not large enough to handle all the water discharged from the EAA at one time, it was assumed that not all of the growers’ pump stations would be pumping or pumping to capacity at any given time (Cooper, 1989).

FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - EVERGLADES AGRICULTURAL AREA (EAA)

Recent monitoring results indicate that phosphorus loads in EAA runoff have declined approximately 51 percent (three year average, SFWMD, 1997b). The current average concentration of total phosphorus contained in EAA runoff is approximately 100
parts per billion (Havens, 1997). Construction of the Everglades Construction Project (ECP) involves converting approximately 44,000 acres of existing agricultural land into stormwater treatment areas (STAs). The construction project is explained in more detail below.

Everglades Forever Act (EFA)

The Everglades Forever Act’s principal water quality treatment strategy for improving water quality in the Everglades Protection Area centers around five requirements: the ECP, EAA best management practice (BMP) programs, Everglades research and monitoring program, evaluation of water quality standards and long-term compliance permits.

The ECP consists of six large wetlands treatment facilities, or STAs, containing approximately 44,000 acres of land previously used for agricultural purposes. These areas are designed to treat EAA runoff prior to discharge into the Everglades Protection Areas.

The ECP is designed to treat EAA runoff to meet an interim phosphorus concentration target of 50 parts per billion in discharges to the Everglades Protection Area (Burns and McDonnell, 1994). STAs 1 East and 1 West will discharge into the L-7 and L-40 borrow canals in the Loxahatchee National Wildlife Refuge (WCA-1). STA 2 will discharge to WCA-2A via the L-6 Borrow Canal. STA 3/4 will discharge to WCA-3A via the L-5 Borrow Canal. Stormwater Treat Area 5 will discharge to Rotenberger and Holey Land Wildlife Management Areas and WCA-3A along the L-4 Borrow Canal. STA 6 discharges to WCA-3A through the L-4 Borrow Canal. STA 6 Section 2 will discharge to Rotenberger Wildlife Management Area. The future base condition assumes all of the treatment areas are completed and operational with the exception of STA 6 Section 2. STA 6 Section 2 was not included in hydrologic regional modeling since the conceptual design for the STA did not include this element (Burns and McDonnell, 1994).

Another component of the ECP targeted for completion in 2003 is the diversion of runoff from five special districts (four chapter 298 districts and the 715 Farms Area established under Florida Statutes). These special districts are located adjacent to Lake Okeechobee north of the EAA. Currently, the districts discharge directly to Lake Okeechobee. According to the EFA, approximately 80 percent of the historic flow volumes and total phosphorus loads are to be diverted away from the lake. The future base condition assumes that the diversion of flows and loads has been completed.

According to the EFA, based upon research, field-tests and expert review, the EAA BMPs are determined to be the most effective and practicable on-farm means of improving water quality to a level that balances water quality improvements and agricultural productivity. The act establishes monitoring programs, permit requirements, research, field-testing and evaluation programs designed to improve water quality prior to discharge into conveyance canals in the EAA. The act provides a tax incentive for phosphorus concentration reductions of 25 percent or more. As a consequence, the future base condition assumes a 25 percent phosphorus concentration reduction from BMPs.
In addition to the ECP and BMPs, the EFA directs that an Everglades Research and Modeling program shall seek means of optimizing the design and operation of the STAs. This program shall include research to reduce outflow concentrations and identify other treatment and management methods and regulatory programs that are superior to STAs in achieving the intent and purposes of the EFA. The research and monitoring program is also directed toward development of a permanent (threshold) phosphorus criterion in the Everglades Protection Area by the Florida Department of Environmental Protection (FDEP) and evaluation of existing state water quality standards applicable to the Everglades area. The criterion is to be adopted by December 31, 2003 or a default criterion of 10 parts per billion total phosphorus will be established. Currently, research efforts have not drawn any conclusions that affect treatment area designs, planned operations or the threshold phosphorus criterion. Research to determine superior or supplemental technologies and the threshold phosphorus standard is ongoing.

The EFA does specify that compliance with water quality standards shall be based upon a long-term geometric mean of concentration levels to be measured at sampling stations reasonably representative of receiving waters in the Everglades Protection Area. Discharges to the Everglades Protection Area from outside the EAA (non-ECP structures) also require evaluation to determine appropriate strategies. The EFA requires the SFWMD and the FDEP to take such action as may be necessary so that water meets state water quality standards in all parts of the Everglades Protection Area.

The EFA further directs that long-term compliance permit requirements shall be modified to achieve compliance with the phosphorus criterion cited in the above paragraph. If the FDEP has not adopted this criterion by rule prior to December 31, 2003, then the phosphorus criterion shall be 10 parts per billion in the Everglades Protection Area. This default criterion or the criterion adopted by the Department (Phase II) is to be imposed by 2006. The EFA specifies that as of December 31, 2006, no permittee’s discharges shall cause or contribute to any violation of water quality standards in the Everglades Protection Area. In view of the fact that the Phase II phosphorus criterion has not been established, the future base condition assumes that the default standard of 10 parts per billion has been attained.

Design of the ECP was initiated in 1995 and began construction in 1997. STA 6 Section 1 was completed in October 1997 and operation was initiated in December 1997. Stormwater Treatment Area 2 was completed in June of 1999 and STA 5 was done in December of 1998. Construction of STA 1 West was finished in February 2000. Completion of STA1 East is expected to be done by June of 2004 and STA 3/4 is scheduled for completion by September 2004.

A demonstration-scale wetlands treatment area project of nearly 3,800 acres has been operating adjacent to WCA-1 (Loxahatchee National Wildlife Refuge) on the same site as future STA 1 West since 1994. STA 1 West will encompass the demonstration project when completed. The Everglades Nutrient Removal Project (ENRP) was designed to reduce phosphorus from an inflow concentration of 190 parts per billion to an outflow concentration of 50 parts per billion. The settling rate constant for the demonstration project was set at 10.2 meters per year. These were the same parameters established for
Three years of cumulative data from the demonstration project reflects that these criteria have been significantly exceeded. Additionally, on-farm BMPs have averaged 51 percent, considerably higher than the projected 25 percent contained in the future base condition for the EAA.

It is too early to predict what conclusions research and analyses will drive with regard to the above findings. An optimistic scenario is that the BMPs reduction in phosphorus concentrations will increase STA operations such that concentrations lower than the interim criterion will be achieved. Also, the higher settling rate constant and low phosphorus concentration outflows could significantly improve performance of the STAs and thus reduce Phase II treatment needs. Only time and further operations of the treatment areas will judge whether the long-term findings will be supportive of the optimism suggested by current BMPs and ENRP findings. The current findings certainly should affect the research into what supplemental technologies may be necessary to achieve the Phase II phosphorus criterion.

During the alternative development and evaluation phase of the Restudy, a preliminary study was conducted by Walker (Walker, 1998) to evaluate the performance of the STAs based upon Restudy generated flows from the South Florida Water Management model in the future base condition and the preferred alternative. A phosphorus removal model developed by Walker was used in the study. Modeling results indicated that some of the STAs did not meet the interim phosphorus criteria of the EFA under either the future base condition or the preferred alternative. A closer examination reveals some of the reasons for the apparent underachievement. First, the periods of records differ. The ECP used a 10-year period of record from 1979 to 1988. The Restudy uses the 3 year period from 1965 to 1995. Second, the operational concepts differ. The Restudy uses rain-driven operational procedures whereas the ECP uses the current calendar-based regulation schedule. Third, because STA 6 Section 2 was not modeled in the Restudy, the treatment area was not considered in the phosphorus modeling. Therefore, a treatment area totaling nearly 2,000 acres was not considered and the inflows scheduled for this area were all routed through STA 5. Finally, although the period of record was changed from ten years to 31 years, the fixed parameters of the settling rate of 10.2 meters per year and targeted outflow concentration of 50 parts per billion remained unchanged from the ECP.

These two parameters (settling rate constant and outflow phosphorus concentration target) are two of the three most significant factors in determining the required area of treatment cells. Walker’s study did indicate that when the 51 percent BMP phosphorus reduction rate experienced over a three-year period was used in lieu of the 25 percent estimate, all STAs met or bettered the interim phosphorus criterion with the exception of STA 5. STA 5 did not meet the criteria in the modeling outcome due to the third reason cited in the preceding paragraph.

At first blush, the reasons cited above appear to mitigate the Walker findings of STA underachievement. Although only time and continued operation of the treatment areas will provide proof, the findings should, in any case, direct research efforts toward ensuring that Phase II treatment technologies are sufficient to meet the adopted threshold.
standard. Regardless of the Walker study or the demonstration project findings, the fact remains that the Phase II (threshold) phosphorus standard must be met by 2006. The default criterion of 10 parts per billion is the target assumed in the 2050 future base condition. At that point, the interim standard becomes obsolete. When research efforts determine the optimal method of operation and supplemental technologies needed to meet the EFA permanent (Phase II) phosphorus criterion, both the ECP and treatment elements of the Restudy components must be modified to attain the designated water quality standard.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - EVERGLADES AGRICULTURAL AREA (EAA)

According to the FDEP 1998 303(d) list of use-impaired water bodies, there are approximately 10 canal segments within the EAA not meeting designated uses for Class III waters. For the most part, these include canal segments affected by operation of the primary pump stations and canals discharging water from the EAA to downstream areas (e.g., S-7 and S-8 pump stations; North New River, Hillsboro and West Palm Beach canals). In addition to excessive nutrient loads, low dissolved oxygen (DO) levels and high levels of mercury (based on fish consumption advisories), coliform bacteria, total suspended solids (TSS), turbidity and unionized ammonia contributed to use impairment in Class III waters within the EAA. It should be noted that within the EAA, there are many agricultural canals or ditches in agricultural water management systems controlled by water control structures permitted by the SFWMD. Such water bodies are classified as Class IV waters (agricultural water supply) pursuant to Rule 62-302.600(3)(a), Florida Administrative Code (F.A.C.). Generally, the water quality criteria for Class IV waters are less stringent than those for Class III waters. None of the 303(d)-listed segments within the EAA are in Class IV waters.

Water quality conditions within the EAA are expected to improve in 2050 compared to existing conditions. It is important to note that the existing conditions for the EAA demonstrate significant water quality improvements compared with recent past conditions. Recent water quality improvements in the area have occurred as a result of the implementation of the EAA regulatory program (F.A.C. Rule 40E-63) beginning in 1993. The regulatory program requires BMPs and monitoring to achieve a 25 percent reduction in phosphorus loading from the EAA to the Everglades Protection Area. Recent monitoring results indicate that phosphorus loads in area runoff have declined approximately 59 percent (SFWMD, 2003). The current average concentration of total phosphorus contained in EAA runoff is approximately 92 parts per billion (SFWMD, 2003). BMPs are also expected to have resulted in a net reduction of other pollutants contained in agricultural runoff, although the extent of load reduction for other pollutants has not been fully quantified since the implementation of the program; nor is it a specific objective of that program.
LAND USE - EVERGLADES AGRICULTURAL AREA (EAA)

Agriculture

The EAA contains all or parts of Palm Beach and Hendry counties. Most of Hendry County lies within the Big Cypress Region, so it was discussed in that section of the report. More than 600,000 acres are farmed in Palm Beach County (UFBEBR, 1995), and sugarcane was harvested from about half of that acreage in 1996 (FASS, 1996d). Sugarcane receipts accounted for 68 percent of total field crop sales in Florida in 1996 (FASS, 1996c). The EAA is known for its sugarcane production and sugar processing, but Palm Beach County also ranks fifteen among Florida counties for acres of citrus (FASS, 1996b). This region is characterized by midsize farms averaging 690 acres each with high productivity of more than $1,300 per acre (UFBEBR, 1995). More than 18,000 people are employed in agricultural production and services representing a payroll of more than $26 million (UFBEBR, 1995). Total market value of agricultural products in Palm Beach County is almost $900 million, ranking it first among counties in the state of Florida (UFBEBR, 1995) and third among United States counties (FDACS, 1994).

The EAA is highly dependent upon the system of canals running through the region to provide necessary drainage of excess water during the wet season, as well as supplemental water supplies for irrigation during the dry season. Approximately two thirds of the land farmed in the EAA is irrigated, totaling more than 580,000 acres (B. Boyd, pers. comm.). The EAA has traditionally relied upon Lake Okeechobee for its water supply, and looked to the WCAs to the south to receive their excess drainage.

Continued agricultural production in the EAA has become increasingly controversial. Some of the factors that may affect EAA agriculture include water quality concerns, soil subsidence and encroachment of urbanization. The water quality concerns, particularly phosphorus loading, are being addressed through implementation of BMPs, construction of STAs, the growing use of organic farming practices and rice cultivation in rotation with sugarcane production.

Palm Beach County is included in this region. A portion of Hendry County also lies in the EAA. Palm Beach County is not entirely within the EAA, but it is assumed that the majority of agricultural production is within the EAA because the remaining portion of the county is primarily urbanized.

Although sugarcane cultivation in the EAA has come under some sharp criticism in recent years, sugarcane is recognized as the most appropriate crop for this region. Sugarcane requires less phosphorus fertilizer than other crops grown in the EAA (Sanchez, 1990), and sugarcane has been found to remove 1.79 times more phosphorus than was applied as fertilizer (Coale et al., 1993). Florida sugarcane only requires small amounts of pesticides due to disease resistant and tolerant cultivars, and cultivation instead of herbicides for weed control. Sugarcane also tolerates greater variability in water table levels, allowing for more flexible water management strategies (Glaz, 1995).
Soil subsidence has become a potential threat to long-term crop production in the EAA. The average historic rate of subsidence of 1 inch per year has slowed to 0.56 inches per year since 1978 (Shih et al., 1997). They attributed the lower rate to several factors including higher water tables and an increased proportion of land planted to sugarcane. Surveys conducted by Shih et al. (1997) in 1997 found an average of 1.62 feet to 4.36 feet of soil remaining over 11 transects. Prevention of continued soil subsidence will depend on maintaining high groundwater levels to prevent further oxidation of the soil profile. This, in turn, will require development of more water-tolerant sugarcane varieties and/or increased rice cultivation. This research is currently underway and showing promising results (Glaz, 1997). A strong agricultural economy in the EAA based on profitable crop production is the best defense against conversion of agricultural land to urban land.

Rotenberger and Holey Land Wildlife Management Areas

The Holey Land Tract (35,026 acres) is managed by the Florida Fish and Wildlife Conservation Commission (FWC) as a state wildlife management area. The SFWMD has been managing the hydroperiod since completion of a perimeter levee and pump station in 1990. The Rotenberger Tract (23,970 acres) and Brown’s Farm Tract (4,460 acres) are also managed by the FWC as state wildlife management areas. Lake Harbor Waterfowl Management Area is operated by FWC for management of waterfowl. The land is under rice production for both harvest and wildlife habitat.

Urban

The remaining five percent of the EAA includes the communities of Pahokee, Belle Glade, South Bay and Clewiston, along with several sugar mills, roads, canals and water control features.

C-139 Basin

Land use within the C-139 Basin of eastern Hendry County is predominantly agricultural. The land use in the basin is approximately 62 percent agricultural, 4 percent urban and 34 percent native land cover. This rural area is primarily pasture land for cattle grazing, with increasing amounts of land being converted to citrus groves. Agricultural land uses include vegetable farms, citrus groves, improved pasture and unimproved pasture (Mock Roos, 1993).

ELIGIBLE COMPREHENSIVE EVERGLADES RESTORATION PLAN (CERP) PROJECTS

Everglades Agricultural Storage Reservoir Project - Part 1

This project is the first part of the of the Everglades Agricultural Area Storage Reservoir component. It includes two aboveground reservoirs with a total storage capacity of approximately 240,000 acre-feet located on land associated with the Talisman Land
purchase in the EAA. Conveyance capacity increases for the Miami, North New River, Bolles and Cross Canals are also included in the design of this project. This project will improve timing of environmental deliveries to the WCAs by reducing damaging flood releases from the EAA to the WCAs, reducing Lake Okeechobee regulatory releases to estuaries, meeting supplemental agricultural irrigation demands and increasing flood protection within the EAA. More detailed information is available on www.evergladesplan.org.

Loxahatchee National Wildlife Refuge Internal Canal Structures

This project includes two water control structures in the northern ends of the perimeter canals encircling the Loxahatchee National Wildlife Refuge (WCA-1) located in Palm Beach County. The purpose of this project is to improve the timing and location of water depths within the Refuge. It is assumed that these structures will remain closed except to pass STA 1 East and STA 1 West outflows and water supply deliveries to the coastal canals. More detailed information is available on www.evergladesplan.org.
Chapter 8
EVERGLADES, FLORIDA BAY & KEYS REGION

PHYSICAL CONDITIONS - EVERGLADES, FLORIDA BAY & KEYS REGIONS

The Water Conservation Areas (WCAs) are an integral component of the Everglades and freshwater supplies for South Florida (Figure 7). The WCAs, located south and east of the Everglades Agricultural Area (EAA), comprise an area of about 1,350 square miles, including 1,337 square miles of the original Everglades, which averaged some 40 miles in width and extended approximately 100 miles southward from Lake Okeechobee to the sea.

Figure 7. Everglades, Florida Bay and Keys Region.

The WCAs provide a detention reservoir for excess water from the agricultural area and parts of the Lower East Coast Region, and for flood discharge from Lake Okeechobee. The WCAs also provide levees needed to prevent Everglades floodwaters from inundating the Lower East Coast, while providing water supply for Lower East Coast agricultural lands and Everglades National Park (ENP); improving water supply for east
coast communities by recharging the Biscayne Aquifer (the sole source of drinking water for southern Palm Beach, Broward, Miami-Dade and Monroe counties); retarding saltwater intrusion in coastal wellfields; and benefiting fish and wildlife in the Everglades.

WCA-1 is designated as the Arthur R. Marshall Loxahatchee National Wildlife Refuge (NWR), managed by the United States Fish and Wildlife Service (USFWS). WCA-2 and WCA-3 are public hunting and fishing areas comprising the Everglades Wildlife Management Area maintained by the Florida Fish and Wildlife Conservation Commission (FWC), formerly the Florida Game and Freshwater Fish Commission (FGFWFC). The Seminole and Miccosukee Tribes each have reserved rights within WCA-3.

Florida Bay and the Ten Thousand Islands comprise 1,500 square miles of ENP. The bay is shallow, with an average depth of less than three feet. To the north is the Florida mainland and to the south lie the Florida Keys. Sheetflow across marl prairies of the southern Everglades and 20 creek systems fed by Taylor Slough and the C-111 Canal provide direct inflow of fresh surface water and groundwater recharge. Surface water from Shark River Slough, the subregion’s largest drainage feature, flows into Whitewater Bay and also may provide essential groundwater recharge for central and western Florida Bay. Exchange with Florida Bay occurs as this lower salinity water mass flows around Cape Sable into the western subregion of the bay.

The Florida Keys are a limestone island archipelago extending southwest over 200 miles from the southern tip of the Florida mainland to the Dry Tortugas, 63 miles west of Key West. The Keys are bounded on the north and west by the relatively shallow waters of Biscayne Bay, Barnes and Blackwater sounds, Florida Bay and the Gulf of Mexico. Hawk Channel lies to the south, between the mainland Keys and an extensive reef tract 5 miles offshore. The Straits of Florida lie beyond the reef, separating the Keys from Cuba and the Bahamas.

The Florida Keys are made up of over 1,700 islands encompassing approximately 103 square miles. They are broad, with little relief, have a shoreline length of 1,865 miles, and are inhabited from Soldier Key to Key West. Key Largo and Big Pine Key are the largest islands. The Keys are frequently divided into the following three regions:

1. the Upper Keys (north of Upper Matecumbe Key)
2. the Middle Keys (from Upper Matecumbe Key to the Seven Mile Bridge)
3. the Lower Keys (from Little Duck Key to Key West)

The Florida Keys National Marine Sanctuary encompasses approximately 3,668 square miles of submerged lands and waters between the southern tip of Key Biscayne and the Dry Tortugas Bank. North of Key Largo the sanctuary includes Barnes and Card sounds, and to the east and south the oceanic boundary is the 300-foot isobath. The Florida Keys National Marine Sanctuary also contains part of Florida Bay and the entire Florida Reef Tract, the largest reef system in the continental United States. The Florida Keys
National Marine Sanctuary contains components of five distinct physiographic regions: Florida Bay, the Southwest Continental Shelf, the Florida Reef Tract, the Florida Keys and the Straits of Florida. The regions are environmentally and lithologically unique, and together they form the framework for the sanctuary’s diverse terrestrial and aquatic habitats.

Water Conservation Area 1 (WCA-1)

WCA-1 (Loxahatchee NWR) is about 21 miles long from north to south and comprises an area of 221 square miles. The West Palm Beach Canal lies at the extreme northern boundary, and on the south the Hillsboro Canal separates WCA-1 from WCA-2. Ground elevations slope about 5 feet in 10 miles, both to the north and to the south from the west center of the area, varying from over 16 feet in the northwest to less than 12 feet in the south. The area, which is enclosed by about 58 miles of levee (approximately 13 miles of which are common to WCA-2), provides storage for excess rainfall, excess runoff from agricultural drainage areas of the West Palm Beach Canal (230 square miles) and the Hillsboro Canal (146 square miles), and excess water from Lake Okeechobee. Inflow comes from rainfall and runoff from the EAA through canals at the northern end. Release of water for dry-season use is controlled by structures in the West Palm Beach Canal, the Hillsboro Canal, and in the north-south levee, which forms the eastern boundary of the area. When stages exceed the regulation schedule, excess water in WCA-1 is discharged to WCA-2.

Water Conservation Area 2 (WCA-2)

WCA-2 is comprised of two areas, 2A and 2B, measures about 25 miles from north to south, and covers an area of 210 square miles. It is separated from the other WCAs by the Hillsboro Canal on the north, and the North New River Canal on the south. Ground elevations slope southward about 2 to 3 feet in 10 miles, ranging from over 13 feet NGVD (National Geodetic Vertical Datum) in the northwest to less than 7 feet NGVD in the south. The area is enclosed by about 61 miles of levee, of which approximately 13 miles are common to WCA-1 and 15 miles to WCA-3. An interior levee across the southern portion of the area reduces water losses due to seepage into an extremely pervious aquifer at the southern end of the pool and prevents overtopping of the southern exterior levee by hurricane waves.

The upper pool, WCA-2A, provides a 173 square mile reservoir for storage of excess water from WCA-1 and a 125 square mile agricultural drainage area of the North New River Canal. Storage in WCA-2A provides water supply to the east coast urban areas of Broward County. Water enters the area from WCA-1 and the Hillsboro Canal on the northeast side, and from the North New River Canal on the northwest side. Water in excess of that required for efficient operation of WCA-2A is discharged to WCA-3 via structures into C-14, the North New River Canal and WCA-2B.

WCA-2B has ground elevations ranging from 9.5 feet NGVD in the northern portions down to 7.0 feet NGVD in the southern portions of the area. The area experiences
a high seepage rate, which does not allow for long-term storage of water, and as a result, water is not normally released from the area.

Water Conservation Area 3 (WCA-3)

WCA-3 is also divided into two parts, 3A and 3B. It is about 40 miles long from north to south and comprises about 915 square miles, making it the largest of the conservation areas. Ground elevations, which slope southeasterly 1 to 3 feet in 10 miles, range from over 13 feet NGVD in the northwest to 6 feet NGVD in the southeast. The Miami Canal traverses the area from northwest to southeast, and the North New River Canal separates it from WCA-2. The area is enclosed by about 111 miles of levee, of which 15 miles are common to WCA-2. An interior levee system across the southeastern corner of the area reduces seepage into an extremely pervious aquifer.

The upper pool, WCA-3A, provides a 752 square mile area for storage of excess water from WCA-2A; rainfall excess from approximately 750 square miles in Collier and Hendry counties and from 71 square miles of the former Davie agricultural area lying east of Pumping Station S-9 in Broward County; and excess water from a 208 square mile agricultural drainage area of the Miami Canal and other adjacent areas to the north. Water enters WCA-3A from various sources on the northern and eastern sides. The storage is used to meet the principal water supply needs of adjacent areas, including urban water supply and salinity control requirements for Miami-Dade and Monroe County, irrigation requirements and water supply for ENP.

