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Seqguence-Stratigraphic Analysis of the Regional Observation
Monitoring Program (ROMP) 29A Test Corehole and Its Relation to
Carbonate Porosity and Regional Transmissivity in the Floridan
Aquifer System, Highlands County, Florida

By William C. Wardl, Kevin J. Cunninghamz, Robert A. Renkenz, Michael A. Wacker?,
and Janine I. Carlson®

ABSTRACT

An analysis was made to describe and were interpreted fathe upper composite
interpret the lithology of a part of the Upper sequence; however, only a highstand systems
Floridan aquifer penetrated by the Regional tract was interpreted for the lower composite
Observation Monitoring Program (ROMP) seqguence of the deeper Avon Park stratigraphic
29A test corehole in Highlands County, Flor section. The&eomposite depositional sequences
ida. This information was integrated into a oneare composed of at least five high-frequency
dimensional hydrostratigraphic model that  depositional sequences. These sequences con
delineates candidate flow zones and confiningain high-frequency cycle sets that are an amal
units in the context of sequence stratigraphy. gamation of vertically stacked high-frequency
Results from this test cehole will serve as a cycles. Three types of high-frequency cycles
starting point to builéh robust three-dimen have been identified in the Avon Park Forma
sional sequence-stratigraphic framework of theion: peritidal, shallow subtidal, and deeper
Floridan aquifer system. subtidal high-frequency cycles.

The ROMP 29A test corehole penetrated The vertical distribution of carbonate-
the Avon Park Formation, Ocala Limestone, rock diffuse flow zones within the Avon Park
Suwannee Limestone, and Hawthorn Group ofFormation is heterogeneous. Porous vuggy
middle Eocene to Pliocerage. The part of the intervals are less than 10 feet, and most are
Avon Park Formation penetrated in the ROMPmuch thinner. The volumetric arrangement of
29A test corehole contains two composite  the diffuse flow zones shows that most occur
depositional sequences.transgressive in the highstand systems tract of the lower
systems tract and a highstand systems tract composite sequence of the Avon Park Formation

IDepartment of Geology and Geophysics, Ursitgrof New Orleans, Louisiana (retired).
2U.S. Geological Survey, Florida Integed Science Center, Miami, Florida.
3Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado.
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as compared to the upper composite sequence,
which contains both a backstepping transgres-
sive systems tract and a prograding highstand
systems tract. Although the porous and perme-
able layers are not thick, some intervals may
exhibit lateral continuity because of their depo-
sition on abroad low-relief ramp. A thick inter-
val of thin vuggy zones and open faults forms
thin conduit flow zones mixed with relatively
thicker carbonate-rock diffuse flow zones
between adepth of 1,070 and 1,244 feet below
land surface (bottom of the test corehole). This
interval isthe most transmissive part of the
Avon Park Formation penetrated in the ROMP
29A test corehole and isincluded in the high-
stand systems tract of the lower composite
sequence.

The Ocala Limestoneis considered to be
asemiconfining unit and contains three deposi-
tional sequences penetrated by the ROMP 29A
test corehole. Deposited within deeper subtidal
depositional cycles, no zones of enhanced
porosity and permeability are expected in the
OcaaLimestone. A thin erosional remnant of

INTRODUCTION

Implementation of carbonate sequence
stratigraphy can have a dramatic impact on devel-
opment of an accurate stratigraphic interpretation
that can be integrated into a conceptual carbonate-
aquifer hydrogeologic model (Loizeaux, 1995).
Carbonate sequence-stratigraphic methods offer
the best correlation strategy that can reduce the
risk of miscorrelating critical carbonate aquifer
flow zones and confining units, as Kerans and
Tinker (1997) have discussed its application to
the petroleum industry. A regional sequence-
stratigraphic framework has not been devel oped
previously for al the Tertiary marine carbonates
included in the Floridan aquifer system throughout
southern Florida, but has for part of the carbonate

2 Test Corehole

theshallow marine Suwannee Limestoneoverlies
the Ocala Limestone, and permeability seems
to be comparatively low because moldic poros-
ity is poorly connected.

Rocks that comprise the lower Hawthorn
Group, Suwannee Limestone, and OcalaLime-
stone form a permeable upper zone of the
Upper Floridan aquifer, and rocks of the lower
Ocala Limestone and Avon Park Formation
form a permeable lower zone of the Upper
Floridan aquifer. On the basis of a preliminary
analysis of transmissivity estimates for wells
located north of Lake Okeechobee, spatial rela-
tions among groups of relatively high and low
transmissivity valueswithin the upper zone are
evident. Upper zone transmissivity isgenerally
less than 10,000 feet squared per day in areas
located south of aline that extends through
Charlotte, Sarasota, DeSoto, Highlands, Polk,
Osceola, Okeechobee, and St. Lucie Counties.
Transmissivity patterns within the lower zone
of the Avon Park Formation cannot be region-
ally assessed because insufficient data over a
wide areal extent have not been compiled.

rocks of the Floridan aquifer system in west-
central Florida ((Hammes, 1992; L oizeaux, 1995;
Budd, 2001). Carbonate rocks of the Upper Flori-
dan aquifer have been targeted as injection zones
for aquifer storage and recovery (ASR) projects as
part of the Comprehensive Everglades Restoration
Plan (CERP). Asaresult, it iscritical that their
sequence stratigraphy be developed to reduce the
risk of failure of CERP-ASR projects.

In 2002, the U.S. Geologica Survey (USGS)
initiated a study, which is part of the CERP and
authorized by the U.S. Army Corps of Engineers,
to describe and interpret the lithology of part of the
Upper Floridan aquifer in a single continuous
corehole and integrate thisinformation into a

Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A
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Figure 1. Location of ROMP test coreholes in Highlands County,
Florida, included in this study. (ROMP is Regional Observation and
Monitoring Program.)

one-dimensionahydrostratigraphic model to Florida (fig. 1).The analysis of existing core
delineate candidate flomones and confining units samples from the ROMP 29A test corehole repre
in the context of sequence stratigraphy. The sents an early phase task authorized by the CERP
Regional Observation Monitoring Program Regional ASR Projedflanagement Team. The

(ROMP) 29A test corehole was used for the effort provides insight ito the thickness and strati
evaluation. This test coreleosite is located near  graphic distribution ofzones of transmissivity
Sebring in northern Highlands County, south-centralvithin the Upper Floridan aquifer.
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Purpose and Scope SITE SELECTION AND METHODS OF
EVALUATION

The purpose of this report is to describe and ~_ Three continuously coredst sites, having
interpret the lithology opart of the Upper Flori  Sufficient length and recorin the stratigraphic
dan aquifer penetrated by the ROMP 29A test interval of interest in the Lake Okeechobee area,
corehole in Highlands CouptFlorida, and to inte  Were considered for evaluation of sequence stratig
grate this information into a hydrogeologic model "aPhy; namely, the ROMP 14, ROMP 28, and
that delineates potentiearbonate flow zones and ROMP 29A test corehold§g. 1). Because of its
confining units in the antext of a sequence-strati close proximity to the ROMBR9A test corehole, the

graphic framework. The report provides a detailecBOMP 28 test corehole was used to test strai

description of the uppermost 475 ft of the Avon  JraPhiC continuity between test coreholes; the
Park Formation of middle Eocene age, Ocala ROMP 14 test corehole was not used. More than

Limestone of late Eocene age, and Suwannee 2,500 ft of cored rocl'< sangs from the three test .
: . coreholes were obtained from the Florida Geelogi
Limestone of late Eocene and Oligocene ages. I . llah | q
Attention is given to thetratigraphic distribution cal Survey Core Reposﬂ_onyTa ahassee, Fla., an
d thick ; q bl q from the Southwest Florida Water Management
and thickness of porousid permeable zones and p,qyjet (SWFWMD) inBrooksville, Fla. The
their relation to a sequee-stratigraphic frame

