Freshwater Flow and Ecological Relationships in Biscayne Bay

Contract No. C-15967-WO04-06

Prepared For:

Prepared By:

In Association With:

January 2004

FRESHWATER FLOW AND ECOLOGICAL RELATIONSHIPS IN BISCAYNE BAY

Prepared for:

SOUTH FLORIDA WATER MANAGEMENT DISTRICT WEST PALM BEACH, FLORIDA

Prepared by:

BARNES, FERLAND AND ASSOCIATES, INC.

3655 Maguire Boulevard, Suite 150 Orlando, Florida 32803 407-896-8608

In Association with: APPLIED TECHNOLOGY & MANAGEMENT, INC. LEWIS ENVIRONMENTAL SERVICES, INC.

Principal Authors:

Greg Braun – ATM Roy "Robin" Lewis – LES John Watson – BFA

JANUARY 2004

i

SFWMD Contract No. C-15967-WO04-06 Freshwater Flow and Ecological Relationships in Biscayne Bay

EXECUTIVE SUMMARY	<u>Page No.</u> ES-1
SECTION 1 - INTRODUCTION	1-1
PROJECT BACKGROUND	1-1
PURPOSE AND SCOPE RELATIONSHIPS OF SALINITY, ECOSYSTEMS AND POTENTIAL	1-2 1-3
HARM MFL WORK IN OTHER FLORIDA ESTUARINE SYSTEMS	1-4
SECTION 2 – BISCAYNE BAY CHARACTERISTICS	2-1
PROJECT BOUNDARIES AND SUB-REGIONS	2-1
FRESHWATER FLOWS AND SALINITY CONDITIONS	2-11
EXISTING SPECIES/ECOLOGICAL CONDITIONS	2-13
Snake Creek/Oleta River	2-14
Northern Biscayne Bay	2-15
Miami River/Government Cut	2-17
Central Biscayne Bay	2-19
South-Central Biscayne Bay	2-20
Southern Biscayne Bay	2-23
SECTION 3 - SUMMARY OF PROJECT TASKS	3-1
TASK 2 - LITERATURE AND DATA REVIEW	3-1
TASK 3 – INTERVIEWS WITH EXPERTS	3-2
TASK 4 - ALTERNATIVE MFL APPROACHES	3-3
SECTION 4 – VALUED ECOSYSTEM COMPONENTS AND CURRENT IMPACTS	4-1
HABITATS	4-1
Mangrove forests	4-1
Tidal marshes	4-1
Seagrass meadow and macroalgae	4-2
Oyster bars	4-3
Hardbottom	4-4