EXISTING CONDITIONS - WATER CONSERVATION AREAS (WCAS) WATER MANAGEMENT

Surrounded by 56 miles of levees and canals, WCA-1 is the only conservation area completely encircled by canals. A network of pump stations, levees and water control structures, controls water levels. The water management facilities are hydrologically connected with Lake Okeechobee, the EAA, WCA-2, WCA-3 and the Atlantic Ocean. Rainfall represents the major source of water inflow into WCA-1, accounting for about 54 percent of the refuge's water budget. Pump Station S-5A, located at the northern tip of the refuge near 20-Mile Bend, moves water into the refuge from the West Palm Beach Canal, accounting for approximately 30 percent of the inflow water. Pump Station S-6, located on the refuge's western border, pumps water from the Hillsboro Canal into the southwest portion of the refuge, accounting for about 15 percent of WCA-1 inflow water. Approximately 45 percent of the WCA-1 water inflow originates as drainage from agricultural land located north and west of WCA-1.

Two small pumps operated by the Acme Improvement District are located in the L-40 Levee on the northeastern boundary of the refuge. These pumps drain primarily residential/urban lands (Wellington) and can move water in and out of the refuge. Acme represents only a minor fraction (<1 percent) of the refuge's water budget. Four water control structures (S-10A, S-10C, S-10D and S-10E) exist along WCA-1 on the southern levee of L-39 (Hillsboro Canal). The S-10 structures allow water to flow southward out of
the Hillsboro Canal and WCA-1 into WCA-2A if so desired. The Hillsboro Canal (L-39), located in the extreme southeast corner of the refuge, drains WCA-1 to the east through S-39, which provides water supply to urban areas and discharges drainage waters to tide water. To the north, the S-5A Structure can be used to move water north out of the refuge into the L-8 Canal. There are four other small privately operated structures in the L-40 levees; one of these is operated by the USFWS. These structures constitute less than one percent of the refuge's annual water budget. Water management operations for WCA-1 are governed by a water regulation schedule adopted in 1994.

Major developments in the WCAs have been the construction of canals, levees, water control structures and roads. WCAs-2 and 3 are almost completely enclosed by a levee and canal system that is approximately 150 miles in length. The only portion of the area not completely enclosed by the levee system is WCA-3A where a 7 mile section of the western border remains hydrologically connected to the Big Cypress National Preserve (BCNP). Four canals and their associated levees pass through the WCAs: the Miami Canal, L-35B Canal, L-67A Canal and L-67C Canal.

Many water control structures have been constructed to move water throughout the WCAs. Facilities designed to provide flow into the area include the S-6, S-7, S-8, S-9 and S-140 pump stations, and a series of gated spillways referred to collectively as the S-10 structures. Water is moved from WCA-2A to WCA-3A via the S-11 structures and through WCA-3A via the Miami Canal and a series of bridged openings under Alligator Alley (I-75). Water is released from WCA-3A through the S-12 and S-333 structures and the Pompano and North New River canals. The canals, levees and water control structures were constructed and are currently operated by the United States Army Corps of Engineers (USACE) and the South Florida Water Management District (SFWMD or District). The WCAs were constructed primarily to provide flood protection to adjacent agricultural and urban areas, and to serve as a source of freshwater for the heavily populated Lower East Coast. Secondary considerations were the need to manage the areas to benefit fish and wildlife, and to provide public recreation.

Water regulation schedules represent water level targets that govern the operations to store and release water from the WCAs. The water regulation schedule for WCA-2A was originally set too high to support Everglades habitat, and has been the subject of extensive research and experimentation. The original 1961 schedule called for water levels to fluctuate from 12 to 14.5 feet. The schedule was revised even higher in 1970 to a range of 13 to 14.5 feet with only a 30-day period at the lower end. Observed changes in the ecology of WCA-2A caused scientists in the early 1970s to initiate efforts to lower the water schedule and provide for annual drying of the interior marsh. Extended high water killed significant stands of trees, eroded islands, and caused other undesirable vegetation changes in the area (Dineen, 1972, 1974; Worth, 1988). In 1980, the schedule was revised to an interim plan of 9.5 to 12.5 feet, an extreme drawdown that was in place for eight years. Extensive research during this time led to an interim schedule of 11 to 13 feet, which was adopted in 1989.

The regulation schedule for WCA-3A is perhaps the most complicated and difficult schedule to describe or implement. The schedule ranges from 9.5 to 10.5 feet, but
includes a series of five zones to modify discharges to ENP when water levels are above or below the optimum target. The size of WCA-3A and the number of inflow and discharge points preclude intensive management of water levels in the area. Discharges at the southern end of the area flow directly into ENP. These discharges were modified three times in the past decade to alleviate problems resulting from too little discharge in the early years, and heavy flood discharges during the dry season, which impacted nesting wading birds and other wildlife during the 1970s and early 1980s.

The original schedule was set shortly after ENP and the SFWMD’s predecessor agency was created. In 1970, Congress adopted an ENP-backed plan to establish a minimum monthly volume of water to be delivered to ENP. This resulted in significant flood damages from dry-season floodwaters, which were discharged from WCA-3A when the water schedule was exceeded. In 1983, Congress authorized an Experimental Program of Water Deliveries to ENP, which allowed an experiment with water releases based on rainfall and evaporation over the Everglades. This rainfall-based plan distributes water over a broader area than the original operating schedule whenever possible.

Currently, Holey Land Wildlife Management Area’s water regulation schedule is based upon the initial operating plan agreed to by the SFWMD and the FGFWFC June 28, 1990. This schedule dictates that water stages in Holey Land Wildlife Management Area vary between a low of 11.5 feet MSL on May 16 to a high of 13.5 feet on November 1. When direct rainfall is unable to provide enough water to meet the schedule, water is pumped onto the area from the Miami Canal at the G-200 Pump Station in the northwest corner of the area. Other water enters the area from the G-201 Pump Station, which returns water to Holey Land from the exterior seepage canal. Outflow is through three sets of culverts along Holey Land’s south boundary. In accordance with the 1990 Operational Agreement, after cattail coverage exceeded 2,000 acres, flashboards were placed in the outflow culverts and were set at 13.5 feet in order to retain water in the area as long as possible to reduce the need for pumping untreated water from the Miami Canal. Detailed topographic data on Holey Land Wildlife Management Area, collected after restoration began, found that average ground elevation was approximately 0.5 feet lower than previously thought and a verbal agreement was made between SFWMD and FGFWFC in July, 1993 to change the operational schedule to one that lies between 113 feet.

Additional research conducted by FGFWFC and the SFWMD staffs indicated that high water levels in Holey Land Wildlife Management Area contributed to the explosive growth of cattails in the area after restoration began, and that water levels above 12.5 feet drove deer from the marsh onto surrounding levees. In response to this information, on January 20, 1995, the FGFWFC proposed that the water schedule be again lowered, to 10.5-12.0 feet, a level that has since been used as a guideline by the SFWMD. A similar (10.75-12.0 feet) schedule was proposed by the FGFWFC on June 11, 1997, and discussions are currently underway to finalize an agreement recognizing this proposed level. The water management plan is designed to simulate a natural hydroperiod for the purpose of restoring and preserving natural Everglades habitat.

The Rotenberger Wildlife Management Area is located in the north end of the Everglades ecosystem, in an area that has historically been dominated by nearly
monospecific plains of dense sawgrass. Since drainage efforts began in the late 1800s, 74 percent of these sawgrass plains have been lost to agriculture. The Rotenberger Wildlife Management Area represents nearly 18 percent of the remainder of this important component of the Everglades. Because of development and drainage of surrounding areas, the hydropattern in the Rotenberger Wildlife Management Area has shortened, causing a shift away from its historically sawgrass-dominated community. The distribution, timing and depths (hydropattern) of water in the Rotenberger Wildlife Management Area is currently being reevaluated as new pumps and other features come online. Future efforts will focus on management to restore wetland structure.

While the current hydropattern in the Rotenberger Wildlife Management Area does mimic the natural rise and fall associated with the wet and dry seasons, it does not receive enough rainfall to reach historic water levels during the wet season and dries much more quickly than normal due to the culverts mentioned above. The 1983 agreement between the FGFWFC, SFWMD and the Department of Environmental Regulation calls for the restoration of 0-1 feet water levels in the area. As part of the Everglades Construction Project (ECP), these levels have been used as initial goals of hydropattern restoration within the Rotenberger Wildlife Management Area. Achievement of this goal will be a two stage process. First, all drainage culverts will be closed and the effects of this upon the hydropattern will be assessed. This information will be used to devise an operational schedule for the area, which will become effective upon completion of STA 5, and installation of the pumps allowing inflow into the Rotenberger Wildlife Management Area.

EXISTING CONDITIONS - EVERGLADES NATIONAL PARK AND FLORIDA BAY WATER MANAGEMENT

The Everglades National Park Drainage Basin is described in Cooper and Roy, 1991. The Everglades National Park Drainage Basin has an area of 1,684.5 square miles and is located in western Miami-Dade County (886.5 square miles), northwestern Monroe County (773.9 square miles) and southwestern Collier County (24.1 square miles) (Cooper and Roy, 1991). The basin includes all of ENP, the ENP expansion area, the remainder of the eastern Everglades and portions of the southern Glades Wildlife Environmental Area.

Internal Project Structures

The drainage basin for ENP represents primarily undeveloped land managed for the park and its inflows. Central and South Florida Project structures are generally external to the basin and installed primarily for environmental purposes for the park or to separate drainage between the park and the area to the east of the L-31N and L-31. There are six project structures internal to this basin: the L-67 Extension, the plug in the Buttonwood Canal, S-175, S-332, S-346 and S-347. The L-67 Extension was installed to separate the portions of ENP, Western Shark Slough from the privately owned lands east, which included the northeastern portions of Shark Slough. The associated canal serves as a getaway channel allowing water to move away from the S-12 structures (Cooper and
Roy, 1991). The Buttonwood Canal plug was installed at the mouth of the Buttonwood Canal on Florida Bay to prevent further intrusion of saltwater and improve conditions upstream of the canal. The S-175 and S-332 are used to deliver water to Taylor Slough, while S-346 and S-347 are used to control flow in the L-67 Extension.

External Project Inflows

Managed inflows to ENP are from the eastern farmland and from the north as an outlet of WCAs 3A and 3B. The managed flows delivered from WCA-3A through the S-12 structures, S-333 and from WCA-3B through G-69. Other inflow points include the L-31W Borrow Canal through S-332 and S-175 and from the C-111 between S-18C to S-197 as overland flow though the degraded canal berm into the panhandle of ENP.

Project Structures Controlling Inflow

Project structures controlling flow to the ENP basin include: S-12A, S-12B, S-12C, S-12D, G-69, S-175, S-18C, S-197, S-332, S-333 and S-334. There are two internal structures controlling flow (S-346 and S-347), which control flow in Buttonwood Canal. There are three project structures, which are located in the basin but are not currently operated; the S-12E, S-12F and S-14. The S-12A, S-12B, S-12C and S-12D are identical gated spillways located in the L-29 between L-28 and L-67. They connect WCA-3A to the ENP basin. The first connection between WCA-3A and the south Miami-Dade canals occurred in 1978 with the completion of structures S-333 and S-334 in the L-29 Canal. These structures were installed to provide additional dry season water deliveries to L-31N. Structure G-69 connects WCA-3B to the ENP basin via the L-29 Canal. Project works are largely peripheral to the ENP basin and have as their primary function providing a supply of water to the basin.

EXISTING CONDITIONS - FLORIDA KEYS WATER MANAGEMENT

There is no overall surface water management canal infrastructure in the Florida Keys. The Central and Southern Florida Flood Control (C&SF) Project canal system has very little influence on the Florida Keys, except in the estuarine areas of Florida Bay, where it controls the amount and timing of freshwater releases into the estuaries.

FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - NATURAL AREAS

The natural areas of the study area include the Rotenberger and Holey Land Wildlife Management Areas, the Loxahatchee NWR, WCAs 2 and 3, BCNP and ENP. The Rotenberger and Holey Land Wildlife Management Areas are adjacent to the EAA and are contained within the same hydrologic basin. The ECP, which is part of the future without plan condition, is designed to achieve hydrologic restoration objectives for the
Rotenberger and Holey Land tracts by redirecting EAA runoff through stormwater treatment areas (STAs) into those areas to create preferred hydropatterns.

A fundamental underlying assumption for the Restudy is the full implementation of the state of Florida’s Everglades Program contained in the Everglades Forever Act, Florida Statutes (F.S.) 373.4592 by December 31, 2006. Implementation of the Everglades Forever Act includes completion of construction of the STAs as described in the conceptual design for the ECP (Burns and McDonnell, 1994; scheduled to be completed in 2003), setting of a numeric phosphorus criterion for the Everglades Protection Area, by December 31, 2003, and compliance with that criterion by December 31, 2006.

In addition to the ECP and water quality treatment facilities developed as a result of the non-ECP requirements of the Everglades Forever Act, the currently authorized C-111 Project and the Modified Water Deliveries to Everglades National Park Project are assumed to be implemented in 2050. As of this writing, the Modified Water Deliveries to Everglades National Park Project is on hold pending the outcome of litigation involving the U.S. Army Corps of Engineers. It is still assumed that the project implementation will continue after the litigation is resolved.

FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - FLORIDA BAY

An assumption of the future without plan condition is that both the Modified Water Deliveries to ENP and C-111 projects are completed. The first project to be implemented is the C-111 Project. Notably, the C-111 spoil (dredged material) mounds in the marsh on the southern leg of the C-111 Canal were removed in 1997. The purpose of this project was to promote overland flow out of the canal into the marshes in the northeastern part of Florida Bay. In addition, two other features of the C-111 Project are scheduled to be completed in the near future, which would beneficially affect water quality in Florida Bay. A new pump station, S-332D, is scheduled to begin operations to deliver increase stages in the L-31W Borrow Canal, preventing seepage from ENP from draining east into the canal network and downstream to tide. Operation of S-332D is intended to promote overland flow during high water conditions. Also, the existing single-span bridge over Taylor Slough in ENP is to be replaced with two longer-span bridges and two box culverts. Removing sections of an existing fill road (Ingraham Highway) across Taylor Slough will augment the bridge replacement project.

Furthermore, agricultural nonpoint pollution sources in the C-111 Basin are currently being investigated as required by the non-ECP structure requirements of the Everglades Forever Act and the C-111/Modified Water Deliveries projects implementation process.
FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - FLORIDA KEYS

The major ongoing water quality improvement program in the Florida Keys, which is anticipated to result in improved water quality conditions in the future, is the Water Quality Protection Program of the Florida Keys National Marine Sanctuary Program. The United States Environmental Protection Agency (USEPA) and the Florida Department of Environmental Protection (FDEP) are jointly responsible for implementing water quality improvement activities throughout the Florida Keys Region as part of the Water Quality Protection Program. Implementation of these activities will result in improved water quality conditions in the Florida Keys in the future.

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - WATER CONSERVATION AREAS (WCAS) AND EVERGLADES NATIONAL PARK RAINFALL-BASED RAINFALL WATER DELIVERY PLANS

In the future without plan condition, the rainfall delivery plan, as defined in the LEC Interim Plan is based on antecedent rainfall and natural system hydropatterns for WCA-2A and 3A and ENP, with quantities to approximate best management practices (BMPs) Replacement water quantities.

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - EMERGENCY INTERIM PLAN

The Emergency Interim Plan for Florida Bay (Chapter 373.4593 F.S.) was passed by the Florida legislature in May of 1994. Its purpose was to:

Provide for the release of water into Taylor Slough and Florida Bay by up to 800 cfs, in order to optimize the quantity, timing, distribution, and quality of fresh water, and promote sheetflow into Taylor Slough.

Section 2(e) called for acquisition of the western three sections of the agricultural area known as the Frog Pond in Miami-Dade County. The SFWMD took title to all eight sections of the Frog Pond in February of 1995. This effectively became Phase 1 of the Emergency Interim Plan, as the acquisition of this land eliminated land use conflicts between ENP and farming occurring in the Frog Pond. Elimination of these conflicts prevented the unnatural reduction in canal stages that had previously taken place each year in the fall to facilitate those farming activities. In addition, it allows greater flexibility in implementation of a rainfall driven plan for water levels in L-31W.

Phase 2 of the Emergency Interim Plan was designed to provide additional pumping capability into the L-31W Canal, which formed the western boundary of the Frog Pond. Pump Station S-332D (C-111 Project and Experimental Program of Water Deliveries to ENP) was built for this need and increased pumpage to 500 cfs.
WATER QUALITY PROBLEMS AND OPPORTUNITIES - NATURAL AREAS

Approximately 18 water body segments within Loxahatchee NWR (WCA-1), and WCAs 2 and 3 were listed as use-impaired on the FDEP 1998 303(d) list. Pollutants/water quality parameters contributing to use-impaired conditions include: excessive nutrient loads, low levels of DO, high levels of mercury (based on fish consumption advisories), un-ionized ammonia, coliform bacteria, total suspended solids (TSS) and certain trace metals. There are also four water body segments in ENP on the 303(d) list. Those water body segments include: ENP Shark Slough, ENP L67 Culvert at US 41, Taylor Slough and the Tamiami Canal. Problem constituents in ENP waters include low levels of DO and high levels of nutrients, mercury (based on fish consumption advisories), iron, other trace metals. Many of the water body segments in the WCAs and ENP may eventually be removed from subsequent 303(d) lists because the Everglades Forever Act includes schedules and strategies for achieving compliance with water quality standards, consistent with the requirements of the Clean Water Act.

Water quality conditions in the Rotenberger and Holey Land Wildlife Management Areas, Loxahatchee NWR, the WCAs and in downstream ENP are expected to be significantly improved in 2050 compared to current (without the ECP) conditions.

In the southern Everglades, implementation of the C-111 and Modified Water Deliveries Projects may also involve developing water quality treatment features necessary to assure that regulatory requirements are met. Minimally, implementation of the C-111 Project involves acquisition of the Frog Pond agricultural area adjacent to the C-111/L-31W levee/borrow canal system, which will result in a net reduction of pollution loading (nutrients, pesticides) into ENP via the existing canal system from nonpoint source agricultural runoff.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - FLORIDA BAY

Barnes Sound is the only segment of Florida Bay included on the FDEP 1998 303(d) list. Excessive nutrients, chlorides and low levels of DO were identified as constituents of concern in ambient water quality monitoring. Other areas of Florida Bay also experience periodic water quality problems. Salinity is the primary water quality parameter of concern in the bay. Bay waters are periodically hypersaline or too low in salinity, depending upon the frequency of hurricanes and other significant storm events and flood release discharges from Central and Southern Florida Project features. Advective conditions in the bay have also contributed to extensive algal blooms. Water temperature levels are also periodically elevated above prescribed temperature limitations. Seatrout collected from Florida Bay also exhibit elevated mercury levels.

Water quality conditions in northeastern Florida Bay should improve in 2050 compared to existing (1995) conditions. Full implementation of the Biscayne Bay Surface Water Improvement and Management (SWIM) Plan elements should also benefit water
quality conditions in Florida Bay also. When fully completed, it is anticipated that the C-111 Project would improve water quality conditions in the vicinity of Taylor Slough through the implementation of structural and operational modifications necessary to achieve preferred hydrologic conditions. Compared to existing conditions, the net load of agricultural nonpoint source pollution entering the C-111 Canal and south into Florida Bay should be reduced in 2050. The Modified Water Deliveries to ENP Project is also expected to result in water quality improvements in Florida Bay through the delivery of increased volumes of freshwater to the bay via Northeast Shark River Slough.

WATER QUALITY PROBLEMS AND OPPORTUNITIES - FLORIDA KEYS

The Florida Keys as a whole were identified as having use-impaired water quality on the FDEP 1998 303(d) list; however, water quality problems are generally restricted to canals, marina basins and nearshore waters as opposed to adjacent open waters. The principal pollutants of concern are excessive nutrient loading and fecal coliform bacteria from inadequate wastewater treatment and disposal facilities, although low DO levels are also common in canals of the Florida Keys.

Due to recently imposed growth management regulations and limitations on expanded urban development, the population of the Keys should not greatly increase by 2050. In addition, the Florida Keys National Marine Sanctuary Plan (National Oceanic and Atmospheric Administration, 1996) contains a Water Quality Protection Program developed by the USEPA (USEPA, 1996) in cooperation with the Administration and the FDEP. The Water Quality Protection Program Document, approved in 1996, contains a set of initial recommendations for corrective actions, monitoring, research and education/outreach. These recommendations have been included in a Water Quality Action Plan focusing on wastewater, storm water, marinas and live-aboard vessels, landfills, hazardous materials, mosquito spraying, canals and research and monitoring. If the recommended wastewater and storm water corrective actions are implemented, water quality conditions in the Florida Keys Region are expected to improve in 2050 compared to existing conditions.

The USEPA, other federal, state and local agencies and citizen stakeholders have identified wastewater infrastructure as the single most important investment to improve nearshore and canal water quality. The cost of wastewater improvements necessary to improve nearshore and canal water quality in the Florida Keys has been estimated at between $184 to $418 million, depending on the percentage reduction in wastewater nutrient loadings to be achieved and which treatment system or systems are ultimately selected. Stormwater management improvements in the Florida Keys area are also needed. The cost of stormwater management and treatment necessary to reduce pollutant loadings in the Florida Keys is estimated at between $370 to $680 million, depending on the percentage reduction in storm water pollutant loadings targeted to be achieved and which areas are selected to be retrofitted. Water quality improvements in Florida Keys canals and nearshore areas are expected to result from improved wastewater collection, treatment, and disposal implemented through the Monroe County Wastewater Master Plan and
through implementation of the Monroe County Stormwater Master Plan, both of which, are major components of the Water Quality Protection Program.

LAND USE - WATER CONSERVATION AREAS (WCAS)

The WCAs are located in western and southwestern Palm Beach, western Broward and northwestern Miami-Dade counties, Florida. They consist of WCAs 1, 2 and 3 and encompass approximately 878,000 acres. For management purposes, the area has been subdivided into several units: WCA-1, WCA-2A, WCA-2B, WCA-3A and WCA-3B. The WCAs are bordered on the east by the Sawgrass Expressway, U.S. Highway 27, and Krome Avenue; on the south by U.S. Highway 41, on the west by Levee 28 (L-28) and the Miccosukee Tribe of Indians of Florida Federal Reservation; and to the north by L-4, L-5 and L-6.

The WCAs are located near several state and federal land and water resources. Lake Okeechobee is approximately 25 miles north. State and federal lands that border the WCAs includes Holey Land Wildlife Management Area, Rotenberger Wildlife Management Area, Miccosukee Tribe of Indians of Florida Federal Indian Reservation, Big Cypress Indian Reservation (Seminoles), BCNP and ENP. The Big Cypress Area of Critical State Concern is adjacent the southwest boundary of WCA-3A. As part of the Central and Southern Florida Project (C&SF), land and flowage easements were obtained for the construction of the three WCAs. Construction of the required levees and canals began in 1949 and the WCAs became functional in 1962. The USACE designed, constructed, and currently participates in the management of the WCAs and the water resource.

The SFWMD serves as the local management agent under the direction of the USACE. WCA-1 became the Loxahatchee NWR in 1961, and is managed by the USFWS. WCAs 2 and 3 were designated as the Everglades Wildlife Management Area in 1952, and are operated by the FWC, formerly the FGFWFC, under the terms of a cooperative management agreement with SFWMD (formerly Central and Southern Florida Flood Control District). The agreement became effective on 1 March 1952 with an initial term of 25 years and three automatically successive terms of 15 years each. The SFWMD holds fee title to approximately 27 percent of the WCAs, and has flowage easements over the remainder. The Board of Trustees of the Internal Improvement Trust Fund (TIITF) owns approximately 55 percent of the WCAs. Other public agencies own approximately 4 percent, with private landowners owning an estimated 14 percent of the remainder of the area. The identity of the private landowners and the location of the inholdings are, for the most part, unknown; Palm Beach, Broward and Miami-Dade counties have little or no land records for lands in the Everglades Water Management Area.

In 1982, an agreement between the TIITF, the FGFWFC, the SFWMD and the Miccosukees was prepared to clarify the documentation and respective rights and responsibilities of the state and the Miccosukees in the 189,000 acres of reservation lands within WCA-3.
The SFWMD has used “Save Our Rivers” (SOR) funds since 1982 to purchase land in the Everglades Water Management Area. Section (s.) 373.59, F.S., created the SOR program, and established the Water Management Lands Trust Fund that contains monies designated for the purchase of environmentally sensitive riverine lands. Funds for SOR are provided by a portion of documentary stamp tax on properties purchased in Florida. SOR legislation calls for the management and maintenance of lands acquired with SOR funds in an “environmentally acceptable manner, and to the extent practicable, in such a way as to restore and protect their natural state and condition.” The legislation encourages the use of SOR lands for public outdoor recreational activities compatible with the primary goal of environmental protection and enhancement.