. . . . . unslabbed core samples from these test coreholes
work established from this core. Lithologic deserip | are evaluated. and the RID 29A test corehole

tions are based on examination of 834 ft of slabbeg|,5 getermined to be best suited for this analysis
core and 59 petrographiditrsections, and include poc4.se of superior definition of the unconformity
petrologic and microfaunal analyses to determineg; the top of the Avon Park Formation and the per
the mineralogy, geologic age, and paleoenviron  centage and quality of core recovered. A cursory
ments of deposition. Percent vuggy porosity is  comparison of the three test coreholes was con
eS'[Imated by a new ntEId fOI‘ the quant|f|cat|on ducted to assess Continu'&yd Corre'ation Of
of vuggy porosity using dital borehole images  selected rock units between coreholes.
(Cunningham and others, 2003, in press).-Geo The SWFWMD drilled the ROMP 29A test
physical log and aquifetest data collected in corehole as a temporarypdoratory test corehole
Highlands County and elsewhere are compared tgo provide geologic andydrologic information
assess relations betwegeology, hydrogeology,  needed to establish three nearby permanent-moni
and transmissivity. toring wells in the surficial and intermediate aqui
fer systems and in the Upper Floridan aquifer.
During the drilling processontinuous core sam
Acknowledgments ples were collected in aabination with other geo
logic, borehole geophysicand hydrologic data.
Numerous individuals and governmental ~ The corehole was drille a depth of 1,244 ft
agencies provided thnical contributions and below land surface.
other assistance. Richard Lee of the Southwest
Florida Water Managemeitistrict coordinated
access to the ROMP 29A core, geophysical logs,
and well site. Bruce Waraf Earthworks, Inc., pro The SWFWMD constructed the ROMP 29A
vided technical assiance. Core samples test corehole in four stages. Initially, a 21-in.-
wereslabbed and prepared by Jared Lutz of the diameter borehole was drilled to 40 ft below land
Earth Sciences Department, Florida International surface and completed wighl6-in. inner diameter
University. Dominicke Merle helped with report  schedule 40 polyvinyl chloride (PVC) casing that
preparation. was grouted with 5-peent bentonite cement.

Drilling and Geophysical Data Collection

Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A
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A 1494-in.-diameter borehole was then drilled  synthetic porosityog provides only an estimate of
from 40 to 250 ft below land surface. This bore vuggy porosity. However, the synthetic vuggy
hole was lined with a 10%. inner diameter sched porosity log can be used to compare changes in
ule 40 PVC casing from el surface to a depth of porosity within the entirepen-hole, optically

250 ft and was grouted with 5-percent bentonite |ogged interval. A limitatn of the method is that

cement. A Ja-in.-diameter borehole was drilled  porosity can be overcounted over intervals where
to 494 ft and lined from land surface with a 6-in. {he rock is very dark colored, but contains no-visi

inner diameter schedule 40 PVC casing, also
grouted with 5-percent bentonite cement. Finally,
a temporary 4-in. inmediameter casing was
installed from land surface to 496 ft, and the
borehole was then cor¢ad a depth of 1,244 ft

and1 7s-in.-diameter cores were retrieved. Core
recovery was at 70 percent.

While the ROMP 29A test corehole was
filled with clear freshwater, digital borehole image
logs were run using the Mount Sopris OBI-40
Optical Televiewer. This instrument is designed
for clear freshwater borehole environments to
monitor, process, andaerd optical images of
borehole walls in digitdiormat for geological and

geotechnical analysis. Quantification of vuggy about 10 ft of core. Core recovery ranged from

p0r05|.ty in borehole INges of limestone and poor to excellent, with aoverall recovery of about
dolomite carbonate aqifeissa three-step process 7g percent. Detailed litholdglogs of the slabbed
using Baker Atlas RECALL software (Cunning  ¢ore are presented andtlude descriptions of
ham and others, 2003, mess). This process lithology, color, texture, porosity, exposure-sur
includes measurement oftiproportion of vugs in - f5ces. depositional feais, bedding thickness,
images of slabbed whole4eosamples, identifiea  and fossils and assignntesf formational units,

ble porosity. Additionallyporosity can be under
counted over intervals whetlee rock is very light
colored, but containsgmificant visible porosity.
A comprehensive explanation of the method

is provided by Cunningham and others (2003,
in press).

The ROMP 29A test corehole was cored
continuously from land surface to 1,244 ft using a
5-ft long wireline core barrel that allows recovery
of a 17s-in.-diameter, 5-ft-long (or shorter) core.
Core samples (Is-in. diameter) were retrieved,
measured, described, andg#d in cardboard boxes
for preservation andatage at the SWFWMD
office in Brooksville, Fla. Each core box contains

tion of potential vuggy porosity in borehole sequence boundariemd maximum flooding
images, and calibration of the core-sample valuessurfaces to the rock core (app. I). The core was
to the results from borehole-images. In the photographed, and the photographs were con

method, the color digitdlorehole image is cen  verted to digital images by the USGS. Digital
verted to gray scale, and then a nonstatic gray photographs of cores (in @boxes) are presented
scale threshold is applied to count valid elementsin appendix II.

and make an estimate of vuggy porosity (Cunning Caliper, natural gamma, and resistivity logs

ham and others, 2003, jmess). were collected and provided by the SWFWMD.
For purposes of this investigation and due toA digital optical borehole image of the open bore
time and funding constraints, digital borehole hole below 735 ft was collected by the USGS
images were not calibrated with whole-core sam using a Mount Sopris ALT OBI-40 Optical Tele
ples. Threshold values similar to those identified viewer. Geophysical and mge logs at scales of
in core-calibrated Pleigtene carbonates of south 1:360 and 1:60 are provided in appendixes Il and
ern Florida (Cunningham and others, 2003, in IV, respectively. The X-ray diffraction of six sam
press) were used to calculate vuggy porosity in  ples also was made to aid in the determination of
the ROMP 29A test corehole. Accordingly, the  mineralogy.

Site Selection and Methods of Evaluation 5



Quantification of Carbonate Vuggy limited to these formations. The Hawthorn Group
Porosity from Digital Borehole Images is generally included as gaf the intermediate
confining unit, which overlies the Floridan aquifer
Vuggy porosity is visible “pore space that is system (fig. 2). However, a description of the
within grains or crystaler that is significantly Hawthorn Group from 412 to 461 ft below land

larger than the grains or crystals; that is, pore  surface is provided in éndetailed lithologic logs
space that is not intergile” (Lucia, 1995). Intra. (app. I).

particle pores, particle molds, fenestrals, channels,
and caverns as defined by Choquette and Pray
(1970) are included in this definition, as is inter
particle porosity that is sible to the naked eye.
Identification of vugs and fractures by geophysical
logging is normally acconmighed, in the absence
of image logs, by combing and interpreting sev
eral logs, including: sonj dipmeter, laterolog,
induction, density, spontaneous potential, caliper
and natural gamma-ray spectrometry (Crary and
others, 1987). ldentification of vugs and fractures
using these logs is challenging and interpretive in
the absence of a borehole-wall image.

Visual interpretatiorof digital borehole
images can improve debation of zones of prefer
ential flow and is the most reliable and practical
method of identifying/uggy porosity in the lime
stone of the Floridancaifer system. Electronic
images of borehole wallare used to quantify

vuggy porosity (Hickey, 1993; Newberry and Twelve lithofacies were identified for the
others, 1996; Hurley and others, 1998, 1999) in  Ayon Park Formation (table 1). The vertical distri
petroleum reservoirs arfthcture porosity in aqui  pytion of lithofacies is lghly cyclic; consequently,
fers (Williams and Johnson, 2000). The techniquesonsiderable vertical hetsgeneity of porosity and
also has been used successfully to quantify digitahermeability exists within the Avon Park Forma

borehole images of thearbonate Pleistocene tion. Few thick intervals are present in any one
Blscayne aCIUIfer (Cunnlngham and Others, 2003,|ith0facies as shown in appendix l.

in press).

The shallow marinernestones and dolomites
of the Avon Park Formatiowere deposited mostly
on the inner part of broad, flat-lying carbonate
ramp that sloped gentlyward the Gulf of Mexico
during the Eocene. The firgrained carbonates of
the Ocala Limestone a@kntral Florida were
deposited on the middle to outer-ramp setting at
water depths generally below storm wavebase. The
'Suwannee Limestone represents a return te shal
low marine conditions inentral Florida during the
early Oligocene. The Hawthorn Group is com
posed of shallow marine to nonmarine coastal and
deltaic sandstone anduaikstone, which prograded
out over the older carbotgaplatform during the

late Oligocene to Pliocene.

