

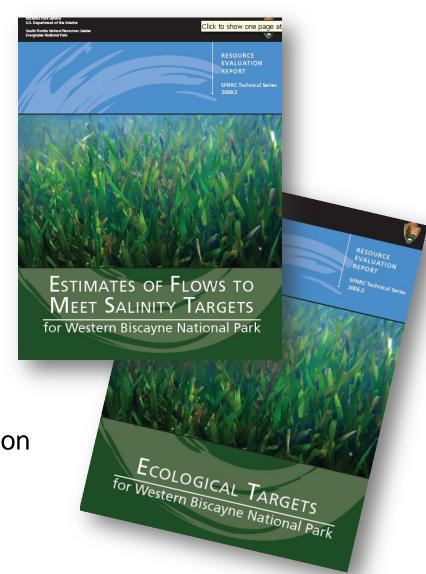
South Florida Natural Resources Center

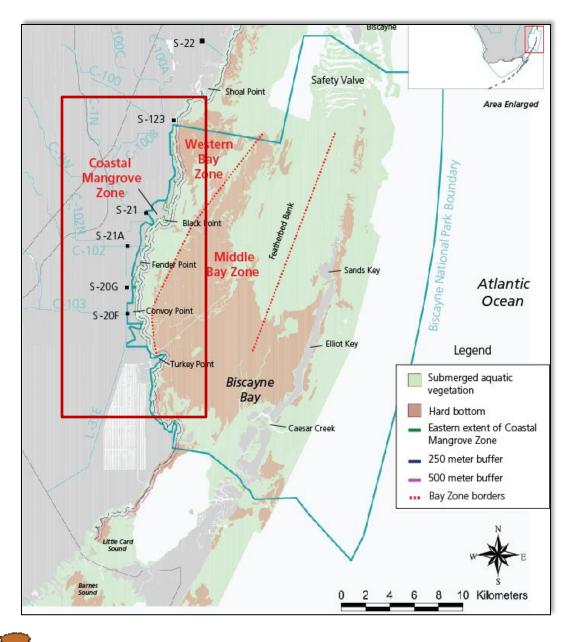
Erik Stabenau, Ph.D., Oceanographer

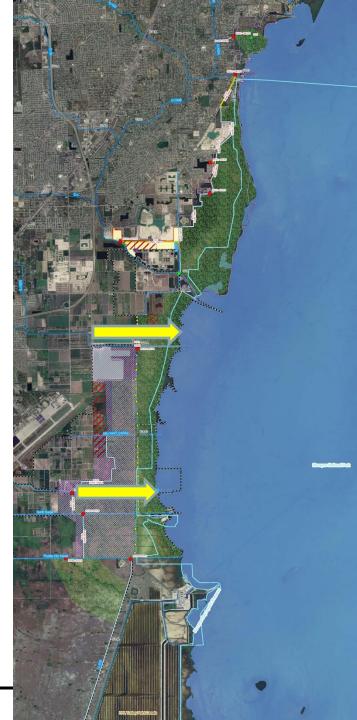
National Park Service South Florida Natural Resource Center Everglades & Biscayne National Parks 950 N. Krome Ave, Homestead, FL 33030