Governor Bob Graham initiated the Save Our Everglades (SOE) program on August 9, 1983. This program was designed to improve environmental conditions in the Everglades system. Two of the seven program initiatives directly affected the management of the Everglades Water Management Area. Initiative 4 required the FGFWFC to manage the Everglades Water Management Area deer herd at a level that could survive moderate flooding conditions. Initiative 5 incorporated hydrological improvements in the conversion of State Road (SR) 84 to Interstate 75 (Alligator Alley). The five remaining program initiatives provided secondary benefits to the Everglades Water Management Area by providing for land acquisition and hydrological improvements that enhanced water quality and delivery to the area.

The three major roadways that affect the WCAs are U.S. Highway 27, which separates WCA-2 from WCA-3, U.S. Highway 41 (Tamiami Trail), which borders WCA-3 to the south, and Interstate 75, which bisects WCA-3. The roadways, in combination with the existing levee and water delivery systems, have altered the natural hydroperiod of the area and disrupted sheetflow throughout the Everglades Water Management Area. In the past, there has been substantial environmental damage to the WCAs due to severe flooding and drought caused by these alterations.

The Holey Land Wildlife Management Area is a tract of Everglades marsh comprising 35,350 acres, located in the southwest corner of Palm Beach County. It is located immediately north of WCA-3, on the east side of the Miami Canal. It is 17 miles south of Lake Okeechobee and approximately 43 miles north of ENP. A large portion of the property came to the Trustees of the Internal Improvement Trust Fund (TIITF) through statehood as part of the Federal Swamp and Overflowed Lands Act of 1850. Some of the property may have been acquired under the Environmentally Endangered Lands (EEL) acquisition fund in the early 1970s. The remainder of the property was purchased in order to facilitate restoration of the hydroperiod for the area, possibly through the SOE Program. Lease #2343, dated July 30, 1968 and issued by the TIITF, leased the area to the FGFWFC for fish and wildlife management purposes. Since that time, the FWC, formerly the FGFWFC, has managed the area for public hunting, fishing and recreational use. From 1968 until 1975, the area was apparently included as part of the Everglades Wildlife Management Area. In 1975, the Game and Fresh Water Fish Commission established the area as the Holey Land Wildlife Management Area. Past uses, prior to 1968, are unknown.
Man-made structures include levees associated with the Miami Canal and the L-5 canal. A series of canals and borrow pits enclose the area’s northern and eastern boundaries. Boat ramps are located at the northwest (G-200) and southwest (G-201) pump stations. There are three water gauges (Holey G, Holey 1, Holey 2) within the marsh, with another located in the eastern boundary levee (G-203D). These structures are operated by the SFWMD in accordance with a management agreement with the FGFWFC. The SFWMD also maintains public roads associated with the Miami Canal and L-5 levees. The road along the crest of the northern and eastern boundary levee is closed to the public because it is too narrow to accommodate two-way public vehicular use. Florida Power and Light maintains high-tension power lines and support pads on the southern boundary of the Water Management Area, and a small electrical transmission line along the Miami Canal levee. A series of 54 artificial islands were constructed in the south- and east-central portions of the area in 1974 and 1975.

The Rotenberger Wildlife Management Area is an area of Everglades marsh comprising 27,810 acres located in the southwest corner of Palm Beach County. The Rotenberger Wildlife Management Area is located immediately north of WCA-3 on the west side of the Miami Canal. It is 17 miles south of Lake Okeechobee and approximately 43 miles north of ENP. Holey Land Wildlife Management Area is immediately along the east boundary of the Rotenberger Wildlife Management Area. The area was named for Ray Rotenberger, who constructed a small camp and airfield in the area during the late 1950s or early 1960s. Approximately 6,300 acres of the original Environmentally Endangered Lands (EEL) project were purchased by the state on February 17, 1975. Since that time all but about 3,500 acres have been acquired. Although biologists were performing surveys and checking harvests in the Rotenberger area as early as 1970, and it may have been part of the Sawgrass Hunt Area at this time, the area was not included in the FGFWFC wildlife management area system until August 26, 1975. The Rotenberger Wildlife Management Area has been operated under lease # 3,581 dated November 13, 1979 from the TIITF since that time, with 6 major lease amendments (1987, 1989, 1990, 1994). This lease also includes some lands on the east side of the Miami Canal that are managed as part of the Holey Land Wildlife Management Area and some 14,000 acres south of the L-4 Canal in Broward County that are operated as part of the Everglades and Francis S. Taylor Wildlife Management Area (known as the Seminole Indian Lands).

Man-made structures include levees associated with the Miami Canal, Manley Ditch, L-4 Canal, the Florida Power and Light Powerline, the Guerry Sugarcane Farm (834 acres), and the abandoned Cousin's Ranch (940 acres) and Holper (100 acres) Properties. A small camp and airstrip were built in the late 1950s or early 1960s by Ray Rotenberger. Several cabins and other structures associated with that camp. There used to be a cabin on Wall's Head, but it was abandoned and fell apart some years ago. Another cabin on Cousin's Ranch near the Miami Canal (Wildlife Officer's Camp) has also been abandoned, but is still standing. Several sets of culverts drain from Rotenberger Wildlife Management Area into the Miami Canal and L-4 Canal, and there are a series of culverts underneath the Powerline Road. There are two SFWMD water gauges in Rotenberger Wildlife Management Area (Rotenberger North and South). Sometime in the late 1950s or early 1960s an exploratory oil well was drilled near the south-central boundary. Using
shellrock and material dredged from the wetlands a 2-acre support pad and access road to the L-4 North and Powerline levees was constructed, but this site was soon abandoned.

LAND USE - EVERGLADES NATIONAL PARK AND FLORIDA BAY

As the region has grown its land use patterns have dramatically changed. In South Florida the character of the land has acted as one of the constraints dictating early settlement patterns. Topography, soils, and aquifer maps illustrate the vulnerability of South Florida to inundation. On the east coast, the Atlantic Coastal Ridge and associated pine rocklands, due to its higher elevation and more stable soils, were the first to develop. As the coastal ridge developed and available lands were depleted (particularly over the last few decades), other less suitable lands were developed in the sprawl pattern characteristic of current day South Florida.

Everglades National Park encompasses 2,353 square miles of wetlands, uplands and submerged lands at the southern end of the Florida peninsula. The topography is extremely low and flat, with most of the area below 4 feet NGVD. The highest elevations are found in the northeastern section of the park and are from 6 to 7 feet NGVD. The saline wetlands, including mangrove and buttonwood forests, salt marshes and coastal prairie that fringe the coastline are subject to the influence of salinity from tidal action.

Everglades National Park, authorized by Congress in 1934 and established in 1947, was established to protect the unique tropical biological resources of the southern Everglades ecosystem. It was the first national park to be established to preserve purely biological (versus geological) resources. The park’s authorizing legislation mandated that it be managed as:

…wilderness, [where] no development… or plan for the entertainment of visitors shall be undertaken which will interfere with the preservation intact of the unique flora and fauna and the essential primitive natural condition now prevailing in this area.

This mandate to preserve wilderness is one of the strongest in the legislative history of the National Park System.

Recognized by the international community, as well as the national and state governments, ENP is important, as a natural, recreational and cultural resource. At the international level, the park is a World Heritage Site, an International Biosphere Reserve and a Wetland of International Significance. In 1978, Congress designated much of the park, (86 percent) as Wilderness under the Wilderness Act of 1964. In 1997, this area was redesignated the Marjory Stoneman Douglas Wilderness. Hell’s Bay Canoe Trail and the Wilderness Waterway are designated National Trails. The state of Florida has designated the park an Outstanding Florida Water.

The park preserves a unique landscape where the temperate zone meets the subtropics, blending the wildlife and vegetation of both. The landscape includes sawgrass
sloughs, tropical hardwood hammocks, offshore coral reefs, mangrove forests, lakes, ponds and bays, providing habitat for dozens of threatened and endangered species of plants and animals. It is the largest designated wilderness, at 1,296,500 acres, east of the Rocky Mountains. It protects the largest continuous stand of sawgrass prairie in North America, the most significant breeding grounds for tropical wading birds in North America, over 230,100 acres of mangrove forest (the largest in the western hemisphere), a nationally significant estuarine complex in Florida Bay and significant ethnographic resources, revealing 2,000 years of human occupation.

Agriculture

Little or no agricultural production takes place in these regions, which includes ENP, Florida Bay, the Ten Thousand Islands and Whitewater Bay. However, water management decisions made for these regions may affect other regional farmland and should, therefore, be considered carefully.

LAND USE - FLORIDA KEYS

In 1975, Florida designated Monroe County an Area of Critical State Concern under the authority of Chapter 380, F.S. This legislation was designed to preserve and protect the county’s unique natural resources, which were being degraded by large development projects. It gave the State Department of Community Affairs (DCA) the responsibility of overseeing all development activities within the designated area. The legislation required both the drafting of a comprehensive plan and development regulations designed to set the county's growth-management standards, over which the state has final review and approval.

Significant features of the plan include the “down-zoning” of large natural areas (excluding Key West, Key Colony Beach and Layton), and the establishment of the Monroe County Land Authority, which is responsible for purchasing these down-zoned areas. The plan was also designed to preserve the contiguous areas of habitat as biologically functional units, specifying that required open-space areas may not be altered. It also contained the rudiments of the concept of “concurrency,” which requires that a project cannot be completed without the public infrastructure necessary to support it.

Monroe County and its sister municipalities are currently revising their comprehensive plans under Chapter 163, F.S. In general, Chapter 163 legislates more specific standards, significantly expands the concept of concurrency, and allows the local government to set a “level of service” for hurricane evacuation that cannot be exceeded as a result of new development. However, because the county is an Area of Critical State Concern, the county must still meet the standards of Chapter 380, F.S.

Existing Land Use

The inhabited Keys make up only five percent of Monroe County's total land area (65,500 of 1.2 million acres). The county also contains over 99,000 acres of the
Everglades, but this area is almost entirely within ENP and BCNP. The majority of the county, consequently, is classified as “conservation land.”

Within the county, the unincorporated area is distinguished from the four incorporated areas of Key West, Key Colony Beach, Layton and Islamorada. Within the unincorporated area, land use is also apportioned differently between the Upper, Middle and Lower Keys. The types of land use can be defined as residential, commercial, industrial or public facilities and buildings; historical buildings and districts; military facilities; and recreation, conservation and vacant land.

Residential Land

The portion of land used for residential purposes ranges from 12 percent in the Lower Keys to 58 percent in Key Colony Beach. The small percentage of residential use in the Lower Keys is due to the high proportion of conservation land, primarily in the National Key Deer Refuge. The relatively high proportion of residential development in Key Colony Beach reflects the city's reliance on Marathon for commercial and other use categories. Within the unincorporated area, the majority of residential development (78 percent) consists of single-family units. The unincorporated area also has the majority of the county's mobile homes, although the total area is relatively small. The cities of Key West and Key Colony Beach have substantial duplex development. In the city of Key West, the single-family/duplex zoning category accounts for 62 percent of all residential area. Key Colony Beach has similar percentages.

Commercial Land

The proportion of commercial land in each area is similar, although there are significant differences between the Upper, Middle and Lower Keys. In general, commercially zoned land accounts for about four percent of land-use acreage within the Keys. The Middle Keys contain significantly higher proportions because of the large amount of commercial land in Marathon. The lower levels in the Lower Keys reflect the large amount of refuge conservation land.

Industrial Land

The cities of Key West, Key Colony Beach and Layton contain no significant industrial development, and rely on the adjacent unincorporated areas for their industrial needs. Two industries, rock mining and marine repair and salvage define industrial use in the Keys. The majority of rock mining operations are in Stock Island and Marathon. Other small-scale industrial businesses are located in Stock Island, Big Pine Key, Marathon and Key Largo.
Public Facilities and Buildings

As much as eight percent of Key West is allocated to public buildings and facilities (excluding recreational uses), while the unincorporated area, Key Colony Beach and Layton provide one percent or less.

Historic Buildings and Districts

Within the cities of Key Colony Beach and Layton, and in the unincorporated areas of the Keys, virtually no acreage is allocated for historical lands. There are, however, historic structures and buildings outside Key West, including those on Pigeon Key and the Carysfort Light off North Key Largo, both of which, are listed in the National Register of Historic Places. The city of Key West also considers large areas of “old town” historic and, as a result, requires additional permits before allowing development. In addition, the city has established a Historic Architectural Review Commission to ensure that the traditional character and appearance of the area is maintained.

Military Facilities

Military facilities are located exclusively in Key West and the Lower Keys. About 25 percent of Key West’s land is used for military purposes. In the Lower Keys there are three military facilities that make up five percent of all land in the unincorporated area.

Recreational Facilities

The city of Key West provides about seven percent of its land area for recreational purposes, while the Lower and Upper Keys provide less than two percent each. The Middle Keys provide 11 percent, Key Colony Beach nine percent, and Layton none. These numbers may be somewhat misleading, however, as they are derived primarily from a list of publicly and privately owned lands that provide recreational activities. Many private owners of resort areas provide recreational facilities geared toward water activities that include swimming pools and/or tennis courts.

Conservation Land

Conservation land makes up about 34 percent of all unincorporated land use within the Keys. The largest proportion is in the Lower Keys, and is associated with the National Key Deer and Great White Heron refuges (28 percent). In the Upper Keys (51 percent), conservation land is located primarily in North Key Largo. The cities of Layton and Key Colony Beach have no conservation land. Within the city of Key West, conservation land is undeveloped and categorized as open water, freshwater islands, tidal wetlands, mangrove and hammock. Some of the land is in private ownership and, therefore, could be subject to future development. However, Monroe County Land Authority has been acquiring substantial areas around the “Salt Ponds” area of Key West. A total of 550 acres remains undeveloped in Key West.
Vacant Land

About 210,000 acres of land are potentially available for development, representing just over 34 percent of the Keys' total land area. In the unincorporated area of the county, vacant land is the largest land-use category. Ten percent of the county's vacant land is divided into nearly 15,000 vacant lots. These lots represent the only reasonably buildable property remaining in the Keys, and make up a substantial proportion of the total potential single-family development area.

Florida Reef Tract

The Florida Reef Tract is an arcuate band of living coral reefs paralleling the Keys. The reefs are located on a narrow shelf that drops off into the Straits of Florida. The shelf slopes seaward at a 0.06 degree angle into Hawk Channel, which is several miles wide and averages 50 feet deep. From Hawk Channel, the shelf slopes upward to a shallower area containing numerous patch reefs. The outer edge is marked by a series of bank reefs and sand banks that are subject to open tidal exchange with the Atlantic Ocean. The warm, clear, naturally low-nutrient waters in this region are conducive to reef development.

ELIGIBLE COMPREHENSIVE EVERGLADES RESTORATION PLAN (CERP) PROJECTS

Water Conservation Area 3 Decompartmentalization and Sheetflow Enhancement Project - Part 1

Part 1 of the Water Conservation Area 3 Decompartmentalization and Sheetflow Enhancement Project includes the modification or removal of levees, canals and water control structures in Water Conservation Area 3A and B located in western Broward County. This project includes backfilling the Miami Canal in Water Conservation Area 3 from one to two miles south of the S-8 pump station down to the East Coast Protective Levee. To make up for the loss of water supply conveyance to the Lower East Coast urban areas from the Miami Canal, the capacity of the North New River Canal within Water Conservation Area 3A will be doubled to convey water supply deliveries to Miami-Dade County as necessary. Modifications will also be made to the eastern section of Tamiami Trail, which includes elevating the roadway through the installation of a series of bridges between L-31N Levee and the L-67 Levees. The eastern portion of L-29 Levee and Canal will also be degraded in the same area as the Tamiami Trail modifications. The purpose of this project is to restore sheetflow and reduce unnatural discontinuities in the Everglades landscape. The project includes raising and bridging portions of Tamiami Trail and filling in portions of the Miami Canal within Water Conservation Area 3. Due to the dependencies of components, this project would be implemented with the Water Preserve Areas Project that would create a bypass for water supply deliveries to Miami Canal using the North New River Canal. More detailed information is available at www.evergladesplan.org.
C-111 Spreader Canal

The C-111 Spreader Canal project will alter the 1994 design for the C-111 project by adding the following enhancements: constructing a 3,200-acre stormwater treatment area; enlarging pump station S-332E from 50 cfs to 500 cfs; extending the spreader canal approximately two miles under U.S. Highway 1 and Card Sound Rd. to the Model Lands; and installing culverts under U.S. Highway 1 and Card Sound Road. The project also will fill in the southern reach of the C-111 canal below C-111 Spreader to S-197, remove S-18C and S-197 and backfill C-110. The project purposes are to re-hydrate the Model Lands, establish sheet flow and hydropatterns that will sustain ecosystems in the Southern Glades and Model lands, provide more natural sheetflow to Florida Bay by eliminating point sources of freshwater discharges through C-111 to the estuarine systems of Manatee Bay and Barnes Sound, and maintain some level of flood protection for agricultural and urban areas in the project area. More detailed information is available at www.evergladesplan.org.

Florida Keys Tidal Restoration Project

This project includes the use of bridges or culverts to restore the tidal connection between Florida Bay and the Atlantic Ocean in Monroe County. The four locations are as follows: 1) Tarpon Creek, just south of Mile Marker 54 on Fat Deer Key (width 150 feet); 2) unnamed creek between Fat Deer Key and Long Point Key, south of Mile Marker 56 (width 450 feet); 3) tidal connection adjacent to Little Crawl Key (width 300 feet); and 4) tidal connection between Florida Bay and Atlantic Ocean at Mile Marker 57 (width 2,400 feet). The purpose of this project is to restore the tidal connection that was eliminated in the early 1900’s during the construction of Flagler’s railroad. Restoring the circulation to areas of surface water that have been impeded and stagnant for decades will significantly improve water quality, benthic floral and faunal communities, larval distribution of both recreational and commercial species (i.e. spiny lobster), and the overall hydrology of Florida Bay. More detailed information is available at www.evergladesplan.org.

Flow to NW and Central WCA-3A

This project includes relocation and modifications to pump stations and development of a spreader canal system located in the northwest corner and west-central portions of Water Conservation Area 3A in western Broward County. The purpose of this project is to increase environmental water supply availability, increase depths and extend wetland hydropatterns in the northwest corner and west-central portions of Water Conservation Area 3A. More detailed information is available at www.evergladesplan.org.

Everglades National Park Seepage Management

This project includes relocating and enhancing L-31N, groundwater wells and sheetflow delivery system adjacent to ENP located in Miami-Dade County. More detailed planning, design and pilot studies will be conducted to determine the appropriate
technology to control seepage from ENP. These studies and tests will also determine the appropriate amount of wet season groundwater flow control that will minimize potential impacts to Miami-Dade County’s West Wellfield and freshwater flows to Biscayne Bay. The purpose of this project is to improve water deliveries to Northeast Shark River Slough and restore wetland hydropatterns in ENP by reducing levee and groundwater seepage and increasing sheetflow. More detailed information is available at www.evergladesplan.org.
Chapter 9
WATER PRESERVE AREAS, MIAMI-DADE COUNTY AND NORTH PALM BEACH COUNTY REGIONS

PHYSICAL CONDITIONS - WATER PRESERVE AREAS, MIAMI-DADE COUNTY AND NORTH PALM BEACH COUNTY REGIONS

The Lower East Coast area, which consists of the coastal ridge section in Palm Beach, Broward and Miami-Dade counties, is a strip of sandy land which lies east of part of the Water Conservation Areas (WCAs) (Figure 8). The area is made up of the Water Preserve Areas (WPAs), Miami-Dade County and North Palm Beach County regions. The ground surface of the flatlands in the west ranges from about 25 feet NGVD (National Geodetic Vertical Datum) in the upper part of the region to about 5 feet NGVD in lower Miami-Dade County. The Atlantic Coastal Ridge is comprised of broad, low dunes and ridges with elevations ranging from 10 to 25 feet NGVD. This ridge area ranges from 2 – 4 miles in width at its northern edge to its southern edge in Miami. South of Miami the ridge becomes less pronounced but significantly wider.

The Lower East Coast area is the most densely populated part of the state. The largest population centers are near the coast and include the cities of Miami, Fort Lauderdale, Hollywood and West Palm Beach. Water levels in coastal canals are controlled near the coastal shoreline to prevent overdrainage and to prevent saltwater intrusion. Low water levels in these canals may enable saltwater to migrate into the groundwater, wellfields and natural freshwater systems, upon which the urban areas depend for a potable water supply.

This area is characterized by sandy flatlands to the west, the sandy coastal ridge and the coastal marsh and mangrove swamp areas along the Atlantic seaboard. The northern portion, generally that part north of Miami-Dade County, marks the shore of a higher Pleistocene sea and occurs as one or more relict beach ridges. The southern portion appears to be marine deposited sands or marine limestones.

Extensive development has resulted in nearly complete urbanization of the coastal region from West Palm Beach southward through Miami, and physiographical characteristics of the region have been greatly overshadowed. South of Miami, in Miami-Dade County, this coastal area widens as the Everglades bends to the west to include urban areas and agricultural areas that extend almost to the southern coast. Miami-Dade County’s agricultural industry covers more than 83,000 acres in the southwest of the coastal metropolitan area. Vegetables, tropical fruits and nursery plants are grown in this area.
Biscayne Bay is a shallow, tidal sound located near the extreme southeastern part of Florida. Biscayne Bay, its tributaries and Card Sound are designated by the state of Florida as aquatic preserves, while Card and Barnes sounds are part of the Florida Keys National Marine Sanctuary. A significant portion of the central and southern portions of Biscayne Bay comprise Biscayne National Park.

The original extent of Biscayne Bay approximated 300 square miles, but it has since undergone major modifications, particularly in its northern portions, as a result of development. The bay extends about 55 miles in a south-southwesterly direction from Dumfoundling Bay on the north to Barnes Sound on the south. It varies in width from less than 1 mile in the vicinity of the Atlantic Intracoastal Waterway passage to Dumfoundling Bay, to about 10 miles between the mainland and the Safety Valve Shoals to the east.

While there has been extensive dredging and filling within northern Biscayne Bay, the area still supports a productive and healthy seagrass bed and a few tracts of natural shoreline remain. Northern Biscayne Bay’s headwaters are now considered to include dredged areas known as Maule Lake and Dumfoundling Bay, near the northern boundary of Miami-Dade County.
Central and, in particular, southern Biscayne Bay have been impacted less by development than northern bay. For instance, mangrove-lined coastal wetlands extend from Matheson Hammock Park south along the entire shoreline of Biscayne National Park, Card and Barnes Sounds, a distance of approximately 30 miles. These coastal wetlands are the largest tract of undeveloped wetlands remaining in South Florida outside of Everglades National Park (ENP), the Big Cypress National Preserve (BCNP) and the WCAs.

Biscayne National Park, in southern Biscayne Bay was established in 1980 to protect and preserve this nationally significant marine ecosystem consisting of mangrove shorelines, a shallow bay, undeveloped islands and living coral reefs. The park is 180,000 acres in size and 95 percent water. The shoreline of southern Biscayne Bay is lined with a forest of mangroves and the bay bottom is covered with dense seagrass beds. The park has been designated a sanctuary for the Florida spiny lobster. Biscayne Bay and Biscayne National Park support a multitude of marine wildlife, such as lobster, shrimp, fish, sea turtles and manatees. The coral reefs within the Biscayne National Park support a diverse community of marine plant and wildlife.

Depending upon the flood stages reached, all the Central and Southern Florida Flood Control Project (C&SF Project) canals in adjacent Miami-Dade County can carry floodwaters to Biscayne Bay. However, much of the time, discharges from project canals represent primarily runoff or seepage from within the flood protected area of the county. These flows originate in the extensive networks of secondary drainage canals and storm sewers that discharge into the project canals. Supplementing the complex system of project canals and secondary drainage systems are many hundreds of other storm water drainage canals and storm sewer outfalls within Miami-Dade County that discharge freshwater directly into Biscayne Bay.

