Comment: Tables 4-3a through 4-6a need to have sample sizes included for years without excursions. Likewise, including annual sample sizes in tables 4-3b through 4-6b would improve interpretation.

Response: Tables 4-3a through 4-6a were revised to include sample sizes for years without excursions. Tables 4-3b through 4-6b were modified since the sample sizes are the same as in the "a" table for each Region.

Comment: Page 4-7. A discussion of data screening and how values reported below the MDL should be included.

Response: Data screening is conducted by the QA/QC team at the District's Water Quality Lab prior to entering the data into the water quality database. Reporting values below MDL is discussed later in the "Methods" section.

Comment: Page 4-8 to 4-9. This section states that "TP data less than the MDL of 4 ppb were assigned the value of 4 ppb for statistical purposes." The discussion of TP data from the ENP on page 4-19 (second paragraph) appears to contradict this statement and implies that $\frac{1}{2}$ MDL was used for values <MDL. A consistent methodology should be used throughout the report.

Response: The reviewer misinterpreted the discussion on page 4-19. All TP statistical evaluations were made using 4 ppb for all data <MDL. Comment: Based on the recommendations of the Department's statistical consultants a simple replacement of $\frac{1}{2}$ MDL appears to be most appropriate and efficient methodology and provides a reasonable estimate of the concentration distribution below the TP MDL. Response: The authors recognize DEP's selection of $\frac{1}{2}$ MDL for TP in the Everglades Protection Area. However, the District has conflicting guidelines in the two areas where TP concentrations can be lower than 4 ppb, i.e. the Refuge and the Park. The Settlement Agreement equations developed to track TP in inflows to the Park and TP concentration levels in the interior marsh of the Refuge used the MDL in the equation coefficients. Thus, to be consistent within the Consolidated Report, the MDL for TP was used.

Comment: Page 4-13 and Figure 4-7. The discussion of dissolved oxygen shifts from excursion rates to relationships with temperature and stage. It is unclear why this is done as the discussion does not make a clear connection. Are changes in temperature and stage being proposed as possible reasons for increased DO excursions in the LNWR? It should be noted that although DO is negatively correlated with temperature on an annual basis, there tends to be a positive correlation on a diel basis relating to photoperiod. We would not agree that temperature is the key variable affecting dissolved oxygen concentrations in the marsh. Response: The discussion regarding stage and temperature was the result of statistically exploring logical variables that might explain dissolved oxygen excursions. Stage and temperature were the factors that had the highest p-values. The authors did not propose that temperature was the key variable affecting DO. We did state that lower water levels and higher temperatures drive the DO concentration/stage relationship seen in Figure 4-7c. During each annual cycle, high temperatures during low stages result in DO excursions.

Comment: Page 4-14. It is stated that "beginning in WY94, the TP median concentrations measured at the inflow sites have been significantly lower than the baseline period." Although there is a decline evident from Figure 4-13a, no rigorous statistical test is presented. The term "significant" is commonly associate with rigorous statistical tests (e.g., t-test, ANOVA, Kruskal-