Avon Park Formation

Depositional Sequences and Sequence

Stratigraphy
SEQUENCE-STRATIGRAPHIC
ANALYSIS The vertical distribution of lithofacies within

the Avon Park Formation inmeamp shows that its

The ROMP 29A testorehole penetrates depositional setting in south-central Florida
poorly consolidated toansolidated siliciclastics  changed repeatedly over brief periods at the-loca
and carbonate rocks. The sediments and rocks tion of the ROMP 29A test corehole. Short-term,
range in age from middle Eocene to Pliocene andow-amplitude changes in relative sea level are
include, in ascending orderarbonate rocks of the recorded by a multitude of high-frequency deposi
Avon Park Formation, Ocala Limestone, and tional cycles. These high-frequency cycles
Suwannee Limestone, and siliciclastics of the  (HFC’s) are the fundamental depositional units
Hawthorn Group (fig. 2)Core descriptions are that characterize the AvdPark Formation (fig. 3).

Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A
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Figure 2. Hydrogeologic section of the Upper Floridan aquifer penetrated by the ROMP
29A test corehole in Highlands County, Florida. (ROMP is Regional Observation
Monitoring Program.)

The HFC'’s of the Avon Park Formation can The lithofacies contained in the HFC’s record
be grouped into high-frequey cycle sets (HFCS) three principal depositional settings during accumu-
reflecting fluctuations of relative sea level on a lation of the carbonate rocks comprising the Avon
lower order time scale. These HFCS’s have beenPark Formation: (1) peritidal; (2) open-shelf, shal-
further grouped into high-frequency sequences low subtidal; and (3) open-shelf, deeper subtidal.
(HES’s) as shown in figure 3. The nomenclature A descriptive summary of three common types of
that is commonly applied to the various orders  HFC’s associated with these three general deposi-
of depositional cyclicity in carbonate rocks is tional settings is provided in table 3. The successive
presented in table 2. shifting of these depositional settings through time

Sequence-Stratigraphic Analysis 7
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Table 1. Avon Park Formation lithofacies

Lithofacies

Benthic-foram
wackestone/mud-
dominated packstone

Benthic foram grain-
dominated
packstone/grainstone

Skeletal wackestone/
mud-dominated
packstone

Skeletal grain-
dominated
packstone/grainstone

Skeletal
floatstone/rudstone

Planktic foram
wackestone/mud-
dominated packstone

Composition

Carbonate-muddy limestone dominatgdbenthic foraminifers, most
commonly miliolds. Other common constitueridéctyoconus, Fabularia,
ostracodes, mollusks, pellets and pedoi@enerally low and highly variable
porosity: moldic, vuggy, microcsfalline, and intraskeletal.

Grainy limestone dominatday benthic foraminifersmost commonly miliolids
Other common constituent®ictyoconus, Fabularia, ostracodes, mollusks, ar
intraclasts. Generally goqubrosity (10-25 percent estimated in thin section
intergranular, intraskeletal, moldic, and vuggy.

Carbonate-muddy limestone with echinoiagllusks, and mixtures of benthi
and planktic foraminifersgGenerally low and highly variable porosity: moldic
vuggy, microcrystalline, and intraskeletal.

Grainy limestone with behic foraminifers, echinoigsnollusks, peloids, and
intraclasts. Generally goqubrosity (10-25 percent estimated in thin section
intergranular, intraskeletal, moldic, and vuggy.

Coarse-grained equivalent of skeletalckestone/mud-dominated packstone
grain-dominated packstone/grainstorehrin gravel-size mollusks and/or
echinoids. Variable porosity (low in e@aleid-rich layers): intergranular,
intraskeletal, moldic (especialig mollusk-rich layers), and vuggy.

Carbonate-muddy limestone with abundaliainktic foraminifers, ostracodes,
echinoids, and pellets. Risity low: microcrystdine, moldic, vuggy, and
intraskeletal.

Interpretation

Low-energy inner shelf.
Shallow subtidal to intertidal.

High-energy inner shelf.
Shallow subtidal to intertidal.

Low-energy open shelf.
Shallow subtidal.

High-energy open shelf.

Shallow subtidal.

Shallow subtidal.

Open shelf. Deeper subtidal.
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Table 1. Avon Park Formation lithofacies (Continued)

Lithofacies

Stromatolite

Laminite

Intraclastic
floatstone/rudstone

Rip-up clast breccia

Collapse breccia

Caliche

Composition

Wavy laminated carbonate mudstone, fiaekstone, or fine grainstone with
thin irregular organic-rich lamina€onstituents: pellets, ostracodes, and
benthic foraminifers. Porosity highly rrable, up to estimated 20 percent in
grainy laminae: moldic, fenestratiggy, intergranular, and minor fracture.

Laminated carbonate mudstone anavackestone. Poorly fossiliferous.
Ostracodes, benthic foraminifers, andlgts. Generally very low porosity:
fenestral, fracture, and moldic.

In situ carbonate conglomerate composégravel-size fragments of
limestone and dolomite. Porosityghily variable depending on amount of
matrix: intergranular, fracture, and moldic.

Intraclast floatstone/ruttsne composed of mostly angular fragments of
laminite, stromatolite, oother carbonate rock types.

Intraclast floatstone/ruttsne composed of rounded to angular fragments of
various limestone rock types. Some with cave cements.

Carbonate mudstone with clotty nostructure, circumgranular cracking,
and fitted clasts. Poorly to nonfdgerous. Very low porosity: fracture
and vuggy. Commonly hard and dense.

Interpretation

Restricted inner shelf.
Intertidal to supratidal.

Restricted inner shelf.
Low-energy tidal flats.

High-energy event.

Mostly shallow inner shelf.
Occasional surges of wave
energy. Peritidal and shallow
subtidal.

Zones of post-depositional
collapse breccia, mostly
associated with large vugs or
caves. Others associated with
dissolution of evaporites in
tidal flats.

Subaerial exposure.
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Figure 3. Hierarchy of depositional cycles within the Avon Park Formation.



Table 2. Nomenclature of stratigraphic cycle hierarchies and order of cyclicity
[Modified from Kerans and Tinker, 1997. <, less than the value; >, greater than the value]

Tectono- . Relative Relative sea-level
: Duration .
eustatic/ : : : S sea-level rise/fall rate
: Sequence-stratigraphic unit (million . .
eustatic cycle cars) amplitude (centimeters per
order y (meters) 1,000 years)
First >100 <1
Second Supersequence 10 - 100 50 - 100 1-3
Third S SIE S e 1-10  50-100 1-10
Depositional sequence
Fourth High-frequency sequence/ 1 4 1-150 40 - 500
High-frequency cycle set
Fifth High-frequency cycle 0.01-0.1 1-150 60 - 700

Table 3. High-frequency cycle types of the Avon Park Formation

High-frequency  General depositional

cycle type setting Description
Less than 1 foot to a few feet thick (15 feet maximum).
Peritidal; very Mostly fining upward sequences. Mostly benthic foram
" shallow subtidal,  wackestone/mud-dominated packstone or benthic foram
Peritidal ) : X : :
intertidal, and grain-dominated packstone/grainstone at the base to
supratidal. stromatolite or laminite at the top. A few cycles capped

by exposure surfaces (caliche and/or microkarst).

From 1 to 10 feet thick. Mostly coarsening upward.
From skeletal wackestone/mudstone-dominated
Open-shelf, shallow packstone or skeletal grain-dominated packstone at the
subtidal. base to grain-dominated paté&ne or grainstone at the
top. Some crossbedding at the top. Some burrowing in
the lower part.

Shallow subtidal

From 10 to 20 feet thick (definition of these high-
Open-shelf, deeper frequency cycles is locallgifficult). From planktic-
Deeper subtidal subtidal; generally foram wackestone at the base to mud-dominated
below wavebase. packstone at the top. Well-preserved laminations in
some places. Other zones highly burrowed.