Requests to: Erik_Stabenau@nps.gov (305)224-4209

Overview

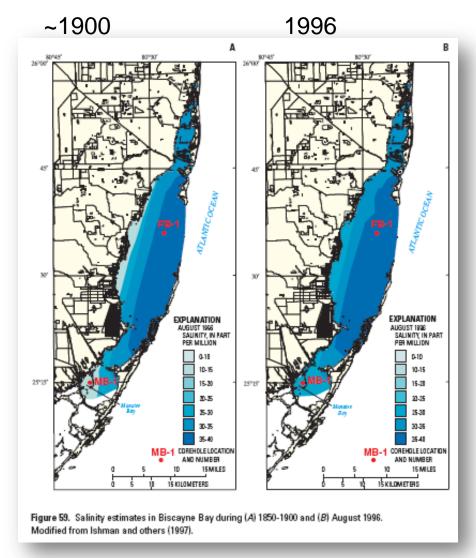

Ecological & Hydrologic Targets for Western Biscayne National Park


Consideration for downstream ecosystem in water management


- Specific conditions and goals
- Triggers for dry season flow

Multiple lines of evidence

- Sensitivity to system during dry season
- Quantity and timing



South Florida Natural Resources Center

Changes in the Nearshore Areas

Historic trend of increasing salinity in the nearshore zone

1900 Mesohaline conditions (5 to 18 PSU)

1996
Polyhaline conditions (18-30 PSU)

USGS Circular 1275, Impact of anthropogenic development on coastal groundwater hydrology in Southeastern Florida, 1900 – 2000.

Biscayne National Park

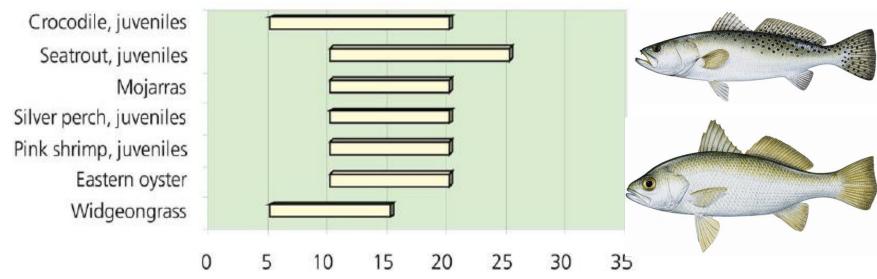
Impacts

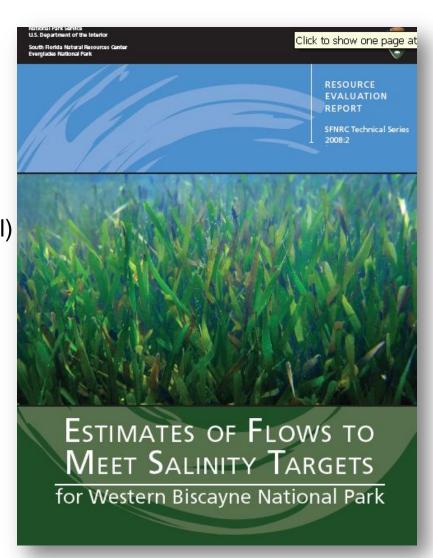
Changing habitat and

Ecology and Salinity

Late dry season target: Average monthly salinity from 15 to 25 PSU.

Never exceed 30 PSU




Figure 5 from "Ecological Targets..." report summarizes the optimal salinity range for a variety of species in the coastal zone.

How much water?

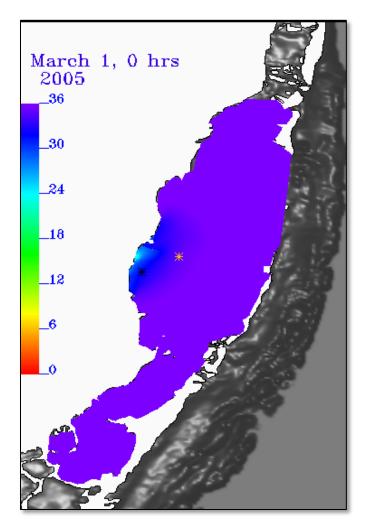
Justification based on 3 different measures: **Hypersalinity prevention estimate**86 cfs at both C-103 & C-102 (172 cfs total)

Hydrodynamic Model results

Observation based estimate

How much water?

