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Singular value decomposition (SVD) is used to calibrate the Manning's rough-

ness coe�cients in a 1-D unsteady 
ow model of the Upper Niagara River. The

method is used to solve for the parameters after formulating the calibration

problem as a generalized linear inverse problem. SVD is useful in solving under-

determined, over-determined or even-determined problems, and can provide in-

formation to compute matrices describing parameter resolution, covariance and

correlation. This information is useful in identifying the important parameter

groups in the model. Calibration is repeated with di�erent numbers of parameter

groups to determine the variation of the output error and uncertainty of the pa-

rameters with the parameter dimension. For purposes of comparison, the model

with a selected group of parameters is calibrated using Gauss-Newton method

and minimax methods. The study shows the relationship of the parameters to

the geometric layout of the river and the gaging stations.

INTRODUCTION

Problems involving mathematical models are categorized as direct problems and inverse

problems. In direct problems, everything about the model is known, and the objective is to

�nd the system output for a given input. Inverse problems are classi�ed as identi�cation,

detection and state reconstruction problems. Calibration is an inverse problem associated

with identi�cation, and is used to determine unknown constants or parameters in a model.

Direct or explicit parameter determination is not possible in many nonlinear problems,

including unsteady river 
ow networks. Indirect methods based on an output error criterion

are commonly used to determine bed roughness parameters iteratively. Algorithms used in

calibration generally include methods based on mathematical programming, optimal control
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or trial and error techniques. A summary of calibration methods used in groundwater prob-

lems is given in the text by Willis and Yeh (1987). Although there is theoretically an in�nite

number of spatially dependent bed roughness parameters in a river network, only a �nite

number exists in a computer model due to spatial discretization used with �nite di�erence

or �nite element methods. Out of this �nite number, only a limited number can be identi�ed

in most inverse problems (Beck, 1987). The current study investigates the use of Singular

Value Decomposition (SVD) to study parameters in a river network model. The results are

also used to form parameter groups to simplify the problem and avoid getting a severely

underdetermined systems. The study shows that some of the parameter groups can also be

associated with the geometric layout of the river network and the placement of observation

stations.

When identi�ability is not a problem, popular methods of calibration used in the past

for open channel problems include methods by Becker and Yeh (1972), Yeh and Becker

(1973), and Fread, et al. (1978). Related applications include calibration of surface irrigation

parameters by Katopodes et al. (1990). Error criteria commonly used in the calibration are

based on minimization of the sum of square of the errors in calculations, the maximum

absolute error or the bias. Fread (1978) used a method based on minimization of the bias,

which required breaking down of the river into a number of single channel reaches before

calibrating each reach separately. The Kalman �ltering method used by Chiu, et al. (1978)

is also a valuable tool in calibration, adopted from optimal control theory.

The SVD method has been previously used by Wiggins (1972) and Uhrhammer (1980)

to calibrate seismologic parameters. Text by Meneke (1984) gives a description of inverse

methods used in solving geophysical problems. The objectives of this study includes de-

termination of the structure, accuracy, and the optimum parameter dimension in the river

network model. Parameter covariance and correlation matrices are also determined in the

study. The calibration is repeated using optimization methods based on the Gauss-Newton

method and the minimax methods for comparison of results .



THEORETICAL CONSIDERATIONS

The theoretical derivation of the equations required for calibration assumes that the nu-

merical model to be calibrated can be represented as a continuous function of the model

parameters locally within the useful range of the variables. If ykj are the values of state

variables or water levels simulated by the model at times k at locations j, and if Y k
j are the

physical observations of the same variables, the objective of the calibration is to �nd param-

eters xi, i = 1; 2; : : : ; n that minimize the errors �kj = ykj �Y k
j , j = 1; 2; : : : ; m; k = 1; 2; : : : ; l,

using a speci�ed criterion. n = number of parameters; m = number of observation stations;

and l = number of time steps.

The in
uence coe�cient method (eg., Becker and Yeh, 1972) uses parameter perturba-

tions to de�ne in
uence or sensitivity coe�cients.

akji =
@ykj

@xi
= lim

�xi!0

ykj (xi +�xi)� ykj

�xi
for each i = 1; 2; � � � ; n; j = 1; 2; � � � ; m; k = 1; 2; � � � ; l

(1)

in which, akji = sensitivity of the j th water level with respect to i th parameter at time

k; xi = i th parameter; k = time step number; l = number of time steps. Using matrix

notation, (1) can also be expressed as

�yk
m�1 = Ak

m�n�x
k
n�1 (2)

in which, the matrix Ak
m�n is called the in
uence matrix. The superscript k is used to

identify the time step.