Sequence-Stratigraphic Analysis 11



was closely related to relative sea-level changes Although calculated zones of high vuggy
recorded by the HFC’s. The overall large-scale  porosity (app. I) are uncommon in the upper
vertical changes in litlogy of the Avon Park composite sequence of the Avon Park Formation
Formation are evidence of lower orders of relative (fig. 4), grainstone and grain-dominated packstone
sea-level changes, reflected in the HFS’s and two lithofacies with a relatively high matrix porosity
composite sequences (fig. 3 and table 2). The hierand permeability is common. These zones are thin,
archical scheme of sequence stratigraphy made however, showing the influence of depositional
from the ROMP 29A test corehole is considered bedding on porosity development. Thus, the upper
tentative (fig. 3). The stratigraphic sections for composite sequence is dominated by carbonate
several other wells in southern Florida would needrock with diffuse flow, but does contain a semi-
to be evaluated to determine which cycles and  confining unit near the middle that corresponds to
sequences defined herein are regionally significantdeeper subtidal HFC’s and the shift from a back-
Excellent correlation between many lithologic units stepping transgressive to a prograding highstand
in the Avon Park Formation in the ROMP 29A test systems tract (fig. 4). The highstand systems tract
corehole and the slightly downdip ROMP 28 test of the upper composite sequence seems to repre-
corehole suggests that the proposed intermediate-sent a slightly deeper position on the platform, and
order cycles may have regional significance. consequently, less vuggy porosity and carbonate
diffuse flow zones. The slightly deeper condition
is suggested by the predominance of subtidal
HFC'’s in the upper composite sequence relative to
Most zones with high vuggy porosity calcu- peritidal HFC’s dominating the lower composite
lated from digital borehole image logs (app. I) are sequence.
located in the lower composite sequence (fig. 4). The maximum-flooding surface of the upper
This relative abundance in vuggy porosity corre- composite sequence (that is, the record of the max-
sponds to a thick carbonate section dominated by imum relative sea-level transgression during Avon
peritidal HFC's that collectively compose the inter- Park Formation deposition) is within an interval of
preted highstand and progradational part of the  deeper subtidal, planktic-foraminiferal wacke-
lower composite sequence of the Avon Park Formatone. This fine-grained unit possibly could form a
tion. These peritidal HFClsave the most abundant regional confining unit thageparates porous zones
amount of grainstones and grain-dominated pack-in the upper Avon Park Formation from those in
stones. Visual examination of core samples and thithe middle and lower Avon Park Formation (fig. 4)
sections suggests thesaigy lithofacies have rela- and may be part of the middle confining unit of
tively high intergranular porosity and relatively Miller (1986).
high matrix permeability. Thus, the carbonate rocks A 115-ft thick-interval (1,070-1,185 ft below
of the lower composite sequence are a heteroge- land surface) of the lower composite sequence of
neous interlayering of thin conduit flow and carbonthe ROMP 29A test corehole has numerous large
ate rock diffuse flow zones, and thus, the lower  vugs (fig. 4 and gp. I). This vuggy interval is
composite sequence also contains the greatest  within the middle and upper part of the thick unit
volume of conduit and carbaieadiffuse flow zones of peritidal HFC'’s (fig. 4). The peritidal HFC’s con-
(fig. 4). The common occurrence of grainstone andain some evidence of tidal flat or supratidal flat
relatively high porosity is more typical of highstand evaporites, such as thin solution breccias, frac-
systems tracts than tisgressive systems tracts tures, and molds of gypsum crystals. Thin evapor-
using the modeled carbonate sequence stratigraphte layers probably dissetéd during an early burial
of Lucia (1999) and the Permian carbonate ramp phase and provided poroasd permeable zones
model of the San Andres Formation, Guadalupe of enhanced ground-water flow, thus promoting
Mountains, Texas and New Mexico as analogue postburial dissolution and creating the vuggy
examples (Kerans and others, 1994). interval.

Relation of Porosity to Sequence Stratigraphy

Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A
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A 162-ft-thick interval between 1,082 and Secondary porosity 3ot as important to
1,244 ft below land surface contains several smalftuid flow as is the preserved intergranular peros
scale faults with mineralized striations or slicken ity, except in the coarse dolomitized intervals,
lines on both surfaces. The mineralized slicken vuggy zones, and open fractures. Minor fossil
lines are composed of a darker material than the moldic porosity is present in the generally fora
host rock and are easily identified on the digital minifer-rich limestone®f the Avon Park Forma
borehole image. The faultgne dip is oblique to  tion, but only a few thin mollusk-rich layers have
the sense of motion on the slickenlines; however, extensive moldic porosity. In echinoid-rich grain
the latter does not havesible steps or other kine stones, intergranular porosity is occluded by
matic features that indicate whether the dominantcoarse syntaxial cement.

motion is normal or reverse. Measurable dips of The 115-ft-thick zone of large vugs (1,070
fault planes range from 33 to 60 degrees, and thergnd 1,185 ft below land surface) in the lower part
is no pattern to the dipmiction. The faults formed of the cored interval of the Avon Park Formation
in the wackestones and packstones, but not in anjfig. 4) shows evidence of a late stage invasion of
of the dolomitized |ayerS. Occurrence of fault d0|0m|t|z|ng ground-watebrines_ A narrow and
structures is pOSSibly ré&d to dissolution of dense zone around mawmygs was do]omitized1
evaporites. These faults along with the fractured and |arge fibrous crystals of strontianite and anhy
dolomites found near the base of the core, large drite grew in the vugs. It seems that this late stage
dissolution cavities, and vugs in the interval from diagenesis created a dense poor|y permeab|e zone
1,070 to 1,185 ft indicate enhanced permeability around many of the vugs. If so, this would
below 1,070 ft. decrease the volume of fluid flow from vug to vug
through time.

Porosity and Diagenesis

The ROMP 29A test corehole penetrated theDcala Limestone
upper 18 ft of a pervasively dolomitized zone of
the lower Avon Park Fmation between 1,226 and The 270-ft-thick Ocala Limestone section
1,244 ft below land surface (app. I). This vuggy Penetrated by the ROMP 29A test corehole (app. I)
and fractured section praig has relatively high  is composed of poorly consolidated carbonate
porosity and permeabilitf.he overlying part of mud-rich limestone of late Eocene age. In south-
the Avon Park Formation, however, has only scat central Florida, the OcalLimestone probably was
tered thin zones of finer crystalline dolomite with deposited in a mid- touter-ramp depositional
relatively low porosity and permeability. Most of €nvironment, generally below normal wavebase.
the Avon Park Formation core shows little alter ~\Wave- or current-winnowed grainy limestones,
ation of the depositional fabric by postburial therefore, are minor in éhOcala Limestone in this
diagenesis. In this area of the carbonate ramp, corehole. Even so, cyclic vertical heterogeneity in
sediments of the Avon BaFormation apparently lithology is charadristic (app. ).
were buried without being subjected to a substan The two principal lithofacies are: (1) large,
tial influx of freshwater. Intergranular and moldic benthic-foraminiferal lummulites and/orLepido-
porosity of 30 to 40 percers still preserved in cyclina) wackestone with a soft micrite matrix;
many grainstones and grain-dominated pack and (2) poorly induratediarge, benthic-foramin

stones. Additionally, max porosity is equally iferal, mud-dominated packstone. Additionally,
high in mud-dominated packstone and wacke  there are some intervals of floatstone and mud- or
stone. Even intraskeletal porosity in many grain-dominated rudstoreomposed of abundant
foraminifers is preserved. However, matrix Lepidocyclina foraminifers. Aother less common
permeability is high only ithe grainy limestones lithofacies is mixed skeletal wackestone with few
(Budd, 2001). or no large foraminiferOther fossils in these

Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A
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lithofacies include planktic foraminifers, small boundary is based on a color change observed

benthic foraminifers, thin-shelled bivalves, in the core (app. 1) and its correlation to the
echinoids, bryozoans, oattodes, and planktic regional sequence boundaries of Loizeaux
crinoids. (1995).
Depositional Sequences and Sequence 3. The upper sequence is composed of 86.5 ft
Stratigraphy (between 499.5 and 586 ft below land-sur
face) of mostly mixed-skeletal wackestone,
The Ocala Limestone of this region is com with minor mud-dominatd packstone, and a
posed of deeper subtidal depositional cycles con 2-ft-thick layer ofLepidocyclina floatstone
taining at least two orders of frequency. Loizeaux at 541.5 ft. This sequencensists of at least
(1995) and Budd (2001) traced three lower three higher frequency units. The upper
frequency depositional gaences within the Ocala boundary of the sequence is a regional uncon

Limestone across west-cegitFlorida east to the
ROMP 28 test corehole in Highlands County.
Loizeaux (1995) designat#itese major coarsening-
and shallowing-upward depositional units as likely
third-order sequences.

formity at the top of the Ocala Limestone.