EXISTING CONDITIONS - WATER PRESERVE AREAS, MIAMI-DADE COUNTY AND NORTH PALM BEACH COUNTY

This Region functions as a multipurpose canal system with several objectives including: flood control, urban water supply, industrial water supply, agriculture water use, protection and enhancement of wetland and estuarine systems, prevention of saltwater intrusion and recreation. The Lower East Coast system is capable of moving vast quantities of water during the wet season, as well as supplying water (if available) during the dry season or as needed. Important freshwater canals are, from north to south, C-44, C-18, C-17, C-51, Hillsboro Canal, North New River Canal, Miami Canal, New River Canal, C-9, C-8, C-7, C-4, C-100, C-100c, C-1, C-102, C-103, C-109, C-110, C-111 and the South Miami-Dade Conveyance System.

Approximately half of the acreage farmed in the Lower East Coast is irrigated (UFBEBR, 1995). This region is highly dependent on the system of canals, levees and other structures for flood control in the wet season and water supply in the dry season. Providing adequate drainage and flood control to the South Miami-Dade County agricultural area is a serious challenge because the farmland is directly adjacent to ENP.
Evidence suggests that efforts to provide flood control to agriculture have resulted in over-drying the eastern portions of ENP and adversely affecting park ecology. Agricultural land does, however, provide a buffer between urbanization and Everglades National Park. Farmland is recognized as the preferred neighbor to natural areas because of its minimal impervious areas, open green space and low population density. A strong agricultural economy in the Lower East Coast Region based on profitable crop production is the best defense against conversion of agricultural land to urban land.

The major estuaries in the Lower East Coast Region are Lake Worth Lagoon in Palm Beach County, West Lake in Broward County and Biscayne Bay in Miami-Dade County. Lake Worth Lagoon was predominantly a freshwater system as recent as 100 years ago but was converted into a marine system with construction of permanent inlets to the ocean. West Lake is 1,400 acres of coastal wetland and mangroves in Hollywood along the Intracoastal Waterway. Biscayne Bay is a subtropical lagoon about 40 miles long that extends the length of Miami-Dade County.

Prior to urban development, freshwater discharge to Biscayne Bay consisted of flows through natural drainageways, overland flow and groundwater discharge from the Biscayne aquifer. However, the flow has changed from short bursts of rainy season flow through low drainageways, to regulated releases through drainage canals and decreased periods of groundwater discharge (SFWMD, 1995). The construction of the canal system lowered the regional water table and subsequently reduced the amount of groundwater flow into the bay. Groundwater discharge into Biscayne Bay is believed to occur through both seepage and flow through subsurface leakage channels. A zone of seepage occurs around the perimeter of the bay where the water table elevation is higher than sea level. Subsurface flow occurs through natural leakage channels in the rock formations. Prior to the construction of drainage canals, springs flowed along the shore and emanated from the bottom of the bay. However, present day rates of groundwater discharge into the bay are insufficient to produce such flowing springs (SFWMD, 1995).

Surface water flows into Biscayne Bay and Lake Worth Lagoon are primarily controlled by the system of canals, levees and control structures built as part of the Central and South Florida Flood Control Project. Biscayne Bay receives freshwater surface flows from 17 surface water basins through 12 major coastal structures (SFWMD, 1995). Lake Worth Lagoon’s freshwater input is principally from the C-51 Canal. The mechanism of surface water flow into Biscayne Bay and Lake Worth Lagoon are short intense pulses of freshwater discharged at discrete locations. This flow has replaced the historic sheetflow through the wetlands adjacent to the bay that existed before development of the canal system. Dry season flows into these water bodies are much lower than predrainage levels because most of the discharge into the bay is from storm water releases from the canals. The canal discharge can bring sediments, heavy metals, pesticides, fertilizers, herbicides, nutrients and low salinity plumes, which can all adversely affect the biota (SFWMD, 1995).
FUTURE WITHOUT PLAN CONDITION - WATER QUALITY - WATER PRESERVE AREAS, MIAMI-DADE COUNTY AND NORTH PALM BEACH COUNTY

The major watershed management/planning program ongoing in the Lower East Coast Region that will beneficially effect future water quality conditions is the state's Biscayne Bay Surface Water Improvement and Management (SWIM) Plan (SFWMD, 1995). The Biscayne Bay SWIM Plan has developed numerous water quality improvement related strategies and projects to reduce pollutant loading in Biscayne Bay and its tributaries. The extent to which this program is implemented, however, is limited due to funding constraints. Also, the Lake Worth Lagoon Management Plan will result in water quality improvement projects being implemented in the area. Although implementation of these water quality improvement activities will result in beneficial effects to Lower East Coast water bodies, the net future condition of water bodies in this region is not expected to improve due to the dramatic additional urban development, and associated additional pollutant loads, projected to occur in this region.

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - PROJECTS

C-51

The current Design Memorandum was completed in February 1998 and submitted for review and approval and contains the same National Economic Development plan as the June 1992 Detailed Design Memorandum but references an “authorized” plan, which includes the replacement of the 2.5 square mile detention area with Stormwater Treatment Area (STA) 1E from the Everglades Construction Project (ECP). The “authorized” plan is also a product of the Technical Mediated Plan, which has been agreed to by the United States Department of Justice, United States Department of Interior (USDOI), United States Department of Army, the state of Florida and the South Florida Water Management District (SFWMD or District). The state of Florida's Everglades Forever Act is based, in part, on the Technical Mediated Plan. The current “authorized” plan was authorized by the Water Resources and Development Act of 1996. The Act included language for the Western C-51 Project that additional work, as described in the ECP, shall be accomplished at full federal cost.

The authorized plan is recommended in the C-51 Design Memorandum and has many of the same physical features proposed in the 1992 Detailed Design Memorandum (described below). The project will provide 10-year flood protection for the western basin of C-51. The major physical difference between the 1992 Detailed Design Memorandum National Economic Development plan and the authorized plan is the replacement of the 1,600 acre detention area with the 5,350 acre “locally preferred” STA 1 East. The most significant modification will be the reduction of discharges to Lake Worth, with C-51 West Basin runoff directed instead to WCA-1 (Arthur R. Marshall Loxahatchee Wildlife Refuge). Runoff from the C-51 West Basin will pass through STA 1 East for water quality improvement prior to its discharge to WCA-1. In addition to the flood damage reduction
benefits provided by the 1992 plan, the authorized plan would provide water quality improvement, reduction of damaging freshwater discharges to Lake Worth, and increased water supply for the Everglades and other users.

Northwest Dade Lake Belt Area

This component assumes that the conditions caused by the currently permitted mining exist and that the affects of any future mining are fully mitigated by the mining industry.

C-111 Project

Plan 6a, recommended in the United States Army Corps of Engineers (USACE) General Reevaluation Report (dated May 1994), will create the operational capability and flexibility to provide restoration of the ecological integrity of Taylor Slough and the eastern panhandle areas of the Everglades and maintain flood protection to the agricultural interests adjacent to C-111.

In the future without plan condition, C-111 Plan 6a will protect the natural values of a portion of Everglades National Park, and will maintain flood damage prevention within the C-111 Basin, east of L-31N and C-111. The project, which consists of both structural and nonstructural modifications to the existing project works within the C-111 Basin, will restore the hydrology in 128 square miles of Taylor Slough and its headwaters in the Rocky Glades. In addition, the hydroperiod and depths in 1,027 square miles of Shark River Slough are beneficially impacted by the higher stages in the Rocky Glades, resulting in a net increase in water volume within Shark River Slough. The project will provide adequate operational flexibility to incorporate management strategies that will evolve as a result of continued monitoring and studies.

Modified Water Deliveries to Everglades National Park

As of this writing, the Modified Water Deliveries to Everglades National Park Project is on hold pending the resolution of litigation involving the U.S. Army Corps of Engineers. The project is expected to resume once the litigation is resolved.

The Modified Water Deliveries to Everglades National Park Project was authorized by the Everglades National Park Protection and Expansion Act (Public Law 10229). The purpose of the project is to provide for structural modifications to the C&SF Project to enable the restoration of more natural water flows to Shark River Slough in Everglades National Park. The project is being implemented by the USACE in conjunction with the acquisition of about 107,600 acres of land by the USDOI. Land acquisition for the levee, canal, and pump station for the flood mitigation system in the 8.5 Square Mile Area is underway.
This project is presently in the design and construction phase. Project construction is scheduled for completion in 2003. In the future without plan condition, the Modified Water Deliveries Project will provide more natural flows to Shark River Slough in Everglades National Park. Water flows will be spread across a broader section of Shark River Slough to include the east Everglades between L-67 Extension and L-31N.

The addition of water control structures and culverts will help to reestablish the natural distribution of water from WCA-3A into WCA-3B. Outlets from WCA-3B (S-355A & B) will be constructed to discharge into Northeast Shark River Slough. An existing levee and canal (L-67 Extension) along the eastern edge of the existing Everglades National Park boundary will also be removed. A Miccosukee Indian camp has been flood-proofed to avoid periodic flooding that would otherwise be caused by the project.

In order to prevent adverse flood impacts to the 8.5 Square Mile Area, the authorized project includes the construction of a seepage levee and canal around the western and northern edges of the area and a pump station (S-357) to remove excess seepage water. These project features are designed to maintain the existing level of flood protection in the residential area after the Modified Water Deliveries to Everglades National Park project returns water levels in Northeast Shark Slough to higher levels. A second pump station (S-356) will be constructed to pump excess seepage water from the L-31N Borrow Canal and residential area into the L-29 Borrow Canal. This water will then flow through culverts under US Highway 41 into Northeast Shark River Slough. A locally preferred option that would modify the project features in the 8.5 Square Mile Area is currently under consideration.

The structural modifications were designed to provide for maximum operational flexibility so that as more is learned through the continued iterative testing program, the operation of the project can be adjusted accordingly.

East Cape and Homestead Canals

The East Cape and Homestead canals, located within Everglades National Park, were constructed by local interests in the early 1900s to assist in the drainage of the Everglades prior to authorization of the park in 1936. After the Everglades National Park was established, the canals were plugged to prevent overdrainage of upstream freshwater systems and saltwater intrusion during high tides in the dry season. The passage of Hurricane Andrew resulted in extensive damage to both plugs. The project repaired the plugs in August 1997.

Interim Plan for Lower East Coast Regional Water Supply

The Interim Plan for Lower East Coast Regional Water Supply, produced by the SFWMD, identified water resources and water supply development projects, both structural and nonstructural, to help meet the growing needs of the region (SFWMD,
1998d). The Interim Plan also identified local basin planning and other analytical programs to support the Lower East Coast 2020 Plan development and the Restudy.

The analyses conducted during the Lower East Coast Regional Water supply planning process demonstrated the need for increased storage capabilities throughout the system to help meet the increasing agricultural, environmental and urban demands.

Wellfield Expansion in Service Areas 1 and 2

This component provides for relocation of future and some existing withdrawals from existing (1995) wellfields. Demands of the following utilities were evaluated assuming new wellfield locations: Lake Worth, Manalapan, Lantana, Boca Raton, Fort Lauderdale, Hollywood and Hallandale. The evaluations assumed that, for these utilities, demands shifted to new wellfields were the same as those identified in the Draft Lower East Coast Regional Water Supply Plan (SFWMD, 1997g). Generally this means that 1995 levels of demands continued to be met from existing facilities while the portion of new demands beyond 1995 levels were met from the newly expanded wellfields. The new wellfields were generally evaluated as being located along the western boundary of each utility’s service area.

Northeastern Broward Secondary Canal Recharge Network

This component includes pump stations and structures that would maintain higher levels in secondary canals in eastern Broward County between the Hillsboro and the North New River canals during the dry season. The control of seasonally higher canal elevations along the coast could help recharge the aquifers being used by local public water supply wellfields, and further reduce saline encroachment into the coastal freshwater aquifers. The selected canals are located where recharge from the canals would help to hold back the saltwater front and protect the production capability of wellfields to the east.

Miami-Dade County Utility Aquifer Storage and Recovery (ASR)

This component includes ASR wells and related facilities that would be installed associated with wellfields of the Miami-Dade Water and Sewer Authority Department. These facilities would be operated to store water in the Floridan aquifer in the wet season and recover this water in the dry season. For the future without project condition, the evaluations were for a daily injection and recovery capacity of approximately 150 million gallons per day (MGD), a maximum recovery percentage of injected water of 90 percent, an annual injection period of seven months and an annual recovery period of five months.

Selected Elements of L-8 Project

The goal of the selected elements of the L-8 project is to redirect runoff from the southern L-8 Basin away from WCA-1 and the C-51 Canal to the West Palm Beach Water Catchment Area and the Loxahatchee Slough via the M Canal and the C-18 Canal.
Subsequently, this water may be used to meet urban water supply demands for West Palm Beach, to meet environmental water demands of the West Palm Beach Catchment Area and Loxahatchee Slough, and may provide recharge for the Jupiter and Seacoast Utilities Authority wellfields. In addition, this project would be expected to reduce the incident and volume of harmful freshwater releases into Lake Worth Lagoon via the C-51 Canal. The project includes: an improved structural connection from the West Palm Beach Water Catchment Area to the Loxahatchee Slough ASR wells at the West Palm Beach Water Catchment Area or the Indian Trails Improvement District impoundment and a coastal recharge delivery system.

Minimum Flows and Levels (MFLs)

This component involves operational adjustments associated with the establishment of minimum flows and levels (MFLs) for the Biscayne aquifer and the Everglades. Minimum levels for the Biscayne aquifer involves maintaining water levels in coastal canals to prevent saltwater intrusion. MFLs for the Everglades focuses on preservation of hydric soils. No net outflow from WCAs are allowed if water levels are less than minimum level marsh triggers or less than minimum operating criteria in the canals of the Loxahatchee National Wildlife Refuge (WCA-1): 14 feet, WCA-2A: 10.5 feet, WCA-3A: 7.5 feet. Marsh level triggers will be those used in the Interim Plan for Lower East Coast Regional Water Supply.

FUTURE WITHOUT PLAN CONDITION - PHYSICAL FACILITIES AND OPERATIONS - CRITICAL RESTORATION PROJECTS

C-4 Water Control Structure

This project involves construction of a gated control structure (S-380) in the C-4 canal at the congruence with the Dade-Broward Levee. A large volume of seepage is lost from WCA-3B to the coast because the existing water management system cannot raise surface and groundwater levels high enough to prevent seepage. Construction of a gated control structure with five 72-inch diameter culverts with remotely operated slide gates will increase aquifer recharge and surface and subsurface storage of water to reduce seepage, as well as enhance habitat for plants and animals. The total cost is estimated at $1.3 million according to the project cooperation agreement entered into by the SFWMD and the USACE on January 7, 2000. More information is available regarding this critical project at www.saj.usace.army.mil/projects/index.html.

Western C-11 Water Quality Improvement

The purpose of this project is to improve the quality and timing of storm water discharges from the Western C-11 Basin to the Everglades Protection Area. The S-9 Pump Station currently pumps urban and agricultural storm water runoff from the Western C-11 Basin directly into WCA-3A. This project will be completed in two phases. Phase 1 will
involve installation of four new seepage return pumps adjacent to the S-9 Pump Station. Phase 2 will involve construction of a new divide structure in the C-11 canal, approximately 0.5 miles east of US Highway 27. Seepage return pumps will include two 75-cfs electric pumps and two 175-cfs diesel pumps. The divide structure will be a gated concrete spillway with a discharge capacity of 2,880 cfs. During non-flood conditions, the new structure is intended to separate seepage from storm water runoff, allowing return of relatively clean seepage waters to WCA-3A using the new seepage return pumps. The estimated cost of the project is $9.6 million according to the project cooperation agreement entered into by the SFWMD and the USACE. Additional information is available at www.saj.usace.army.mil/projects/index.html.

WATER QUALITY PROBLEMS AND OPPORTUNITIES

For planning purposes, the Lower East Coast consists of Water Preserve Areas, North Palm Beach County and Miami-Dade County Regions, including Biscayne Bay and Lake Worth Lagoon. According to the Florida Department of Environmental Protection’s (FDEP) 1998 303(d) list, approximately 42 water body segments (both fresh and marine water bodies) within the Lower East Coast are use-impaired. Pollutants/water quality constituents causing impairment include low levels of dissolved oxygen (DO), high levels of mercury (based on fish consumption advisories) and other trace metals, and high levels of coliform bacteria, total suspended solids (TSS), biochemical oxygen demand (BOD) and un-ionized ammonia.

Four of the main C&SF Project canals delivering flows from Lake Okeechobee and the WCAs (the West Palm Beach, Hillsboro, New River and Miami canals) traverse the Lower East Coast. In addition to conveying Lake Okeechobee and WCA flows, the C&SF Project canals and a network of connecting secondary and tertiary canals provide drainage in the Lower East Coast, which conveys storm water runoff and attendant pollution loads to estuarine waters. Management of storm water runoff and flooding via the existing canal system has been implicated as the chief cause of water quality degradation in the region, particularly in the northern portion of Biscayne Bay.

Improving water quality in the Lower East Coast to meet water quality standards in all impaired water bodies will likely be difficult, considering the extent of urban development, minimal or nonexistent water quality treatment for nonpoint source runoff, and other direct (point source) and indirect discharges adversely affecting water quality in the Lower East Coast. Water quality conditions are expected to worsen in the Lower East Coast (central and southern Palm Beach, Broward and Miami-Dade counties) by 2050 compared to current conditions. FDEP’s 1996 Section 305(b) report to the United States Environmental Protection Agency (USEPA) describing water quality conditions in the region indicates that most of the region exhibits “fair” or “good” water quality. The report goes on to state that most pollution (in the region) comes from storm water, although bacteriological contamination from wastewater discharges and septic tanks is also a significant problem, particularly in the Miami River, downstream in Biscayne Bay, and urban areas west of the intracoastal waterway in Broward County and north of the New River. Water quality conditions in receiving water bodies in 2050 are expected to be
further degraded, due to the developed condition of the watershed and the continued accumulation of pollutants in sediments in receiving water bodies.

Nearly all of this heavily urbanized watershed drains to estuarine waters. Net pollution loads, especially from nonpoint sources, to receiving waters in the Lower East Coast are expected to increase as a result of projected population increases. The expected increase in net pollution loads may not be directly proportional to population growth. New growth and urban/suburban development in the Lower East Coast must comply with water quality treatment requirements for nonpoint source runoff, whereas much of the existing development in the Lower East Coast does not include facilities for treatment of nonpoint pollution sources. Nevertheless, the projected addition of approximately 2.7 million people to the region is expected to cause water quality conditions to be further degraded, especially in those basins which are already stressed by existing pollution loads.

In Palm Beach County, the Lake Worth Lagoon Estuary is the receiving water body for most of that urban watershed. There are approximately eight use-impaired water bodies in Palm Beach County on the FDEP 1998 303(d) list. Listed water body segments include coastal canals and freshwater areas further inland. Water quality conditions are expected to improve (in terms of estuarine salinity targets) as a result the C-51 (STA 1 East) Project, which will divert freshwater discharges to Lake Worth Lagoon to a treatment area prior to discharge to WCA-1. However, net nonpoint source pollution loads to Lake Worth Lagoon may increase commensurate with increases in population and development.

Although there are no extensive estuarine water bodies in Broward County, remaining mangroves in southern Broward County canals and along the Intracoastal Waterway provide similar habitat. There are approximately 21 303(d)-listed use-impaired water body segments in Broward County. These water body segments are primarily coastal canals providing drainage. Due to the extent of existing urban development in the watersheds of those canals, it is not likely that there will be a significant increase in future nonpoint source pollution loads into these water bodies. However, it is also unlikely that basin-wide storm water best management practices (BMPs), e.g., retention/detention facilities, and filtration, can be implemented effectively in heavily urbanized watersheds, due to the lack of available land for such facilities. Future basin planning efforts during TMDL development and implementation may result in more effective controls of other direct (point source) and indirect discharges of pollutants (e.g., car washes and other industrial facilities). At best, the long-term prognosis for improving all use-impaired water bodies in coastal areas of Broward County is uncertain.

In Miami-Dade County, approximately 13 water body segments were identified as use-impaired on the FDEP's 1998 303(d) list. Most are coastal canals providing drainage of runoff to Biscayne Bay. Biscayne Bay is the largest estuarine water body in the Lower East Coast, and is the receiving water body for most of the developed area of Miami-Dade County. Most of Biscayne National Park is located within the central and southern portion of the Biscayne Bay Estuary. As with some of the Broward County canals, controlling nonpoint sources of runoff in heavily urbanized areas in Miami will be difficult, due to the lack of available land for basinwide BMPs. Some incremental improvement of nonpoint
source pollution loads may be realized through the basin management plans to be developed by the FDEP. Point sources and other direct discharges of pollutants to Biscayne Bay and tributary canals should be significantly improved if basin management plans are fully implemented. However, overall, it is not expected that water quality in coastal canals draining to Biscayne Bay will be improved to the point that all surface water quality standards will be achieved. Furthermore, any water quality benefits achieved as a result of the Biscayne Bay SWIM Plan may be offset by increases in nonpoint source pollution loads associated with projected population increases.

LAND USE - WATER PRESERVE AREAS, MIAMI-DADE COUNTY AND NORTH PALM BEACH COUNTY

Agriculture

Broward and Miami-Dade counties are included in this area. Although Palm Beach County is also a part of this area physiographically, agriculture issues for Palm Beach County were addressed within the Everglades Agriculture Area Region (Chapter 7). More than 100,000 acres are farmed in Broward and Miami-Dade counties (UFBEBR, 1995), and are characterized by small farms averaging less than 50 acres, with very high productivity of more than $3,500 per acre (UFBEBR, 1995). A variety of crops are produced including vegetables, tropical fruits and nursery plants. Hurricane Andrew, which struck southern Miami-Dade County in 1992, caused significant damage to agricultural areas. Many fruit tree orchards were damaged or destroyed. Statistics from 1996 indicate that avocado production had recovered, but mango and lime orchards had not yet recovered from the hurricane damage (FASS, 1997b). Total acres of tropical fruit production in Miami-Dade County remain approximately 7,000 less than pre-hurricane levels (FASS, 1996e). Foliage plant production is also a major business in Broward and Miami-Dade counties. More than 120 million square feet were devoted to the foliage crop in Broward, Miami-Dade and Palm Beach counties in 1996 (FASS, 1997a).

Agricultural production and services employ approximately 18,000 people in this region representing a $23 million payroll (UFBEBR, 1995). The total market value of agricultural products from this region is almost $400 million (UFBEBR, 1995). Miami-Dade County ranks second in the state for total market value of agricultural products (UFBEBR, 1995).

Approximately half of the acreage farmed in the three region area is irrigated (UFBEBR, 1995). This region is highly dependent on the system of canals, levees and other structures for flood control in the wet season and water supply in the dry season. Providing adequate drainage and flood control to the south Miami-Dade County agricultural area is a serious challenge because the farmland is directly adjacent to Everglades National Park. Evidence suggests that efforts to provide flood control to agriculture have resulted in over-drying the eastern portions of Everglades National Park adversely affecting Park ecology. Agricultural land does, however, provide a buffer between urbanization and Everglades National Park. Farmland is recognized as the preferred neighbor to natural areas because of its minimal impervious areas, open green
space and low population density. A strong agricultural economy in the Lower East Coast Region based on profitable crop production is the best defense against conversion of agricultural land to urban land.

Urban

The Lower East Coast supports the densest population in the state of Florida. Population in the Lower East Coast is expected to increase by 35 percent, from 4,518,401 in 1995 to 6,825,600 (BEBR, 2002) in 2020. Land use in the Lower East Coast is primarily related to urban activities and the infrastructure, such as transportation and utilities, needed to support this large number of people. Urban demands are expected to increase by 39 percent by 2020. If however, the Lower East Coast experiences a in-10 year drought during the planning period, than the projected urban and agricultural demand will increase about 43 percent.

South Miami-Dade County is defined as the area south of SW 184th St. (Eureka Drive). US Highway 1 bisects the area. West of US 1, land uses are primarily estate and low-density residential uses within the Urban Development Boundary (UDB). Other higher density residential uses, business/office and industrial uses are found in Homestead and Florida City. The Redlands and other agricultural areas are west across the UDB and make up most of the approximately 55,000 acres of agricultural lands that remain in south Miami-Dade County. The Urban Expansion Area designation identifies agricultural lands in south Miami-Dade County as the next place for development.