Softbottom	4-5
POTENTIAL INDICATOR SPECIES	4-5
<i>Micro-organisms</i>	4-5
Foraminifera	4-5
Phytoplankton	4-7
Diatoms	4-7
Listed Species	4-8
American Crocodile	4-12
Roseate Spoonbill	4-14
West Indian Manatee	4-18
Johnson's Seagrass	4-30
Oysters	4-32
Crustaceans	4-33
Fish	4-39
Seagrass	4-41
SALINITY TOLERANCES, PREFERRED HABITATS AND LIFE CYCLES OF POTENTIAL INDICATOR SPECIES OR SUITES OF SPECIES	4-42
SECTION 5 – POTENTIAL ALTERNATIVE APPROACHES FOR	5-1
MFL DEVELOPMENT FOR BISCAYNE BAY	J-1
MFL DEVELOPMENT FOR BISCAYNE BAY	
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS	5-1 5-8
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS	5-1
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS	5-1 5-8
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS	5-1 5-8 5-9
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES	5-1 5-8 5-9 5-12
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO	5-1 5-8 5-9 5-12 5-13
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES	5-1 5-8 5-9 5-12 5-13 5-13
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES COMMUNITY INDICES	5-1 5-8 5-9 5-12 5-13 5-13 5-14
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES COMMUNITY INDICES FOOD WEB SUPPORT	5-1 5-8 5-9 5-12 5-13 5-13 5-14 5-14
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES COMMUNITY INDICES FOOD WEB SUPPORT SOILS	5-1 5-8 5-9 5-12 5-13 5-13 5-14 5-14 5-14
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES COMMUNITY INDICES FOOD WEB SUPPORT SOILS EVALUATION OF ALTERNATIVE APPROACHES	5-1 5-8 5-9 5-12 5-13 5-13 5-14 5-14 5-14 5-14 5-15
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES COMMUNITY INDICES FOOD WEB SUPPORT SOILS EVALUATION OF ALTERNATIVE APPROACHES SECTION 6 – RECOMMENDED APPROACHES	5-1 5-8 5-9 5-12 5-13 5-13 5-14 5-14 5-14 5-14 5-15 6-1
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES COMMUNITY INDICES FOOD WEB SUPPORT SOILS EVALUATION OF ALTERNATIVE APPROACHES SECTION 6 - RECOMMENDED APPROACHES SNAKE CREEK/OLETA RIVER	5-1 5-8 5-9 5-12 5-13 5-13 5-13 5-14 5-14 5-14 5-14 5-15 6-1 6-3
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES COMMUNITY INDICES FOOD WEB SUPPORT SOILS EVALUATION OF ALTERNATIVE APPROACHES SECTION 6 – RECOMMENDED APPROACHES SNAKE CREEK/OLETA RIVER NORTHERN BISCAYNE BAY	5-1 5-8 5-9 5-12 5-13 5-13 5-13 5-14 5-14 5-14 5-14 5-15 6-1 6-3 6-3
MFL DEVELOPMENT FOR BISCAYNE BAY STATIC AND DYNAMIC HABITATS VALUED ECOSYSTEM COMPONENTS INDICATOR SPECIES PRE-DEVELOPMENT SCENARIOS ECOLOGICAL PRESERVATION OR STATUS QUO REQUIREMENTS FOR PREFERRED FISH COMMUNITIES COMMUNITY INDICES FOOD WEB SUPPORT SOILS EVALUATION OF ALTERNATIVE APPROACHES SECTION 6 – RECOMMENDED APPROACHES SNAKE CREEK/OLETA RIVER NORTHERN BISCAYNE BAY MIAMI RIVER/GOVERNMENT CUT	5-1 5-8 5-9 5-12 5-13 5-13 5-13 5-14 5-14 5-14 5-14 5-15 6-1 6-3 6-3 6-3 6-4

SECTION 7 – INFORMATION DEFICIENCIES AND NEEDS 7-1
--

REFERENCES

REF-1

FIGURES DESCRIPTION

1	General Location Map showing Sub-regions	2-2
2	Snake Creek/Oleta River Sub-region	2-4
3	Northern Biscayne Bay Sub-region	2-5
4	Miami River/Government Cut Sub-region	2-6
5	Central Biscayne Bay Sub-region	2-7
6	South-Central Biscayne Bay Sub-region	2-8
7	Southern Biscayne Bay Sub-region	2-9
8	Halophila johnsonii Critical Habitat	2-16
9	Boundaries of Biscayne National Park and Biscayne	2-21
	Bay Aquatic Preserve	
10	Crocodylus acutus Critical Habitat	2-24
11	Crocodile Sightings and Captures in Biscayne Bay	4-15
12	Crocodile Sightings in Relation to Salinity	4-16
13 а-с	Manatee Sightings in Biscayne Bay	4-21 thru
		4-23
14 a-b-c-d	Essential Manatee Habitat Areas	4-24 thru
		4-27
15	Stationary and dynamic habitat components from	5-2
	Browder and Moore (1981)	
16	Graphic representation of the range of salinity zones	5-3
	overlaid on a typical tidal creek system entering a	
	higher salinity habitat.	
17	Graphic representation of salinity zones around a	5-4
	submerged artesian well in a marine environment.	
18	Graphic showing location of seagrass bed in estuary	5-5
19	Graphic showing stationary habitat (seagrass	5-6
	meadow) with dynamic habitat (freshwater inflow)	
	overlay and resulting seagrass/ salinity zones under	
	normal flow conditions.	