Within each “third-order” sequence,
Loizeaux (1995) tentatively defined two to three
higher order, coarsening-upward, depositional

Using the nearby ROMP 28 test corehole forcycles. Typically, the lgh-frequency depositional
comparison, three depositidrs@quences also can cycles are 15- to 50-ft thick and consist of large,
be defined in the Ocala Limestone of the Romp  foraminiferal wackestone overlain by large foram
29A test corehole: mud-dominated packstondsing the criteria of
1. The lower depositional sequence overlying theLoizeaux (1995), the lowesequence of the Ocala

unconformity at the top of the Avon Park  Limestone in the ROMP 29A test corehole tenta

Formation consists praipally of 91 ft of tively can be divided into six higher frequency

large, benthic-foraminiferal wackestone units, the middle sequence into seven, and the

between 679 and 770 ft. Most of the lower upper sequence into three units. The significance
55ftis well laminated with alternating layers of textural changes ia middle to outer-ramp,

of light gray and darker grayummulites large, foraminiferal buildup is problematic.

wackestone. Mostly above 715 ft, the

higherfrequency unitsansist of nonbedded

(presumably highly bioturbated)epidocy-

clina-Nummulites wackestone that coarsens

upward tolepidocyclina-Nummulites mud- The Ocala Limestone near the ROMP 29A
dominated packstone. The top 8 ft of the  test corehole is composed entirely of carbonate

Ocala Limestoneansists of larg&epidocy-  mud-rich rocks. Much of the original high matrix

clina floatstone and rudstone. porosity, however, is preserved. Porosity of
2. The middle sequence consief®3 ft (between thelime mud-rich rocks of the Ocala Limestone

586 and 679 ft below land surface) of lime typically ranges from 30 to 40 percent (Loizeaux,

stone with at least seven higher frequency 1995). By contrast, matrigermeability and veri

units. Each higher frequency unit generally cal hydraulic conductivitgre low in the mud-
consists of 93 ft oEepidocyclina wacke dominated lithofacies dhe Ocala Limestone in
stone with a thin cap dfepidocyclina mud-  west-central FloridélLoizeaux, 1995; Budd,
dominated packstone. The upper sequence2001).

Relation of Porosity and Permeability to
Sequence Stratigraphy

Sequence-Stratigraphic Analysis 15



For this area of deeper subtidal depositional REGIONAL DISTRIBUTION OF TRANS-
cycles, zones of enhanced porosity and permeabiif|SS|VITY IN THE NORTHERN LAKE
ity would seem unlikely in the Ocala Limestone, OKEECHOBEE AREA
regardless of location in the depositional systems
tracts. The Ocala Limestone is considered to be a
semiconfining unit in thROMP 29A test corehole

(fig. 2). Loizeaux (1995)acognized part of the ASR injection and recovery in sogth_ern Florida
Ocala Limestone as alaively impermeable are reported to range froa lower limit of 5,000

barrier in west-central Elorida. to 7,000 ft/d to an upper limit of 30,000 to
50,000ft?/d (Reese, 2002, p. 40; T.M. Missimer,
Missimer-CDM, Inc., oral commun., 2001).

Suwannee Limestone Therefore, maps showing the spatial distribution
of transmissivity within likely water-bearing stor

In the area where the ROMP 29A test eore age zones are useful todket could be used to
hole was drilled, only a thiarosional remnant of ~guide CERP regional ASRell siting activities.
shallow marine Suwannee Limestone overlies theA number of different eleemts are reported to
unconformity at the top dhe Ocala Limestone. influence the distribution of transmissivity in the
In the ROMP 29A test corehole, three higher fre Floridan aquifer systergMiller, 1986). Properties
guency units are recognized (app. I). The two  that influence the regional distribution of transmis
lower units consist of the basal unit of the Suwan sjvity in the Floridan aquifer system include the
nee Limestone, which iszi.5-ft-thick interval of  original lithologic characteof the carbonate rock,
white, slightly silty,mollusk floatstone and lime  carhonate depositional patterns, subsequent
mud-dominated rudstor(@pp. I). Molds of whole  gjagenesis including dainitization, widening of

bivalves and gastropods are abundant, and echi ¢, res and joints by solution, and other types
noid fragments are common. Moldic porosity is of karstification

high, but permeability probably is low because the ' o
molds do not seem to be well connected. Estimates of transmissivity for the Upper
Floridan aquifer (table 4) were derived by analyz

a 17-ft-thick interval thatoarsens upward from ing aquifer-test data pubhed in the Iitera_lture
silty and sandy skeletaiud-dominated packstone (Shaw and Trost, 1984; Southwest Florida Water

to silty and sandy skeletal grain-dominated pack Management District, 2000). Transmissivities
stone to silty and sandy miliolid-echinoid grain ~ derived by Shaw and Trost (1984) were estimated

stone. Molds of gastropods and bivalves are using the Theis analyticafuation; transmissivity
common at the top of thidepositional cycle. The estimates obtained frometSouthwest Florida
intergranular porosity ahe grainstone estimated Water Management District (2000) were derived
in this thin section isnly 10 to 15 percent because using various analyticahethods including those
much of the pore space is occluded by syntaxial of Theis (1935), Coopemnd Jacob (1946), and
echinoid overgrowths. Jacob (1946) for confinealquifers. Analytical
Irregular vertical cavities at the top of this  Methods by Hantush addcob (1955) and by Wal

thin remnant of the Suwannee Limestone are-infillon (1962) were usedfi@emiconfined, leaky,
trated by silt of the Hawthorn Group. These-fea hydrologic conditions. Timeonstraints were pro
tures, probably microkarst, were produced duringvided for only a preliminary analysis of regional
subaerial exposure, which followed extensive erotransmissivity patterns within the Upper Floridan
sion of the Suwannee Limestone and preceded aquifer. Additional data extending over a wider
deposition of the shallowarine silt and sand of area could improve thenderstanding of regional
the basal Hawthorn Group. transmissivity patterns.

Optimum transmissivities for successful

The upper higher frequency unit (app. I) is

Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A
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Table 4. Data for selected wells

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

. Total
. . Diameter Casing well .
Well name Latitude Longitude . depth Formation
(inches) depth
(feet)
(feet)
Charlotte County
Cecil Webb Romp 5 265645 0814828 12 720 970 Suwannee
North Port Deep 574045 (821442 1,100 2,000  Avon Park
Injection Well
North PortDeep 7045 (1821442 1,100 3,200  Avon Park
Injection Well
North PortDeep 2045 (821442 560 1,100 Suwannee
Injection Well
North Eort Deep 270043 0821442 560 1,600 Suwannee/Ocala
Injection Well Avon Park
Collier County
C0O-2080 260249 0814145 12 360 1,608 Avon Park
C0-2080 260249 0814145 12 360 1,608 Hawthorn
C0O-2080 260249 0814145 12 360 1,608 Lower Hawthorn
C0-2080 260249 0814145 12 360 1,608 Ocala
C0O-2080 260249 0814145 12 360 1,608 Suwannee
C0-2081 260952 0814107 12 318 1,616 Lower Hawthorn
CO-2081 260952 0814107 12 318 1,616 -OWerSuwannee
Ocala
C0-2081 260952 0814107 12 318 1,616 Suwannee

Transmis-
Zone Type Anaytical sivity,
of (feet
tested method
test squared
per day)

720-970 APT Hantush 2,616

1,100-2,000 Packer 150,348
1,100-3,200 Packer 255,940
560-1,100 Packer 8,978
560-1,600 Packer 72,226
1,345-1,606 Packer 5,762
465-530 Packer 26,800
680-760 Packer 14,740
1,180-1,220 Packer 62,980
930-1,020 Packer 6,700
630-720 Packer 1,340
1,250-1,616 Packer 13,400
945-1,000 Packer 4,020
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Well name

Amax

DeSoto Land &
Cattle

Fort Ogden Test Site 1
Horse Creek ROMP 1

Long Island Marsh
ROMP 15

North Grove PW-1

Peace River Well
0414-5847

Prairie Creek ROMP 1

ROMP 9.5

Sunpure Groves
Well 101

Sunpure Groves
Well 201

Latitude Longitude

271439

270413

270417

271028

271233

270501

270402

270228

270737

270314

270502

0820253

0814009

0815901

0815835

0813922

0813520

0815956

0814432

0820250

0813413

0813410

Total
well
depth
(feet)

Formation

DeSoto County

Diameter Gy
(feet)
24 280
12
20 160
(9951430 1430
10 576
12 650
124
(101,100 11
(50%—2800) 800
10 638
8 688