Miami-Dade and Broward counties have the most pronounced sprawl patterns. The South Florida Regional Planning Council (SFRPC) describes the change:

Essentially rural areas in the western extremes of Broward and Miami-Dade counties have given way to sprawling suburban residential development and shopping centers. Indeed, these have been an important component of the economic growth that has taken place in the region. During the process, the once significant rural population has virtually disappeared, resulting in the emergence of a distinctly urban character to the region. Miami-Dade County was already 94 percent urban in 1950, and 77 percent of Broward County's population lived in urban areas. By 1980, both counties were 99 percent urban. Only in Monroe County did a significant portion of the population still live outside of urban areas in 1990 (27 percent), consistent with the special characteristics of that county's political geography (SFRPC, 1996).

Palm Beach County is experiencing a similar change. The Treasure Coast Regional Planning Council (TCRPC) reports that while the coastal area of Palm Beach County from Riveria Beach to Boca Raton, is heavily urbanized, much of the recent population growth has occurred in the western unincorporated areas (TCRPC, 1996). This sprawling urbanization tended to push agricultural land uses off of prime farmlands into the less suitable wetlands fringing the coastal ridge. As the development continues to expand it is expected that it will consume the remaining agricultural lands (both historic and recent) and eventually make its way into the remaining unprotected wetlands of the
counties. The SFRPC explains that the region, in the response to the pressure of continued population growth, is likely to yield to the pressure to continue to urbanize.

Additional Lower East Coast urban-related land uses include the Florida Power and Light nuclear power plant at Turkey Point, landfills, rock mining, the former Homestead Air Force Base site, and a number of marinas scattered throughout Biscayne Bay and Lake Worth Lagoon.

Increased Pressure on Open Land

As development continues the availability of developable land decreases putting pressure on the unprotected wetlands and agricultural lands. There is a fear that agriculture lands will come under increased pressure as lands are converted into subdivisions or set aside for environmental protection. South Miami-Dade County typifies this trend. As people continue to move into the county pushing the north and central regions to capacity, the remaining undeveloped areas in south Miami-Dade County become the easiest option for future growth. The 80,000 acres of agricultural lands in the Redland Region and other parts of unincorporated Miami-Dade County are increasingly under development pressure. In the 1995 Evaluation and Appraisal Report Miami-Dade included a recommendation that a Farmland Retention Study be conducted, noting that:

> By [the Evaluation and Appraisal Report for 2000] the currently planned Urban Development Boundary will be substantially built out and the County will be facing the prospect of having to plan for the urbanization of an additional 20 square miles of land, if we continue the past trend of low-density development.

There are several other efforts to halt these land conversion and development trends including the following: Eastward Ho!, Brownfields and the South Miami-Dade U.S. 1 Corridor Project.

ELIGIBLE COMPREHENSIVE EVERGLADES RESTORATION PLAN (CERP) PROJECTS

North Palm Beach County Project - Part 1

This project consists of six separable elements including: Pal-Mar and J.W. Corbett Wildlife Management Area Hydropattern Restoration, L-8 Basin Modifications, C-51 and Southern L-8 Reservoir, Lake Worth Lagoon Restoration, C-17 Backpumping and Treatment and C-51 Backpumping and Treatment. These separable elements have been combined into a single project to address the interdependencies and trade-offs between the different elements. The elements provide a more efficient and effective design of the overall project. More detailed information is available at www.evergladesplan.org.
Acme Basin B Discharge

This project includes construction of a wetland or chemical treatment area and a storage impoundment with a combined total storage capacity of 3,800 acre-feet located adjacent to the Loxahatchee National Wildlife Refuge in Palm Beach County. The initial design for the treatment area and impoundment assumed 310 acres with water levels fluctuating up to 4 feet above grade and 620 acres with the water levels fluctuating up to 8 feet above grade. The final size, depth and configuration of these facilities will be determined through more detailed planning and design. The purpose of this separable element is to provide water quality treatment and storm water attenuation for runoff from Acme Basin B prior to discharge to the Loxahatchee National Wildlife Refuge or alternative locations. Excess available water may be used to meet water supply demands in central and southern Palm Beach County. More detailed information is available at www.evergladesplan.org.

Strazzulla Wetlands

This project includes water control structures and the acquisition of 3,335 acres located in Palm Beach County. The purpose of this separable element is to provide a hydrological and ecological connection to the Loxahatchee National Wildlife Refuge and expand the spatial extent of protected natural areas. This land will act as a buffer between higher water stages to the west and lands to the east that must be drained. The increase in spatial extent will provide vital habitat connectivity for species that require large unfragmented tracts of land for survival. It also contains the only remaining cypress habitat in the eastern Everglades and one of the few remaining sawgrass marshes adjacent to the coastal ridge. This is a unique and endangered habitat that must be protected. This area provides an essential Everglades landscape heterogeneity function. More detailed information is available at www.evergladesplan.org.

Palm Beach County Agricultural Reserve Reservoir - Part 1

This project includes an above ground reservoir with a total storage capacity of approximately 20,000 acre-feet located in the western portion of the Palm Beach County Agricultural Reserve. The purpose of this project is to supplement water supply deliveries for central and southern Palm Beach County by capturing and storing excess water currently discharged to the Lake Worth Lagoon. These supplemental deliveries will reduce demands on Lake Okeechobee and the Loxahatchee National Wildlife Refuge area. It is assumed that this facility could also be designed to achieve water quality improvements in downstream receiving waters, depending upon pollutant loading conditions in the watershed. More detailed information is available at www.evergladesplan.org.

Site 1 Impoundment

This project includes an above ground reservoir with a total storage capacity of approximately 15,000 acre-feet located in the Hillsboro Canal Basin in southern Palm
Beach County. The purpose of this project is to supplement water deliveries to the Hillsboro Canal during dry periods thereby reducing demands on Lake Okeechobee and the Loxahatchee National Wildlife Refuge. Water from the Hillsboro Canal will be pumped into the reservoir during the wet season or periods when excess water is available. Water will be released back to the Hillsboro Canal to help maintain canal stages during the dry-season. More detailed information is available at www.evergladesplan.org.

Broward County WPA

The Broward County WPA project is comprised of several Comprehensive Plan components. The components are the C-11 Impoundment, the C-9 Impoundment and the Water Conservation Area 3A/3B Levee Seepage Management component. More detailed information is available at www.evergladesplan.org.

Eastern C-4 Structure

This project includes two water control structures located in the C-4 Canal in Miami-Dade County. The purpose of this project will be to enhance wetland hydroperiods and enhance recharge to Miami-Dade County’s Northwest Wellfield. The eastern structure will be operated to reduce regional system deliveries by diverting dry season storm water flows to the C-2 Canal to provide saltwater intrusion protection and recharge to downstream wellfields. A western structure, being implemented under the Critical Projects Program, will be operated to control water levels in the C-4 Canal at a higher elevation to reduce seepage losses from the Pennsuco Wetlands and areas to the west of the structure. More detailed information is available at www.evergladesplan.org.

WPA Conveyance

This project is comprised of parts of three CERP components. These include Dade Broward Levee and Canal, North Lake Belt Storage Area (Turnpike Deliveries) and Central Lake Belt Storage Area (L-30 Improvements). The purpose of this project is to, among other things, reduce seepage to the east from the Pennsuco wetlands and southern WCA 3B, enhance hydroperiods in the Pennsuco Wetlands, provide recharge to the Miami-Dade County's Northwest Wellfield, convey regional water supply deliveries south to Miami-Dade County and convey regional natural system deliveries to the Northeast Shark River Slough. More detailed information is available at www.evergladesplan.org.

Broward County Secondary Canal System

This project includes a series of water control structures, pumps and canal improvements located in the C-9, C-12 and C-13 Canal Basins and east basin of the North New River Canal in central and southern Broward County. The purpose of this project is to reduce water discharges by recharging local wellfields and stabilizing the saltwater interface. Excess water in the basins will be pumped into the coastal canal systems to maintain canal stages at
optimum levels. When basin water is not sufficient to maintain canal stages, the canals will be maintained from other construction projects, such as the (Site1) Impoundment and the North Lake Belt Storage Area and then from Lake Okeechobee and the Water Conservation Areas. More detailed information is available at www.evergladesplan.org.

Wastewater Reuse Technology Pilot Project

Currently, two CERP projects involve the advanced treatment of wastewater. This pilot project will address water quality issues associated with discharging reclaimed water into natural areas, such as the West Palm Beach Water Catchment Area, Biscayne National Park and the Bird Drive Basin, the project will also determine the level of superior treatment and the appropriate methodologies for that treatment. A series of studies will be conducted to help determine the level of treatment needed. CERP will also monitor an existing reuse site in West Palm Beach and apply the data to potential reuse sites in West Miami-Dade. The research associated with West Palm Beach and West Miami-Dade will be performed under Part 1 of the pilot project. Part 2 of the pilot project will involve construction at a pilot facility in South Miami-Dade. More detailed information is available at www.evergladesplan.org.

Biscayne Bay Coastal Wetlands

This project includes pump stations, spreader swales, stormwater treatment areas, flowways, levees, culverts and backfilling canals located in southeast Miami-Dade County and covers 13,600 acres from the Deering Estate at C-100C, south to the Florida Power and Light Turkey Point power plant, generally along L-31E. The purpose of this project is to rehydrate wetlands and reduce point source discharge to Biscayne Bay. Through a spreader system, this project will replace lost overland flow and partially compensate for the reduction in groundwater seepage by redistributing available surface water entering the area from regional canals. More detailed information is available at www.evergladesplan.org.

Bird Drive Recharge Area

This project includes pumps, water control structures, canals and an above ground recharge area with a total storage capacity of approximately 11,500 acre-feet located in western Miami-Dade County. The purpose of this project is to recharge groundwater and reduce seepage from the Everglades National Park buffer area by increasing water table elevations east of Krome Avenue. The facility will also provide C-4 flood peak attenuation and water supply deliveries to the South Dade Conveyance System and Northeast Shark River Slough. More detailed information is available at www.evergladesplan.org.
REFERENCES

Florida House of Representatives, Committee on Government Oversight and Productivity, Final Analysis of Bill #CS/SB 1468, April 10, 2001

South Florida Water Management District. 2001. Lake Okeechobee Protection Program Annual Report to the Legislature. SFWMD, West Palm Beach, FL.

United States Army Corps of Engineers and South Florida Water Management District. 2002. *CERP Guidance Memorandum, 012.00*. USACE, Jacksonville, FL and SFWMD, West Palm Beach, FL.
Appendix A

WMD FLORIDA FOREVER GOALS AND PERFORMANCE MEASURES
Effect of Proposed Changes:

Section 1. Section 259.105(4), F.S., is amended to provide new goals and performance measures for the Florida Forever programs of the DEP and WMDs. They include:

(Goal) (a) Enhance the coordination and completion of land acquisition projects, as measured by:

1. The number of acres acquired through the state’s land acquisition programs that contribute to the completion of Florida Preservation 2000 projects or projects begun before Preservation 2000;
2. The number of acres protected through the use of alternatives to fee simple acquisition; or
3. The number of shared acquisition projects among Florida Forever funding partners and partners with other funding sources, including local governments and the federal government.

(Goal) (b) Increase the protection of Florida’s biodiversity at the species, natural community, and landscape levels, as measured by:

1. The number of acres acquired of significant strategic habitat conservation areas;
2. The number of acres acquired of highest priority conservation areas for Florida’s rarest species;
3. The number of acres acquired of significant landscapes, landscape linkages, and conservation corridors, giving priority to completing linkages.
4. The number of acres acquired of under-represented native ecosystems;
5. The number of landscape-sized protection areas of at least 50,000 acres that exhibit a mosaic of predominantly intact or restorable natural communities established through new acquisition projects, or augmentations to previous projects; or
6. The percentage increase in the number of occurrences of endangered species, threatened species, or species of special concern on publicly managed conservation areas.

(Goal) (c) Protect, restore, and maintain the quality and natural functions of land, water, and wetland systems of the state, as measured by:

1. The number of acres of publicly-owned land identified as needing restoration, acres under going restoration, and acres with restoration activities completed;
2. The percentage of water segments that fully meet, partially meet, or do not meet their designated uses as reported in the Department of Environmental Protection’s State Water Quality Assessment 305(b) Report;
3. The percentage completion of targeted capital improvements in surface water improvement and management plans created under s. 373.453(2), F.S., regional or master stormwater management system plans, or other adopted restoration plans;
4. The number of acres acquired that protect natural floodplain functions;
5. The number of acres acquired that protect surface waters of the state;
6. The number of acres identified for acquisition to minimize damage from flooding and the percentage of those acres acquired;
7. The number of acres acquired that protect fragile coastal resources;
8. The number of acres of functional wetland systems protected.
9. The percentage of miles of critically eroding beaches contiguous with public lands that are restored or protected from further erosion;
10. The percentage of public lakes and rivers in which invasive, non-native aquatic plants are under maintenance control; or
11. The number of acres of public conservation lands in which upland invasive, exotic plans are under maintenance control.

(Goal) (d) Ensure that sufficient quantities of water are available to meet the current and future needs of natural systems and the citizens of the state, as measured by:
1. The number of acres acquired which provide retention and storage of surface water in naturally occurring storage areas, such as lakes and wetlands, consistent with the maintenance of water resources or water supplies and consistent with district water supply plans;
2. The quantity of water made available through the water resource development component of a district water supply plan for which a water management district is responsible; or
3. The number of acres acquired of groundwater recharge areas critical to springs, sinks, aquifers, other natural systems, or water supply.

(Goal) (e) Increase natural resource-based public recreational and educational opportunities, as measured by:
1. The number of acres acquired that are available for natural resource-based public recreation or education;
2. The miles of trails that are available for public recreation, giving priority to those that provide significant connections including those that will assist in completing the Florida National Scenic Trail; or
3. The number of new resource-based recreation facilities, by type, made available on public land.

(Goal) (f) Preserve significant archaeological or historic sites, as measured by:
1. The increase in the number of and percentage of historic and archaeological properties listed in the Florida Master Site File or National Register of Historic Places which are protected or preserved for public use; or
2. The increase in the number and percentage of historic and archaeological properties that are in state ownership.

(Goal) (g) Increase the amount of forestland available for sustainable management of natural resources, as measured by:
1. The number of acres acquired that are available for sustainable forest management;
2. The number of acres of state owned forestland managed for economic return in accordance with current best management practices;
3. The number of acres of forestland acquired that will serve to maintain natural groundwater recharge functions; or
4. The percentage and number of acres identified for restoration actually restored by reforestation.
Goal (h) Increase the amount of open space available in urban areas, as measured by:

1. The percentage of local governments that participate in land acquisition programs and acquire open space in urban cores; or
2. The percentage and number of acres of purchases of open space within urban service areas.
Appendix B

CURRENT FLORIDA FOREVER ELIGIBLE PROJECTS
INTRODUCTION

Information for the Comprehensive Everglades Restoration Plan (CERP) projects is included in the Project Management Plan for each project. On the included CD is the approved version of the PMP or latest draft, available at the time of this publication. The list below will link to the plans themselves. Current approved versions of all CERP PMPs, as well as in progress drafts are available at www.evergladesplan.org. Information on the Kissimmee River Restoration is included following this list:

Comprehensive Everglades Restoration Plan Projects

Full Scale Projects

- C-111 Spreader Canal
- C-43 Basin Storage Reservoir
- WCA 3A/3B Decompartmentalization and Sheetflow Enhancement, Part 1
- Everglades Agricultural Area Storage Reservoir, Part 1
- Florida Keys Tidal Restoration
- Lake Okeechobee Watershed
- Southern Golden Gates Estates Hydrologic Restoration

Pilot Projects

- Lake Okeechobee ASR Pilot
- Lake Belt In-Ground Reservoir Pilot
- Caloosahatchee ASR Pilot
- Hillsboro ASR Pilot
- L-31N Seepage Management Pilot
- Wastewater Reuse Pilot
KISSIMMEE REGION

Description of Water Body

The Kissimmee Watershed covers approximately 3000 square miles of south-central Florida and is the largest watershed providing surface water to Lake Okeechobee (Figure B-1). The name “Kissimmee” is derived from a Calusa Indian word that means “long water”. The watershed is located in south-central Florida between the city of Orlando and Lake Okeechobee. Lake Okeechobee is the major source of freshwater to the residents of South Florida (Figure B-2). The watershed is about 105 miles long and has a maximum width of 35 miles.

Figure B-1. Kissimmee Location Map.
Figure B-2. Kissimmee River System.
The Kissimmee Watershed covers Orange, Osceola, Polk, Highlands and Okeechobee counties. It is divided into two parts:

1. The Upper Basin, which covers 1,633 square miles includes Lake Kissimmee and the East and West chain of lakes areas in Orange and Osceola counties.

2. The Lower Basin covers 758 square miles, which includes the tributary watershed of the Kissimmee River between the outlet in Lake Kissimmee and Lake Okeechobee.

Water Use in the Kissimmee Watershed

Water use is divided into urban and agriculture (Table B-1). Agriculture is the largest existing and largest projected water user within the basin.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>1995</th>
<th>2020</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>35,602</td>
<td>68,153</td>
<td>76</td>
</tr>
<tr>
<td>Agricultural</td>
<td>112,668</td>
<td>173,995</td>
<td>54</td>
</tr>
<tr>
<td>Total Water Demand</td>
<td>148,270</td>
<td>242,148</td>
<td>63</td>
</tr>
</tbody>
</table>

Agency Jurisdictions

Federal Jurisdiction on the Kissimmee Watershed involves the regulatory responsibilities of the United States Army Corps of Engineers (USACE), the United States Environmental Protection Agency (USEPA) and the United States Fish and Wildlife Service (USFWS). The USACE is responsible for prescribing the operational criteria and the regulation schedules for the Central and Southern Florida (C&SF) Flood Control Project. Their primary regulatory functions include operation and maintenance of the levees and major outlet works, dredge and fill activities, maintaining navigable waters, cleanup of pollution spills and the protection of endangered species.

The USEPA is responsible for protection of the environmental resources of the Kissimmee Watershed.

State agencies involved with the management and regulation of the Kissimmee River Basin are primarily, the Florida Department of Environmental Protection (FDEP) and the Florida Fish and Wildlife Conservation Commission (FWC). Their jurisdictions include the protection of water quality, wetland resources, fisheries and wildlife resources.

At the regional level, the SFWMD and two regional planning councils have jurisdiction within the Kissimmee River Basin planning area. The SFWMD's authority is to manage and protect the water resources in a 16-county region. Regional Planning
Council jurisdictions are assigned by county. The Central Florida Regional Planning Council has jurisdiction within Okeechobee and Highlands counties. The East Central Florida Regional Planning Council has jurisdiction within Polk and Osceola counties. Regional Planning Councils have responsibilities to develop regional comprehensive policy plans for protection of water resources within the planning area and provide technical assistance to local governments and evaluate the impacts anticipated from development of regional on regional resources.

The local governments listed below have the authority to control land use in the Kissimmee Watershed through their comprehensive plans and land development regulations. Sectors that exist at the local government level include planning, building, zoning and regulatory departments, water and sewer utilities, city and police departments, and soil, water and conservation districts.

Local counties in the Kissimmee Watershed include: Highlands, Okeechobee, Osceola, Polk and Orange.

Land Use in the Kissimmee Watershed

The existing land use in the Kissimmee Watershed planning area is generally more urban in the north than in the south, as shown in Table B-2. Continued urbanization is anticipated in the north, while in the south, agricultural acreage is projected to increase.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Orange</th>
<th>Osceola</th>
<th>Polk</th>
<th>Highlands</th>
<th>Okeechobee</th>
<th>Glades</th>
<th>Kissimmee Watershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>31,513 (17%)</td>
<td>218,656 (35%)</td>
<td>44,243 (16%)</td>
<td>259,362 (53%)</td>
<td>189,625 (52%)</td>
<td>139,470 (47%)</td>
<td>882,869 (40%)</td>
</tr>
<tr>
<td>Urban</td>
<td>60,243 (32%)</td>
<td>52,212 (8%)</td>
<td>51,449 (19%)</td>
<td>42,194 (9%)</td>
<td>21,928 (6%)</td>
<td>2,760 (1%)</td>
<td>230,788 (10%)</td>
</tr>
<tr>
<td>Wetlands</td>
<td>36,338 (20%)</td>
<td>164,355 (27%)</td>
<td>59,571 (22%)</td>
<td>76,821 (16%)</td>
<td>66,800 (18%)</td>
<td>59,678 (20%)</td>
<td>463,563 (21%)</td>
</tr>
<tr>
<td>Forest</td>
<td>30,264 (16%)</td>
<td>74,857 (12%)</td>
<td>65,136 (24%)</td>
<td>41,586 (9%)</td>
<td>32,591 (9%)</td>
<td>68,578 (23%)</td>
<td>313,012 (14%)</td>
</tr>
<tr>
<td>Rangeland</td>
<td>2005 (1%)</td>
<td>26,012 (4%)</td>
<td>25,270 (9%)</td>
<td>33,489 (7%)</td>
<td>48,284 (13%)</td>
<td>20,223 (7%)</td>
<td>155,283 (7%)</td>
</tr>
<tr>
<td>Barren</td>
<td>3,419 (2%)</td>
<td>2,842 (1%)</td>
<td>1,420 (1%)</td>
<td>3,733 (0%)</td>
<td>3,588 (1%)</td>
<td>2,471 (1%)</td>
<td>17,473 (1%)</td>
</tr>
<tr>
<td>Water</td>
<td>21,796 (12%)</td>
<td>81,082 (13%)</td>
<td>23,885 (9%)</td>
<td>30,022 (6%)</td>
<td>4,299 (1%)</td>
<td>1,492 (1%)</td>
<td>162,576 (7%)</td>
</tr>
<tr>
<td>Total</td>
<td>185,578 (100%)</td>
<td>620,016 (100%)</td>
<td>270,974 (100%)</td>
<td>487,207 (100%)</td>
<td>367,115 (100%)</td>
<td>294,672 (100%)</td>
<td>2,225,562 (100%)</td>
</tr>
</tbody>
</table>
Point and Nonpoint Sources of Pollution in the Watershed

Point sources of pollution are defined as discharges to surface and ground waters where discrete measures of water flow and water quality may be taken. In the Kissimmee Watershed planning area, domestic wastewater treatment and Industrial waste facility discharges are considered point sources, as shown in Table B-3. Domestic wastewater and industrial waste facilities in the planning area are regulated by the FDEP.

<table>
<thead>
<tr>
<th>Permit Type</th>
<th>Permit Agency</th>
<th>Total Sources</th>
<th>Permit Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Wastewater</td>
<td>FDEP</td>
<td>95</td>
<td>Industrial Treatment Systems</td>
</tr>
<tr>
<td>Domestic Wastewater</td>
<td>FDEP</td>
<td>130</td>
<td>Private and Municipal Wastewater Facilities</td>
</tr>
<tr>
<td>Petroleum Contaminates Sites</td>
<td>FDEP</td>
<td>841</td>
<td>Gas Stations and Storage Tanks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Type</th>
<th>Permit Agency</th>
<th>Total Sources</th>
<th>Permit Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairies</td>
<td>FDEP</td>
<td>15</td>
<td>Dairy Farms BMPs</td>
</tr>
<tr>
<td>Works of the District Permits</td>
<td>SFWMD</td>
<td>442</td>
<td>Agricultural, Industrial, Commercial, NPS BMPs</td>
</tr>
<tr>
<td>Surface Water Management Permits</td>
<td>SFWMD</td>
<td>2,183</td>
<td>Stormwater Management Systems</td>
</tr>
<tr>
<td>Waste Disposal Sites</td>
<td>FDEP</td>
<td>47</td>
<td>Landfills</td>
</tr>
</tbody>
</table>

Nonpoint source pollution is usually associated with land use activities that do not have a single discrete discharge point. These pollution sources are usually delineated into rural and urban. Rural nonpoint sources include storm water runoff and are associated with agricultural activities. Urban nonpoint sources are also primarily conveyed by storm water and contain pollutants associated with urban land use.

Management Strategies for Restoration and Protection of the Water Body to Class III or Better Surface Water Quality Status

Most of the watershed is classified as Class III (fishable, swimmable) waters and several waterbodies within the watershed are designated Outstanding Florida Waters by the state of Florida.

Water management planning efforts in the Kissimmee Watershed planning area include a variety of interrelated studies and activities, in both the public and private sectors. Each plan or study addresses unique water management issues while maintaining close relationships with water supply planning, as shown in Table B-4. The related efforts with the most significant influence on the implementation of the Kissimmee Basin Water Supply Plan include the establishment of Minimum Flows and Levels (MFLs) to several lakes in the Kissimmee Watershed. Another ongoing effort that will help to preserve the...
water body is the establishment of Total Maximum Daily Loads on the river and several lakes in the Kissimmee Watershed.

