Documentation of the
Everglades Landscape Model:
ELM v2.5

Chapter 10: User’s Guide

O H K

opensource Linux OS X

/"' '1 i

L meﬂﬁmeﬂr__;
! Cale

GRASS

http://my.sfwmd.gov/elm

July 10, 2006

ELM v2.5: User’'s Guide

Chapter 10: User’s Guide

Chapter 10: USEI'S GUIAEceeiveeieiie ettt nns 10-1
10.1 OVEIVIBW ...ttt sttt bttt ne e st et ne et e e beeneesreenas 10-2
10.2 Computing ENVIFONMENTcvviieiieieere e e see e te e e re e e e e nee e nnas 10-3

10.2.1 HAIAWATE ...ttt ettt eas 10-3
10.2.2 SOTIWAIE ...ttt 10-3
10.2.3 RUNIIMES ..ottt ettt enes 10-4
10.3 Installing the MOdel...........c.oovee i e 10-4
10.3.1 SEANAAIG ..o et 10-4
10.3.2 CUSIOM .o 10-4
10.4 RUNNING the MOGEL.......ccuiiiiiieie e s 10-5
10.4. 1 QUICK STAIt....ccviiiiieieccec et 10-5
10.4.2 Runtime configuration filescccooviiiiiiiiiiie e 10-5
O TS o) o £SO 10-6
10.5 Input data MOdIfICAtIONeeiuiiiiiiieiiee s 10-8
10.5.1 DaAtADASESeveveerieiiieiieste st 10-8
10.5.2 GlIS et enes 10-9
106 OULPUL .ottt bbbt 10-10
10.6.1 QUICK STAIt....ccoviiiiiciie e 10-10
10.6.2 OULPUL FIlE SLIUCTUIEcvee e 10-10
10.6.3 Debug (errors and Warnings)cccceeceereerenieenieesesie e sesseeseesieseens 10-11
10.6.4 Spatial: Basin & Indicator Region (BIR) time Series...........cccocvevvennnne 10-12
10.6.5 Spatial: Domain-wide map time SEriescccovrverrieeririesieeiesie e 10-14
10.6.6 Spatial: Point (grid cell) time SErieS........ccccvriverveieiieieere e seese s 10-15
10.6.7 Spatial: Canal (Vector) time SEriesSccceveereriiereeni e 10-16
10.6.8 Spatial: Structure (point/cell) flow time Seriesccccvvvevivevesiennnns 10-16
10.7 Advanced appliCatiONS.........ccooueiieiieiie e e 10-17
10.7.1 SeNSItIVILY @NAIYSIS......cccveiveiiiieiieii e 10-17
10.7.2 Evaluating project alternatives..........ccccoeoeiieieiinnieiisie e 10-17
10.7.3 New subregional appliCations............cccovveereerieiiieneere e 10-18
O TN o] o =10 o) PSSP 10-20
10.8.1 Driver.parm configuration file.........cccceveiieiiiiieiieccee e 10-20
10.8.2 Environment variablescoooiiiiiiiiiii e 10-23
10.8.3 DireCtory/file SIrUCIUIE........ccveieceece e 10-23
10.8.4 Software reCoOMmENUALIONS..........ceiirieiiriieie et 10-24

10-1

ELM v2.5: User’'s Guide

10.1 Overview

The ELM is a freely available, “Open Source” project that we hope will be used and
modified by others in the scientific community in a collaborative spirit. Other Chapters
of the Everglades Landscape Model (ELM) documentation describe the input data,
scientific algorithms & source code, model performance, and other material. This
Chapter is intended to instruct users on the steps needed to install and apply the ELM in
historical (e.g., calibration) simulations.

To use the ELM, one starts with a computer running some “flavor” of the unix operating
system (such as Linux). Basic familiarity with unix is required, but advanced expertise is
not absolutely necessary. The ELM is installed from a single script that extracts data and
code from two compressed file archives. The executable is then built (compiled &
linked) from a script, and the model is ready to go.

In the most common/simple application of ELM, a single script is run to verify what
output is desired, execute a model run, and archive the results. The user is guided
through the several fundamental checks of model output to verify that the model indeed
performed as expected. The outputs are described, covering a range of spatial and
temporal scales of the landscape. Their interpretation is dependent on an understanding
of the science of ELM covered in the other Chapters of this documentation.

As should be apparent from this and other Chapters of the model documentation, the
ELM was designed to be applied by modifying databases, not the model source code.
“User-friendly” supporting databases are available to select different outputs, change
parameters, or explore/edit aspects of the supporting data. However, those databases
need not be immediately opened/modified, depending on the user’s initial interest.

A few of the more advanced applications of ELM are covered in brief, but are generally
beyond the scope of this User’s Guide. These topics include the automated sensitivity
analysis of the model, the creation of new subregional applications, and evaluating
scenarios of future restoration alternatives. While these applications of the model are all
data-driven and relatively straightforward, the details of changes to data and requisite
quality assurance are left to a subsequent extension of this guide.

10-2

ELM v2.5: User’'s Guide

10.2 Computing environment

The ELM is truly a multi-platform simulation model, capable of running in a variety of
computing environments without modification. No changes to the C source code, scripts,
or “makefile” are needed to move among any of the computing environments that we
have tested. The compilation and run scripts detect the type of unix operating system,
with no user intervention. This allows the ELM developers to modify one set of code
(stored on one file system), and routinely compile & run the OS-specific executables
from any available platform. The production environment for ELM is Red Hat Linux on
an Intel chip, while Apple OS X (Darwin) is a very useful modeling environment.

10.2.1 Hardware

The ELM can be installed and executed on any one of a variety of common hardware
architectures that have some form of unix* available (Table 10.1 below). Available
storage on the file system (hard disk) should be at least 600 MB: roughly 500 MB is
needed for all of the input data/databases and source code, while a 20-year run with basic
outputs, including animated monthly time series of a handful of variables, uses
approximately 100 MB disk space. Different subregional applications (of various grid
sizes) vary the memory (RAM) requirements, but the regional ELM application that is in
the standard distribution uses less than 90 MB RAM, irrespective of the simulation
length.

10.2.2 Software

No commercial software is necessary. The only requirement to install and use ELM is a
unix operating system that includes a gcc? compiler. No custom libraries need to be
modified/installed beyond those already available in a standard operating system
installation with a functional compiler. Tools that are technically “optional”, but highly
desirable, include a Geographic Information System (the Open Source GRASS GIS is
recommended), and spreadsheet software (Open Office Calc is recommended). For
optional/recommended software tools, see Appendix: Software recommendations.

Table 10.1. ELM compilation and execution has been tested in these environments. At
the unix command line, type “gcc --ver” and “uname -a” for this information.

Compiler Operating System OS release version CPU

gecv-32 (unsupported)-Sun-Seolaris | 5.8 sparc

(unsupported)

gccv.3.2.2 Red Hat Linux 2.4.20-27.9smp 1686 (Pentium)
gcc v.3.3 Apple Darwin 6.8 Power Mac (G4)
gcc v.3.3.3 SUSE Linux 2.6.4-52-default 1686 (Celeron)
gcc v.3.4.3 Red Hat Linux 2.6.9-5.ELsmp 1686 (Pentium)

1 Our available Sun Solaris and Apple Darwin platforms are outdated, and thus we have not tested the

ELM code in more recent versions of these OSs & associated standard libraries.