TABLES DESCRIPTION

ES-1	Comparison of Relative Strength of Scientific Support for	ES-3
	the Different MFL Approaches for each Sub-region	
1	Other MFL Projects in Estuarine Waters in Florida	1-5
2	Marine and Estuarine Species that are State-listed and/or	4-9 thru
	Federally-listed Species and which are known to occur in	4-11
	Biscayne Bay and/or Adjacent Areas	
3a	Salinity and Habitat Requirements for Potential Vegetative	4-43
	Indicator Species	
3b	Salinity and Habitat Requirements of Potential Faunal	4-44 thru
	Indicator Species	4-46
4	Potential Indicator Species for Freshwater MFLs	5-10 thru
	Establishment in Biscayne Bay	5-11
5	Comparison of Different MFL Approaches for each Sub-	5-16
	region	
6	Comparison of Relative Strength of Scientific Support for	6-2
	the Different MFL Approaches for each Sub-region	

APPENDICES DESCRIPTION

А	Task 2 Report – Literature and Data Review
В	Task 3 Report – Interviews with Experts
С	Life History Figures of Selected Species
D	Tables of Bio-indicator Ranking Matrix by Sub-
	regions
E	Tables of Advantages & Disadvantages of
	Different MFL Approaches by Sub-regions

EXECUTIVE SUMMARY

The State of Florida has adopted regulations, which require that Water Management Districts identify priority water bodies, establish Minimum Flows and Levels (MFLs) rules for these water bodies and implement these MFLs through water shortage plans and/or the water use permitting process. Specifically, Biscayne Bay has been identified as a priority water body in which an MFL rule is to be developed by the South Florida Water Management District (SFWMD or the District) by December 2004.

As one component of the effort to develop an MFL rule for Biscayne Bay, the SFWMD issued a work order to undertake a study entitled, *Freshwater Flow and Ecological Relationships in Biscayne Bay.* SFWMD entered into an agreement (Contract No. C-15967-WO04-06) with the consultant team of Barnes, Ferland and Associates, Applied Technology Management, Inc. and Lewis Environmental Services, Inc. to conduct a variety of activities which will assist the District in developing the MFL rule for Biscayne Bay.

The work conducted by the project team involves the following five tasks:

- 1) Developing a Project Work Plan
- 2) Conducting a Literature Search and Data Review
- 3) Contacting and Interviewing Experts
- 4) Evaluating Alternative Approaches for District MFL Development
- 5) Addressing/summarizing Information and Information Needs

Tasks 1-4 have been completed and the resulting deliverables for each task were transmitted to the District for review and comment. Questions raised by the District have been addressed, and the Appendices to this report contain the final deliverables for each Task. This document, the Task 5 report, builds on the results of the previous tasks and also includes summaries of pertinent portions of the previously completed tasks.

This project has sought to establish a scientific connection between various methods to establish MFLs for Biscayne Bay, and indicators of conditions in the Bay. The recommended over-all process has been to apply numerical rankings to potential indicator species and potential MFL approaches in order to determine the most appropriate approach for each of six sub-regions of the Bay. This is necessary due to the Bay being a large heterogeneous ecosystem that has undergone major anthropogenic changes in the last 100 years. Each of the six identified sub-regions has unique characteristics that demand unique treatment regarding necessary freshwater flows to either maintain existing conditions, or

restore some semblance of historical conditions to allow for a particular ecological function to exist at some level that is acceptable to water managers, citizens and scientists.

Table ES-1 shows the highest rated (and therefore recommended) approach(es) for each sub-region, as summarized below:

<u>Oleta River/Snake Creek</u>: The recommended approach (Indicator Species) rated highest at 22 with a range of values from 6-22; the indicator species being the American oyster, West Indian Manatee and Johnson's seagrass.

Northern Biscayne Bay: The recommended approach (**Indicator Species**) rated highest at 22 with a range of values from 6-22; the indicator species being the spotted seatrout and manatee grass.

<u>Miami River/Government Cut</u>: The recommended approach (**Community Index**) rated highest at 20 with a range of values from 5-20. This approach utilizes a biodiversity index similar to that developed by Berkely and Campos (1984) for the Bay.

<u>Central Biscayne Bay</u>: The recommended approaches (**Indicator Species** and **Valued Ecosystem Component**) both rated highest at 22 with a range of values from 5-22. The **Indicator Species** approach was judged the better of the two by the principal scientists, and the species chosen were pink shrimp and shoal grass.

South-Central Biscayne Bay: The recommended approach (**Valued Ecosystem Component**) rated highest at 22 with a range of values from 5-22; the VEC being a sustainable pink shrimp harvest.

