Status of the Everglades Landscape Model

Everglades Landscape Model

Aug 7, 2002

Carl Fitz
Naiming Wang
Jason Godin

Fred Sklar & others in the **Everglades Division**

August 7 Goals

Background for detailed review of ELM

- Part I: Overview (this slide show)
 - § Model objectives
 - § Model structure
 - § Calibration performance
 - § Application performance measures
- Part II: Details (using web site)
 - § Model tools
 - § Code
 - § Data
 - § Performance (calibration)

Everglades Landscape Model (ELM) Objectives

Integrate hydrology, biology and nutrient cycling in spatially explicit simulation

- Understand ecosystem dynamics at regional scale
- Develop predictions of landscape response to altered water & nutrient management
- One tool to aid in Everglades restoration

August 7 Goals

Background for detailed review of ELM

- Part I: Overview (this slide show)
 - § Model objectives
 - **§ Model structure**
 - **§** Calibration performance
 - § Application performance measures
- Part II: Details (using web site)
 - § Model tools
 - § Code
 - § Data
 - **§ Performance (calibration)**

Ecological interactions

SFWMM (&ELM) hydrology + ELM water quality + ELM ecology

Spatial interactions

Model domains

Model Structure

Integrated spatial and non-spatial modules of hydrology, biology and nutrient cycling

- Flows:
 - **Spatial: similar in general algorithmic structure to SFWMM**
 - § Incorporate explicit feedbacks and altered canal network/scales
- Ecology
 - § 13 physical, chemical, biological modules; selectable at runtime
- Utilities
 - § Water, phosphorus budgets
 - § Summary stats

Hydrologic data

- Data shared with SFWMM
 - § Elevation: filtered from 10 to 1 km² resolution
 - § Hydraulic conductivity: filtered to 1 km,
 - § Rainfall: direct application of 2x2 mi daily data
 - § Other meteorological: dynamic interpolation of cloud, dew pt, etc
- Canal/levee vectors managed in GIS using precise coordinates
- Water control structure attributes managed in relational database

Hydrologic modules

- Vertical solutions (1 day time step)
 - § ET from evap model, solar rad model, daily data on temp, dewPt, cloud, wind; variable LAI
 - § Rainfall directly from daily spatial time series from SFWMM
 - § 3 layers: infiltration, percolation, upflow

Hydrologic modules (con't)

- Horizontal solutions (explicit, 2 hr. step)
 - § Overland: finite difference, Manning's equation, ADE
 - § Groundwater: finite difference, simple Darcy's, ADE
 - § Surface-groundwater interaction: every time step, solve for available storages

Hydrologic modules (more)

- Water management network (2 hr step)
 - § Canal reaches: mass balance, iterative solution as in SFWMM
 - § Water control structs: daily flows for all structures, from observations or SFWMM

Hydrologic modules (con't)

- Mass balance and budget
 - § Basin & domain-wide budgets & error-checks
- Post-processing
 - § Consistency checks with SFWMM (maps and budgets, stage hydrographs)

Phosphorus modules

- Overland, groundwater, and canal transport flows
- Choice 1: Strict net settling rate module (poor performance, unused)
- Choice 2: Ecological dynamics
 - § P uptake, mineralization, particulate settling
 - § Periphyton, macrophytes, soil dynamics
 - **Surface water soil interactions**

Refinement & Calibration Process

Simple modules, complex spatio-temporal interactions

integrated ecosystem approach

- process-orientation avoids statistical "lock-in" of model application
- significant efforts in balancing mechanistic complexity vs. parameter availability
- when stocks and rates of multiple variables perform well, indicative of effective model structure and parameterization
- mass balance among fully integrated complex system provides checks on system function
 - can "calibrate" surface water quality,
 - but does not arrive at that calibration at expense of excessive soil accretion, plant growth, etc.