Justification based on 3 different measures:


Hypersalinity prevention estimate

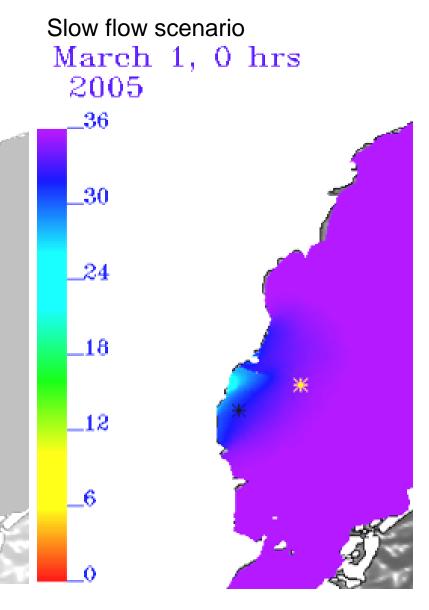
86 cfs at both C-103 & C-102 (176 cfs total)

Hydrodynamic Model results

52 cfs at both C-103 & C-102 (104 cfs total)

Observation based estimate

Comparing Model Salinity Data


Base conditions

March 1, 0 hrs 2005

BBSM Summary

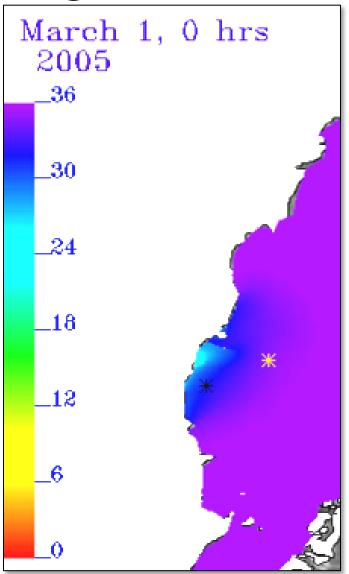
Model reveals coastal zone salinity is sensitive to low flow rates during dry season.

Suggests that by providing freshwater at low flow rates, conditions can be improved in a targeted region.

South Florida Natural Resources Center

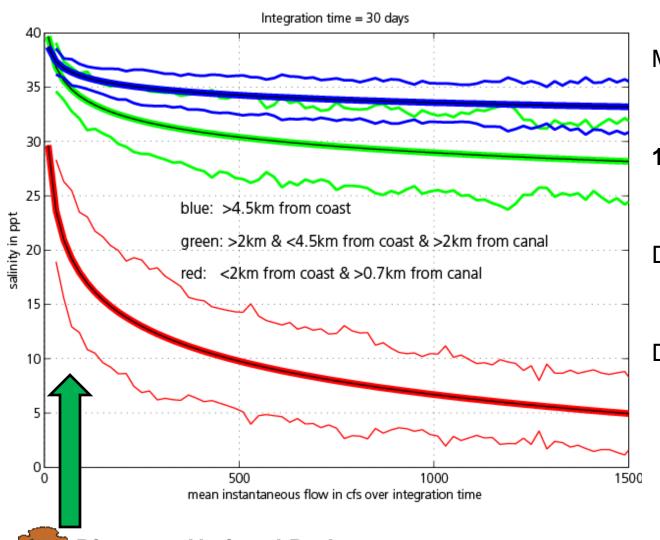
How much water?

Justification based on 3 different measures:


Hypersalinity prevention estimate

86 cfs at both C-103 & C-102 (176 cfs total)

Hydrodynamic Model results


52 cfs at both C-103 & C-102 (104 cfs total)

Observation based estimate

Quantity

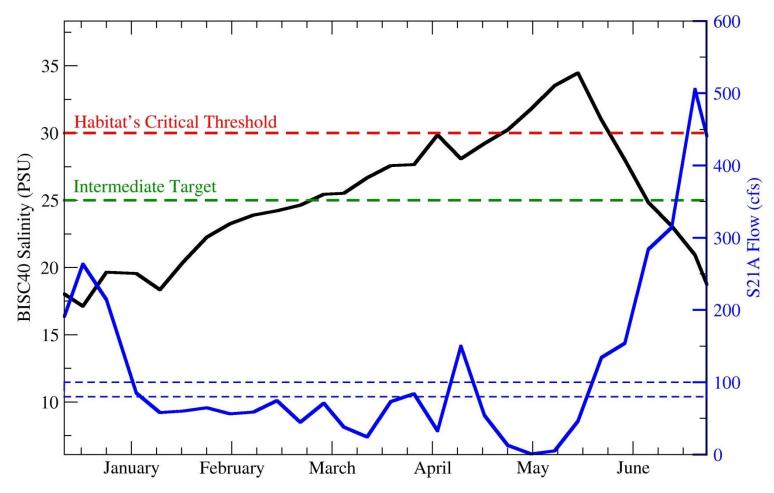
Net Effect of Surface Flow on Salinity in South Biscayne Bay