Numerical computation of in
uence coe�cients is carried out by perturbing each of the

parameters by a small amount �xi. For the current calibration of Manning's coe�cients,

�x is 0.001. If n parameters are calibrated, the model is run n + 1 times to obtain all the

m� n elements of the sensitivity matrix.

Generalized linear inverse problem

The method used by Wiggins (1972), Ward et al. (1973) and Uhrhammer (1980) to solve

linear inverse problems is used in the current study. Since there is a time series of errors

at every gage, bias is used as the error indicator, and there are m error indicators for the



problem.

�sj =
1

l

lX

k=1

(ykj � Y k
j ) for j = 1; 2; : : : ; m (3)

in which, �sj = average error or bias at gage j, which is �s in vector form. The corrections

in parameters �x needed to make �s = 0 can be determined by equating average �y of

(2) to -�s and solving for �x. The resulting system of linear equations can be expressed as

(Wiggins 1972, Ward et al. 1973).

1

l

lX

k=1

akjp�xp = �
1

l

lX

k=1

(ykj � Y k
j ) for j = 1; 2; : : :m; p = 1; 2; : : : n (4)

or, in matrix form,

As�x = ��s (5)

in which,

As =
1

l

lX

k=1

Ak; �s =
1

l

lX

k=1

�
k (6)

The corrected set of parameters to be used in the next iteration are

xr+1 = xr + �r�xr (7)

subjected to

xr;lb � xr+1 � xr;ub (8)

in which r is the iteration number; �r = parameter used to control the step size; ub, lb are

speci�ed upper and lower bound values. �r � 0:8 is used in the current study. The iterative

procedure is continued until jj�sjj2 converges, and jj�xjj2 becomes small (jj�x=xjj < �) in

which � = machine precision of the computer or a larger value depending on the required

parameter tolerance.

The m equations shown in (5) can be solved easily using methods such as Gaussian

elimination if m = n and detA 6= 0. When m > n, the problem is overdetermined, and the

least squares method leads to the solution x = �(ATA)�1AT
�s as long as detATA 6= 0.

When m < n, the problem is underdetermined, and the generalized or Penrose inverse

solution is x = �AT (AAT )�1�s as long as detAAT 6= 0 (Noble and Daniel, 1975). None

of these solution techniques can be used with rank de�cient or ill-conditioned matrices.



The sensitivity matrix becomes rank de�cient if there is at least one parameter that has

no signi�cant in
uence on the any of the selected observations, or if there is at least one

observation station that is not su�ciently a�ected by any of the parameters. Singular Value

Decomposition (SVD) is capable of solving under, over, even or mixed determined problems

as explained in detail by Meneke (1984).

SVD is based on the key theorem that a matrixAs can be decomposed into three matrices

V, � and U such that

As = U�VT (9)

in which U and V are m �m and n � n matrices of orthogonal singular vectors and � =

m�n diagonal matrix of singular values of As. Texts by Noble and Daniel (1975), Forsythe

et al. (1977) and Press, et at., (1989) give detailed information about the method. With

symmetric matrices, SVD gives eigenvalues and eigenvectors.

The physical meaning of the terms and expressions of the SVD method are explained

using (9) and (10). SVD essentially diagonalizes the sensitivity matrix. After the decompo-

sition, singular vectors of length n formed by the columns of V give coe�cients of the linear

combinations of old parameters giving rise to new independent parameter groups. Singular

vectors of length m formed by columns of U give coe�cients of the linear combinations of

observations forming new observations groups. The new independent parameter groups are

related to groups of observations through the diagonal elements in �. Both newly formed

observation and parameter groups are independent of each other because of the orthogonal-

ity of matrices V and U. Singular values forming the diagonal sensitivity matrix � relate

these parameter groups to observations groups. The number of nonzero singular values q in

� is the rank of As. It gives the maximum number of independent parameter groups that

can be identi�ed in the model.