Refinement & Calibration Process

Levels of calibration

- Level 1: "Nirvana", w/ hi quality & quantity of data across space & time
- Level 2: "Common", with varying data quality/quantity across space & time
- Level 3: "Ballpark", with sparse or poor data across space and time
- Level 4: "None", with little/no effort to compare model to observations

- 2 critical Landscape Drivers are 1) hydrology and 2) surface water quality
- PROVIDED that other Landscape Attributes are in Level 3 to 2 calibration:
 - low-intermediate model sensitivity to feedbacks between surface water quality and soils & biota
 - calibrate hydrology to Level 1 to 2
 - calibrate surface water quality to Level 2 to 1
 - AND verify performance of other variables to Level 3 to 2

Calibration Evaluation Process

Levels of calibration

- Level 1: "Nirvana", w/ hi quality & quantity of data across space & time
- Level 2: "Common", with varying data quality/quantity across space & time
- Level 3: "Ballpark", with sparse or poor data across space and time

1: Hydrology

- ecological modules OFF
 - model-observed stages: CALM*
 - model-observed stages: ELM
 - SFWMM-ELM basin flow budgets
 - SFWMM-ELM spatial depth & hydroperiod
- if "OK", turn on all ecological modules
 - repeat above steps for ELM
 - (generally relatively little regional diffs)
 - aim for Level 1-2
- if "OK", evaluate surface water quality & ecology

*CALM (Conservation Area Landscape Model) = ELM implemented at finer scale in WCA-2A

Calibration Evaluation Process

Levels of calibration

- Level 1: "Nirvana", w/ hi quality & quantity of data across space & time
- Level 2: "Common", with varying data quality/quantity across space & time
- Level 3: "Ballpark", with sparse or poor data across space and time

2: "Water Quality"

- surface nutrients
 - model-observed TP concentrations: CALM*
 - model-observed TP concentrations: ELM
 - aim for Level 2-1
- other ecological dynamics
 - soil, periphyton, macrophytes
 - at minimum, ensure Level 2-3 in CALM*
 - at minimum, ensure Level 3-2 in ELM
- if "OK", fully evaluate/refine system dynamics

ELM V.2.1 IS AT THIS STAGE

*CALM (Conservation Area Landscape Model) = ELM implemented at finer scale in WCA-2A

August 7 Goals

Background for detailed review of ELM

- Part I: Overview (this slide show)
 - **§ Model objectives**
 - § Model structure
 - § Calibration performance
 - § Application performance measures
- Part II: Details (using web site)
 - § Model tools
 - § Code
 - § Data
 - **§ Performance (calibration)**

Start out "small"...

ELM is scalable in spatial grain and extent

Water Conservation Area 2A

Model refinement...

Modified:

- § surface-ground water integration
- § plant/soil nutrient kinetics
- § others....
- Added:
 - § soil organic P storage
 - § variable C:P stoichiometry
 - § soil flocculent layer
- Calibrated v2.1:
 - § WCA-2A ecosystem dynamics
 - § Everglades-wide hydrology and surface water quality

Better Performance

New Dynamics

ELM water management

Stage monitoring regions/points

Stage calibration examples (v.2.1)

Surface water TP monitoring regions/points

Surface water TP calibration examples (v.2.1)

Calibration **Evaluation Process**

Levels of calibration

- Level 1: "Nirvana", w/ hi quality & quantity of data across space & time
- Level 2: "Common", with varying data quality/quantity across space & time
- Level 3: "Ballpark", with sparse or poor data across space and time

3: Complex system

- integrated assessment
 - data dependent, varying Levels depending on region and on simulation time period
 - aim for Level 2 in general, Level 1-2 in subregions, Level 3
- communicating uncertainty
 - show users at least qualitative level of confidence for different Performance Measures across space
 - taking advice of "Model Uncertainty Workshop" (Jan 02) panelists on analysis
- when "OK", release ELM v3.0

*CALM (Conservation Area Landscape Model) = ELM implemented at finer scale in WCA-2A

Hierarchical Sensitivity Analysis

- Large number of parameters
- 1) Evaluate many- parameter response at local (non-spatial) scale of "unit" model
- 2) Evaluate subset of parameters in simple (WCA-2A) spatial basin
- 3) Evaluate subset of parameters in entire Everglades domain