Most sensitive at low flow rates near coast (red)

100 cfs = 10 ppt reduction in salinity

Diminishing returns with increasing flow rate

Driven by mixing dynamics


Biscayne National Park

South Florida Natural Resources Center

Quantity

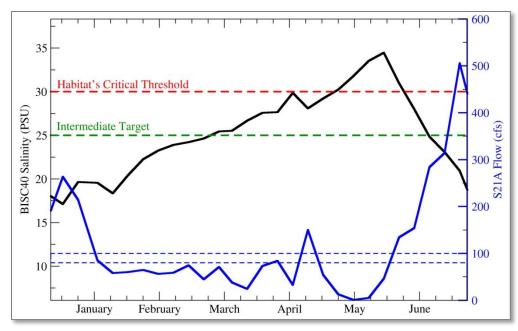
How much water?

Observation based estimate = Between 80 to 100 cfs

Biscayne National Park

How much water? 76 cfs: range 52 to 100 cfs

(152 cfs total)

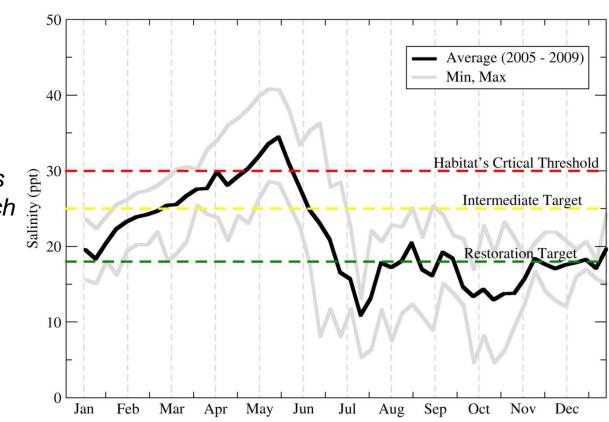

Justification based on 3 different measures:

Hypersalinity prevention estimate

86 cfs at both C-103 & C-102

Hydrodynamic Model results
52 cfs at both C-103 & C-102

Observation based estimate
Between 80 to 100 cfs


Timing

When?

February through May using salinity as trigger

Justification:

5 – year data series shows need most critical March to June

Summary

- **Request:** ~ 76 cfs per canal, Feb. through May, from C-102 & C-103 as needed based on salinity trigger.
- Volume: <10 kaf per month
- Goal: salinity never above 30 PSU
- Target: salinity maintained below 25 PSU

Not a replacement for the long term goals of Biscayne National Park but a step in the right direction

BBCW Phase 1 - Integration

Effectively integrates with BBCW Project.

- Request uses existing infrastructure
- Triggering flow from salinity provides mechanism to phase out this action when other restoration efforts bring salinity in line with targets
- Cost sharing for monitoring effort