2 GNU Compiler Collection, gcc, at http://gcc.gnu.org/ There are no compiler-specific dependencies, and
thus other ANSI C compliant compilers should be compatible with ELM code.

10-3

ELM v2.5: User’'s Guide

10.2.3 Runtimes

One of the platforms available to the ELM developers is an inexpensive Dell™ laptop
with an Intel Pentium™ 2.66 GHz processor. On this computer, the run-time for the
regional-ELM implementation (10,394 grid cells @1 km? resolution), with standard
output, is slightly over 1 hour for a 20-year simulation.

10.3 Installing the model

Using an Open Source® philosophy, we hope to encourage collaboration in the modeling
community. Towards that end, the source code and data are available for download on
the ELM web site, and all C source code in the ELM project is documented in detail
using the automated “Doxygen” web-based documentation system (see Model Structure
Chapter).

10.3.1 Standard

The ELM project is installed in a directory of the user’s choosing, without affecting
existing operating system “libraries” or other components of the user’s file system. To
install the ELM, one places the code & data archives into an empty directory, and runs a
single script, by following these steps (replacing “X.Y” with “2.5” for ELM v2.5):

1) Obtain the code and data (from CD or http://my.sfwmd.gov/elm)

a. ELMinstall.sh (installer shell script)

b. ELMX.Y.data.updateA.B.tar.gz (compressed archive of data, ELM version
X.Y, update A.B)

C. ELMX.Y.src.updateA.B.tar.gz (compressed archive of code, ELM version
X.Y, update A.B)

2) Make a home and install your project

a. Create an empty directory anywhere on your file system, put above 3 files
into it, and “cd” into that directory

Run the install script on unix command line: “./ELMinstall.sh”

Note: the install script guides you on how to set up the several
environment variables that are needed. One is “$ELM_HOME”, which is
the absolute path of the directory in which you placed the project.

3) Build the executable

a. Run the build script on unix command line (ELM version X.Y):
“./build ELMX.Y”

10.3.2 Custom

The standard installation is generally all that is needed. However, the user has more
flexibility in choosing the location(s) of model output, along with customization of other
characteristics of the model. Note that the choice of operating system does not influence
any of the installation procedures. For the details of the potential customizations, see this

3 http://www.opensource.org/

10-4

ELM v2.5: User’'s Guide

Chapter’s Appendix: Environment variables and Directory/file structure.

10.4Running the model

The ELM is run from the unix command line through the use of “shell” scripts. Basic
familiarity with unix is required, but advanced expertise is not absolutely necessary.

10.4.1 Quick start

For those who want to run a simulation “right now” using the defaults set in the standard
distribution of source code and data, simply jump in and invoke a script (after installing
the model as described above!). In the commands below, replace “X.Y” with “2.5” for
ELM v2.5. For all commands and filenames, remember that unix is case-sensitive.

1) Invoke the Run script, responding to its prompts (ELM version X.Y):
“/Run ELMX.Y myFirstRun”

2) The Run script asks you a couple of questions. Say no to both for now: the model
will run, and then the results will be archived in a new directory called
“myFirstRun”, within the archive directory “$ELM_HOME/arc_out/”

3) Check/interpret the output as outlined in the “Output” section later in this
Chapter.

10.4.2 Runtime configuration files

There are two model configuration (text) files* that can be modified prior to running the
model. One file, “Driver.parm”, is edited to select which ecological module(s) to
execute, set the starting and ending dates of simulation, and other such model settings.
The other, “Model.outList”, is edited to select which variables to output, their output type
& location, and output frequency. These two configuration files are directly read by the
model during the initialization sequence.

10.4.2.1 Driver.parm

This is the primary configuration file, providing significant flexibility to the user. Some
of the more common changes that may be made in this configuration are:

e change location of model output
e change start and end dates of simulation
e change output intervals for budgets, canals, and internal variable averaging
e turn on/off habitat switching module
e turn on/off water management modules
e turn on/off various hydro-ecological vertical solution modules
e run sensitivity analyses on parameters
This text file is self-documented at a brief level of detail. This Chapter’s “Appendix:

*in $ELM_HOME/SME/Projects/[ELMX.Y/RunParms/

10-5

ELM v2.5: User’'s Guide

Driver.parm” expands on the information for each of these runtime parameters.

The “Check” script is used to quickly check these settings, and edit them if desired (using
the standard unix text editor “vi”).

10.4.2.2 Model.outList

This text file is exported from the “ModelOutlist_creator_version.xls” interface. That
spreadsheet database is found in the “$ELM_HOME/SME/Projects/Dbases/” directory. It
is “user-friendly” and fully self-documenting, and is perhaps most commonly used for
initially selecting and configuring the different output command options. For basically
any dynamic variable in the model, the user can select the following® combinations of
commands to produce output:

e map time series (animations): “G()” command

e scale the values of map time series output: “S()” command (required w/ “G()”)
e point time series (individual grid cells): “P()” command

e time interval for output (independent for each variable): “O()” command

The map time series consists of multiple domain-wide spatial maps of the selected
variable at the selected output interval, with each variable’s multi-file time series put in a
separate output directory (““./Output/*.*/”). The point time series are put in the
“./Output/PtSer/” output directory, with a time series at the selected output interval in a
separate file for each variable, with each file containing multiple points (grid cells).

Note: summaries of all canals & water control structures (“./Output/Canal/”), and all
user-defined Basin/Indicator-Region data (“./Output/Budget/”) are always output. The
user can modify the output frequency of those data via the “Driver.parm” configuration.
(Basins and Indicator Regions are defined in an input map; see the “Modifying Data”
section of this Chapter).

Although it is relatively quick and easy to use, it is not necessary to routinely use the
ModelOutlist_creator spreadsheet interface: once a user becomes familiar with the output
commands, the “Check” script can be used to most quickly check the settings in the
“Model.outList” text file, and edit them if desired (using the unix text editor “vi”).

10.4.3 Scripts

The following are the scripts that are available for a variety of tasks associated with using
the ELM. Most of the scripts are “stand-alone”, but are designed in a modular fashion so
that they can also be controlled by higher-level calling scripts. (For example, the “Run”
script shown above is a main controller script that calls the stand-alone scripts of
“Check”, “go”, and “ArchiveRun”, while those latter scripts call others such as
“PathModel”). Table 10.2 describes the script usage and hierarchy.

> The map time series that are produces are in “unsigned character” binary formats that produce
the smallest file sizes, and the output maps are scaled by the user via the interface. Hierarchical
Data Format (HDF) was supported in earlier versions of ELM, but is not updated for ELM v2.5.
Subsequent versions will support either “hdf” or “cdf” formats.