SVD can be used to solve the system of equations shown in (5). The solution method

replaces the previously mentioned methods for m = n, m < n, m > n or mixed determined

problems. It works even if the matrices involved are singular (Meneke, 1984). The solution

to the system of equations shown in (5) is obtained by decomposing As into As = U�VT .



(5) then becomes

� �z = �d (10)

in which,

�z = VT�x; and d = UT
�s (11)

The solution to (10) can be written as

�x = �V[(
1

�
)](UT

�s) (12)

in which � are the diagonal elements of �. If at least one �i is zero or close to zero such that

the value is dominated by the roundo� error, the matrix is singular. When this happens,

1=� values corresponding to � falling below a small cuto� value are all replaced by zeros

(Forsythe, et al. 1975, Press, 1989). It can be shown that SVD determines the �x for a

problem that minimizes jj�xjj2 and jj�sjj2. The solution under these conditions is unique,

and includes the Gaussian, least square and Penrose cases mentioned before.

The cuto� level or the smallest singular value �min in (12) is useful in controlling the

data errors in the solution. If it is small, 1=� becomes too large, and errors in the solution

will be blown out of proportion. In a non singular matrix, �min is related to the condition

number, �max=�min. A matrix is ill-conditioned if it is too large, or the reciprocal, �min=�max

approaches 
oating point precision �. For single precision operations, � � 10�6 for most com-

puters and the minimum cuto� possible is �� �max. Since data error can cause unnecessary

error magni�cations at small cuto�s, a � value of 10�3 was used in the current problem.

Even larger values (10�2) were found to be su�cient during initial iterations. Methods of

smoothing the cuto� have been discussed Wiggins (1972) and Uhrhammer (1980).

The U and V matrices created by SVD can give additional information about the pa-

rameter behavior. The following expression gives an idea about the parameter resolution in

the computer model (Wiggins, 1972):

Parameter space resolution, R = VVT (13)

Relative size of the elements of R show relative resolution or independence of the corrections

to the parameters. If the parameters are �nely resolved, this matrix is expected to be close



to unity. If the parameters are not individually resolvable but are resolvable as groups, the

problem is characterized by compact resolution, showing square blocks or groups of dominant

elements in the matrix. Covariance of the estimated parameters is de�ned as (Willis and

Yeh, 1987)

� = cov(x̂) = E
n
(�x� x̂)(�x� x̂)T

o
(14)

in which � is the parameter covariance matrix which can be computed as �2(AT
sAs)

�1 when

the determinant of (AT
sAs)

�1 is not zero. �2 = error variance at the output. When the

matrix is ill-conditioned, this method fails. However, the following expression derived using

the results of SVD gives the covariance matrix for both singular and non-singular sensitivity

matrices (Wiggins, 1972, Uhrhammer, 1980):

Covariance; �2 = V
�2

�2
VT (15)

A value of 1 is used for �2 to obtain the relative values in the matrix elements. Uhrhammer

(1980) referred to the covariance matrix as the uncertainty matrix, and used a damping

parameter to damp out the e�ects of small singular values on 1=� during a sharp cuto�. In

the current study, a sharp early cuto� �min (= 10�3) as suggested by Wiggins (1972) is used

for simplicity.

The covariance matrix can be used to obtain the correlation matrix (Uhrhammer, 1980)

Correlation among parameter corrections, �2i;j =
�2

i;j

�i;i�j;j

(16)

Correlation among parameter corrections is useful in determining the dependence of param-

eters and parameter groups. If there are parameters that are dependent as a group, and

as a group if they are independent from other groups re
ecting a block form in the matrix,

calibration can be simpli�ed by casting these groups as single parameters. The correlation

matrix, resolution matrix, and VT are used in the current study to understand and isolate

the groups of parameters. These groups can also be related to the layout of the river network

and gage positions.

Gauss-Newton method

The Gauss-Newton method as discussed by Willis and Yeh (1987) considers the identi�cation



problem as an optimization problem aimed at minimizing output errors. This method cannot

be used with underdetermined systems (m < n) or systems with rank q < n. It is used in

the study as an alternative method to calibrate groups of parameters selected to satisfy

these conditions. When using the method, the objective is to determine parameters xi; i =

1; 2; : : : ; n such that the summation of the squares of the errors is a minimum, subjected to

parameter constraints given by (8). The sum of squares of errors is de�ned as

S =
mX

j=1

lX

k=1

wj;k(y
k
j � Y k

j )
2 (17)

over all the gages and all the time steps. The wj;k are weighing factors, which are assumed

to be 1 for the current problem. The parameter corrections that minimize S can be shown

to be (Yoon and Yeh 1976).