References

- Langevin, Christian D., 2001, Simulation of Ground-Water Discharge to Biscayne Bay, Southeastern Florida, USGS Water resources Investigations Report 00-4251.
- Mazzoti, F.J., M.S. Cherkiss, 1998, Status and Distribution of the American Crocodile (*Corcodylus actunus*) in Biscayne Bay. Contract No. C-7794, South Florida Water Management District.
- Serafy, J. E., K. C. Lindeman, T. E. Hopkins, and J. S. Ault, 1997, Effects of canal discharge on fish assemblages in a subtropical bay: field and laboratory observations. Marine Ecology Progress Series, 160: 161-172.
- Pattillo, M., T. Czapla, D. Nelson, and M. Manaco, 1997, Distribution and abundance of fishes and invertebrates in Gulf of Mexico estuaries. Volume II: Species life history summaries. ELMR Rep. No. 11. NOAA/NOS Strategic Environmental Assessments Division, Silver Spring, MD, 377 pp.
- SFWMD. 2006. SFWMD GIS Data Catalog. 2004 land use/land cover (cartographic boundary file lscndclu04) "SFWMD 2004-05 Land Cover Use Geodatabase.", recovered from http://my.sfwmd.gov/gisapps/sfwmdxwebdc/dataview.asp on April 7, 2009.

And others referenced in:

SFNRC, 2006, *Ecological & Hydrologic Targets for Western Biscayne National Park*. South Florida Natural Resources Center, Everglades National Park, Homestead, FL. SFNRC Technical Series 2006:1.25 pp.

Contact Information

Erik Stabenau 305-224-4209

Erik_Stabenau@nps.gov EVER_data_request@nps.gov

Existing Flows (kaf)

S20F

Period	2005	2006	2007	2008	2009	Minimum	Average	Maximum
JAN	4.30	3.80	5.29	3.94	2.98	2.98	4.06	5.29
FEB	1.50	5.73	4.97	4.17	0.69	0.69	3.41	5.73
MAR	4.25	3.63	0.86	4.14	4.71	0.86	3.52	4.71
APR	1.39	3.18	3.33	9.08	0.70	0.70	3.53	9.08
MAY	0.07	2.16	5.83	0.00	9.12	0.00	3.43	9.12
JUN	42.74	2.19	23.76	9.17	28.38	2.19	21.25	42.74
JUL	18.67	22.85	21.44	13.70	16.61	13.70	18.65	22.85
AUG	38.08	13.61	6.45	28.77	11.29	6.45	19.64	38.08
SEP	37.24	15.53	18.07	15.40	18.93	15.40	21.03	37.24
ОСТ	20.70	12.58	27.63	34.05	18.49	12.58	22.69	34.05
NOV	10.55	12.54	14.95	11.65	30.33	10.55	16.00	30.33
DEC	8.93	8.88	4.69	6.36	38.26	4.69	13.42	38.26
Total	188.42	106.69	137.26	140.43	180.49	70.78	150.66	277.48

Existing Flows (kaf)

S21A TOTAL

Period	2005	2006	2007	2008	2009	Minimum	Average	Maximum
JAN	3.43	4.14	4.21	0.51	1.77	0.51	2.81	4.21
FEB	1.88	5.24	3.77	0.34	0.72	0.34	2.39	5.24
MAR	3.25	4.08	1.08	1.19	0.46	0.46	2.01	4.08
APR	1.03	2.55	2.40	4.32	0.00	0.00	2.06	4.32
MAY	1.20	2.72	2.77	0.70	3.02	0.70	2.08	3.02
JUN	21.76	2.80	11.10	6.58	11.08	2.80	10.66	21.76
JUL	8.96	11.09	10.87	6.39	7.58	6.39	8.98	11.09
AUG	26.06	7.21	4.82	13.40	5.11	4.82	11.32	26.06
SEP	24.33	11.01	8.41	7.28	10.18	7.28	12.24	24.33
OCT	15.58	6.29	12.48	13.90	5.51	5.51	10.75	15.58
NOV	9.60	6.48	8.05	5.64	6.92	5.64	7.34	9.60
DEC	3.50	5.77	1.63	2.65	10.47	1.63	4.80	10.47
Total	120.59	69.38	71.59	62.91	62.80	36.07	77.45	139.77

	Average
FEB	5.80
MAR	5.53
APR	5.59
MAY	5.51
TOTAL	16.92

On average, district provided ~ 17 of the currently requested 40 kaf