10-6

ELM v2.5: User's Guide

Table 10.2. Scripts used in the ELM project. The three grey-shaded scripts are all that are needed to install
and run the ELM. Scripts are modular and nested in a hierarchy; all scripts can be executed as stand-alone
applications (w/ 1 exception). Syntax: ProjName is the name of the ELM project (e.g., ELM2.5);
runName is a user-defined name to denote a particular simulation run

Primary ‘Secondary script‘ Syntax ‘Includedlcalled scripts ‘Purpose of script
script
Model installation
ELMinstallX.Y.sh ELMinstallX.Y .sh, none Install the ELM project in the user's directory. Fully self-documented.
where X.Y is model version (script name came w/ distribution)
build build ProjName PathELM_HOME, Builds an executable of the model project from the make file
PathModel, PathOSTYPE (compiles, links source code).
Model run
Run Run ProjName runName Check, go, Copylnput, Controller script that configures, runs, and archives a simulation.
ArchiveRun,
PathELM_HOME,
PathModel, PathOutput,
PathArchive
Check Check ProjName PathELM_HOME, View and change the model runtime configuration.
PathModel
go go ProjName PathELM_HOME, Simply runs the model executable. NOTE: output from a simulation
PathModel, PathOutput, run made via this script is OVERWRITTEN by a subsequent
PathOSTYPE invocation of this script; use ArchiveRun script to save a simulation.
ArchiveRun ArchiveRun ProjName runName PathELM_HOME, Archives a simulation's output and input as a "keeper" under a user-
PathModel, PathOutput, defined name. It moves all output files and copies selected input
PathArchive, mkOutDirs files to a user-defined new directory in the $ELM_ARCHIVE_PATH.
finishOutList finishOutList ProjName target , PathELM_HOME, If ModelOutlist_creator was used: Does the final processing needed
where farget is file made by PathModel on the Model.outList text file that was created by the
ModelOutlist_creator. ModelOutlist_creator workbook (OpenOffice/Excel).
Model distribution/backup
ArchiveData ArchiveData ProjName descript , none Archives all input data required for ELM historical (e.g., calibration)

where descript is descriptive identifier

runs to a compressed tar archive. Used for ELM-version
distributions. To use, modify source and target directories in the
script.

ArchiveSrc ArchiveSrc ProjName descript PathELM_HOME Archives all required ELM source code to tar archives in two
where descript is descriptive identifier locations: an uncompressed one in $ELM_HOME, and a
compressed one in a remote directory. Used for ELM-version
distributions. To use, modify destination directory in the script.
Utility
PathArchive PathArchive none Checks validity of $ELM_ARCHIVE_PATH for model archiving and
exports it if needed.
PathELM_HOME PathELM_HOME none Determines if the (fundamental) $ELM_HOME variable appears
valid.
PathModel PathModel PathELM_HOME Checks validity of the base $ModelPath for the model Project
data/executable, and creates & exports that path if needed.
PathOutput PathOutput ProjName PathELM_HOME, Checks for validity of an existing OutputPath for model output
PathModel (defined in Driver.parm file) and exports it if valid.
PathOSTYPE PathOSTYPE none Determines if the $OSTYPE variable reflects a tested platform. (The
name of the script is for consistency with similar script names, and
OSTYPE is only used in relation to paths/filenames).
Copylnput NA (is not stand-alone) none Only called from the "Run" script. It has 2 primary purposes: 1)
Force the user to write some Notes on simulation about to be run; 2)
Create named copies of frequently-changed data files.
mkOutDirs mkOutDirs OutputPath ProjName none Create the required output directory names if they have been
removed from the model Project OutputPath.
rmAnim rmAnim OutputPath ProjName none Delete all files in Animation* directories for a project in a given path.
For a measure of safety, this is only used as a stand-alone script,
and the user needs to manually type in the path, then confirm the
deletions.
Advanced: acquire water control structure flows
getDSSflow getDSSflow none Acquire flow data. Full instructions for advanced applications not in
this current documentation.
StrNames StrNames none (Compiled binary) to extract names of structures from a "DSS"

Advanced: GRASS for animations, vector canal input/visualiza

catalog. Full instructions for advanced applications not in this current|
documentation.

tion, other

AnimGrass

NA (not distributed, FYI only)

PathOutput, PathArchive

GRASS (script not distributed): Links model output to a GRASS
directory in preparation for animation using xganim.

AnimGrassNow

NA (not distributed, FYI only)

none

GRASS (script not distributed): Runs xganim within GRASS.

AnimGrass_rm

NA (not distributed, FYI only)

none

GRASS (script not distributed): Deletes the links to model output and
the other GRASS animation files for a particular variable.

reachin

NA (not distributed, FYI only)

none (but uses ELM variable
"$ModelPath")

GRASS (script not distributed): Creates GRASS ascii vector files for
all canals contained in the CanalData.chan ELM-input file.

reachinvect NA (not distributed, FYI only) none GRASS (script not distributed): Import ALL reaches from ascii into
Grass binary vector format.
reach_calib_v2.4 NA (not distributed, FYI only) none GRASS (script not distributed): Display canal reaches in

distinguishing colors, and show thel water control structures.

ELM v2.5: User’'s Guide

10.5 Input data modification

Several databases are used to modify and document a variety of important components of
the ELM. The purpose of this section is to call the user’s attention to these self-
documenting databases, which are critical to the use of the ELM, particularly when
learning the model. Other data sources (described in the Data Chapter) are used for time
series data that are input to the model, and some form of GIS (below) is needed to
visualize and modify the spatial maps that are input to the model.

10.5.1 Databases

Our goal has been to create a system of integrated, relational databases using the Open
Source MySQL. However, these prototype databases are not ready for release, and we
instead use the Open Office Calc spreadsheet software® to perform the necessary data
management functions. Table 10.3 provides an overview of the primary functions of
these data management systems.

Table 10.3. Spreadsheet-based databases used in a) data maintenance and documentation
of model parameters and model variables, b) generating source code of model, and c)
generating output configurations for model runs. Databases are found in
$ELM_HOME/SME/Projects/Dbases/.

Database name Database functions

1) Maintain and document (incl. units and source/metadata)

GlobalParms_vX.Y .xls parameters that are globally distributed across model domain.

documentation to model source code.

automated sensitivity analysis.

2) Generate code of header file, transferring parameter

3) Generate upper and lower values of all parameters for

HabParms_vX.Y .xlIs domain.
documentation to model source code.

automated sensitivity analysis.

1) Maintain and document (incl. units and source/metadata)
parameters that are specific to different habitats in the model

2) Generate code of header file, transferring parameter

3) Generate upper and lower values of all parameters for

ModelOutlist_creator_vX.Y.xls|variable, map and point time series output.

variables used in the model.

documentation of variables to model source code.

1) Generate all input-configuration commands for any model

2) For all Everglades monitoring sites, calculate model grid cell
row-column (at any grid scale) from its geographic coordinates.
3) Maintain and document (incl. units and source/metadata) all

4) Generate code of multiple header files, transferring

® fully compatible with Microsoft Excel

10-8

ELM v2.5: User’'s Guide

The single exception to the use of Open Source software is our database
($ELM_HOME/SME/Projects/Dbases/Structs_attr_vX.Y.fmp) of the attributes of water
control structures, for which we continue to use FileMaker Pro software. This database
continues to be very useful in creating new subregional applications or modifying water
control structures for evaluating alternative water management scenarios. However, it is
not essential to the use of ELM in the mode intended for this User’s Guide Chapter: the
water control structure attributes for the current simulations are documented through
snapshots of the records for all of the necessary water control structures, and the text
input file can be viewed or modified using spreadsheet software (see Data Chapter).

10.5.2GIS

Any software capable of reading raw/generic binary data arrays can be used to
edit/visualize the map inputs. The ELM developers use the GRASS GIS (see Appendix:
Software recommendations). Through the use of unix symbolic links between the
GRASS and the ELM data directories, the ELM directly reads GRASS project data files
(uncompressed binary data and text header) as model input. However, no GRASS-
specific encoding of binary information is used, and thus the data files may be opened
with any program that can read raw binary data arrays. Scripts are available to directly
input and visualize the ELM (text) canal vectors in GRASS.