C�x = �D (18)

in which elements i; j of C and D are given by

ci;j =
lX

k=1

nX
p=1

akp;ia
k
p;j; di =

lX

k=1

nX
p=1

akp;i(y
k
p � Y k

p ) (19)

The n� n system of linear equations is solved to obtain the corrections �xi, i = 1; 2; � � � ; n.

The parameters are updated using (7), in which �r can be assumed. Optimal values of �r can

be determined by the quadratic interpolation method suggested by Yoon and Yeh (1976).

Iterations can be terminated when S converges and the parameter corrections are too small

to make physical sense, or when jj�x=xjj � machine precision.

Minimax method

The objective of the minimax method used in the current study is to determine the parame-

ters xi; i = 1; 2; � � � ; n that minimize the sum of the absolute values of the maximum errors

at each of the gages. The maximum errors e1; e2; � � � em at gages 1; 2; � � �m at any time

during the entire period are

ei = max(j�ki j); k = 1; 2; : : : l; i = 1; 2; : : :m (20)

The objective function selected is

min e1 + e2 + � � �+ em (21)



If the parameters xi; i = 1; 2; � � � ; n are subjected to small changes �xi; i = 1; 2; � � � ; n,

then simulated values yki ; i = 1; 2; � � � ; n; k = 1; 2; � � � ; l, change to (y0i)
k = y0i + �yki ; i =

1; 2; � � � ; n; k = 1; 2; � � � ; l. Expressing �yki using (1), yki can be expressed as

(y0i)
k = yki +

nX

j=1

aij�xj i = 1; 2; � � � ; m; k = 1; 2; � � � ; l (22)

The constraints used to determine maximum error can be set up by con�ning the new errors

after a parameter correction to be ei for all stations. This condition is given by

j(y0i)
k � Yij � ei; for i = 1; 2; � � � ; m; and k = 1; 2; � � � ; k (23)

Substituting for (y0i)
k using (22), (23) can be written as

nX

j=1

akij�xj � ei � Y k
i � yki for i = 1; 2; � � � ; m; and k = 1; 2; � � � ; l (24)

�
nX

j=1

akij�xj � ei � �Y k
i + yki for i = 1; 2; � � � ; m; and k = 1; 2; � � � ; l (25)

Other conditions can also be included to keep the solution within limits. Upper and lower

bounds can be set to the parameters using

xi +�xi � xi;ub i = 1; 2; : : : n (26)

xi +�xi � xi;lb i = 1; 2; : : : n (27)

in which, xi;ub and xi;lb are the upper and lower bounds of parameters in (8). The objective

function with 2 � l � m + 2 � n constraints form a linear programming problem, which is

solved for the corrections �xi, i = 1; 2; � � � ; n using the simplex algorithm. Parameters are

updated using (7) until the corrections are too small to make physical sense or jj�x=xjj �

machine precision.

APPLICATION TO THE UPPER NIAGARA RIVER

The model to be calibrated solves the Saint Venant equations using the four point implicit

method. The numerical method is similar to that used by Potok and Quinn (1979). The

Saint Venant equations consist of the following continuity and momentum equations:

@A

@t
+

@Q

@x
= 0 (28)



@Q

@t
+

@

@x
(
Q2

A
) + gA

@h

@x
+

pb�b

�
= 0 (29)

in which, Q = discharge; A = 
ow area; h = water surface elevation; x = distance along the

river; t = time; � = density of water; pb = wetted perimeter; �b = shear stress at channel

bottom = (�gQ2n2b)=(A
2R(1=3)); R = hydraulic radius = A=pb; pb = wetted perimeter; nb =

Manning's coe�cient. nb values for the discretized river sections are the unknown parameters

in the model to be calibrated.