Southern Biscayne Bay: The recommended approach **(Food Web Support)** rated highest at 26 with a range of values from 5-26. The intent is that the forage fish food base be sustained to support: (1) nesting productivity for the Roseate Spoonbill (and several other wading bird species) and (2) high survival of first year juveniles of the American crocodile, as the target reference points.

Table ES-1

		Sub-Region				
POTENTIAL APPROACHES	Oleta River Snake Creek	Northern Biscayne Bay	Miami River Gov't Cut	Central Biscayne Bay	South-Central Biscayne Bay	Southern Biscayne Bay
Valued Ecosystem Component(s)	18	18	16	22	22	16
Indicator Species	22	22	15	22	21	16
Presence/Absence/Vitality of Preferred Habitats	17	17	17	12	12	13
Ecological Preservation	14	14	8	15	15	15
Pre-development Scenario	6	6	5	5	5	5
Requirement for preferred fish communities	14	15	11	10	10	10
Community Index	12	12	20	12	12	12
Food Web Support	12	12	5	12	12	26
Soil Characteristics	12	12	6	12	12	12
Relative Strength of Scientific Support (0-5)	2	3	2	2	2	4

Comparison of the Relative Strength of Scientific Support for the Different MFL Approaches for Each Sub-region

Shaded bocks indicate the recommended approach for each sub-region, based on it receiving the highest ranking. It is important to note that these values represent a composite of multiple factors (see Appendix E).

SECTION 1 INTRODUCTION

PROJECT BACKGROUND

The State of Florida has adopted regulations (Section 373.042 Florida Statutes), which require that Water Management Districts identify priority water bodies, establish Minimum Flows and Levels (MFLs) rules for these water bodies and implement these MFLs through water shortage plans and/or the water use permitting process. Specifically, Biscayne Bay has been identified as a priority water body in which MFLs are to be developed by the South Florida Water Management District (SFWMD or the District) by December, 2004.

The rules pursuant to which Minimum Flows and Levels are adopted are contained in Chapter 40E-8, Florida Administrative Code. This chapter includes definitions of several terms which identify the purpose of MFLs and which are the basis for developing MFL rules for any specific water body. These include:

Minimum Flows for Biscayne Bay are the limit "at which further freshwater withdrawals would be significantly harmful to the water resources or the ecology of the area".

Significant harm is defined as "the temporary loss of water resource function, which results from a change in surface or ground water hydrology, that takes more than two years to recover, but which is considered less severe than serious harm".

Serious harm means "the long term loss of water resource functions, as defined in Chapters 40E-21 and 40E-22 F.A.C., resulting from a change in surface or ground water hydrology".

Chapter 40E-8.011 identifies that minimum flows "are established to identify where further withdrawals would cause significant harm to the water resources, or to the ecology of the area, and that MFLs are to be established based on existing best available data." In general, it is not the goal of MFLs to address recovery strategies for ecosystems which may be experiencing harm at the time of adoption of an MFL rule. However, in Biscayne Bay, which is a part of the greater Everglades Ecosystem, there is an acknowledgment that portions of the Bay are in a degraded state, and that the MFL project for Biscayne Bay will need to interact with other past, existing and ongoing projects that are intended to facilitate ecosystem recovery, including:

- Comprehensive Everglades Restoration Plan (CERP);
- RECOVER;
- Biscayne Bay Coastal Wetlands Project;
- Surface Water Improvement & Management Plan (SWIM)
- Lower East Coast Regional Water Supply Plan

The objectives of these projects are to restore degraded conditions; whereas the MFL project is designed to prevent significant harm. Adopted MFLs will be revisited periodically.

As one component of the effort to develop an MFL rule for Biscayne Bay, the SFWMD issued a work order to undertake a study entitled, *Freshwater Flow and Ecological Relationships in Biscayne Bay.* SFWMD entered into an agreement (Contract No. C-15967-WO04-06) with the consultant team of Barnes, Ferland and Associates, Applied Technology Management, Inc. and Lewis Environmental Services, Inc. to conduct a variety of activities, which will assist the District in developing the MFL rule for Biscayne Bay.