<table>
<thead>
<tr>
<th>Study</th>
<th>Scope/Primary Goal</th>
<th>Relationship to KB Water Supply Plan</th>
<th>Timeframes</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB Water Supply Plan</td>
<td>Adequate and reliable water supply</td>
<td>N/A</td>
<td>Update 2005</td>
</tr>
<tr>
<td>Kissimmee River Restoration Project</td>
<td>Environmental restoration of Kissimmee River floodplain, improved surface water quality.</td>
<td>Changing deliveries to Lake Okeechobee</td>
<td>2015</td>
</tr>
<tr>
<td>Kissimmee Basin Minimum Flows and Levels (MFLs)</td>
<td>Prevent significant harm to the water resources and ecology of surface water resources in the Kissimmee Watershed</td>
<td>MFLs will more clearly define the quantity of water available for consumptive uses. Recovery or prevention strategy has potential to alter future water management activities, including use of water resources in the Kissimmee Watershed</td>
<td>2004-2006</td>
</tr>
<tr>
<td>Kissimmee Basin Total Maximum Daily Loads (TMDLs)</td>
<td>Prevent significant harm to the water quality and ecology of surface water resources in the Kissimmee Watershed</td>
<td>TMDLs will set the maximum pollutants loads that the water body can take to achieve water quality standards</td>
<td>2005-2011</td>
</tr>
</tbody>
</table>

Kissimmee River Restoration Project

Project History and Overview

In 1948, Congress authorized the U.S. Army Corps of Engineers to initiate construction of the Central & Southern Florida (C&SF) Project for flood control and protection. This was in reaction to the drought of 1944-1945 and a major hurricane in 1947 that caused extensive flooding in the Kissimmee Watershed and illustrated the inadequacy of the basin's existing water control system. In 1954, Congress specifically authorized the Kissimmee River portion of the project which was planned and designed from 1954 to 1960. Between 1962 and 1971, the Kissimmee River was channelized and transformed into a series of impounded reservoirs (Pools A-E). Inflow from the upper basin was regulated by six water control structures (S-65s). Water control structures and canals were built in the upper lakes region to allow regulation of water flow within and between the lakes.

The objectives of the C&SF Project were to provide flood protection to the Kissimmee Upper Basin, convert floodplain wetlands to usable agricultural lands and reduce flooding impacts associated with major storm events. Upon completion, the project was successful at meeting its objectives, however, it was realized that the draining of the floodplain wetlands had significantly impacted fish, bird and other wildlife resources in the region. Channelization drained two-thirds of the historic floodplain habitat and
excavated and/or filled one-third of the historic river channel. This action drastically reduced wintering waterfowl, wading bird and game fish populations, and significantly damaged ecosystem functions. Channelization also resulted in a reduction in the nutrient assimilative capacity of the river's floodplain and loss of aesthetic qualities inherent in a natural meandering river system.

The restoration project evolved over the years from extensive work performed by the USACE, SFWMD and a variety of other interests in Florida and throughout the nation. The 1992 Water Resources Development Act authorized the Kissimmee River Restoration Project, including the headwaters revitalization component, tying the headwaters benefit to the Kissimmee River Restoration project. Also authorized was a 50-50 cost sharing agreement between the state and federal government for the total cost of the project. A Project Cooperation Agreement between the two agencies was executed on March 22, 1994.

The goal of the restoration project is to restore the ecological integrity of the Kissimmee Watershed through the reestablishment of an estimated 40 square miles of river/floodplain habitat, 28,000 acres of wetland and 43 continuous miles of meandering river channel.

The Kissimmee River Project consists of both structural and nonstructural modifications, and acquisition of approximately 110,000 acres of land. The total cost of the project is estimated to be approximately $578 million.

The restoration project reestablishes inflows from Lake Kissimmee to provide flow velocities and volumes similar to the ones that existed prior to channelization; backfills 22 continuous miles of the C-38 canal in Pools B, C and D; removes 2 water control structures and locks (S-65B and S-65C); recarves approximately 9 miles of river channel; acquires approximately 110,000 acres of land; backfills local farm ditches; and degrades local farm levees.

The ground breaking for construction of the restoration project was April of 1994 with the backfilling of 1000 feet of the C-38 canal in Pool B. Restoration began in the Upper basin in 1997 with improvements made to the S-65 structure, operation and maintenance dredging of the C-35 canal and widening of the C-36 and C-37 canals. Restoration in the lower basin began in June of 1998 with degrading of the MacArthur levee, backfilling of local farm ditches and degrading of local farm levees. Phase I backfilling in Pool C began in June 1999 and was completed in February 2001. The S-65 B structure was demolished in June 2000.

Historic Conditions

The historic Kissimmee River meandered approximately 103 miles within a 1–2 mile wide floodplain. The floodplain was approximately 56 miles long and fell an average of .3 feet in elevation per mile along the river channel. The river was comprised of a primary channel and a complex system of interwoven secondary channels and/or braids.
Under historic conditions, river flows generally exceeded 250 cfs 95 percent of the time. The river moved very slowly, with normal river velocities averaging less than two feet per second. Wetland, wildlife, waterfowl, fisheries and other biological components were once part of an integrated and resilient river floodplain ecosystem. A fluctuating hydroperiod, along with the undulating topography of the floodplain, a meandering river channel, oxbows and natural discontinuous levees, enhanced and maintained habitat diversity, including a mosaic of intermixed vegetation and other complex physical, chemical and biological interactions and processes.

Early flooding conditions in the Kissimmee Watershed were the result of runoff accumulation on the flat lands of the basin and the subsequent rise of lake levels within the Upper Basin, which remained at high levels because of poor outlet capacity.

Channelization Impacts

The physical effects of channelization, including alteration of the system's hydrologic characteristics, largely eliminated river and floodplain wetlands and degraded fish and wildlife values of the Kissimmee River ecosystem (Toth 1993). The meandering river was transformed into a 56-mile-long, 30-feet-deep, 300-feet-wide canal. Excavation of the canal and deposition of the resulting spoil eliminated approximately 35 miles of river channel and 6,200 acres of floodplain wetland habitat. Transformation of the river-floodplain ecosystem into a series of deep impoundments drained much of the floodplain (Toth 1995), eliminated historical water-level fluctuations, and greatly modified flow characteristics. Approximately 26,000–31,000 acres of pre-channelized floodplain wetlands were drained, covered with spoil, or converted into canal. The floodplain at the lower end of each pool remained inundated, but pre-channelization water level fluctuations were eliminated. Low-and no-flow regimes in remnant river channels resulted in encroachment of vegetation, especially floating exotics (such as Pistia stratiotes [water lettuce] and Eichhornia crassipes [water hyacinth]) to the center of the river channel. Senescence and death of encroaching vegetation covered the shifting sand substrate of the historic channel with thick accumulations (up to 3 feet) of organic matter, greatly increasing the biological oxygen demand of the system (Toth 1990).

River channelization and degradation of the floodplain let to severe impacts on the system's biological components. By the early 1970s, floodplain utilization by wintering waterfowl declined by 92 percent (Perrin et al. 1982). Wading bird populations, a highly visible component of the historic system, declined and were largely replaced by Bubulcus ibis (cattle egret), a species generally associated with upland, terrestrial habitats (Toland 1990). Low-and no-flow regimes in the canal and remnant river channels resulted in chronically low dissolved oxygen levels and sport fish species, like largemouth bass were largely replaced by species tolerant of low dissolved oxygen regimes (such as Lepisosteus platyrhincus [Florida gar] and Amia calva [bowfin]). Rheophylic invertebrate taxa typical of many large river systems (for example, hydropsychid caddisflies and heptageniid mayflies) were replaced by species common to lentic systems (for example, Chaoborus, Pelocoris [Hemiptera:Naucoridae], and hydrophilid beetles) (Toth 1993). Stabilized water levels and reduced flow also eliminated river-floodplain interactions. Influx of organic matter, invertebrates, and forage fishes to the river from the floodplain...
during periods of water recession was eliminated. Stabilized water levels also largely eliminated adult spawning and foraging habitat, as well as larval and juvenile refuge sites for fish on the floodplain (Trexler 1995).

Restoration of Hydrology

The Kissimmee River Restoration Project will provide flows to the restored Kissimmee River approaching the duration and variability of discharges, which occurred before the river was channelized. Minimum flows are expected to exceed 250 cubic feet per second (cfs) about 95 percent of the time, compared to the current flows, which are less than 30 cfs 50 percent of the time. Maximum velocities for the restored channel will be between 0.8 and 1.8 feet per second during bankfull stage. The stage recession rate should rarely exceed one foot per month. Overbank flooding will occur within the restored area when discharges exceed 1,400 - 2,000 cfs.

Based on historic stage-duration hydrologic data and expected future flows from Lake Kissimmee, overbank flooding of the river valley in a typical year will start in July or August, and reach a peak from September through November and gradually recede from December through June. Very wet or dry years and storm events will vary this pattern.

Restoration Studies on the Water Body

Degradation of the Kissimmee River's ecosystem, wetlands, and water quality caused by channelization of the Kissimmee River has been the subject of numerous federal, state and local studies over the past thirty years.

Local involvement in environmental restoration began in the early 1970 soon after channelization was complete. A 1972 USGS report (Final Report on the Special Project to Prevent Eutrophication of Lake Okeechobee) concluded that Lake Okeechobee was eutrophying at an accelerated rate due to channelization of the Kissimmee River and the pumping of agricultural runoff from the EAA into Lake Okeechobee. In reaction to this, the state began a series of initiatives aimed at getting Congress to authorize a feasibility study for the restoration of the Kissimmee River to its prechannelization state.

Congress authorized the USACE to conduct the first feasibility study for the restoration of the Kissimmee River in 1978. This was followed in 1984 by Florida Governor Graham adopting the Seven Point Plan which laid the groundwork for state studies on restoration and made the South Florida Water Management District the lead agency for implementation of the restoration project in Florida. Shortly after, the SFWMD initiated the Phase I demonstration project.

Nonfederal Studies

In 1984–1985, a demonstration project was constructed by SFWMD. Three weirs and a flow through marsh were constructed in Pool B for a total project cost of $1.4 million. The weirs diverted flows from the C-38 canal into the historic remnant river
channels. Their purpose was to evaluate their use in restoring more natural hydrology while still maintaining flood protection. The weirs demonstrated that flood protection could be maintained and indicated that restored flow would revitalize the remnant river channels by flushing out floating vegetation and accumulated organic deposits and restoring natural sedimentation processes. The purpose of the flow through marsh was to evaluate the viability of the floodplain's seedbank. The marsh was reflooded and the former wetland that had been converted to pasture quickly reverted to wetlands once appropriate hydroperiods were reestablished.

In October 1988, the SFWMD conducted the Kissimmee River Restoration Symposium, where the state's Kissimmee River Environmental Restoration goals were formulated. The symposium ecological review panel concurred with participating scientist that reestablishment of lost ecological values would be achieved only with a holistic, ecosystem restoration perspective.

In a report dated June 1990, the SFWMD proposed a plan to restore the ecological integrity of the Kissimmee River using an ecosystem approach. This plan was called the SFWMD's Alternative Plan Evaluation and Preliminary Design Report. The objective of the plan was to achieve environmental restoration goals while meeting flood control, navigation, water supply and water quality needs. The restoration goal was to reestablish an ecosystem capable of supporting and maintaining species diversity, distribution and quantity representative of the natural habitat of the river basin. The report establishes system hydrology and floodplain hydraulics as key factors in environmental restoration. Four basic alternatives were considered in the report: Weiring, Plugging, and Level I and Level II Backfilling. Only the Level II Backfilling Plan was adequate as meeting the minimum restoration criteria, by restoring 24,000 acres of floodplain and 52 miles of river channel, resulting in a restored 35 square miles of river/floodplain ecosystem. The Level II Backfilling Plan was SFWMD's recommended restoration alternative for the Kissimmee River.

Federal Studies

In response to resolutions by the Committee on Public Works and Transportation of the United States House of Representatives, and the Committee on Environment and Public Works of the United States Senate (dated April 25, 1978), the USACE studied alternative plans for restoration of the Kissimmee River. The study report was submitted to the Assistant Secretary of The Army for Civil Work in 1985. The study concluded that although project modifications responsive to environmental concerns could be constructed, none provided positive net contributions to the nation's economic development. Accordingly, the Chief of Engineers recommended that no federal action be undertaken and that report information be used by nonfederal interests in determining long-range solutions to water and related land resource problems in the basin.

Under authority of Section 1135 of the Water Resources Development Act of 1986, the Jacksonville District Engineer initiated feasibility studies of the plan for revitalization of the Upper Kissimmee Basin. The study was later called the Headwaters Revitalization Project and would consist of changes in lake operation schedules, channel
enlargements, modification of existing water control structures, and as a result of higher lake water levels, acquisition of 18,500 acres of land by the local sponsor, SFWMD.

A second federal feasibility study, which was authorized in the Water Resources Development Act of 1990, was also assembled by the USACE. The feasibility study was also an Environmental Impact Statement (EIS). The congressional authority directed that the study be based on implementing the SFWMD's Level II Backfilling Plan. Therefore there was no need to develop new planning objectives or alternative plans.

As a result of these and other studies, two restoration plans were developed, that, when implemented together, will restore environmental values throughout the Kissimmee Watershed. The two components are the Upper Basin Headwaters Revitalization and the Lower Basin restoration of the Kissimmee River.

Maintenance of the Water Body after Restoration

A basic premise of the Kissimmee River Restoration Project is to reestablish the natural hydrologic processes that shaped and maintained the ecological integrity of the historical river and floodplain ecosystem. The reestablishment of historical hydrologic characteristics is expected to drive the restoration process, and ensure the return and preservation of the system's environmental values. Thus, the restored ecosystem is expected to be largely self-managing by natural hydrologic processes. However, there are at least two potential management concerns for the restored system, invasive/exotic vegetation and public use. Although existing invasive and exotic plant species in the Kissimmee River system, including water lettuce, water hyacinth and Brazilian pepper are expected to be largely eliminated or at least controlled by the reestablishment of historical discharge characteristics and hydroperiods, some minor control efforts will likely be needed. Of greater concern is the Old World climbing fern (*Lygodium microphyllum*), which is a recent invader of the system and seems capable of persisting in the restored system. Efforts to eradicate or control this species are underway and may be critical for achievement of restoration. The other potential management issue relates to the use/exploitation of the restored system and associated resources. The need for management of public use, such as airboating and hunting pressure will be based on information derived from the projects ongoing ecological evaluation program.

Restoration Project Status

Planning, engineering, design and construction have been initiated. A test backfilling project was initiated in 1994 and completed in September 1994. The restoration project is divided into the following five restoration elements:

1. The Restoration Evaluation Program
2. Projects and Real Estate Needed to Implement the Revised Headwaters Regulation Schedule
3. Phase I Backfilling Projects
4. Phase II/III Backfilling Projects
5. Phase IV Backfilling Projects

The Phase I Backfilling was completed in February 2001. The restoration project is underway and expected to continue until 2012. The Restoration Evaluation Program is designed to evaluate the success of the project in meeting the established restoration goals, to provide for continuous, scientifically informed fine-tuning of the construction and adaptive management of the recovering and restored ecosystem.

Project Schedule

Kissimmee River Restoration efforts began in 1991 with specific project tasks in the Upper Basin and Phase I portions of the project. In 1994, the Scientific Restoration Evaluation Program began. It is scheduled to continue for four years past the completion of the final phase of construction. Construction completion is projected for 2012. The major project phases for the Kissimmee River Restoration effort are reflected in [Figure B-3](#).

Land Acquisition for Kissimmee River Restoration

The SFWMD has been purchasing lands for the Kissimmee Restoration Project since the mid-1980s. Lands have been purchased in the Kissimmee Chain of Lakes in order to facilitate the implementation of the new regulation schedules in the lakes. Raising the lake regulation schedules will allow the SFWMD to store more water in the lakes, making it available for release to the Kissimmee River. The additional water is necessary in order to provide a year round flow when the river is restored. Lands have been purchased in the lower basin as a requirement for the restoration of the floodplain and re-establishment of the remnant river segments.

Fee title acquisition is required for 75 percent of the project lands. The remaining 25 percent are required for temporary, construction, flowage or access easements.
USACE set the defining criteria for fee versus easement acquisition at the inception of the project. That criterion is a function of the topographic elevation of the land parcel. In the lower basin, properties measuring at or below the five-year flood line can be acquired in fee and properties measuring between the five and 100-year flood line can be acquired as a flowage easement. In the Upper Basin, properties between the 52.5 and 54 foot elevation can be acquired in fee. Table B-5 shows approximate land acquisition needs and approximate acquisition status for the Kissimmee Restoration Project.

Table B-5. Kissimmee River Restoration Approximate Real Estate Acquisition Information.

<table>
<thead>
<tr>
<th>Area</th>
<th>Acreage Needed</th>
<th>Acreage Obtained</th>
<th>Remaining Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Basin</td>
<td>35,000</td>
<td>29,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Lower Basin</td>
<td>74,000</td>
<td>61,000</td>
<td>13,000</td>
</tr>
<tr>
<td>Total</td>
<td>109,000</td>
<td>90,000</td>
<td>19,000</td>
</tr>
<tr>
<td>Percent of Total</td>
<td>N/A</td>
<td>82.6</td>
<td>17.4</td>
</tr>
</tbody>
</table>

There are no lands that have been acquired for the Kissimmee Restoration Project as a function of the need to protect or recharge groundwater.

Goals and Performance Measures

The Kissimmee River Restoration Project was designed to restore ecological integrity to the Kissimmee River.

Focus Areas: Flood Protection and Natural Systems

Performance Indicators:

FLOOD PROTECTION

Objective 3: Promote nonstructural approaches to achieve flood protection and protect and restore the natural features and functions of the floodplain.

Measures: Percentage of total project acres (75,000) in Kissimmee Watershed floodplain mitigated or acquired.

<table>
<thead>
<tr>
<th>Estimated FY 2003</th>
<th>Target FY 2004</th>
<th>Target FY 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>88%</td>
<td>100%</td>
<td>--</td>
</tr>
</tbody>
</table>
Percentage of total project acres (35,000) around lakes Tiger, Cypress, Hatchineha and Kissimmee acquired in order to implement Headwaters Revitalization.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Estimated FY 2003</th>
<th>Target FY 2004</th>
<th>Target FY 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restore the integrity and function of water resources and related natural systems to a naturally functioning condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cumulative) Measures:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of 8 hydrologic / geomorphologic expectations met.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated FY 2003</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Target FY 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target FY 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of 5 water quality expectations met.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated FY 2003</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Target FY 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target FY 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of 7 invertebrate expectations met.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated FY 2003</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Target FY 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target FY 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of 8 avian and endangered species expectations met.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated FY 2003</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Target FY 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target FY 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of 3 fish expectations met.

<table>
<thead>
<tr>
<th>Estimated FY 2003</th>
<th>Target FY 2004</th>
<th>Target FY 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of 10 vegetation (including algae) expectations met.

<table>
<thead>
<tr>
<th>Estimated FY 2003</th>
<th>Target FY 2004</th>
<th>Target FY 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Number of 2 herpetofaunal expectations met.

<table>
<thead>
<tr>
<th>Estimated FY 2003</th>
<th>Target FY 2004</th>
<th>Target FY 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Significant Changes in Expenditures: None.

FY 2003 Key Action Steps:
- KRR Land acquisition
- KRR Mitigation in lieu of land acquisition
- KRR Evaluation Program (KRREP)

Conclusions

The Kissimmee River Restoration Project is a monumental project in many ways. It is the first attempt at restoring a river ecosystem. It is the culmination of cooperative efforts between many, state, federal and local organizations that have worked together for over three decades to make this project happen. This ambitious project represents the culmination of more than 25 years of research, design and public activism. The scientific approach towards the comprehensive evaluation of the restoration program sets the Kissimmee River Project apart from all other restoration efforts. Restoration benefits are expected to begin immediately and continue for many generations to come.
Appendix C
LAND ACQUISITION AND MANAGEMENT
LAND ACQUISITION ACTIVITY REPORT

This section summarizes the South Florida Water Management District (SFWMD or District) land acquisition activity during the Fiscal Year 2002, beginning October 1, 2001 through September 30, 2002 (Plan Year). A total of 26,510 acres of land were acquired at a cost of $195,484,861. The summary details the purchase of land for various projects and the funding of these purchases with Water Management Lands Trust Fund (WMLTF), Preservation 2000 (P-2000), District and other State money. In addition, a description of joint acquisition projects using Conservation and Recreation Lands (CARL) funding is provided.

Save Our Rivers (SOR) Program

A total of $540,161 of WMLTF money was used to fund acquisitions in the following projects during the Plan Year:

- **Kissimmee River Restoration (KRR)** - Acquired 14 parcels, totaling 7 acres for a total purchase price of $491,561 of which $328,561 was funded using WMLTF money.
- **Biscayne Coastal Wetlands** - Acquired 2 parcels, totaling 77 acres for a total purchase price of $153,500; all of which was funded using WMLTF money.
- **Water Conservation Areas (WCA)** - Acquired 5 parcels, totaling 1,412 acres for a total purchase price of $143,300 of which $58,100 was funded using WMLTF money.

Preservation 2000 Program

A total of $28,022,209 of P-2000 money was used to fund acquisitions in the following projects during the Plan Year:

- **East Coast Buffer** - Acquired 160 parcels, totaling 2,156 acres for a total purchase price of $110,838,291 of which $2,200 was funded using P-2000 money.
- **Kissimmee River Chain of Lakes (KCOL)** - Acquired 17 parcels, totaling 6,319 acres for a total purchase price of $43,771,809 of which $27,771,809 was funded using P-2000 money.
- **Kissimmee River Restoration (KRR)** - Acquired 14 parcels, totaling 7.15 acres for a total purchase price of $491,561 of which $163,000 was funded using P-2000 money.
- **Water Conservation Areas (WCA)** - Acquired 5 parcels, totaling 1,412 acres for a total purchase price of $143,300 of which $85,200 was funded using P-2000 money.
Save Our Everglades (SOE) Program, District and Other State Funding

A total of $110,686,785 of SOE money; $665,827 of District funds, including Mitigation; and $5,105,952 of other State money was used to fund acquisitions in the following projects during the Plan Year:

- **Corkscrew Regional Ecosystem Watershed (CREW) - Acquired 105 parcels, totaling 784 acres for a total purchase price of $3,601,495 of which $53,100 was funded using District funds.**
- **East Coast Buffer - Acquired 160 parcels, totaling 2,156 acres for a total purchase price of $110,838,291 of which $82,145,486 was funded using SOE money, $93,650 using Mitigation funds and $5,105,952 using other State funds.**
- **Allapattah Ranch (Indian River Lagoon - South) - Acquired 1 parcel, totaling 13,186 acres for a total purchase price of $29,667,465 of which $22,250,599 was funded using SOE money. Through participation in the Federal Wetlands Reserve Program, the District will receive revenue in relation to this parcel. The total amount of revenue is yet to be determined, but it is expected to be used for land management, additional acquisitions or related activities.**
- **C-23/C-24 Reservoir (Indian River Lagoon - South) - Acquired 4 parcels, totaling 1,133 acres for a total purchase price of $6,290,700; all of which was funded using SOE money.**
- **Lake Okeechobee Water Retention - Acquired 4 parcels, totaling 13 acres for a total purchase price of $14,800 all of which was funded using other District money.**
- **Pal Mar - Acquired 45 parcels, totaling 52 acres for a total purchase price of $15,325 of which approximately half or $7,662 was funded using Mitigation money.**
- **S-26 and Faka Union Canal - The District used $496,615 for facilities related land acquisitions in the Plan Year.**

Conservation and Recreation Land (CARL) Program

A total of $20,561,260 of CARL money was used to fund acquisitions in the following projects during the Plan Year:

- **Corkscrew Regional Ecosystem Watershed (CREW) - Acquired 105 parcels, totaling 784 acres for a total purchase price of $3,601,495 of which $3,001,295 was funded using CARL money.**
Florida Forever Work Plan

Appendix C: Land Acquisition and Management

- **East Coast Buffer** - Acquired 160 parcels, totaling 2,156 acres for a total purchase price of $110,838,291 of which $1,559,965 was funded using CARL money.