The map of the Upper Niagara River is shown in Fig. 1. In the map, the term NYPA

stands for New York Power Authority hydropower intake, and SAB stands for the Sir Adams

Beck power plant intake on the Canadian side. The river network is discretized into 27 sec-

tions. The problem involves calibration of the (n = 27) unknown Mannings coe�cients to

minimize the errors at all the gaging stations. Hourly water levels between Feb 13, 1989, and

Feb 16, 1989, are used in the following sample calibration to obtain Manning's coe�cients

for the range of water levels considered. A complete calibration requires data for a longer

period of time, covering a wider range of water levels. The list of 3 stations with known

discharges and 9 stations with known water levels available to run the model is shown in

Fig. 1. Water level gages are marked as G1 . . .G9 and known discharges marked as Q10

. . . Q12. The upstream end water level at Fort Erie gage G1 is speci�ed as the upstream

boundary condition, and the downstream end discharges Q10, Q11 and Q12 at the control

dam and intakes are speci�ed as the downstream boundary conditions. Water level gage

G2 is not used because its value is very close (�0.05 ft) to the value of G3, and both are

represented by only one node in the 1-D model. The remaining 7 gages marked G3-G9 are

used in the calibration. In the study, the observations and simulations at these gages are

simply referred to as Yi and yi; i = 1; : : : ; m in which m = 7.

Calibration of individual model parameters

The generalized linear inverse formulation and singular value decomposition are used to

calibrate 27 bed roughness values n1; : : : n27 of the 27 river sections in the 1-D hydrodynamic

model. SVD is needed in this case because there are only 7 observation stations or 7 equations

to solve (5) to determine 27 unknown parameters. All the Manning's coe�cients are assumed



as 0.025 in the �rst iteration.

Figure 2 shows the sensitivity matrix As indicating large sensitivities of n2 and n3 to

almost all the water level gaging stations. In the �gure, the circle diameters correspond to

the sizes of the elements. n2 and n3 correspond to the rapids sections of the upper Niagara

river where the drop in water level is about 2 m and 
ow velocities reach approximately 2.6

m/s.

Figure 3 shows the convergence of a few selected stable parameters n2, n6, n11, n13, and

n16, and the rapid reduction of the error variance in water levels with increasing number

of iterations. The rapid convergence indicates that the method is capable of minimizing

the bias error as intended. Figure 3 shows that the method also reduces the mean square

error during calibration. Since the problem is underdetermined, the solution shown in the

second row of Table 1 is nonunique and has a large random error. Parameter error variance

is large for relatively insensitive parameters as shown later in Fig. 7. Even if the insensitive

parameters have a large variance, the model gives a good error reduction as shown in Fig. 4

because the model output is not a�ected by them.

The set of 27 parameters with large errors has a limited use. However, the by-products

of the method such as the singular values and singular vectors can be used to understand

the parameters of the model in great detail as explained before. Three of the new linearly

independent parameter corrections obtained using �z = VT�x of (11) are shown below.

�n�1 � 0:712�n3 + 0:687�n2 + 0:093�n4 + 0:043�n11 + : : : ; �1 = 81210 (30)

�n�2 � 0:594�n11 + 0:364�n16 + 0:317�n21 + 0:253�n10 + : : : ; �2 = 2269 (31)

�n�3 � 0:622�n16 + 0:406�n17 + 0:346�n21 + 0:229�n24 + : : : ; �3 = 1572 (32)

in which, �n�1; �n�2; : : : are the components of the vector �z representing new independent

parameter variations. These variations are made up of linear combinations of old parameter

variations �n1; �n2 : : :. The coe�cients in front of �n1;�n2 : : :, which form �n�i , are

obtained from the columns of V. Variations of the new parameters, �n�i are related to

variations in the model output, �h�i , through the relationship �h�i = �i�n�i , which is similar

to (10) when the model output variation is replaced by a negative output error. The singular

values �i of the model 81210, 2269, 1572, 827, 782, 476 and 22, (nearest integer) show the



domination of the calibration by a small number of parameter groups. The singular values

show that the rank of the (7 � 27) sensitivity matrix is 7 and that only 7 independent

parameter groups can be identi�ed in the problem.

The singular vectors of V written as (30)...(32) show the three most important parameter

groups. Singular values �i provide estimates of the sensitivities. The equations show that

adjustment of the group of parameters, consisting of mainly n3 and n2 as indicated by the

strong coe�cients 0.712 and 0.687, can take care of about 93 % of the overall calibration.

Parameters n2 and n3 represent the narrow rapids section of the river that has a controlling

e�ect on the overall water levels. Parameters n11; n16 : : : form another independent group.

The linear combinations of variations of the model output are related to �n�1;�n�2 : : :

through the equation �h� = UT�h.