PURPOSE AND SCOPE

The overall objectives of this project are to assist District staff in identifying significant harm and with developing the technical criteria for the Biscayne Bay MFLs, by:

- Performing an intensive review and documentation of existing literature and information to determine the technical relationships among freshwater flow, salinity and watershed/estuary hydrodynamics that impact key indicator biological communities or species present throughout Biscayne Bay;
- 2) Identifying various technical approaches that have been used (or are being used) to develop MFL rules for other estuaries in Florida; and recommending the approach(es) that are most appropriate for Biscayne Bay; and
- 3) Identifying the criteria and/or conditions, which will signal significant harm.

Results of this study may be applied to meet the goal of protecting natural resources from significant harm, together with consideration of comments and suggestions that are expected to be offered by various stakeholders during the future public input component of the MFL rule development process.

The work conducted by the project team involves the following five tasks:

- 1) Developing a Project Work Plan
- 2) Conducting a Literature Search and Data Review
- 3) Contacting and Interviewing Experts
- 4) Evaluating Alternative Approaches for District MFL Development
- 5) Addressing/summarizing Information and Information Needs

Tasks 1-4 have been completed and the resulting deliverables for each task have been transmitted to the District for review and comment. Questions raised by the District have been addressed, and the Appendices to this report contain the final deliverables for each Task. This document, the Task 5 report, which builds on the results of the previous tasks, also includes summaries of pertinent portions of the previously completed tasks.

RELATIONSHIPS OF SALINITY, ECOSYSTEMS AND POTENTIAL HARM

An estuary is a dynamic ecoregion where saltwater from the ocean meets freshwater from the watershed. Biscayne Bay supports a wide variety of estuarine plants and animals, some of which are important for recreational and/or commercial fisheries. Several rare, threatened and endangered species also inhabit this estuarine ecosystem, including manatees and crocodiles.

Marine and estuarine communities are affected by event related salinity changes and long term salinity shifts. Salinity affects these communities by being too high or too low or too variable. Biscayne Bay is a fragile ecosystem that relies on a balance of freshwater delivered in the proper amounts, with the proper timing, in the proper location. Currently, water is primarily conveyed into the Bay as point source discharge through canals and through groundwater inflows. The timing, volume and method of delivery of canal discharges can cause acute and long term chronic biologic effects (HARM), which are related to timing, volume and method of delivery.

Biological communities are affected by flows in terms of habitat, community structure and distribution, productivity, fecundity, and energy cycling through food webs. Damage to biological communities in the bay from excess amounts of freshwater occurs to varying extents in different portions of the Bay, but is primarily restricted to the vicinity of inflow points. Observed patterns of hypersalinity in Biscayne Bay suggest that parts of the system may be getting less than optimum freshwater inflows, at least during dry periods.

The relationships between salinity and environmental responses must be examined to understand how freshwater discharges and salinity variations affect

the plants and animals that inhabit the system. Therefore the initial focus of the MFL development efforts is on identifying the important species (e.g., popular gamefish, economically valuable species, endangered species) and indicator species and their food sources, which normally use areas of reduced salinity during all or part of their life cycle.