Summary: Model Performance

- Evaluate ecological process/mechanisms in subregions with high data (spatial & temporal) quality
- Calibrate both targets (e.g., stage, TP conc.) and rates (e.g., ET, TP uptake)
- To extent possible, extend subregional understanding to other regions with comparable antecedent conditions & dynamics

August 7 Goals

Background for detailed review of ELM

- Part I: Overview (this slide show)
 - § Model objectives
 - § Model structure
 - § Calibration performance
 - § Application performance measures
- Part II: Details (using web site)
 - § Model tools
 - § Code
 - § Data
 - **§ Performance (calibration)**

Model Application

- Modified water deliveries...
- changes nutrient distributions...
 and influences soils and plants.
- How will the landscape pattern of periphyton and macrophytes respond?

Project Alternative Evaluation: Hydrologic Considerations

- For each Alternative, SFWMM provides (via scripted procedures)
 - § daily input data on managed flows through water control structures
 - § daily stages at boundary cells (ELM code not final for this)
- ELM hydrology (overland, groundwater, canal flows, etc)
 otherwise independent of SFWMM
- ELM uses SFWMM data on rainfall, topography, others
- Verify that ELM hydrology is consistent with SFWMM (stage, hydroperiod, budgets)

Performance measures (web-enabled)

- Regional maps
 - § Multi- year summaries: TP, periphyton, vegetation, ...
 - § Animations (annual or monthly)
 - **S** Difference maps

Example: tracer flow in surface water

- Track inflows from S-8
- Monthly mean concentrations
- Distribution via overland and canal flows

Performance measures

(web-enabled)

Subregional summaries

- § Water quality
 - TP concentration & load
 - LOK water tracer
- § Soils
 - peat accretion
 - TP concentration
- § Periphyton
 - biomass & community type
 - tissue TP concentration
- § Macrophytes
 - biomass & community type
 - tissue TP concentration

Model Application

- Stormwater Treatment Areas
- Decreased P loading
- Altered flows
- Landscape response

Conclusions

- Effectively simulated spatial and temporal interactions in complex ecological system
- Calibrated ecological processes in WCA-2A, calibrated hydrology and water quality throughout domain
- Confidence in current ELM dynamics allows evaluation of regional surface water quality

Status

 Available NOW for evaluations of surface water quality throughout the Everglades

TP in surface water: monthly, 1979-1995

- Finalizing calibration/refinement to evaluate other ecological (soils, periphyton, macrophytes) responses
- Extending Period-of-Record for calibration/verification thru 2000

Documentation & Review

- Web site
 - § Data used in model development and model application
 - Descriptions of data on web site
 - All data on ftp link at web site
 - § Model structure
 - Documented in manuscripts and conceptual diagrams at web site
 - Detailed code descriptions on web site
 - All source code on ftp link at web site
 - § Model results
 - Post-processed performance measures
 - Raw output data (to be) on ftp link at web site
- Peer Review
 - § May 9: USGS Model Informational Workshops, including ELM
 - § Aug 7: Inter-agency review, organized by CERP-RECOVER Model Development and Refinement Team
 - § Soon?: SCT/RECOVER sponsoring independent peer review

August 7 Goals

Background for detailed review of ELM

- Part I: Overview (this slide show)
 - § Model objectives
 - § Model structure
 - § Calibration performance
 - § Application performance measures
- Part II: Details (using web site)
 - § Model tools
 - § Code
 - § Data
 - **§ Performance (calibration)**

Periphyton, phosphorus, and macrophyte patterns

Soil porewater P calibration

(ELM version 1.0)

P, accretion, macrophytes calibration

(ELM version 1.0)

Cattail invasion: Water Conservation Area 2A

Vegetation change calibration

Land use change: South Florida

ELM vegetation classes, ca. 1995

Soil Total Phosphorus (ca.1995)

Example: P Accumulation in upper NESS