�h�1 � �0:544�h9 � 0:458�h7 � 0:457�h8 � 0:414�h6 + : : : �1 = 81210 (33)

�h�2 � 0:627�h4 + 0:607�h3 + 0:287�h5 � 0:170�h8 + : : : �2 = 2269 (34)

�h�2 � �0:930�h5 + 0:265�h4 + 0:210�h3 + 0:110�h9 + : : : �3 = 1572 (35)

in which, �h�1; �h�2; : : : are the elements of vector �h� made of linear combinations of

variations of water levels �h1;�h2; : : : ;�h7 which correspond to gages G3-G9. (33)-(35)

show that the new parameter n�1 uses simulation errors in water levels h9; h7; h8; h6 : : : for

calibration, and parameter n�2 uses errors in h4; h3 : : : for calibration. Approximate equality

of coe�cients in (33) shows that all the gages have the same information required to calibrate

n�1. Parameter n
�

2 however requires information mostly from h4 and h3 (G6 and G5) as shown

by coe�cients 0.627 and 0.607.

Figure 5 shows the parameter resolution matrix obtained using (13). In the �gure, pa-

rameter corrections in groups n6 : : : ; n14 and n16; : : : ; n24 are the least resolved. n27 is the

most resolved, because there are two gages at both ends of the reach. Parameters within

a long river reach without gaging stations in the middle are not su�ciently resolved, and

behave as a group. Any further resolution of parameters within these zones is not possi-

ble because observation points cannot distinguish between roughnesses of any two sections

within a group if the group lies between two gages. It is also unnecessary to resolve the

parameters any further unless the model is used to estimate the water levels at the interior



points.

The accuracy of the parameter corrections is of the order 1

�min
as shown by (12). If a

small cuto� value �min is selected, the parameters will have larger errors. If a large cuto� is

selected, only a few parameter groups will be selected as explained before. With a very large

cuto�, the number of parameters may not be adequate to represent the physical system,

and su�ciently minimize the errors. The next sections includes determination of an optimal

parameter dimension based on the parameter uncertainty and the least square output error.

The correlation matrix in Fig. 6 shows the group behavior of the parameters. The �g-

ure shows the strong correlation among parameter groups n6 : : : n8, n9 : : : n12, n13 : : : n15,

n16 : : : n18, n19 : : : n24, n25 : : : n26. The map in Fig. 1 shows that these groups correspond

to river reaches with water level gages at both ends. Next sections describe the calibration

using parameter groups.

Calibration of parameter groups

Calibration of the individual parameters in the previous section shows that they tend to

group together as indicated by the correlation, resolution and V matrices. In the SVD

method explained earlier, singular vectors in V could implicitly make use of these groups.

However, 27+1 computer runs were needed for one iteration of the calibration. In this sec-

tion, in order to reduce the number of runs and obtain more stable parameters with low

error variances, 7 new groups of parameters are created from the original parameters using

the information available from the previous section. A single parameter value is assigned to

all the parameters in a group. The parameter groups created in this manner are shown in

Table 2 and are marked as m1 : : :m7. The number of groups is limited to 7 because it is the

rank of As.

To study the e�ect of the number of parameter groups, or parameter dimension on the

output error and parameter uncertainty, the 7 parameter groups are combined again with

each other to form smaller numbers of parameter groups. Column 4 of Table 2 for example

shows how parameters n1 : : : n27 are combined to form 4 groups. Figure 7 shows the variation

of the output error and parameter uncertainty with di�erent numbers of parameter groups.

The mean square bias error is used to measure the output error in which bias is the aver-



age di�erence between the observed and simulated water levels. An approximate estimate

of the parameter error or uncertainty is computed using the expression �2=�2min, which is

approximately equal to the in�nite norm of the covariance matrix. Figure 7 shows that the

parameter uncertainty increases and the output error decreases with increasing number of

parameter groups. The �gure also shows that the output error variance does not reduce

much when there are more than 3 parameters. With more than 3 parameters, the parameter

uncertainty increases. The �gure shows the existence of an optimal parameter dimension of

about 3 for the problem where both the output error and parameter uncertainty are low.