1,550

1,600

1,090

1,430

880

1,544

1,072

1,133

801

1,547

1,154

Ocala/Avon Park

Suwannee/Ocala
Avon Park

Suwannee/Ocale

Suwannee

Suwannee/Ocale

Suwannee/Ocala
Avon Park

Avon Park

Suwannee

Avon Park

Zone
tested

670-780

725-909

505-801

Type
of
test

APT

APT

APT

APT

APT

APT

APT

APT

Transmis-
. sivity,
Anaytical (feet
method
squared
per day)
160,800
13,400
Theis
3,618
112,158
10,988
Hantush
Hantush
301,500
132,660
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Well name

Tippen Bay ROMP 13 270419
Tropical River Groves 271628

Wilson 271405
273446

CF Industries

CF Industries (101) 273446

Estech 273818
Farmla:ltlj:_I;dustries 272841
Lily ROMP 25 272159
Lily ROMP 25 272159

Mississippi Chemical 273024

USSAC-S

Rockland Mine Zrselt

Latitude Longitude

Casin Total
Diameter d g well . Zone
: epth Formation
(inches) depth tested
(feet) (feet)
0813658 6 674 786 Suwannee 671-786
0813714 12 175 1,340 Suwannee/Ocale
0814532 Floridan
Hardee County
0815851 Avon Park 1,500-1,702
0815851 20 514 1,175 Avon Park 950-1,175
0820149 14 950 1,320 Ocala/Avon Park
0815403 18 472 1,400 Ocala/Avon Park 1,000-1,400
0820025 12 1,785 1,911 Avon Park 970-1,785
(960-1,785 ’ ’
0820025 12 676 1,911 Suwannee 305-675
(300-676) ’
0820145 10 700 1,100 Ocala/Avon Park 750-1,100
0815201 24 400 1,050 Ocala 700-1,050

Type

of
test

APT

APT

APT

APT

APT

APT

APT

APT

APT

APT

APT

Transmis-
. sivity,
Anaytical (feet
method
squared
per day)
Hantush 2,358
268,000
844,200
188
268,000
103,180
Hantush-
Jacob 70,752
Hantush
Hantush
134,000
9,353,200
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Well name Latitude Longitude I?iir?g;]eetse)r
Consolidated Tomoce 271252 0812030 10
FPC Avon Park 273446 0812925 12
Hic((\)/(/iglioovg 14 570015 0812130 10
Hic((\),(,i;&OoMgF; 14 570015 0812130 8
HIF-1 271335 0810520 6
HIF-39 272158 0810827 10
HIF-39 272158 0810827 10
HIF-41 272655 0812132 16
Sebring 273028 0812630 8
;:85;}‘:?'65;"8‘9&6 271623 0812528 12
W-2859 273040 0812800 14

Casing
depth
(feet)

Total
well

depth

(feet)

Formation

Highlands County

682

425

1,003

650

450

370

370

420

520

397

464

1,682

1,492

1,670

730

640

1,332

1,332

1,205

1,400

1,317

1,400

Suwannee/Ocala
Avon Park

Ocala/Avon Park

Avon Park

Suwannee

Lower Hawthorn/
Suwannee

Suwannee/Ocala
Avon Park

Suwannee/Ocala
Avon Park

Suwannee/Ocala
Avon Park

Ocala/Avon Park

Suwannee/Ocala
Avon Park

Suwannee/Ocala
Avon Park

Type
of
test

Zone
tested

APT
APT

APT

APT

450-640 Single well

370-1,332 Single well

370-1,332 Single well

420-1,205 Single well
APT

APT

464-1,400 Single well

Anaytical
method

Theis

Theis

Theis

Theis

Theis

Transmis-
sivity,
(feet
squared
per day)

69,680

7,598
6,579
3,082

14,746

22,116

5,494

26,800

8,308
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Transmis-
Casing Vil Type sivity
Well name Latitude Longitude D_|ameter depth el Formation Zone of ATEVIEE] (feet
(inches) depth tested method
(feet) test squared
(feet)
per day)
Lee County
LM-1527 262624 0820639 4 750 770 Suwannee 760-775*  APT Jacob 13,132
Hantush-
LM-1527 262624 0820639 4 750 770 Suwannee 760-775*  APT Jacop 10,586
LM-1527 262624 0820639 4 750 770 Suwannee 760-775* APT  Walton 10,988
LM-1622 264003 0820859 16 365 963  Lower Hawthorn APT  Walton 8,040
LM-1914 263100 0815444 6 0 0  Lower Hawthorn APT 12,328
LM-1980 262242 0814918 8 350 660 Lower Hawthorn APT H?g;‘(‘;h'
LM-1980 262242 0814918 8 350 660 Lower Hawthorn APT Semilog- g4,
Recovery
Theis-
LM-1980 262242 0814918 8 350 660  Lower Hawthorn APT 8,078
Recovery
LM-1980 262242 0814918 8 350 660 Lower Hawthorn APT Theis 7,772
LM-2041 262243 0814921 4 350 620  Lower Hawthorn APT H?Qf;(‘)sbh' 7.772
LM-2213 263738 0820200 10 360 863  Lower Hawthorn APT 7,236
LM-2213 263738 0820200 10 360 863 Suwannee APT 6,700
LM-2221 263740 0820115 4 360 fpg  LBMEL R APT 13.936

Suwannee
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Well name

LM-2417
LM-2418
LM-2419
LM-2420
LM-2421
LM-2422
LM-2423
LM-2424
LM-2425
LM-2426
LM-2427
LM-2428
LM-2464
LM-2464
LM-3249
LM-3273
LM-3508

Latitude Longitude

263532
263532
263533
263533
263533
263533
263533
263720
263720
263720
263720
263722
262707
262707
264147
264128
264124

0820020
0820007
0815948
0815918
0815904
0815849
0815835
0820049
0820028
0820015
0820002
0815947
0820732
0820732
0820119
0815631
0815631

Diameter
(inches)

12
12
12
12
12
12
12
12
12
12
12
12

4

4
12
12

Casing
depth
(feet)

450
440
495
490
508
510
515
599
599
590
520
558
665
665
500

0
785

Total
well
depth
(feet)

707
700
722
710
720
720
642
764
742
765
702
782
905
905
735
800
1,100

Formation

Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Lower Hawthorn
Suwannee
Lower Hawthorn
Lower Hawthorn

Suwannee

Zone
tested

Type
of
test
APT
APT
APT
APT
APT
APT
APT
APT
APT
APT
APT
APT
APT
APT
APT
APT
APT

Anaytical
method

Transmis-
sivity,
(feet
squared
per day)

2,412
8,509

2,278
4,406
6,566
3,216
9,112
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Transmis-
Casing Tzl Type sivity
Well name Latitude Longitude D_|ameter depth el Formation Zone of ATEIEE] (feet
(inches) depth tested method
(feet) test squared
(feet)
per day)
LM-3513 262838 0820943 16 616 682 Lower Hawthorn APT 1,822
LM-944 262753 0820910 10 440 608  Lower Hawthorn APT H?ggésbh' 2,090
LM-944 262753 0820910 10 440 608 Lower Hawthorn APT Jacob 2,358
LM-987 262625 0820641 12 660 774  Lower Hawthorn APT 4,020
LM-987 262625 0820641 12 660 774 Suwannee APT 5,896
LM-988 262624 0820639 4 660 775 Lower Hawthorn APT Jacob 10,988
LM-988 262624 0820639 4 660 775 Lower Hawthorn APT Jacob 11,792
Hantush-
LM-988 262624 0820639 4 660 775 Lower Hawthorn  660-715 APT Jacob 11,122
LM-988 262624 0820639 4 660 775 Lower Hawthorn  660-715 APT Walton 10,988
Manatee County
4-Corner Mines Suwannee/Ocala
Well CB-8 272324 0821140 522 1,200 Avon Park APT 261,300
Beker 273030 0820845 12 750 1,225 Ocala/Avon Park APT 61,640
Bradenton WWTD 7504 0824102 24 1,067 1,659 Avon Park APT 281,400
Injection Well
Elsberry Farms 520616 0821742 12 0 Ay CUNEMEHOEE APT 45,560
Test Site 5 Avon Park



ve

3|0ya10D 1591

v6z (dINOoY) welboid Bulioliuoy uoieAlasqQ euolbay ayl Jo sisAjeuy olydeibneiis-souanbag

Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Transmis-
Casing et Type sivity
Well name Latitude Longitude D_|ameter depth el Formation zone of AL (feet
(inches) depth tested method
(feet) test squared
(feet)
per day)
FP&L-Willow 273815 0821930 12 S IRC o e S OE S APT 116,580
Avon Park
Hecht Ranch 273726 0822533 200 900 Suwannee/Ocale APT Jacob 134,000
L-3 Farms 273531 0821833 503 1,264 Suwannee/Ocale APT 91,522
Long Creek Farm 272414 0820546 8 632 1,405 Avon Park APT 74,638
Myakka City 272233 0821044 16 600 1500 Suwannee/Ocala APT 134,000
Pacific Tomato Avon Park
Oneco ROMP 75615 0823301 12 358 700 Suwannee 358-700 ApT  COOPer g 04
TR 7-2 Jacob
Rubonia ROMP Suwannee/Ocala
TR 81 273459 0823246 8 462 1,260 ey APT 2,948
Rutland Ranch ;25018 0322036 200 1,050 Suwannee/Ocals APT 44,488
Test Site 4
Waterbury-Kibler
ROMP 33 272728 0821526 12 404 750 Suwannee APT Jacob 3,954
Okeechobee County
OKF-13 273043 0804400 10 600 Ocala/Avon Park  600-1,200 Single well Theis 74 504
OKF-15 271934 0805913 8 375 1,600 oWerHawthom/ oo, 600 singlewell Theis 4 288
Suwannee |
OKF-18 272726 0810039 8 255 1,015 LowWerHawthom oo 015 Singlewell Theis 3616

/Suwannee
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Well name

OKF-26

OKF-27

OKF-34

OKF-54

ORF-43

OSF-10

OSF-11
OSF-11

Latitude Longitude

271830

271830

273217

273740

283343

282531

282352

283100
282622

281937

280905
280905

0804935

0804935

0810126

0805512

0812227

0810957

0813132

0812200
0811828

0812501

0812701
0812701

Diameter

(inches)

12

12

10

12

12

12
12

16

. Total
Casing well
depth Formation
depth
(feet) (feet)
625 825 Suwannee/Ocale
477 725 Suwannee/Ocalg
276 1,143 Lower Hawthorn/
Suwannee
260 973 Lower Hawthorn/
Suwannee
Orange County
No data
296 300 Lower Hawthorn
Suwannee
237 910 Suwannee/Ocals
88 350 Suwannee/Ocals
211 500 Suwannee/Ocals
Osceola County
278 458  Suwannee/Ocalé
134 398 Suwannee/Ocale
134 398 Suwannee/Ocalé

Zone T)(/)?e
tested
test

625-825 Single well

477-725 Single well

276-1,143 Single well

260-973  Single well

Multiple
well

Multiple

226-300
well

Multiple

237-910
well

88-350
211-500

Single well

Single well

278-458 Single well

134-398 Single well

134-398 Single well

Anaytical
method

Theis

Theis

Theis

Theis

Theis

Theis

Theis

Theis
Theis

Theis

Theis
Theis

Transmis-
sivity,
(feet
squared
per day)

858
670

6,834

415,408

670,000
59,630

79,060

60,970
32,562

141,102
8,174
4,154
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Well name

OSF-2

OSF-25
OSF-26
OSF-27
OSF-31
OSF-42

OSF-44

OSF-54

OSF-55

OSF-9

POF-2

POF-4

POF-7

Latitude Longitude

281802

281955

281159
282051
281719
274307
281456

275634

280533

281937

281511

280229

275805

0813516

0813707

0811428
0811332
0811340
0805824
0811717

0811027

0810410

0812459

0813931

0813252

0813219

Diameter
(inches)

10

10

o O 00 O

10

13

16

. Total
Casing well
depth Formation

depth

(feet) reer)
85 Suwannee/Ocala

Avon Park
99 300 Suwannee/Ocale
322 622 Suwannee/Ocale
373 463 Suwannee/Ocale
239 474 Suwannee/Ocale
218 767  Suwannee/Ocale
481 614 Suwannee/Ocale
249 869 Lower Hawthorn{
Suwannee/Ocale
354 891 Suwannee/Ocale
283 1,195 Suwannee/Ocale
Polk County

358 447  Suwannee/Ocale
146 453 Lower Hawthorn/

Suwannee/Ocale

Zone
tested

85-365

99-300
322-622
373-463
239-474
218-767

481-614

249-869

354-891

Type
of
test

Single well

Single well
Single well
Single well
Single well
Single well

Single well

Single well

Single well

283-1,195 Single well

358-447

146-453

Single well
Single well

Single well

Anaytical
method

Theis

Theis
Theis
Theis
Theis
Theis

Theis

Theis

Theis

Theis

Theis

Theis

Theis

Transmis-
sivity,
(feet
squared
per day)

124,754
27,068
51,188
7,772
24,254

11,256

37,386
77,452

60,032

55,476

4,958
66,330

2,010
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

. Total
. . Diameter Sy well . Zone
Well name Latitude Longitude . depth Formation
(inches) depth tested
(feet)
(feet)
Sarasota County

Atlantic Utllities 21 g50 5890821 1,480 1,902 Avon Park

Test Well
Englewood IW-1 265712 0822057 1,040 1,600 Ocala/Avon Park
Englewood IW-1 265712 0822057 1,040 1,800 Ocala/Avon Park
Geronimo ROMP 24921 0822342 6 510 700 Suwannee

TR 5-7

Knight Trail Pk 26959 0822436 1509 1,915  Avon Park

Exp. Well

Murdock N.W. ~

ROMP 18 271135 0820748 10 57 1,100 Suwannee/Ocale 670-890

Northport ROMP 9 7/34 0820856 12 545 860 Suwannee 545-860
(MW-5)

Osprey ROMP 20 271138 0822845 6 500 1,480 Avon park 1,220-1,405
Osprey ROMP 20 271138 0822845 12 500 840 Suwannee
Osprey ROMP 20 271137 0822845 6 500 1,480 Avon Park 1,220-1,305
Osprey ROMP 20 271137 0822845 6 500 1,480 Avon Park 1,300-1,405

Type
of
test

APT

APT

APT

APT

APT

APT

APT

APT
APT
APT

APT

Anaytical
method

Theis,
Jacob,
Hantush

Transmis-
sivity,
(feet
squared
per day)

4,958

48,106

80,132

13,333

300,696

16,080

7,276

21
20,502

21
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Table 4. Data for selected wells (Continued)

[Data modified from Shaw and Trost (1984), SWFWMD (2000), Michael Beach, SFWMD, written commun., 2002; and Emily Hopkins, SFWMD,
written commun. 2002. APT, aquifer performance test. Absence of numerical values means data were not included in this report]

Well name

Osprey ROMP 20
Plantation DITW

Utopia Romp 22

Utopia ROMP 22

Latitude

271137

270414

271813

271813

Venice GardensDIW 270415

3Egtimated.

Longitude

0822845

0822138

0822013

0822013

0822332

Diameter
(inches)

12

Casing
depth
(feet)

500

1,102

940

409

1,388

Total
el Formation ZBNE
depth tested
(feet)
1,480 Avon Park 1,430-1,480
1,605 Ocaa/Avon Park
1,685 Avon Park 1,200-1,660
635 Suwannee 400-635
1,705 Avon Park

Type

of
test

APT

APT

APT

APT

APT

*Discrepancy noted between casing depth and zone tested. To be updated following receipt of corrected values from source of data.

Transmis-
. sivity,
Anaytical (feet
method
squared
per day)
113
67,161
Jacob 201,000
Cooper-
Jacob/
Jacob- 9,648
Hantush
24,120



The thicknesses of opdtole aquifer-test
intervals varied from as little as 1 ft to as much asand a cursory examination of the nearby ROMP 28
2,250 ft (fig. 5). For examp| most transmissivity

estimates are based on open-hole intervals that

range between 101 aidDOO ft thick (fig. 5).

However, the large opemsle thickness present in

most wells prohibits hydraial evaluation or direct

comparison of discrete flow zones within the

stratigraphic section.