- **Kissimmee River Chain of Lakes (KCOL)** - Acquired 17 parcels, totaling 6,319 acres for a total purchase price of $43,771,809 of which $16,000,000 was funded using CARL money.

The land acquisitions accomplished by the District in the Plan Year were possible only thorough support and coordination with local, state and federal governments; state and federal agencies; and in cooperation with the general public. The following table provides additional details regarding the land acquisition activity and funding for land purchases in the Plan Year, including contributions of $14,201,973 made by the federal government; $15,700,694 made by local governments; and donations made by the general public.
Table C-1. Acquisition Activity Report (Fiscal Year 2002).

<table>
<thead>
<tr>
<th>Project Names</th>
<th>Parcel</th>
<th>Acres</th>
<th>Price</th>
<th>CARL</th>
<th>District</th>
<th>Federal</th>
<th>State</th>
<th>Mitigation</th>
<th>P-2000</th>
<th>Local Gov’t</th>
<th>SOE</th>
<th>WMLTF</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corkscrew Regional Ecosystem Watershed</td>
<td></td>
</tr>
<tr>
<td>Critical Flowway</td>
<td>1</td>
<td>1.05</td>
<td>$53,100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$53,100</td>
</tr>
<tr>
<td>CS</td>
<td>104</td>
<td>782.62</td>
<td>$3,548,395</td>
<td>$3,001,296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3,548,395</td>
</tr>
<tr>
<td>East Coast Buffer</td>
<td>158</td>
<td>2,145.00</td>
<td>$110,613,451</td>
<td>$1,559,965</td>
<td>$13,555,033</td>
<td>$5,105,952</td>
<td></td>
<td>$93,650</td>
<td>$2,200</td>
<td>8,276,166</td>
<td>$82,020,486</td>
<td></td>
<td>$110,613,451</td>
</tr>
<tr>
<td>EBS</td>
<td>2</td>
<td>11.18</td>
<td>$224,840</td>
<td></td>
<td></td>
<td>$99,840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$224,840</td>
</tr>
<tr>
<td>Kissimmee Chain of Lakes (KCOL)</td>
<td>17</td>
<td>6,318.78</td>
<td>$43,771,809</td>
<td>$16,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$27,771,809</td>
<td></td>
<td></td>
<td>$43,771,809</td>
</tr>
<tr>
<td>Kissimmee River (KRR)</td>
<td>14</td>
<td>7.15</td>
<td>$491,561</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$163,000</td>
<td></td>
<td></td>
<td>$491,561</td>
</tr>
<tr>
<td>Indian River Lagoon South</td>
<td></td>
</tr>
<tr>
<td>Allapattah Ranch</td>
<td>1</td>
<td>13,185.54</td>
<td>$29,667,465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$29,667,465</td>
</tr>
<tr>
<td>C-23/C-24 Storage Reservoir</td>
<td>4</td>
<td>1,132.87</td>
<td>$6,290,700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6,290,700</td>
</tr>
<tr>
<td>Biscayne Coastal Wetlands</td>
<td>2</td>
<td>76.77</td>
<td>$153,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$153,500</td>
</tr>
<tr>
<td>Lake Okeechobee Water Retention</td>
<td>4</td>
<td>13.05</td>
<td>$14,800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$14,800</td>
</tr>
<tr>
<td>Pal-Mar</td>
<td>45</td>
<td>51.74</td>
<td>$15,325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$7,662</td>
<td>$7,663</td>
<td></td>
<td>$15,325</td>
</tr>
<tr>
<td>WCA</td>
<td>5</td>
<td>1,412.00</td>
<td>$143,300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$85,200</td>
<td></td>
<td>$143,300</td>
</tr>
<tr>
<td>Faka Union Canal</td>
<td>3</td>
<td>1.00</td>
<td>$5,615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$5,615</td>
</tr>
<tr>
<td>S-26</td>
<td>3</td>
<td>1.22</td>
<td>$491,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$491,000</td>
<td></td>
<td></td>
<td>$491,000</td>
</tr>
<tr>
<td>Donations</td>
<td></td>
</tr>
<tr>
<td>C-5T/L-8 Basin Modification & Reservoir</td>
<td>1</td>
<td>203.20</td>
<td></td>
</tr>
<tr>
<td>Pal-Mar</td>
<td>21</td>
<td>16.75</td>
<td></td>
</tr>
<tr>
<td>C-4*</td>
<td>2</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Mitigation</td>
<td>36</td>
<td>1,149.85</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>423</td>
<td>26,510</td>
<td>$195,484,861</td>
<td>$20,561,260</td>
<td>$564,515</td>
<td>$14,201,973</td>
<td>$5,105,952</td>
<td>$101,312</td>
<td>$28,022,209</td>
<td>$15,700,694</td>
<td>$110,686,785</td>
<td>$540,161</td>
<td></td>
</tr>
</tbody>
</table>

*less than fee
Land Stewardship Project Summaries

Background

The Save Our Rivers (SOR) program began in 1981 with the legislative enactment of the Water Management Lands Trust Fund, Chapter 373.59, Florida Statutes (F.S.), which enabled the five water management districts to buy lands needed for water management, water supply and the conservation and protection of water resources, and to make them available for appropriate public use. Since that time South Florida Water Management District has purchased more than 300,000 acres of environmentally sensitive land (not including 800,000 acres in the three Water Conservation Areas). The attached table describes SFWMD's current list of governing board-approved Save Our Rivers projects. While all are approved projects, no land has been purchased in a number of them. Others are considered “water management” projects and will be incorporated into the Comprehensive Everglades Restoration Plan. Many of these properties are still under agricultural lease and are described under the Land Management Division section. The following project descriptions are limited to those where lands have been purchased for their environmental, as well as water resource, values and are being managed as such. Projects are organized by land management region.

Land Stewardship Program Operational Structure

The Land Stewardship Program is responsible for the planning and management of SOR lands and the implementation and administration of mitigation banks and regional off-site mitigation areas. The Land Stewardship Program has direct management responsibility for approximately 170,000 acres in 14 projects, including two mitigation banks and several regional mitigation areas. An additional 184,234 acres are managed by contracts and leases with federal state and local units of government administered by the Stewardship Program.

Land stewardship functions consist of four major tasks

- Hydrologic and habitat restoration
- Control of exotic vegetation
- Prescribed burning
- Public use & resource protection

Land managers with responsibility for SOR projects in the five land management regions are based in service centers throughout the District. Planning and administration of the program is handled out of District headquarters in West Palm Beach.

The program is funded primarily by the Water Management Land Trust Fund (WMLTF) with additional funds provided by off-site mitigation and lease revenue. Considerable in-kind services are also donated by local governments and volunteers. No ad valorem tax revenues are expended by the Stewardship Program.
Upper Lakes Land Management Region

Kissimmee Chain of Lakes

A management plan for the Chain of Lakes will be prepared in fiscal year (FY) 2003. Acquisition of the Kissimmee Chain of Lakes project was designed to provide the capacity to store and flow water up to the 54 foot National Geodetic Vertical Datum (NGVD) contour line. Public access to most of the land is by boat. Resource management goals for the Chain of Lakes are to maintain and, where possible, restore natural communities, provide cost effective resource protection and provide opportunities for compatible public use. In FY 2002, 5,200 acres were treated for exotic plants. Staff also roller chopped 300 acres of dense wax myrtles to improve the conditions of the wet prairie communities on Gardner-Cobb Marsh. There are several active cattle leases and reservations in this area.

Lake Marion Creek

The Lake Marion Creek Management Plan was implemented in 1999. Primary stewardship activities, which are consistent with the management plan, include prescribed burning, exotic plant control, resource protection and public use. The Florida Fish and Wildlife Conservation Commission (FWC) participates as a cooperative management partner by conducting a hunt program and security patrols. The area is managed as a Type I Wildlife Management Area. The majority of the property is open for hiking year-round and camping is available by permit.

Lake Walk-in-Water

Polk County participated as a 50 percent acquisition partner under its Environmental Lands Program, and the county is also lead manager. The county contracted for preparation of a management and public use plan. It is being managed as the Sumica Natural Area after the historic logging town that existed on the site in the 1920s. In 2002 the county treated 45 acres of exotics and burned 346 acres. Current public uses include hiking and primitive camping. Future plans include hunting and horseback riding.

Reedy Creek

For management purposes the project is divided into Upper and Lower Reedy Creek. The Upper Reedy Creek Management Area includes those lands north of Pleasant Hill Road and is approximately 4,800 acres. The Lower Reedy Creek Management Area encompasses approximately seven miles of creek corridor and totals approximately 5,600 acres under ownership. Management goals for both areas are to conserve and protect water resources and supplies, protect and restore the land in its natural state and condition and provide compatible public use opportunities. The Lake Russell Management Unit in Poinciana is jointly managed by Osceola County Schools as an environmental education facility. A center with classrooms and displays has been built, which provide interpretation to the scrub, Lake Russell and floodplain swamp communities that exist on site. An
interpretive hiking trail describes the unique plant communities and wildlife that exist in the scrub habitat of the site. District staff burned 9,300 acres in 2002 and more than 10,000 acres were treated for control of exotic vegetation. The FWC has identified the area of Lower Reedy Creek as a “Strategic Habitat Conservation Area,” a “Biodiversity Hotspot,” and a “Priority Wetland for Listed Species.” These designations make the area a priority for preservation based on known occurrences of rare or listed species. District staff assisted its contractor in tracking and identifying nighttime resting and foraging sites of the southeastern big-eared bat. There are several active cattle leases and reservations in this area.

Shingle Creek

The District has undertaken several successful restoration projects within Shingle Creek Swamp, but the area still is not open due to a lack of legal public access. A management plan was completed in 1997 and is being updated in 2003. Exotics are being treated and prescribed burning has been done. The Marriott development to the north has constructed a parking area and boardwalk/trail that leads to the District-owned lands. The two areas do not quite border each area and the homeowners association of the land in between have been unwilling to grant the District a public access easement. Negotiations are ongoing and we are still optimistic they will convey an easement. The District continues to pursue public access and is confident it will be established soon. The land acquisition plan for Phase II of the Orlando Beltway Mitigation was approved in FY 2002. This mitigation will provide $7 million for land acquisition and restoration in the Shingle Creek, Reedy Creek and Lake Marion Creek Basin.

Tibet Butler Preserve

The Preserve covers 439 acres along the southwest shore of Lake Tibet-Butler in Orange County. Vegetative communities include bay swamp, pine flatwoods, cypress swamp and smaller areas of xeric oak and freshwater marsh. The Tibet Butler Preserve site includes approximately 4,000 feet of shoreline on Lake Tibet.

Orange County Parks and Recreation Department manages Tibet Butler Preserve as an environmental education facility. The property is open for public use. A large enclosed education center with classrooms was constructed several years ago. It has a full-time staff, which conducts programs for thousands of students each year. Land managers also treat exotic vegetation and maintain the system of hiking trails and boardwalks that lead to the many community types on the property. Limited prescribed burning has been done due to the small size of the site and close proximity to roads and urban development.
Figure C-1. Upper Lakes Land Management Region.
Kissimmee/Okeechobee Land Management Region

Kissimmee Prairie Ecosystem

The project is managed by Florida Department of Environmental Protection (FDEP) Division of Recreation and Parks under lease from the District and State and is known as Kissimmee Prairie State Preserve. A State-approved management plan is in place that addresses prescribed burning, exotic control and public use. SFWMD obtained a federal grant to restore hydrology to a major slough on the property, and Kissimmee River restoration has been completed along the western boundary.

Kissimmee River

The District shares management responsibility with FWC in Pools A, C, D, E and Paradise Run. Management activities in Pools C & D are evolving in nature until river restoration is complete. A management plan for Pools C & D was recently completed. Exotic plant control and prescribed burning take place above the 100-year flood line on all District lands. Below the flood line District-owned marshes along the river are open to airboating and are included in FWC's Kissimmee River Public Use Area, which is open to hunting under FWC regulations. Recently completed river restoration efforts in Pools B & C will provide excellent opportunities for canoeing, fishing and overnight camping on District-owned lands along the river. The 7,000+ acre KICCO tract in Pool A is open for equestrian and bicycle use, and contains a well-used stretch of the Florida National Scenic Trail. Logging under a timber management plan is underway on 600+ acres at the north end of KICCO. In FY 2002, 650 acres were prescribed burned and 3,000 acres were treated for control of exotic vegetation. Planning for additional wetland restoration in KICCO is well underway. Construction of these projects is anticipated in late FY 2003 or early FY 2004. There are several active cattle leases and reservations in this area.
Figure C-2. Kissimmee/Okeechobee Land Management Region.
East Coast Land Management Region

Allapattah Flats

In 2002 the District purchased 13,000 acres within the project as part of the Indian River Lagoon Initiative of CERP, with funding assistance from Martin County and the federal government. It is proposed that the ditches and swales that were excavated to drain and improve the property for cattle grazing will be plugged and filled, and the ranch's extensive wetlands allowed to reflood through funding from the Natural Resource Conservation Service's Wetland Reserve Program. Flood attenuation and water quality improvement are the expected outcomes from the project. A second purchase of 7,300 acres was made in late 2002. Final determination of the lead managing agency is yet to be determined, but the District will be lead manager in the interim. A management plan is under development that will address exotic vegetation control, prescribed burning and public use. A hydrologic and habitat restoration plan will be developed as a separate document. Upon termination of a hunting lease in 2003 it is anticipated that those portions of Allapattah not undergoing restoration will be opened for hunting and other public uses, such as hiking, wilderness camping and horseback riding. There is an active cattle lease on this property.

Atlantic Ridge Ecosystem

Atlantic Ridge is being managed by FDEP, Division of Recreation and Parks, under a joint management lease from SFWMD and the Division of State Lands. The area will be known as Atlantic Ridge Preserve State Park. A management plan is near completion that outlines the goals and objectives for the park. The plan describes hydrologic restoration and staffing needs, plans for exotic control and prescribed burning and a public use program. It is proposed that initial public use facilities use will include an interpretive kiosk, trailhead and hiking trails, camping and equestrian trails with an on site stable and paddocks. The existing lease is being modified to remove the lands along the west bank of the South Fork St. Lucie River from state responsibility and turn them over to Martin County for management.

DuPuis Reserve

An updated management plan is in preparation and will be completed in FY 2002. SFWMD and FWC jointly manage DuPuis. Stewardship activities include prescribed burning, exotic plant control and a forest management program to reintroduce red-cockaded woodpeckers. In FY 2002, 3,400 acres were burned and 4,100 acres were chemically treated for exotic plants. An extensive public use program at DuPuis that attracts thousands of visitors annually includes hunting, fishing, equestrian trails, hiking and camping. An environmental education facility is near completion at the DuPuis headquarters building that includes indoor displays and an interpretive trail.
Indian River Lagoon

Indian River Lagoon (IRL) is managed by St. Lucie County under a lease from SFWMD and the Division of State Lands. IRL property is incorporated into the County’s mosquito control program where mosquitoes are controlled by non-chemical means. This method results in greatly improved water quality and wildlife and fisheries habitat in the lagoon. Mosquito impoundment berms are accessible to the public and provide excellent opportunities for fishing, crabbing and bird watching. The property includes ocean beachfront. Plans are underway to remove exotic Australian pines and provide public beach access.

Loxahatchee River

District owned lands along the river are managed by FDEP Division of Recreation and Parks and Palm Beach County Parks and Recreation Department. FDEP manages the area north of State Road 706 (Indiantown Road) as part of Jonathan Dickinson State Park. The county manages the lands south of the road as Riverbend County Park. Both managers have done extensive treatment of exotics. Palm Beach County, in conjunction with the District, is completing hydrologic restoration of its management area in an attempt to restore a major tributary to the Loxahatchee River. The restoration project will enable water to be delivered to the river through a more natural flow way. FDEP manages its lands under the Jonathan Dickinson State Park plan. The county has a development plan for Riverbend Park. A management plan will be developed as park development progresses.

Loxahatchee Slough

The District is currently managing the property, but agreements were made with Palm Beach County (PBC) Department of Environmental Resources Management that will eventually result in District lands being managed by the county as part of their much larger Loxahatchee Slough natural Area. In 2000 the District signed a cooperative agreement with the Natural Resources Conservation Service (NRCS) that provides a 75 percent funding match for hydrologic restoration of old farm fields under the Wetland Reserve Program. Restoration efforts are currently underway to remove nuisance shrubs and exotic vegetation, plug ditches to restore hydrologic sheetflow and replant former flatwoods in south Florida slash pine.

North Fork St. Lucie River

State, County and District-owned lands along the North Fork are being managed by St. Lucie County and FDEP, as part of the North Fork Aquatic Preserve. Both agencies are treating exotics and conducting limited prescribed burns. Burning is extremely difficult due to the surrounding urban development. St. Lucie County operates an environmental education center along the river that incorporates indoor displays with outdoor programming that utilizes interpretive trails, towers and boardwalks.
Pal-Mar

The State and District-owned lands are under management lease to FWC using an approved management plan. Resource inventories are being conducted by FWC and exotic infestations have been mapped and treatments began in 2002. Prescribed burning will commence in FY 2003. The management plan calls for public use that includes hiking, horseback riding, camping, hunting and fishing. FWC is managing the Martin County lands as the John C. and Marianna Jones Hungryland Wildlife and Environmental Area. A plan to remove spoil and associated exotic vegetation that will also provide parking and public access is underway and expected to commence in FY 2003. A plan is underway to sell lands owned by PBC that are north of State Road 706 (Indiantown Road) to the State for management by FWC. Palm Beach County would continue to manage their lands south of Indiantown Road.

South Fork St. Lucie River

The District has owned and managed the 84 acres along the west bank of the South Fork since the mid-1980s. When the Atlantic Ridge project was purchased its lands bordered the South Fork property on both sides of the river. The management lease that is in effect between FDEP and the District is being revised to have Martin County Parks and Recreation manage the South Fork property on the west side of the river and incorporate it into the natural areas portion of the county's Halpatiokee Park. Exotic control and prescribed burning along the river will be incorporated into the park's annual work plan.
Figure C-3. East Coast Land Management Region.
Everglades Land Management Region

Model Lands

The Model Lands project will play a vital role in conveyance and treatment of sheetflow from the south Dade area to Florida Bay. It is a combination of fresh and saltwater wetlands that are heavily infested with exotic vegetation. Although the District owns more than 4,000 acres there is no public use program due to lack of legal access. The major management activity has been treating exotic vegetation. Hydrologic restoration in the form of ditch plugging is necessary, but cannot be undertaken due to patchy ownership and use of the canals for drainage by upstream landowners. No management plan has been prepared. Preparation is anticipated in 2003.

Southern Glades

Southern Glades is managed under a lease agreement as the Southern Glades Wildlife and Environmental Area by FWC and is open to airboating, hiking, fishing, hunting, bicycling and horseback riding. The District is directing mitigation funds for habitat restoration that includes exotic removal and revegetation with native species. In FY 2002, fishing platform construction was completed, 1800 acres were prescribe burned, 150 acres of exotics were chemically treated and 20 acres of tropical hammock were cleared and replanted.
Figure C-4. Everglades Land Management Region.
West Coast Land Management Region

Corkscrew Regional Ecosystem Watershed (CREW)

SFWMD and FWC jointly manage CREW. The public use and environmental education program is directed by the CREW Land and Water Trust. The management plan was recently updated and describes plans for exotic control, prescribed burning, upland restoration opportunities and public use. Property boundaries are posted and FWC Wildlife Officers patrol the property. In FY 2002, 600 acres were prescribed burned and 20,000 acres of exotics were treated. Although the District, State and Lee County have acquired more than 23,000 acres, only a narrow strip of Corkscrew Marsh along SR 850 is legally accessible. At that location the CREW Trust and SFWMD have developed an interpretive hiking trail and constructed an observation platform that overlooks Corkscrew Marsh. An extensive network of tram roads in Bird Rookery Swamp will provide public use opportunities to more than 6,000 acres of CREW. Legal access was finally obtained in 2002 and plans are being developed to construct an access road that will facilitate public use in 2003. The District completed a 10 acre hydrologic and habitat restoration project in FY 2002.

Nicodemus Slough

Nicodemus Slough is the only SOR tract under management by a private entity. The District contracts with Aim Engineering, Inc. for management services that include exotic control, prescribed burning and maintaining the public use facilities. A hydrologic restoration project that was undertaken by the District many years ago has been disappointing and has caused much dissatisfaction with the adjoining property owner. The District has been attempting to reach a suitable agreement with the adjoining landowner whereby the property would be sold to them and a conservation easement retained by the District.

Okaloacoochee Slough

The Division of Forestry (DOF) and FWC purchased additional lands in the project that expand the original District/State purchase. The project is managed as Okaloacoochee Slough State Forest with DOF as the lead manager, and FWC responsible for wildlife management under a 4-party lease agreement with the Division of State Lands and the District. FWC manages the project as a Type 1 Wildlife Management Area and conducts a public hunt program. Exotic treatment, prescribed burning and creating more public access have been the main management objectives. An approved management plan is in place.

Six Mile Cypress

The property is jointly owned by Lee County and the District and has been managed by Lee County Parks and Recreation since acquisition began. An updated management plan is currently under review. Treatment of exotic vegetation is ongoing. Prescribed burning is difficult due to the surrounding urban development. The county built
and maintains a boardwalk and outdoor classroom facility that is used by 35,000 Lee County students and citizens each year. Six Mile Cypress likely has the highest rate of public visitation of any SOR project.

Figure C-5. West Coast Land Management Region.
INTERIM PROPERTY MANAGEMENT AND LAND STEWARDSHIP

This section is a summary of the funding, staffing and land management activity for every project funded under P2000, Florida Forever and WMLTF for which the District is responsible.
Table C-2. Funding and Staffing by Project (Fiscal Year 2002).