SVD with 7 parameter groups shown in Table 2 gave a mean square bias error of 7.23

�10�4 m2 after 7 iterations showing that the calibration is successful even if these handpicked

parameter groups are not exactly the singular vectors in (30)-(32). The condition number of

the 7�7 group sensitivity matrix is 150198/23.8, which shows that the matrix is nonsingular,

and it is possible to use the Gauss-Newton method for comparison. The parameter resolution

and correlation matrices of the 7 parameter group calibration (not shown) indicate that the

handpicked parameter groups are su�ciently resolved and independent.

The third and fourth rows of Table 1 show the values of parameters obtained by calibrat-

ing the handpicked 7 and 3 groups of parameters using SVD. All these are even determined

problems that can also be solved using Gaussian elimination. The value of a single parameter

that �ts the entire river network is found to be 0.03022, with an output mean square bias

error of 6.1 �10�2 m2.

Calibration using Gauss-Newton and Minimax methods

The Gauss-Newton and minimax methods are also used to calibrate the same 7 handpicked

parameter groups for comparison. The �nal Mannings coe�cients after 5 iterations of cali-

bration using both methods are shown in Table 3 along with the sum of error variances and

mean square bias errors. The largest correction required on the Mannings coe�cients after 5

iterations of the Gauss-Newton method is approximately 0.00002, and the largest correction

required after 8 iterations of the minimax method is approximately 0.00005. The iterations

were terminated at this point due to the smallness of the adjustment.



During the calibration using the Gauss-Newton method, � was assumed as 0.75 during

the �rst two iterations, and 1.0 afterwards. Larger values of � were avoided during �rst

few iterations to avoid crashing the model. The Gauss-Newton method required the least

amount of computer time and the fastest rate of convergence.

The minimax method is the most time consuming because of the linear programming

(LP) algorithm. The computer time requirement increased with the number of time steps

in the simulation runs because it increased the size of the linear programming problem. A

Sparc 1+ computer using the IMSL package needed 10-60 minutes of computer time for a

single iteration of the minimax, when compared with split seconds needed by other methods.

Table 3 shows that parameter values are approximately the same for the most important

parameter group m1 consisting of n1 : : : n6. Plots of the observed and simulated water levels

using all three methods do not show any visually detectable di�erence.

CONCLUSIONS

SVD is useful in identifying and understanding an arbitrary number of parameters when

the equations involved are overdetermined, even-determined, underdetermined or singular.

Calibration of the 27 parameters in the Niagara river model using di�erent numbers of

parameter groups show that the model has a maximum of 7 independent parameter groups,

and the optimum parameter dimension is about 3.

The study shows that the underdetermined identi�cation problem with 27 parameters

can be reduced to an even-determined or an over-determined problem by creating a number

of parameter groups equal to the rank of the sensitivity matrix (7) or less. The groups can be

created using the information from parameter space resolution matrices, correlation matrices,

singular vectors or the geometrical layout of the river system. Parameters corresponding to

river reaches between gages appear as groups in the correlation and resolution matrices, and

therefore can be considered as groups. Once parameter groups are created such that the

problem is neither underdetermined nor singular, optimization methods such as the Gauss

Newton and minimax methods can be used to carry out the same calibration.
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APPENDIX II. NOTATION

The following symbols are used in the paper

Ak sensitivity matrix [akj;i]

A cross sectional area of a channel

As

Pl
k=1A

k

akji sensitivity of j th water level with respect to i th parameter at time k.

d intermediate variable de�ned as UT
�s which give linear combinations

of di�erences in water levels

hi water level at gage i

k time step number

l number of time steps

m number of observation stations

mj group values of handpicked parameters

n number of parameters

nb Manning's coe�cient

nj Manning's coe�cient of river section j

n�j new parameter combination obtained using the SVD method

Q discharge in a channel

q rank of the matrix, or number of singular values used

r number of iterations

R hydraulic radius

R parameter resolution matrix

U; V m�m and n� n matrices of orthogonal singular vectors

xi a generic symbol for parameter i

Y k
j observed water level at node j at time k (m)

ykj simulated water level at node j at time k (m)

�x vector of parameter corrections (n1; n2 : : :)
T

�s vector consisting of summations of errors

�sj summation of errors at gage j over time



� diagonal matrix of singular values

�i i th singular value

�i;j correlation among parameter corrections

�b shear stress at channel bottom

�2 covariance of parameter corrections

Subscripts

s summation over time

r iteration number

Superscripts

k value at time step k



Figures

Fig 1: Map of the upper Niagara River.