There are three sub-directories within an ELM project’s input ./Data/ directory: Map_bin,
Map_head, and Map_hist. The model reads each raw binary data file in the Map_bin
subdirectory, and reads its associated header description in the Map_head subdirectory.
The history and other pertinent metadata are in the Map_hist subdirectory, but that
information is not used in the model.

All spatial data are referenced to zone 17 of the Universal Transverse Mercator (UTM)
geographic coordinate system, relative to the 1927 North American Datum (NAD). The
ELM regional application uses 1 km? square grid cells that encompass an area of 10,394
km? (4,013 mi®) in the active domain. All of the maps of the regional application are
bounded by a rectangle of UTM coordinates in zone 17 (NAD 1927), as shown in the
lines in the below regional-domain example of the text header files:

zone: 17 (UTM zone)

northing: 2,953,489 m (UTM north coord)
southing: 2,769,489 m (UTM south coord)
easting: 580,711 m (UTM east coord)
westing: 472,711 m (UTM west coord)
columns: 108 (number of columns in 2D array)
rows: 184 (number of rows in 2D array)
east-west resol.: 1000 m (grid cell length in 2D array)
north-south resol.: 1000 m (grid cell width in 2D array)
format: “X” bytes/cell, as defined below
compressed: 0 (no compression)

The “X” value of “format” of the raw binary data is one of the following:
0.: 1 byte per grid cell
1: 2 bytes per grid cell
3: 4 bytes per grid cell

10-9

ELM v2.5: User’'s Guide

10.6 Output

During the initialization phase of a simulation, the various configurations that the user
chose are echoed to the console (screen). Subsequently, the simulation date is iterated on
the console as the computations are made. A successful simulation will end with the
following message printed to the screen:

“END. The simulation(s) took zz.zzz minutes to run using your yyyyy OS box.”,
followed by other messages depending on the scripts that are running.

10.6.1 Quick start

Upon completion of (or during) a simulation, the user is advised to make the following
minimal checks to verify that the simulation was “well-behaved”.

4) To verify that no errors were in the simulation, search the “Debug/Driverl.out”
text file (see below) for the all-caps string “ERROR”, which can be the full word
or part of a word (i.e., “capacityERROR”);

5) View the “Budget/budg_Wcm1” text file, and verify that the cumulative mass
balance error variables, “SumERR_*” for each Basin & Indicator Region identity,
is reasonable, i.e., on the order of tens of microns height.

6) Peruse one of the spatial time series of map outputs to verify the spatio-temporal
dynamics “pass the laugh test” . Viewing an animation, or individual maps, of the
“SfWatAvg” (surface water depth, averaged during output intervals) variable is a
good choice - assuming the user kept that variable’s output commands in the
Model.outList configuration.

7) Dive into the other output files as desired, using the below descriptions as your
guide.

10.6.2 Output file structure

During a simulation, all output is always written to the “Output/” directory in the user’s
output path (Table 10.4). After a simulation terminates, the output may be moved
(archived) to the user’s archive path via the “ArchiveRun” script (which is also called by
the “Run” script). In the below directory descriptions, “ProjName” is the Project name
(such as ELM2.5) that was input by the user on the command line.

Un-archived output location: “OutputPath/ProjName/Output/”, where “OutputPath” is
the absolute path to model output, changeable in the “Driver.parm” file.

Archived output location: “$ELM_ARCHIVE_PATH/ProjName/runName”, where
“$ELM_ARCHIVE_PATH?” is the archive path set up by the user’, and “runName” is a
user-defined name to denote a particular simulation run.

! “$ELM_ARCHIVE_PATH” was set up by the user when installing the ELM. The location
may be set to anywhere, but initial installation was in “$ELM_HOME/arc_out/”

10-10

ELM v2.5: User’'s Guide

Table 10.4. Output directories and description of files they contain. These directories are
relative to the un-archived or the archived output locations described above.

Output directory

Output description

Animationl...Animation60

Map time series for individual variables, with separate
directory for each variable. After archiving a simulation,
non-empty directories are moved & renamed with the
variable names.

or: VariableA, VariableB, ...

Map time series for individual variables, with separate
directory for each variable. Prior to archiving a simulation,
the directory names are simply Animationl, Animation2,
..., Animation60 (maximum).

Budget [BIR] Time series of budgets and pre-set Performance
Measures in Basins/Indicator Regions (BIR).

Canal Time series of a) canal depths and constituent
concentrations, and b) water control structure flows and
constituent concentrations.

Debug Variety of detailed output for debugging and error
checking.

PtSer Time series of individual variables at point (grid cell)

locations distributed through model domain.

10.6.3 Debug (errors and warnings)

The “Debug/” directory will always contain at least two debug-related files. Truly
critical errors (such as missing inputs, memory constraints, etc) will terminate the
simulation with an informative message. Numerical errors or warnings do not
necessarily terminate the simulation (in order to allow the user to debug the problem). It
is important to monitor the Driver*.out files for any errors or warnings, particularly after

configuring a new application:

e DriverO.out: text file that echoes input data that were successfully read, including
simulation start-end dates, hydro-ecological parameters, output configurations and

others.

e Driverl.out: text file that contains a variety of warnings, error messages; details of
model output are printed, depending on the level of the “debug” parameter (in
“Driver.parm”, see Runtime configuration section of this Chapter).

The “Debug/” directory will contain two debug-related files when running the Water

Management modules:

e ON_MAP_CANAL.txt: a tab-delimited 2D array text file of the modifications to
the “ON_MAP” file that was done by the “Canal-marsh flux module of the Water
Management code (see Model Structure Chapter).

e CanalCells_interaction.txt: text file of list of cells that interact with each canal

reach

10-11

ELM v2.5: User’'s Guide

10.6.3.1 Postprocessing Debug text files

All files in the “Debug/” directory are text files. The Driver*.out files are intended to be
searched/queried using any text editor. The “ON_MAP_CANAL.txt" file is best visualized
after import into any spatial mapping program or GIS (such as GRASS).

10.6.4 Spatial: Basin & Indicator Region (BIR) time series

Budgets and preset Performance Measure variables are output at the different spatial
scales defined by the hydrologic Basins and Indicator Regions (BIR) input map. As
discussed in the Model domains section of the Data Chapter (“basins” input Data file),
hydrologic basins are “parent” regions that (may) contain “child” Indicator Regions, and
parent basins’ data include (e.g., sum) the data on all child Indicator Regions contained
within them. Basin 0 is the entire model domain. Well-drawn BIR spatial distributions
are particularly useful for evaluating output dynamics (budgets and Performance
Measures) along ecological gradients. Table 10.5 provides an overview of the budget
and Performance Measure variables in each of the output files.

10-12

Table 10.5.

Budget and preset Performance Measure variables in Basins & Indicator Regions (BIR). The variables are output for each BIR in the individual files.