For purposes of this analysis, the Upper

Floridan aquifer is divided into upper and lower

zones (fig. 2). The upper zorgeconsidered to rep

resent open-hole well conitins contained within

the lower part of Hawthorn Group, Suwannee
Limestone, and Ocala Liestone. The lower zone
includes open-hole well intervals in the Ocala

Limestone and Avon Park Formation. This arbi
trary division into upper and lower zones is basedbecause they could not be clearly separated into
partly on comparison ahajor hydrogeologic

35

30

25

20

15

NUMBER OF WELLS

10

units identified in the ROMP 29A test corehole

test corehole, suggesting subregional flow zone
continuity. An important assumption in the follow
ing discussion is that fl@ zones identified in
ROMP 29A are relatively continuous and are-rep
resentative of subsurfacerditions in a wide area
that extends northwest, north, and northeast of
Lake Okeechobee.

Contour maps showing the configuration and
extent of different geologand hydrogeologic units
were used to assign aquitest data to specific geo
logic or hydrogeologic uts (Miller, 1986). Based
on the assignment of easfell’s open-hole interval,
the estimated transmissivity was mapped for the
upper and lower zones (figs. 6 and 7, respectively).
Some wells were not included in this analysis

upper and lower zones of the Upper Floridan aquifer.
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THICKNESS OF OPEN-HOLE INTERVAL, IN FEET

Figure 5. Distribution of the thickness of open-hole interval.
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An arbitrary boundary of 10,000°&i was used to 10,000 ft/d in most wells opeto the upper zone
separate transmissivities @pen-hole intervals that in Osceola, Hardee, Manatee, and Collier, Lake,
differ by at least one order of magnitude. An “orderand Orange Counties (fig. 6).
of magnitude” tansmissivity boundary has been Hydraulic data for the lower zone of the
shown to be well suited to map regional transmis Upper Floridan aquifer are more limited, both in
sivity patterns within the Floridan aquifer system terms of available “Apn Park” control points
(Bush and Johnston, 1988). (table 3 and 4) and a malimited spatial distribu
_ o tion (fig. 7). Accordingly, it is more difficult to

Regional transmissivitgf the upper zone  5.coq5 regional transmissivity patterns. Transmis
appears to be less than 10,06@ifin areas nearest sivity of the lower zone exceeds 10,000dn
to Lake Okeechobee. Transmissivity of the upper most wells located iManatee, Hardee, DeSoto,
zone is less than 10,008/é in most wells located and Sarasota Counties. The transmissivity of the
in Charlotte, Highlands, Lee, Okeechobee, and  |ower zone in one welh Okeechobee County and
Sarasota Counties. Transmissivity of the upper in one well located in Charlotte County exceeds
zone increases in areas north and northwest of 10,000 ft/d. Transmissivity of the lower zone is
Lake Okeechobee and in parts of coastal Lee andess than 10,0004t in most wells drilled in
Collier Counties. Transmissivity is greater than  Highlands County.

SUMMARY AND CONCLUSIONS

This report describes the lithology for part of sequences. The high-frequency depositional
the Upper Floridan aquifer penetrated by the sequences contain high-frequency cycle sets that
ROMP 29A test corehole in Highlands County, are an amalgamation wértically stacked high-
Fla. A conceptual hydrogeologic model of flow  frequency cycles. Three types of high-frequency
zones and confining units in the Upper Floridan cycles have been identified in the Avon Park-For
aquifer is delineated ithe context of a sequence- mation: peritidal, shallow subtidal, and deeper
stratigraphic framework. The sequence-strati subtidal high-frequency cycles.
graphic framework developed for the ROMP 29A The vertical distribtion of carbonate-rock
test corehole serves as@mparative guide to the  jiffuse flow zones within the Avon Park Forma
correlation of a regional carbonate sequence-stratigy is heterogeneous. Porous vuggy intervals are
graphic framework of th&loridan aquifer system. 5| |ess than 10 ft thick and most are much thinner.

The ROMP 29A test corehole penetrated  The volumetric arrangement of the zones of dif
several geologic units mging in age from middle fuse flow shows that most occur in the highstand
Eocene to Pliocene including the Avon Park-For systems tract of the lower composite sequence of
mation, Ocala Limeston&uwannee Limestone, the Avon Park Formation as compared to the upper
and the Hawthorn Group. The portion of the Avoncomposite sequence, which contains both a-back
Park Formation penetratéathe ROMP 29A test  stepping transgressivestgms tract and a prograd
corehole comprises two composite depositional ing highstand systems tract. The diffuse flow
sequences. A transgressive systems tract and a zones are characterized ggainstone and grain-
highstand systems tract were interpreted for the dominated packstoneHiologies. Although the
upper composite sequence, but because of depthporous and permeable layers are not thick, some
limitations, only a highstand systems tract was intervals may exhibit extensive lateral continuity
interpreted for the lower composite sequence.  because they were deposited on a flat-lying, low-
Thecomposite depositiohgequences are cem relief ramp. A thick interval of thin vuggy zones
posed of at least five high-frequency depositional and open faults forms thin conduit flow zones

Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A
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mixed with relatively thicker carbonate-rock continuity difficult. However, regional transmis
diffuse flow zones between a depth of 1,070 and sivity patterns could bevaluated by assigning
1,244 ft below land surface (corresponding to the open-hole intervals to geralized rock-strati

total depth of the test corehole). This interval is thegraphic units and hydgeologic units. On the

most transmissive part tife Avon Park Formation basis of a preliminary analgsof aquifer-test data,
penetrated in the ROMP 29A test corehole and isthere appears to be a spatial relation among wells
included in the highstand systems tract of the  that penetrate water-bearing rocks having-rela
lower composite sequence. tively high and low transmissivities. The transmis

Three lower order depositional sequences sivity in an upper zone # is composed of rocks
are defined in the Ocala Limestone cored in the within the lower Hawthorn Group, Suwannee
ROMP 29A test corehol@he Ocala Limestone is Limestone, and upper pant the Ocala Formation
mostly composed of deepsubtidal depositional is generally less than 10,008/d in areas south of
cycles. The formation is considered a semicenfin a line that extends through northern St. Lucie,
ing unit because zones sécondary porosity and Okeechobee, Osceola, Polk, Highlands, DeSoto,
permeability are not common. A thin erosional  Sarasota, and Charlotte Counties. Limited data
remnant of shallow marine Suwannee Limestone have been compiled for a lower zone water-bear
overlies the Ocala Limeste. Permeability of the ing unit that includes the lower part of the Ocala
Suwannee Limestone seems to be low because itsormation and the Avon Park Formation; aceord
pore system is characterized by poorly connectedngly, transmissivity paéirns cannot yet be region
moldic porosity. ally assessed.

Geophysical log and aquifer test data col Implementing carbonate sequence stratigra
lected in Highlands County and elsewhere were phy in this study enabled the development of an
compared to assess regional relations between accurate stratigraphic im@etation, which can be
geology, hydrogeology, and transmissivity. Unfor integrated into a conceptual model of the subsur
tunately, most aquifer tests have been conducted iface carbonate aquifer. As a result, it is concluded
wells having open-hole intervals that range from that using carbonate geence stratigraphy can
250 to 1,200 ft thick, making comparison of-dis  reduce the risk of miscorrelation of key ground-
crete flow zones and assessment of their regionalwater flow zones and confining units.
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Detailed lithologic logs (410-1,244 feet)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (410-430 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (430-450 FEET
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (450-470 FEET
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (470-490 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (490-510 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (510-530 FEET
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (530-550 FEET
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (550-570 FEET
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (570-590 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (590-610 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (610-630 FEET
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (630-650 FEET)

Sequence Texture Pore
c  strati- Computed HFC [c m s vf f m ¢ g p|Polomite Type Significant | Caliper (inches) Natural Gamma
c € graphic |YU9POrosty DBl | Top [ mwpgtrh ® e =940, features (counts per second)
6320 £ 8 norizons oo ™ o vels| 50 |EoBefl 858 0 8| 0 100
| ] %
| ] \'\
| o . {
c >
17 - ,
| = : )
640 —f — \
1 &) L
| ] §
_ L §
N L
i F,
] L
650 ('

Appendix |
Page 12




DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (650-670 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (670-690 FEET
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DEPTH, IN FEET BELOW LAND SURFACE
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ROMP 29A (690-710 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (710-730 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (730-750 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE

ROMP 29A (750-770 FEET)
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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DEPTH, IN FEET BELOW LAND SURFACE
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APPENDIX I

Digital photographs of core box samples (0-1,244 feet)
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Geophysical and image logs, 1:360 scale




Appendix lll: Geophysical and image logs, 1:360 scale
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