Fig 2: Sensitivity matrix (Max diameter=31519); gages G3-G9 are marked as 1-7.

Fig 3: Convergence of parameters and reduction of errors with iterations.

Fig 4: Observed and simulated water levels after calibration.

Fig 5: Parameter resolution matrix (Max. Diameter = 0.96).

Fig 6: Correlation matrix (Max diameter = 1.0).

Fig 7: Variation of output error and parameter uncertainty with parameter dimension.



Table 1: Manning's Roughness Coe�cients obtained using SVD

Param. 1 2 3 4 5 6 7 8 9

Indiv. .0273 .0321 .0352 .0280 .0226 .0239 .0237 .0208 .0248

7 groups .0329 .0329 .0329 .0329 .0329 .0226 .0226 .0226 .0229

3 groups .0327 .0327 .0327 .0327 .0327 .0220 .0220 .0220 .0238

Param. 10 11 12 13 14 15 16 17 18

Indiv. .0267 .0258 .0211 .0286 .0269 .0099 .0166 .0203 .0200

7 groups .0229 .0229 .0229 .0263 .0263 .0263 .0194 .0194 .0194

3 groups .0238 .0238 .0238 .0238 .0238 .0238 .0220 .0220 .0220

Param. 19 20 21 22 23 24 25 26 27

Indiv. .0239 .0268 .0284 .0277 .0133 .0183 .0346 .0255 .0223

7 groups .0261 .0261 .0261 .0261 .0261 .0261 .0261 .0261 .0007

3 groups .0238 .0238 .0238 .0238 .0238 .0238 .0238 .0238 .0238

KEY WORDS

Bed roughness calibration, canal network, Open chanel 
ow Hydraulics, Inverse problem,

parameter identi�cation, Singular value decomposition, least square, Gauss-Newton, Linear

Programming,



Table 2: Parameter groups formed by combining individual reach parameters; all groups are

combinations of the 7 basic groups in column 2

Groups of Number of par. groups

Original and formation

Parameters 7 5 4 3 2 1

n1 : : : n5 m1 m1 m1 m1 m1 m1

n6 : : : n8 m2 m2 m2 m2 m2 m1

n9 : : : n12 m3 m3 m3 m3 m2 m1

n13 : : : n15 m4 m4 m3 m3 m2 m1

n16 : : : n18 m5 m5 m4 m2 m2 m1

n19 : : : n26 m6 m5 m1 m3 m2 m1

n27 m7 m5 m3 m3 m2 m1

Table 3: Results of the calibration of 7 handpicked parameter groups using di�erent methods

Group Min. Bias Least Sqr. Minimax

1 0.03289 0.03200 0.03296

2 0.02270 0.02539 0.02558

3 0.02282 0.02546 0.02504

4 0.02615 0.02504 0.02239

5 0.01948 0.02570 0.01816

6 0.02948 0.02541 0.02371

7 0.00701 0.02501 0.02408

Err. Variance (m2) 0.00187 0.00959 0.05361

Mean Sq. Bias (m2 0.00072 0.00848 0.05332



Parameter Individual 7 groups 3 groups

1 0.0273 0.0329 0.0327

2 0.0321 0.0329 0.0327

3 0.0352 0.0329 0.0327

4 0.0280 0.0329 0.0327

5 0.0226 0.0329 0.0327

6 0.0239 0.0226 0.0220

7 0.0237 0.0226 0.0220

8 0.0208 0.0226 0.0220

9 0.0248 0.0229 0.0238

10 0.0267 0.0229 0.0238

11 0.0258 0.0229 0.0238

12 0.0211 0.0229 0.0238

13 0.0286 0.0263 0.0238

14 0.0269 0.0263 0.0238

15 0.0099 0.0263 0.0238

16 0.0166 0.0194 0.0220

17 0.0203 0.0194 0.0220

18 0.0200 0.0194 0.0220

19 0.0239 0.0261 0.0238

20 0.0268 0.0261 0.0238

21 0.0284 0.0261 0.0238

22 0.0277 0.0261 0.0238

23 0.0133 0.0261 0.0238

24 0.0183 0.0261 0.0238

25 0.0346 0.0261 0.0238

26 0.0255 0.0261 0.0238

27 0.0223 0.0007 0.0238