<table>
<thead>
<tr>
<th>Project Name</th>
<th>County</th>
<th>Size (ac.)</th>
<th>Acquired (ac.)</th>
<th>Acquisition Partners</th>
<th>Manage. FTEs</th>
<th>Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Stewardship Projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allapattah Flats</td>
<td>Martin</td>
<td>13,185</td>
<td>Martin Co./Federal</td>
<td></td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>Atlantic Ridge Ecosystem</td>
<td>Martin</td>
<td>13,122</td>
<td>CARL</td>
<td></td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>CREW Mitigation Bank</td>
<td>Martin</td>
<td>633</td>
<td>None</td>
<td></td>
<td>0.5</td>
<td>102,000</td>
</tr>
<tr>
<td>CREW</td>
<td>Lee/Collier</td>
<td>59,312</td>
<td>23,370</td>
<td>CARL/Lee County</td>
<td>4.6</td>
<td>934,000</td>
</tr>
<tr>
<td>DuPuis</td>
<td>PB/Martin</td>
<td>21,875</td>
<td>21,875</td>
<td>None</td>
<td>5.3</td>
<td>1,076,000</td>
</tr>
<tr>
<td>East Coast Buffer</td>
<td>PB/Brow/Dade</td>
<td>66,965</td>
<td>20,994</td>
<td>Federal</td>
<td>0.4</td>
<td>81,000</td>
</tr>
<tr>
<td>Indian River Lagoon</td>
<td>Martin/St. Lucie</td>
<td>1,550</td>
<td>598</td>
<td>St. Lucie/ CARL/Federal</td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>Kissimmee Chain of Lakes</td>
<td>Polk/Osceola</td>
<td>40,238</td>
<td>27,844</td>
<td>None</td>
<td>2</td>
<td>406,000</td>
</tr>
<tr>
<td>Kissimmee Prairie</td>
<td>Okeechobee</td>
<td>45,631</td>
<td>38,284</td>
<td>CARL</td>
<td>0.2</td>
<td>41,000</td>
</tr>
<tr>
<td>Kissimmee River</td>
<td>Highlands/Okeef/Polk/Osceola</td>
<td>62,635</td>
<td>52,000</td>
<td>None</td>
<td>4.4</td>
<td>893,000</td>
</tr>
<tr>
<td>Lake Marion Creek</td>
<td>Polk</td>
<td>17,300</td>
<td>10,500</td>
<td>Polk County</td>
<td>2</td>
<td>406,000</td>
</tr>
<tr>
<td>Lake Walk-in-Water</td>
<td>Polk</td>
<td>4,109</td>
<td>4,109</td>
<td>Polk County</td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>Loxahatchee River</td>
<td>PB/Martin</td>
<td>1,936</td>
<td>1,926</td>
<td>None</td>
<td>0.4</td>
<td>81,000</td>
</tr>
<tr>
<td>Loxahatchee Slough</td>
<td>Palm Beach</td>
<td>15,200</td>
<td>1,425</td>
<td>None</td>
<td>0.4</td>
<td>81,000</td>
</tr>
<tr>
<td>Model Lands</td>
<td>Miami-Dade</td>
<td>42,402</td>
<td>4,160</td>
<td>Miami-Dade County</td>
<td>1</td>
<td>203,000</td>
</tr>
<tr>
<td>Nicodemus Slough</td>
<td>Glades</td>
<td>2,219</td>
<td>2,219</td>
<td>None</td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>N. Fork St. Lucie River</td>
<td>St. Lucie</td>
<td>9,800</td>
<td>442</td>
<td>St. Lucie County/ CARL</td>
<td>0.2</td>
<td>41,000</td>
</tr>
<tr>
<td>Okeechobee Slough</td>
<td>Hendry/Collier</td>
<td>37,120</td>
<td>34,429</td>
<td>CARL/DOF/FWC</td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>Pal-Mar</td>
<td>PB/Martin</td>
<td>36,814</td>
<td>10,307</td>
<td>CARL</td>
<td>0.4</td>
<td>81,000</td>
</tr>
<tr>
<td>Paradise Run</td>
<td>Glades</td>
<td>4,265</td>
<td>1,873</td>
<td>None</td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>Reedy Creek</td>
<td>Okeechobee</td>
<td>30,000</td>
<td>4,800</td>
<td>None</td>
<td>2</td>
<td>406,000</td>
</tr>
<tr>
<td>Shingle Creek</td>
<td>Orange</td>
<td>7,665</td>
<td>1,500</td>
<td>None</td>
<td>1.6</td>
<td>365,000</td>
</tr>
<tr>
<td>Six Mile Cypress</td>
<td>Lee</td>
<td>1,741</td>
<td>829</td>
<td>Lee County</td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>S. Fork St. Lucie River</td>
<td>Martin</td>
<td>184</td>
<td>184</td>
<td>None</td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>Southern Glades</td>
<td>Miami-Dade</td>
<td>37,620</td>
<td>32,299</td>
<td>None</td>
<td>1</td>
<td>203,000</td>
</tr>
<tr>
<td>Tibet-Butler Preserve</td>
<td>Orange</td>
<td>439</td>
<td>439</td>
<td>None</td>
<td>0.1</td>
<td>20,000</td>
</tr>
<tr>
<td>Water Conservation Areas</td>
<td>PB/Brow/Dade</td>
<td>105,047</td>
<td>51,421</td>
<td>None</td>
<td>0.3</td>
<td>61,000</td>
</tr>
<tr>
<td>Administration/Planning</td>
<td>District-wide</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>365,000</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>661,902</td>
<td>354,234</td>
<td>29.6</td>
<td>5,986,000</td>
<td>1,260,000</td>
</tr>
</tbody>
</table>

Water Resource Projects						
C-23/C-24 Storage	St. Lucie	1,133	1,133	Scoet-General	0.1	12,905
C-51L-31N Basin Mode + Reservoir	Palm Beach	203	203	None	0.0	0
Caloos. Basin Reservoir/Other WC	Hendry	12,500	8,700	Federal, State	0.1	12,905
East Coast Buffer	PB/Brow/Dade	66,809	23,151	Federal, State, County	2.3	296,812
Everglades Ag. Area	Palm Beach	51,210	51,210	Federal, State, Private	1.0	129,049
Frog Pond/L-31N	Miami-Dade	10,450	9,386	Federal, State	1.0	129,049
Grassy Island Ranch	Okeechobee	4,785	4,785	Federal	0.5	64,525
Lake Okeef Water Retention Project	Okeechobee	13	13	District	0.1	1,2905
New Palm Dairy	Okeechobee	2,136	2,136	State	0.5	64,525
Rolling Meadows Ranch	Palm Beach	5,225	5,225	State	0.1	12,905
Stormwater Treatment Areas	Palm Beach	47,630	45,519	Federal, State	0.1	12,905
Ten Mile Creek	St. Lucie	1,266	922	None	0.1	12,905
Wellington/Acme Marsh	Palm Beach	1,050	375	None	0.1	12,905
Administrative/Planning	District-wide	N/A	N/A	N/A	0	365,000
Totals		205,016	153,356	7.0	983,344	720,000
Table C-3. Save Our Rivers Management Status.

<table>
<thead>
<tr>
<th>Land Management Region</th>
<th>Mgt. Plan Status</th>
<th>Mgt.- Lead (secondary)</th>
<th>Public Access</th>
<th>Recreational/ Educational Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Env. Ed.</td>
</tr>
<tr>
<td>Upper Lakes Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catfish Creek</td>
<td>none</td>
<td>SFWMD</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lake Kissimmee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Area</td>
<td></td>
<td>SFWMD</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lake Marion Creek</td>
<td>complete</td>
<td>SFWMD (FWC)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lake Walk-in-Water</td>
<td>in-prep</td>
<td>Polk Co.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Upper Reedy Creek</td>
<td>none</td>
<td>SFWMD</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lower Reedy Creek</td>
<td>in-prep</td>
<td>SFWMD</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Shingle Creek</td>
<td>complete</td>
<td>SFWMD</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Kissimmee-Okeechobee Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool A</td>
<td>in-prep</td>
<td>SFWMD (FWC)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pool B</td>
<td>complete</td>
<td>FDEP</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pool C</td>
<td>complete</td>
<td>SFWMD (FWC)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pool D</td>
<td>complete</td>
<td>SFWMD (FWC)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pool E</td>
<td>none</td>
<td>SFWMD (FWC)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Paradise Run</td>
<td>none</td>
<td>SFWMD (FWC)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>East Coast Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic Ridge</td>
<td>in-prep</td>
<td>FDEP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DuPuis</td>
<td>complete</td>
<td>SFWMD (FWC)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Loxahatchee River</td>
<td>complete</td>
<td>FDEP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Loxahatchee Slough</td>
<td>none</td>
<td>SFWMD</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>North Fork St. Lucie R.</td>
<td>in-prep</td>
<td>FDEP</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pal-Mar</td>
<td>in-prep</td>
<td>FWC</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Everglades Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everglades Buffer Strip</td>
<td>none</td>
<td>SFWMD</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Model Lands</td>
<td>none</td>
<td>SFWMD (Dade)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Southern Glades</td>
<td>complete</td>
<td>FWC (SFWMD)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>West Coast Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREW</td>
<td>complete</td>
<td>SFWMD (FWC)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nicodemus Slough</td>
<td>complete</td>
<td>Aim Eng., Inc.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Okaloacoochee Slough</td>
<td>in-prep</td>
<td>DOF (FWC)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Six Mile Cypress</td>
<td>complete</td>
<td>Lee Co.</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

C-23
Appendix D

IMPLEMENTATION SCHEDULE
<table>
<thead>
<tr>
<th>ID</th>
<th>TASK</th>
<th>DUR</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SFWMD CERP</td>
<td>10622d</td>
<td>1/13/99</td>
<td>9/30/39</td>
</tr>
<tr>
<td>2</td>
<td>1d</td>
<td>9/22/99</td>
<td>9/22/99</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COMP PLAN REPORT</td>
<td>0d</td>
<td>7/1/99</td>
<td>7/1/99</td>
</tr>
<tr>
<td>4</td>
<td>Comp Plan Report Submitted to Congress</td>
<td>0d</td>
<td>7/1/99</td>
<td>7/1/99</td>
</tr>
<tr>
<td>5</td>
<td>CONGRESSIONAL AUTHORIZATIONS</td>
<td>853d</td>
<td>8/25/99</td>
<td>11/29/02</td>
</tr>
<tr>
<td>6</td>
<td>WRDA 1999 Enacted by Congress / President</td>
<td>1d</td>
<td>8/25/99</td>
<td>8/25/99</td>
</tr>
<tr>
<td>7</td>
<td>WRDA 2000 Enacted by Congress / President</td>
<td>1d</td>
<td>12/11/00</td>
<td>12/11/00</td>
</tr>
<tr>
<td>8</td>
<td>WRDA 2002 Enacted by Congress / President</td>
<td>1d</td>
<td>11/29/02</td>
<td>11/29/02</td>
</tr>
<tr>
<td>9</td>
<td>SFWMD DESIGN AGREEMENT</td>
<td>347d</td>
<td>1/13/99</td>
<td>5/12/00</td>
</tr>
<tr>
<td>10</td>
<td>Initiate SFWMD’s DA</td>
<td>0d</td>
<td>1/13/99</td>
<td>1/13/99</td>
</tr>
<tr>
<td>11</td>
<td>Develop Preliminary Draft SFWMD DA</td>
<td>120d</td>
<td>7/2/99</td>
<td>12/16/99</td>
</tr>
<tr>
<td>12</td>
<td>SFWMD Draft DA to SAD/HQ’s</td>
<td>1d</td>
<td>12/17/99</td>
<td>12/17/99</td>
</tr>
<tr>
<td>14</td>
<td>Negotiation Conference 1 SFWMD Draft DA</td>
<td>1d</td>
<td>12/21/99</td>
<td>12/21/99</td>
</tr>
<tr>
<td>15</td>
<td>Revise SFWMD Draft DA</td>
<td>20d</td>
<td>12/22/99</td>
<td>1/18/00</td>
</tr>
<tr>
<td>16</td>
<td>Negotiation Conference 2 SFWMD Draft DA</td>
<td>1d</td>
<td>1/19/00</td>
<td>1/19/00</td>
</tr>
<tr>
<td>17</td>
<td>Finalize SFWMD DA</td>
<td>10d</td>
<td>1/20/00</td>
<td>2/2/00</td>
</tr>
<tr>
<td>18</td>
<td>Submit to Governing Board SFWMD DA</td>
<td>1d</td>
<td>2/3/00</td>
<td>2/3/00</td>
</tr>
<tr>
<td>19</td>
<td>Governing Board Approval (Contingent) SFWMD DA</td>
<td>5d</td>
<td>2/4/00</td>
<td>2/10/00</td>
</tr>
<tr>
<td>20</td>
<td>Finalize Transmittal Letter Issues SFWMD DA</td>
<td>8d</td>
<td>2/11/00</td>
<td>2/22/00</td>
</tr>
<tr>
<td>21</td>
<td>ASA’s Policy Guidance SFWMD DA</td>
<td>23d</td>
<td>2/23/00</td>
<td>3/24/00</td>
</tr>
<tr>
<td>22</td>
<td>SFWMD Letter to Executed SFWMD DA</td>
<td>7d</td>
<td>4/3/00</td>
<td>4/11/00</td>
</tr>
<tr>
<td>23</td>
<td>Submit SFWMD DA Package to SAD/HQ</td>
<td>1d</td>
<td>4/12/00</td>
<td>4/12/00</td>
</tr>
<tr>
<td>24</td>
<td>HQ/ASA(CW) Approval SFWMD</td>
<td>21d</td>
<td>4/13/00</td>
<td>5/11/00</td>
</tr>
<tr>
<td>25</td>
<td>DA Executed with SFWMD</td>
<td>1d</td>
<td>5/12/00</td>
<td>5/12/00</td>
</tr>
<tr>
<td>26</td>
<td>SFWMD MASTER PROGRAM MANAGEMENT PLAN</td>
<td>64d</td>
<td>5/12/00</td>
<td>8/10/00</td>
</tr>
<tr>
<td>27</td>
<td>Initiate MPMP</td>
<td>0d</td>
<td>5/12/00</td>
<td>5/12/00</td>
</tr>
<tr>
<td>28</td>
<td>Develop MPMP</td>
<td>63d</td>
<td>5/15/00</td>
<td>8/9/00</td>
</tr>
<tr>
<td>29</td>
<td>MPMP Approved</td>
<td>0d</td>
<td>8/10/00</td>
<td>8/10/00</td>
</tr>
<tr>
<td>30</td>
<td>IMPLEMENTATION PLAN UPDATE</td>
<td>253d</td>
<td>8/11/00</td>
<td>7/31/01</td>
</tr>
<tr>
<td>31</td>
<td>Initiate Implementation Plan Update</td>
<td>1d</td>
<td>8/11/00</td>
<td>8/11/00</td>
</tr>
<tr>
<td>32</td>
<td>Implementation Plan Updates and Corrections</td>
<td>100d</td>
<td>8/12/00</td>
<td>12/29/00</td>
</tr>
<tr>
<td>33</td>
<td>Implementation Plan Logic Review</td>
<td>30d</td>
<td>1/2/01</td>
<td>2/12/01</td>
</tr>
<tr>
<td>34</td>
<td>Implementation Plan Interagency Workshop I</td>
<td>1d</td>
<td>2/13/01</td>
<td>2/13/01</td>
</tr>
<tr>
<td>35</td>
<td>Implementation Plan Interagency Workshop II</td>
<td>1d</td>
<td>3/23/01</td>
<td>3/23/01</td>
</tr>
<tr>
<td>36</td>
<td>Implementation Plan Public Meeting</td>
<td>1d</td>
<td>6/22/01</td>
<td>6/22/01</td>
</tr>
<tr>
<td>37</td>
<td>Implementation Plan Update Completed</td>
<td>27d</td>
<td>6/25/01</td>
<td>7/31/01</td>
</tr>
<tr>
<td>38</td>
<td>SCHEDULED COMPLETION MILESTONES</td>
<td>7501d</td>
<td>9/28/01</td>
<td>7/1/30</td>
</tr>
<tr>
<td>39</td>
<td>INDIAN RIVER LAGOON</td>
<td>0d</td>
<td>9/28/01</td>
<td>9/28/01</td>
</tr>
<tr>
<td>40</td>
<td>IRL Feasibility Study Draft Report Completed</td>
<td>0d</td>
<td>9/28/01</td>
<td>9/28/01</td>
</tr>
<tr>
<td>41</td>
<td>WATER PRESERVE AREAS</td>
<td>0d</td>
<td>12/31/01</td>
<td>12/31/01</td>
</tr>
<tr>
<td>42</td>
<td>WPA Feasibility Study Draft Report Completed</td>
<td>0d</td>
<td>12/31/01</td>
<td>12/31/01</td>
</tr>
<tr>
<td>43</td>
<td>SOUTHWEST FLORIDA FEASIBILITY STUDY</td>
<td>0d</td>
<td>3/3/05</td>
<td>3/3/05</td>
</tr>
<tr>
<td>44</td>
<td>Southwest Florida Feasibility Division Engineer’s Notice</td>
<td>0d</td>
<td>3/3/05</td>
<td>3/3/05</td>
</tr>
<tr>
<td>45</td>
<td>COMPREHENSIVE ECOSYSTEM WATER QUALITY IMPROVEMENTS</td>
<td>0d</td>
<td>12/22/06</td>
<td>12/22/06</td>
</tr>
<tr>
<td>46</td>
<td>Water Quality Feasibility Study Division Engineer’s Notice</td>
<td>0d</td>
<td>12/22/06</td>
<td>12/22/06</td>
</tr>
<tr>
<td>47</td>
<td>FLORIDA BAY FEASIBILITY STUDY</td>
<td>0d</td>
<td>3/30/06</td>
<td>3/30/06</td>
</tr>
<tr>
<td>48</td>
<td>Florida Bay Feasibility Division Engineer’s Notice</td>
<td>0d</td>
<td>3/30/06</td>
<td>3/30/06</td>
</tr>
</tbody>
</table>

Figure D-1. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Appendix D: Implementation Schedule Florida Forever Work Plan

<table>
<thead>
<tr>
<th>ID</th>
<th>TASK</th>
<th>DUR</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Florida Bay Feasibility Study Division Engineer's Notice</td>
<td>0d</td>
<td>3/30/06</td>
<td>3/30/06</td>
</tr>
<tr>
<td>54</td>
<td>C-111 GRR</td>
<td>0d</td>
<td>11/15/01</td>
<td>11/15/01</td>
</tr>
<tr>
<td>55</td>
<td>C-111 GRR Approved</td>
<td>0d</td>
<td>11/15/01</td>
<td>11/15/01</td>
</tr>
<tr>
<td>56</td>
<td>WEST DADE REUSE FEASIBILITY STUDY</td>
<td>0d</td>
<td>2/13/02</td>
<td>2/13/02</td>
</tr>
<tr>
<td>57</td>
<td>West Dade Reuse Feasibility Study Division Engineer's Notice</td>
<td>0d</td>
<td>2/13/02</td>
<td>2/13/02</td>
</tr>
<tr>
<td>58</td>
<td>STA-1E PROJECT</td>
<td>0d</td>
<td>3/14/03</td>
<td>3/14/03</td>
</tr>
<tr>
<td>59</td>
<td>STA-1E Project Complete</td>
<td>0d</td>
<td>3/14/03</td>
<td>3/14/03</td>
</tr>
<tr>
<td>60</td>
<td>STA 3/4 PROJECT</td>
<td>0d</td>
<td>10/1/03</td>
<td>10/1/03</td>
</tr>
<tr>
<td>61</td>
<td>STA 3/4 Project Completed</td>
<td>0d</td>
<td>10/1/03</td>
<td>10/1/03</td>
</tr>
<tr>
<td>62</td>
<td>SEMINOLE CONSERVATION PLAN</td>
<td>0d</td>
<td>3/29/05</td>
<td>3/29/05</td>
</tr>
<tr>
<td>63</td>
<td>Seminole Conservation Plan Physically Complete</td>
<td>0d</td>
<td>3/29/05</td>
<td>3/29/05</td>
</tr>
<tr>
<td>64</td>
<td>ROTENBERGER MONITORING</td>
<td>0d</td>
<td>10/1/03</td>
<td>10/1/03</td>
</tr>
<tr>
<td>65</td>
<td>Rotenberger Monitoring Complete</td>
<td>0d</td>
<td>10/1/03</td>
<td>10/1/03</td>
</tr>
<tr>
<td>66</td>
<td>MODIFIED WATER DELIVERIES TO EVERGLADES NATIONAL PARK</td>
<td>0d</td>
<td>12/31/03</td>
<td>12/31/03</td>
</tr>
<tr>
<td>67</td>
<td>Modified Water Deliveries to Everglades National Park</td>
<td>0d</td>
<td>12/31/03</td>
<td>12/31/03</td>
</tr>
<tr>
<td>68</td>
<td>LAKEBELT MINING/ LANDS AVAILABLE</td>
<td>4785d</td>
<td>2/27/12</td>
<td>7/1/30</td>
</tr>
<tr>
<td>69</td>
<td>Lands Available-Mining Complete XX Ph1</td>
<td>0d</td>
<td>2/27/12</td>
<td>2/27/12</td>
</tr>
<tr>
<td>70</td>
<td>Lands Available XX Ph2</td>
<td>0d</td>
<td>7/1/30</td>
<td>7/1/30</td>
</tr>
<tr>
<td>71</td>
<td>Lands Available-Mining Complete S Ph2</td>
<td>0d</td>
<td>7/1/30</td>
<td>7/1/30</td>
</tr>
<tr>
<td>72</td>
<td>Land Available S Ph1</td>
<td>0d</td>
<td>2/27/12</td>
<td>2/27/12</td>
</tr>
</tbody>
</table>

Figure D-2.
July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Figure D-3. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Figure D-4. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Figure D-5. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Figure D-6. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Figure D-7. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Figure D-8. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Figure D-9. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
Figure D-10. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.
<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task Description</th>
<th>Start Date</th>
<th>Finish Date</th>
<th>Predecessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>523</td>
<td>Construction S Ph2</td>
<td>1/1/2000</td>
<td>11/14/2006</td>
<td>520, 522</td>
</tr>
<tr>
<td>526</td>
<td>PI-R V, FF</td>
<td>12/12/2006</td>
<td>9/8/2008</td>
<td>524</td>
</tr>
<tr>
<td>527</td>
<td>L-31N Seepage Management (V)</td>
<td>9/9/2008</td>
<td>9/2/2013</td>
<td>529</td>
</tr>
<tr>
<td>528</td>
<td>RE Verification V</td>
<td>9/9/2008</td>
<td>9/15/2008</td>
<td>527</td>
</tr>
<tr>
<td>529</td>
<td>Design V</td>
<td>9/9/2008</td>
<td>9/6/2010</td>
<td>527</td>
</tr>
<tr>
<td>530</td>
<td>P&S V</td>
<td>9/7/2010</td>
<td>9/5/2011</td>
<td>528</td>
</tr>
<tr>
<td>531</td>
<td>Construction V</td>
<td>9/6/2011</td>
<td>9/2/2013</td>
<td>529, 530</td>
</tr>
<tr>
<td>532</td>
<td>S-356 STRUCTURE (FF)</td>
<td>9/9/2008</td>
<td>9/2/2013</td>
<td>534</td>
</tr>
<tr>
<td>533</td>
<td>RE Acquisition FF</td>
<td>9/9/2008</td>
<td>8/8/2011</td>
<td>527</td>
</tr>
<tr>
<td>534</td>
<td>Design FF</td>
<td>9/9/2008</td>
<td>9/6/2010</td>
<td>527</td>
</tr>
<tr>
<td>535</td>
<td>P&S FF</td>
<td>9/7/2010</td>
<td>9/5/2011</td>
<td>533</td>
</tr>
<tr>
<td>536</td>
<td>Construction FF</td>
<td>9/6/2011</td>
<td>9/2/2013</td>
<td>534, 535</td>
</tr>
<tr>
<td>537</td>
<td>Biscayne Bay Coastal Wetlands Project (FFF/OPE)</td>
<td>10/1/2001</td>
<td>12/11/2015</td>
<td>540</td>
</tr>
<tr>
<td>539</td>
<td>PI-R FFF, Biscayne Bay Coastal Wetlands OPE</td>
<td>4/1/2002</td>
<td>9/24/2004</td>
<td>540</td>
</tr>
<tr>
<td>541</td>
<td>RE Acquisition FFF/OPE - Operations</td>
<td>9/27/2004</td>
<td>1/6/2012</td>
<td>540</td>
</tr>
<tr>
<td>546</td>
<td>PMP Development WW</td>
<td>10/18/2000</td>
<td>9/19/2001</td>
<td>32, FS+49</td>
</tr>
<tr>
<td>547</td>
<td>PI-R WW</td>
<td>9/20/2001</td>
<td>12/18/2002</td>
<td>546</td>
</tr>
<tr>
<td>548</td>
<td>RE Verification WW - Construction</td>
<td>12/19/2002</td>
<td>12/25/2002</td>
<td>547</td>
</tr>
<tr>
<td>550</td>
<td>Design WW</td>
<td>12/19/2002</td>
<td>6/15/2005</td>
<td>549</td>
</tr>
<tr>
<td>553</td>
<td>Southern Golden Gate Estates Restoration Project</td>
<td>1/4/2001</td>
<td>11/14/2006</td>
<td>558</td>
</tr>
<tr>
<td>555</td>
<td>PI-R SGGEHR</td>
<td>5/28/2001</td>
<td>5/21/2002</td>
<td>554</td>
</tr>
<tr>
<td>557</td>
<td>Design SGGEHR</td>
<td>5/22/2002</td>
<td>11/18/2003</td>
<td>556</td>
</tr>
<tr>
<td>558</td>
<td>P&S SGGEHR</td>
<td>11/19/2003</td>
<td>11/16/2004</td>
<td>557</td>
</tr>
<tr>
<td>560</td>
<td>Florida Keys Tidal Restoration Project</td>
<td>4/2/2001</td>
<td>12/13/2006</td>
<td>566</td>
</tr>
<tr>
<td>561</td>
<td>PMP Development FK Tidal Restoration</td>
<td>4/2/2001</td>
<td>9/19/2001</td>
<td>32, FS+16</td>
</tr>
<tr>
<td>562</td>
<td>PI-R FK Tidal Restoration</td>
<td>9/20/2001</td>
<td>12/18/2002</td>
<td>561</td>
</tr>
<tr>
<td>563</td>
<td>RE Acquisition FK Tidal Restoration</td>
<td>12/19/2002</td>
<td>12/15/2004</td>
<td>562</td>
</tr>
<tr>
<td>564</td>
<td>Detailed Design FK Tidal Restoration</td>
<td>12/19/2002</td>
<td>6/16/2004</td>
<td>563</td>
</tr>
</tbody>
</table>

Figure D-11. July 2001 Implementation Schedule of Components Contained in the Comprehensive Plan.