ELM v2.5: User's Guide

Budget file Budget file Budget variables for each BIR

name description

budg_Wacr1...5 Water budget: all total volume - |total volume - |rain-in evaporation- |transp structure- |structure- |overland- |overland- |levee levee ground |ground |error- error- avg- avg-
storages, acre-feet prior interval |current interval out iration-out in out in out seepage- | seepage- | water-in|water- |current |cumulative |inputs | outputs
units in out out interval _|sum

budg_Wcm1...5 Water budget: all total volume - |total volume - |rain-in evaporation- |transp structure- | structure- |overland- |overland- |levee levee ground |groundw|error- error- avg- avg-
storages, height (cm) |prior interval |current intervall out iration-out in out in out seepage- | seepage- | water-in| ater-out [current |cumulative |inputs | outputs
units in out interval _|sum

budg_S1..5 Salt/tracer budget: all |total mass - |total mass - structure- |structure- |overland- |overland- |levee levee ground |groundw|error- error- avg- avg-
storages, mass-per- prior interval |current interval in out in out seepage- | seepage- | water-in| ater-out [current |cumulative |inputs | outputs
area units in out interval _|sum

budg_Par1...5 Phosphorus budget: all |total mass - |total mass - rain-in structure- | structure- |overland- |overland- |levee levee ground |groundw|error- error- avg- avg-
storages, mass-per- prior interval |current interval in out in out seepage- | seepage- | water-in| ater-out [current |cumulative |inputs | outputs
area units in out interval _|sum

budg_P1..5 Phosphorus budget: all |total mass - |total mass - rain-in structure- |structure- |overland- |overland- |levee levee ground |groundw|error- error- avg- avg-
storages, mass units prior interval |current interval in out in out seepage- | seepage- | water-in| ater-out [current |cumulative |inputs | outputs

in out interval _|sum

budg_Pwat1...5 Phosphorus budget: total mass - |total mass - rain-in settle-out surfwat. |porewat. |periph. |macroph. |desorb-in |sorb_to- error- error- avg- avg-
water-borne storages, |prior interval |current interval mineraliza| mineraliz | uptake- |uptake-out out current |cumulative |inputs |outputs
mass-per-area units tion-out |ation-out |out interval |sum

budg_Pliv1...5 Phosphorus budget: total live total live mass | macroph. |calc.periph. |noncalc.p | macroph. |calc. noncalc. |macroph. |calc. noncalc. error- error- avg- avg-
live biotic storages, mass -prior | current intervall mass- mass-current |eriph. NPProd.- | periph. |periph. mortality- |periph. periph. current |cumulative |inputs |outputs
mass-per-area units interval current |interval mass- in GPProd.-| GPProd.- |out mortality- | mortality-| interval |sum

interval current in in out out

budg_Pded1...5 Phosphorus budget: total dead total dead macroph. |periph. decomp.- |settle-in sorb_to-in | desorb- error- error- avg- avg-
dead biotic storages, mass -prior |mass -current | ToSoil-in | ToSoil-in out out current |cumulative |inputs |outputs
mass-per-area units interval interval interval _|sum

Perf. Measure |File description Performance Measure variables for each BIR

file name

BIRavg1...5 Hydro-ecological surface water |unsaturated | TP conc. | TP conc. pore| TP conc. |noncalc. |calc. macroph. |land
Performance Measures | depth water depth surface |water soil periph. |periph. |biomass |elevation

water biomass |biomass

ELM v2.5: User’'s Guide

10.6.4.1 Budgets (in BIR)

The “Budget/” directory contains tab-delimited text files with budgets of water,
phosphorus, and salt/tracer in the BIRs. The reporting time interval is selected by the
user (see Runtime configuration section of this Chapter). In each budget, all inflows and
outflows to/from each BIR are summed for the relevant variables within each reporting
interval. For example, a 30-day reporting interval will result in a hydrologic budget that
reports the sum of the different inflows (rain, seepage inflow, etc) and outflows (ET,
seepage outflow, etc.) within each 30-day period during the simulation. Numerical errors
in mass conservation® are always calculated for all budgets, both cumulative during each
reporting interval, and cumulative across the model simulation period.

10.6.4.2 Preset Performance Measures (in BIR)

The “Budget/” directory also contains tab-delimited text files with preset Performance
Measure averages in BIRs. The reporting time interval is selected by the user (see
Runtime configuration section of this Chapter), and is used to calculate the daily
arithmetic mean value of each performance measure within the interval. These
Performance Measures include hydrologic, biogeochemical, and biological dynamics
within the region.

10.6.4.3 Postprocessing BIR text files

All BIR budget and Performance Measure files are in tab-delimited text format, and thus
can be directly read into any spreadsheet program such as Open Office Calc or Microsoft
Excel. The primary method for ELM postprocessing is the use of scripts written in the
Python scripting language. The ELM developers have a flexible set of Python
postprocessing scripts that will produce a variety of summaries of these data for
visualization and analysis, but that development is not complete enough for release.
Spreadsheet templates for different summaries of the output data are available from the
developers, but are unsupported.

10.6.5 Spatial: Domain-wide map time series

Virtually any variable in the model may be output as domain-wide maps at a user-
specified output interval (see Runtime configuration section of this Chapter). These
maps may then be analyzed individually, summarized across time, or animated using
visualization software.

If a simulation has not yet been archived, the output maps of any user-selected model
variable are placed in one of the AnimationZZ directories in the Output directory, where
“ZZ” is an integer between 1 — 60. As described earlier, the model archiving process

® The maximum magnitude of cumulative errors in mass balance of water storage dynamics
ranges within the order of (positive or negative) 1 to 10 microns, depending on the cumulative
interval (monthly or multi-decade period-of-simulation), the presence/absence of canal
interactions, and the spatial scale of the budgeted region. The maximum magnitude of cumulative
errors in mass balance of phosphorus storage dynamics ranges within the order of (positive or
negative) 0.001 to 0.01 ug/m?, depending on the cumulative interval (monthly or multi-decade
period-of-simulation), the presence/absence of canal interactions, and the spatial scale of the
budgeted region.

10-14

ELM v2.5: User’'s Guide

renames the directories to those of the variable it contains.

10.6.5.1 Postprocessing map files

As configured by the user via the ModelOutlist_creator interface (see Runtime
configuration section of this Chapter), all output maps are 2D rectangular arrays in
generic/raw binary format (i.e., they are not encoded with any software-specific
attributes).

To save significant disk space compared to floating point arrays, the map files are output
as “1-byte, unsigned integer” data. In any given directory containing a time series of
maps of a given variable, the numeric values in the 2D arrays range from 0-255. The
value of “255” is reserved for grid cells that are “off-map”, or outside of the active
domain. The parameters in the scaling equation chosen by the user (via the
ModelOutlist_creator) for each output variable must be used to rescale the integer maps
back to the actual (floating point numbers and) units of the model using the equation:

model_floatValue = outMap_intValue * Multiplier + Offset,

where model_floatValue is the actual value of the floating point number calculated in the
model, outMap_intValue is the integer number stored in the map array, and Multiplier and
Offset are the scaling multiplier and offset, respectively, input by the user in the
Model.outList. The units of the model_floatValue for each variable were given in the
ModelOutlist_creator interface. For example, ponded surface water depth
(SURFACE_WAT) is often scaled for output using a Multiplier of 0.01 and Offset of 0.0; a
value of “90” in the output map is equal to 0.90 m depth calculated by the model.

Any software capable of opening or importing generic/raw binary spatial arrays can be
used to analyze and/or animate the time series of output maps. The Open Source GRASS
GIS and its associated “xganim” animation program can be used to analyze and visualize
the output. As reviewed in the Appendix of this Chapter, many other tools, such as the
Open Source OpenDX, or the commercial IDL, are available for geospatial analysis and
visualization. The ELM developers have various postprocessing codes (using a custom C
program, GRASS, and IDL scripts) for summarizing and visualizing spatial output, but
they are not fully developed for public release.

10.6.6 Spatial: Point (grid cell) time series

The “PtSer/” directory contains tab-delimited text files with point (grid cell) time series
output. Virtually any variable in the model may be output in this format, at user-selected
grid cell locations and output intervals (see Runtime configuration section of this
Chapter). A separate file is created for each model variable that is requested for output,
and each file has multiple fields (columns) for multiple grid cell locations.

10.6.6.1 Postprocessing point time series text files

All point time series files are in tab-delimited text format, and thus can be directly read
into any spreadsheet program such as Open Office Calc or Microsoft Excel. The primary
method for ELM postprocessing is the use of scripts written in the Python scripting
language. The ELM developers have a flexible set of Python postprocessing scripts that
will produce a variety of summaries of these data for visualization and analysis, but that

10-15

ELM v2.5: User’'s Guide

development is not complete enough for release. Spreadsheet templates for different
summaries of the output data are available from the developers, but are unsupported.

10.6.7 Spatial: Canal (vector) time series

The “Canal/” directory contains tab-delimited text files with canal (vector) time series
output of

e CanalOut: instantaneous water depth in all canal reaches,
e CanalOut_P: instantaneous total phosphorus concentration in all canal reaches,
e CanalOut_S: instantaneous salt/tracer concentration in all canal reaches.

These variables are all of the state variables used in the canals of water management
simulation, and the user can select the output interval for this group of outputs (see
Runtime configuration section of this Chapter).

10.6.7.1 Postprocessing canal time series text files

All canal (and water control structure) time series files are in tab-delimited text format,
and thus can be directly read into any spreadsheet program such as Open Office Calc or
Microsoft Excel. The primary method for ELM postprocessing is the use of scripts
written in the Python scripting language. The ELM developers have a flexible set of
Python postprocessing scripts that will produce a variety of summaries of these data for
visualization and analysis, but that development is not complete enough for release.
Spreadsheet templates for different summaries of the output data are available from the
developers, but are unsupported.

10.6.8 Spatial: Structure (point/cell) flow time series

The “Canal/” directory contains tab-delimited text files with water control structure
(vector) time series output of

e structsOut: summed (across each output interval) water flows through all water
control structures,

e structsOut_P: flow-weighted (across each output interval) mean total phosphorus
concentration at all water control structures, and

e structsOut_S: flow-weighted (across each output interval) mean salt/tracer
concentration at all water control structures.

These variables are all of the state variables used in the structure flows of water
management simulation, and the user can select the output interval for this group of
outputs (see Runtime configuration section of this Chapter).

10.6.8.1 Postprocessing structure time series text files

All water control structure (and canal) time series files are in tab-delimited text format,
and thus can be directly read into any spreadsheet program such as Open Office Calc or
Microsoft Excel. The primary method for ELM postprocessing is the use of scripts
written in the Python scripting language. The ELM developers have a flexible set of
Python postprocessing scripts that will produce a variety of summaries of these data for

10-16

ELM v2.5: User’'s Guide

visualization and analysis, but that development is not complete enough for release.
Spreadsheet templates for different summaries of the output data are available from the
developers, but are unsupported.

10.7 Advanced applications

The following topics are generally beyond the scope of this User’s Guide Chapter, but are
included in brief summary in order that users may have some guidance if they desire to
advance beyond standard, historical simulation runs.

10.7.1 Sensitivity analysis

The user can run the automated sensitivity analysis on model parameters whose results
were was described in the Uncertainty Chapter. The “S_ParmName” parameter in the
Driver.parm configuration file (see Model configuration section of this Chapter) is used
to control which parameters are modified as follows:

« S_ParmName= ALL: evaluate model sensitivity to changes in each of the
parameters listed in the input data file SensiParm_list,

« S _ParmName= ParameterName: evaluate model sensitivity to changes in the
single parameter whose name is ParameterName, or

« S_ParmName= NONE: no sensitivity analysis, and thus a normal, single
simulation run using only the nominal parameter sets

The values of the parameter ranges are changed in the GlobalParms and the HabParms
databases: separate “worksheets” are available to calculate and export _LO and _HI (low
and high estimates of parameters in) parameter files that are read by the model during the
sensitivity analysis. Upon invoking a sensitivity analysis via the S_ParmName
parameter, a suite of simulations are executed sequentially when the user executes the
model (from either the Run or the go script). An Open Office Calc template is available
from the ELM developers for postprocessing the single output file® from the multiple
runs.

10.7.2 Evaluating project alternatives

To evaluate most (likely all) water management alternative scenarios, no source code
needs to be changed, and ecological parameters (in GlobalParms and HabParms
databases) generally are not expected to be changed. For a new management alternative,
the user just needs to modify the following input data files (which are all described in the
Data Chapter):

e CanalData.chan: any changes to the canal/levee topology and attributes,
e CanalData.struct: any changes to the water control structure attributes,

e CanalData.struct_wat: water control structure (daily) water flows (that are output
from SFWMM or other tool),

S actually, the single BIRavg output file for all of the sequential simulations can be spread over

multiple files (unrelated to sensitivity) if the number of Indicator Regions is large, i.e., BIRavgl —
BIRavg5 as described in the Model output section of this User’s Guide Chapter

10-17

ELM v2.5: User’'s Guide

e CanalData.struct_TP: water control structure (daily) Total Phosphorus
concentrations,

e CanalData.struct_TS: water control structure (daily) Total Salt/tracer
concentrations.

e (?) GlobalParms_NOM: if appropriate, alter the parameter that estimates the
annual rate of sea level rise

To add a new canal, a new canal reach ID is added to the CanalData.chan text file, adding
the canal reach attributes and the geographic point coordinates that define the segments
of a reach. EXxisting canal reaches can be “turned off” (ignored by model) by assigning a
negative width attribute to that reach. GRASS scripts are used to aid in this process and
visualize any new topology of the canal network. Other scripts are used to determine
which, if any, new water control structures are required, extracting the appropriate time
series of flows from a “DSS” formatted file that was output from the SFWMM (which is
the current modeling tool for evaluating hydrology of management alternatives).

The meteorological boundary conditions for the 1965-2000 period of record are
contained in the current (rain.BIN, ETp.BIN) input files. The general assumption in
forecasting the responses of the system to management changes is the following: If the
system were to be subjected to the same meteorological conditions as those observed
between 1965-2000, how would the system respond under a new suite of management
rules and/or infrastructure?

Obviously (?), there are other assumptions that are involved with forecasting the system
responses to future management alternatives. While the data modification/input methods
are generally simple and scripted, the details of the steps, including the assumptions and
the necessary data quality assurance, are beyond the scope of this User’s Guide.

10.7.3 New subregional applications

To implement a new subregional application of the ELM, no source code needs to be
changed. The following input files require modification/re-scaling:

e Input maps: all input maps must be reconciled to the spatial resolution and extent
of the new domain (i.e., with new data, or rescaling/interpolating existing data)

e CanalData.chan: canal reaches from the regional model application that are
within the new domain may be kept (as they use geographic, not grid cell,
coordinates); the upper left corner of the origin of the rectangular domain requires
changing (if necessary),

e CanalData.struct*: water control structure attributes and flow/concentration data
from the regional model application that are within the new domain may be kept,
but the Structs_attr.fmp database (or another calculator) should be used to
calculate the new grid cell locations of the geographic coordinates of the water
control structures; unused structures need to be removed from all
CanalData.struct™ files,

e Driver.parm: modify the parameter that defines the model grid cell area

10-18

ELM v2.5: User’'s Guide

e Model.outList: use the ModelOutlist_creator interface to calculate the new model
grid cell locations of the named monitoring stations for which output is desired

e gridmapping.txt: run the GridMap preprocessor application to generate the new
linked list of the SFWMM grid cells that are mapped to the grid cells of the new
ELM application (for boundary condition data on meteorological inputs and stage
at the periphery of the new domain)

While the data modification/input methods are generally simple, the details of the steps,
including the necessary data quality assurance, are beyond the scope of this User’s Guide.

10-19

10.8 Appendix

10.8.1 Driver.parm configuration file

The following table contains extended documentation of all of the adjustable parameters
in the “Driver.parm” input file that is input to the model to configure a simulation run.

ELM v2.5: User’'s Guide

Parameter Brief metadata Extended instructions
/MyOutputPath/ {output path (absolute Path for model output can be on any file
path, w/o ProjName) } system. If user requests many animations
at high output frequency (e.g., 20 variables,
daily), a local hard disk directly attached to
host machine can become important to
model run time.
1/1/1981 {Sim start date User is informed of error if attempting to
(yyyy/mm/dd), min= start simulation outside of the range of
1965/01/01 } available boundary condition data (1/1/1981
or 1/1/1965 through 12/31/2000, depending
on project).
12/31/2000 {Sim end date User is informed of error if attempting to end
(yyyy/mm/dd), max= simulation outside of the range of available
2000/12/31} boundary condition data (1/1/1981 or
1/1/1965 through 12/31/2000, depending on
project).
00/00 {Sim re-init date Used only in "Position Analysis", in which
(mm/dd)(no Position simulation is re-initialized annually on a
Analysis, mo=00)} given month/day. If month=00, Position
Analysis is not invoked. Position Analysis is
not fully updated/supported in v2.5.
ELM {model name (needs to Used in distinguishing subregional model

match CanalData input
files)}

projects (e.g., ELM_wca2@500m) from the
default regional "ELM". Used primarily to
ensure model is using correctly geo-
referenced data in CanalData.* input files in
subregional projects.

Model version=v.2.5

{model version (e.g.,
v.2.1)}

Model version identifier to label output files.

CellArea= 1000000.0

{grid cell area, m"2}

The area of an individual model grid cell;
standard regional application is 1,000,000
m”2 (1 km"2).

budg_Intvl=0.0

{interval (julian days), BIR
stats (O=calendar-month)}

Time interval for summary calculations in all
budget output files (./Budget/budg_*) in
Basins/Indicator Regions (BIR). Value >0 is
julian day interval; a value=0.0 is an exact
calendar-month interval (accounting for leap
years etc.).

avg_Intvl= 30.0

{interval (julian days), cell-
avgs (0O=calendar-month)}

Time interval for all internally-calculated
temporal means in BIRavg output files
(./Budget/BIRavg*) in Basins/Indicator
Regions (BIR). Value >0 is julian day
interval; a value=0.0 is an exact calendar-
month interval (accounting for leap years
etc.).

seed= 568

{random number seed;
UNUSED in current

UNUSED

10-20

ELM v2.5: User’'s Guide

version}
dt= 1.0 {time step (days, use 1.0) | The model time step for vertical solutions
for vertical fluxes} only. The dt should remain at 1 day for any
scale application.
hyd_iter= 12 {**EVEN number**, The number of iterations, or time slices, per
number of horiz iterations | dt for horizontal solutions such as cell-cell
per dt} overland flow. To determine the
appropriate value for a new application, see
the ELM documentation for theoretical
estimates for different model scales and
expected velocities. The 1 km”2 regional
ELM application uses hyd_iter =12 (i.e.,a 2
hour time step).
debug= 2 {0:Minimal 1:BasinChek The choice of how much information to print

2:Default 3:More 4:Canal
5:Lots}

to a debug (text) output file
(./Debug/DriverX.out, X'th simulation, X=1 in
a standard run w/o Sensitivity Analysis).
The recommended standard is debug= 2.
Higher values will produce very large
volumes of information and should be used
in relatively short simulations. **See text
below this Table for details.

debug_point= 62 43

{focal cell (row col) for
Driverl.out if debug>2}

The row-column coordinates of the focal
grid cell for 5x5-cell windows of output data
that are written to the (text) debug file at
high values of the debug parameter.

S_ParmName=NONE

{Sensitivity analysis:
"NONE", "ALL", or
ParameterName}

Invoke an automated sensitivity analysis on
"ALL" parameters in the input data file
"SensiParm_list", or on a single parameter
whose exact hame is provided, or "NONE"
for a standard, single simulation run. See
text of User's Guide for details.

HabSwitchOn= 0

{Habitat switching
(succession) on=1, off=0}

Invoke the habitat switching (succession)
module of the model. See text of Model
Structure Chapter in the ELM
documentation for some details on module.

WatMgmtOn= 1

{Water management and
canal network on=1, off=0}

Invoke the water management modules,
with flows through water control structures
in the network of canal/levee vectors.
Normally this is "on". If turned "off", all
water management network topologies and
managed flow dynamics are inoperative,
and thus the only flow constraints are those
imposed along the periphery of the model
domain (aka a simulation of the "Natural
System" that is not compartmentalized).

Scenario= calib

{scenario/alternative name
(case sensitive)}

Model scenario (alternative) identifier to
label output files.

Scenario modifier= myRun

{scenario/alt modifier or
descriptor}

An additional descriptor of specifics to add
to the model scenario (alternative) identifier
to label output files.

10-21

Sectors=1071092812
4 99;

ELM v2.5: User’'s Guide

The (left-to-right) sequence of calls to
ecological modules (sectors) in the time
loop of the simulation. See text of Model
Structure Chapter in the ELM

documentation for details on the structure of

the model time loop, and summaries &

details of each module. A single-phrase
description of each module is given below in
this table (and the "Driver.parm" file).

{Below are not input fields;
for descriptive purposes

only}

Sequence for calling
modules:

10710[13]928 124 99

Recommended sequence of module calls.
See text of Model Structure Chapter in the
ELM documentation for details on the
structure of the model time loop.

Module #0 hydrology: horiz raster See text of Model Structure Chapter in the
fluxes (& water ELM documentation for details on module.
management if it is on)

Module #1 global forcings: vertical See text of Model Structure Chapter in the
fluxes (& succession ifitis | ELM documentation for details on module.
on)

Module #2 algae/periphyton: vertical See text of Model Structure Chapter in the
fluxes ELM documentation for details on module.

Module #4 DOM/DOP: vertical fluxes | See text of Model Structure Chapter in the

ELM documentation for details on module.

Module #7 hydrology: vertical fluxes See text of Model Structure Chapter in the

ELM documentation for details on module.

Module #8 macrophytes: vertical See text of Model Structure Chapter in the
fluxes ELM documentation for details on module.

Module #9 phosphorus: vertical fluxes | See text of Model Structure Chapter in the

ELM documentation for details on module.

Module #10 salt/tracer: vertical fluxes See text of Model Structure Chapter in the

ELM documentation for details on module.
Module #12 Floc: vertical fluxes See text of Model Structure Chapter in the
ELM documentation for details on module.

Module #13 ESP P settling model See text of Model Structure Chapter in the
mode, do NOT invoke ELM documentation for details on module.
2,4,8,9,12

Module #99 summary budget & stats See text of Model Structure Chapter in the

ELM documentation for details on module.

10.8.1.1 **Debug levels:

e debug =0 Echo short console info on iteration# etc, print critical error/warning info. USE WITH

CAUTION.

e debug =1 Report mis-configured basin flows. Currently same level as debug=2.

e debug =2 DEFAULT for general use, more warnings etc.

e debug =3 Echo long console output, prints additional (non-critical) errors/warnings to DriverX.out
(for X'th simulation run) file
e debug =4 Prints details of cell vertical and/or horizontal flux data, and details of indiv canal fluxes,
to DriverX.out (for X'th simulation run)
e debug =5 Prints grid_map information, and prints to another canal debugging file for special

purposes

10-22

10.8.2 Environment variables

The required environment variables are the following:

ELM v2.5: User’'s Guide

Environment variable | Unix path

Description

ELM_HOME

/My/Directory/

The absolute path to the “home”
directory where you install the
source code (and by default, the
data of multiple projects) of ELM.
Can be anywhere on the user’s
networked file system(s).

ELM_ARCHIVE_PATH | /Any/Directory/arc_out/

The absolute path to the directory
where simulation run “keepers” of
(multiple) ELM project(s) are
archived (and thus not overwritten
in subsequent simulation runs!).
Can be anywhere on the user’s
networked file system(s).
Suggested default during ELM
installation was within the
$ELM_HOME.

The highly recommended addition to the user’s path (to executables) is:

Add to user’s path env.

Description

$SELM_HOME/SME/scripts/ | The location of all ELM scripts.

The optional environment variable is the following:

Environment variable | Unix path

Description

ModelPath

/{Anywhere /SME/Projects/

The absolute path to the (multiple)
project(s) of ELM data and
executables. Can be anywhere on
the user’s networked file
system(s). For testing different
code sets with one single data
location, we can set the
$ModelPath as a system
environment variable. In the
default (distribution) version, the
$ModelPath is determined from
$ELM_HOME and is not needed as
an environment variable.

10.8.3 Directoryf/file structure

The complete directory structure of an ELM project.

10-23

ELM v2.5: User’'s Guide

Directory structure

File type

File descriptions

$ELM_HOME/
include/sme/
SME/
scripts/
SMDriver/Sources/
Driver_Sources/
SpatMod/
Tools/
UnitMod/

Dbases/
Projects/
ELM2.5/
Data/
Map_bin/
Map_cats/
Map_head/
Map_hist/
RunParms/
Load/
Output/ *
Animationl...60/
Budget/
Canal/
Debug/
PtSer/

SELM_ARCHIVE_PATH/
ELM2.5/

MyFirstRun/
VarNameA
VarNameB
VarNameXYZ
Budget/
Canal/
Debug/
PtSer/
Input/

source code
source code

source code
source code
source code
source code

databases

input data
input data
input data
input data
input data
input data
executable

output data
output data
output data
output data
output data

output data
output data
output data
output data
output data
output data
output data
input data

header files
unix shell scripts

main program, utilities
spatial fluxes

I/O tools

unit model

databases for data export to model

all input data files (maps in subdirs)
all map binary arrays

all map category definitions

all map header definitions

all map metadata/history

runtime configuration parameters
compiled model executable

multiple directories to hold map outputs
budgets and preset Performance Measures
canals and structures

debug-related

point (cell) time series

archived map output of VarNameA

archived map output of VarNameB

archived map output of VarNameXYZ
archived budget and preset PMs

archived canal and structure summaries
archived debug-related files

archived point (cell) time series

archived input data (subset, parameter files)

! Output directory may be anywhere, including outside of $ELM_HOME

10.8.4 Software recommendations

In order to interpret input and output data, it is recommended that the user at least has
access to the Open Source software of the GRASS GIS and the Open Office Calc

10-24

ELM v2.5: User’'s Guide

spreadsheet system. Both are available as pre-compiled binaries for a number of
computing platforms, and thus are very simply installed.

10.8.4.1 Geographic Information System (GIS)

The GRASS™ GIS can be used to analyze model input and output data. GRASS excels
in raster data processing and analysis, with many useful functions for landscape analysis.
It also fully supports the vector (canal) and point (water control structures, monitoring
locations) data required for ELM. Through the use of unix symbolic links between the
GRASS and the ELM data directories, the ELM directly reads GRASS project data files
(uncompressed binary data and text header) as model input. However, no GRASS-
specific encoding of binary information is used, and thus the data files may be opened
with any program that can read binary data arrays. Scripts are available to directly input
and visualize the ELM canal vectors in GRASS. Other GIS and/or spatial mapping
software tools can serve similar purposes.

10.8.4.2 Animated visualization

The GRASS GIS and its associated “xganim” animation program can be used to visualize
animations of the output. We also use other tools, such as the Open Source OpenDX**
and IDL" for such purposes, as both have advanced functionality relative to xganim.

10.8.4.3 Data management

While MySQL™ is our targeted relational database system, we currently use the
functionality of spreadsheet data systems in Open Office Calc™* (which is fully
compatible with Microsoft Excel). FileMaker Pro™ has been used for a relational
database system for parts of ELM, but will be entirely phased out with MySQL in the
future.

10.8.4.4 Advanced scripting

Python™® (and an associated graphics library PyChart'") is our choice for developing
object-oriented, advanced script applications for post-processing the model and other
tasks.

http://grass.itc.it/ (Open Source)

http://www.opendx.org/ (Open Source)

http://www.rsinc.com/ (commercial)

http://www.mysal.com/ (Open Source)
http://www.openoffice.org/product/calc.html (Open Source)

' http://www.filemaker.com/ (commercial) 30-day trial version of the software
18 http://www.python.org/ (Open Source)

7 http://home.gna.org/pychart/ (Open Source)

10-25

	Chapter 10: User’s Guide
	10.1 Overview
	10.2 Computing environment
	10.2.1 Hardware
	10.2.2 Software
	10.2.3 Runtimes

	10.3 Installing the model
	10.3.1 Standard
	10.3.2 Custom

	10.4 Running the model
	10.4.1 Quick start
	10.4.2 Runtime configuration files
	10.4.2.1 Driver.parm
	10.4.2.2 Model.outList

	10.4.3 Scripts

	
	10.5 Input data modification
	10.5.1 Databases
	10.5.2 GIS

	10.6 Output
	10.6.1 Quick start
	10.6.2 Output file structure
	10.6.3 Debug (errors and warnings)
	10.6.3.1 Postprocessing Debug text files

	10.6.4 Spatial: Basin & Indicator Region (BIR) time series
	10.6.4.1 Budgets (in BIR)
	10.6.4.2 Preset Performance Measures (in BIR)
	10.6.4.3 Postprocessing BIR text files

	10.6.5 Spatial: Domain-wide map time series
	10.6.5.1 Postprocessing map files

	10.6.6 Spatial: Point (grid cell) time series
	10.6.6.1 Postprocessing point time series text files

	10.6.7 Spatial: Canal (vector) time series
	10.6.7.1 Postprocessing canal time series text files

	10.6.8 Spatial: Structure (point/cell) flow time series
	10.6.8.1 Postprocessing structure time series text files

	10.7 Advanced applications
	10.7.1 Sensitivity analysis
	10.7.2 Evaluating project alternatives
	10.7.3 New subregional applications

	10.8 Appendix
	10.8.1 Driver.parm configuration file
	10.8.1.1 **Debug levels:

	10.8.2 Environment variables
	10.8.3 Directory/file structure
	10.8.4 Software recommendations
	10.8.4.1 Geographic Information System (GIS)
	10.8.4.2 Animated visualization
	10.8.4.3 Data management
	10.8.4.4 Advanced scripting