MFL WORK IN OTHER FLORIDA ESTUARINE SYSTEMS

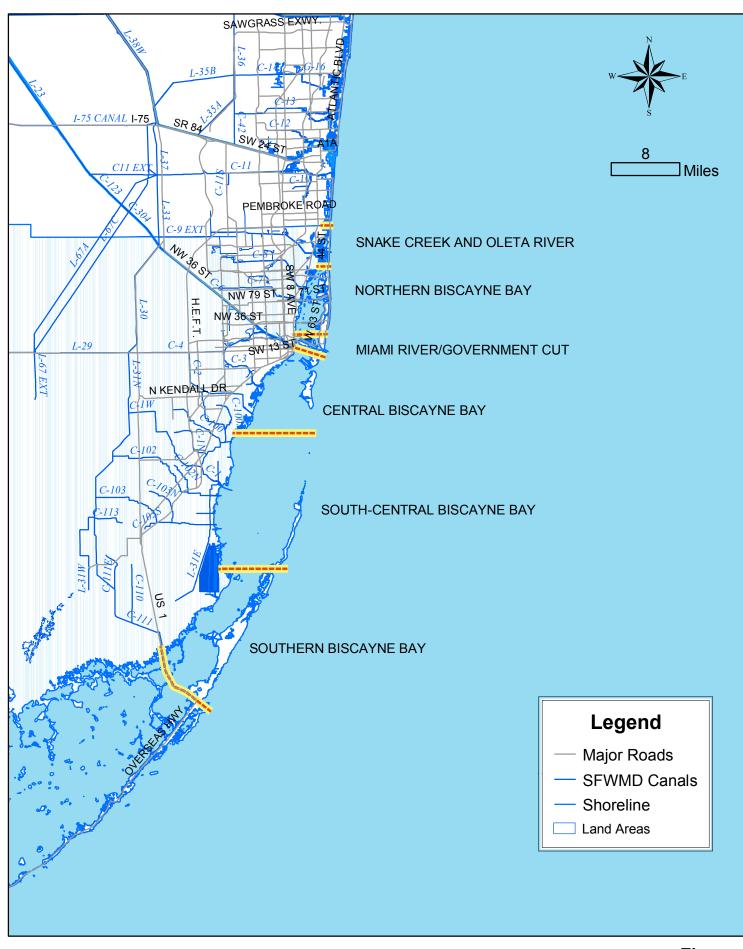
Previous efforts to establish minimum flows and levels in estuarine waters in Florida that have produced written documentation are summarized in Table 1. Most of these reports are recent, and many are not complete. As noted by Estevez (2000), "very few published or unpublished accounts exist to inform the establishment of minimum flows in highly altered riverine estuaries, especially when honoring the additional constraint that such minimum flow methods rely primarily on living resources." That has not changed much since his work, but general direction is being given with the pioneering work in the Loxahatchee, St. Lucie, Caloosahatchee and St. Johns Rivers and their associated estuaries. Lagoonal ecosystems, such as Biscayne Bay, are still basically unstudied with regard to the best approach to establishing MFLs. This discussion was further revised and published in 2002 (Estevez 2002).

Flannery and Peebles (2002) report that in examining indicators for MFL establishment in the west coast of Florida, "best professional judgment" combined with good fisheries science has resulted in the preliminary determination that a "maximum percentage removal" standard is the best approach for those riverine estuaries.

When an estuary has a very low level of anthropogenic impacts, establishment of MFLs may look at the pre-development conditions for the estuary and watershed and determine if it is possible to restore some or all of the pre-development estuarine functions. Given the level of development in all the watersheds in Florida, this is not a common approach. Mattson (2002), however, describes the approach to the management of freshwater flows in the Suwannee River estuary and characterizes the approach as a "natural flow regime principle" which assumes that an altered hydrologic regime (i.e., the MFL) "...is still near-natural in terms of magnitude, frequency, duration and timing of freshwater inflows..."

Table 1
Other MFLs Projects in Estuarine Waters in Florida

Water Body	WMD	Status and Date	Summary of MFL	Indicators	MFL Target	Source
Northwest Fork of the Loxahatchee River	SFWMD	Final Draft Nov 2002	Prevent flows into the NW Fork less than 35 cfs for more than 20 days more than once every six years	<u>Vegetation</u> : Presence/absence of six freshwater swamp tree species (other than cypress)	Recovery (i.e., currently significant harm is occurring)	SFWMD 2002a. b. c
St. Lucie River and Estuary	SFWMD	Final Draft May 2002	Sufficient flows to prevent loss of oligohaline habitat (0.5 to 5.0 psu) in the estuary for two successive months during the dry season, during two years in a row	Salinity Regime: Maintain oligohaline zone as a VEC with on- going work to characterize responses of benthic plants and oysters to rapid changes in salinity and identify specific species of VEC's as indicators	Prevent Significant Harm (i.e., - currently significant harm is not occurring	SFWMD 2002d, e
Lake Okeechobee, the Everglades and Biscayne Aquifer	SFWMD	Draft Feb 2000	Only the Everglades has an estuarine component. Sufficient flows are designated to maintain desired salinities in coastal estuaries	Soils: Meet limits on low water levels and duration to maintain appropriate conditions in the two dominant soil types in freshwater portions of the ecosystem	Recovery (i.e., Currently significant harm is occurring)	SFWMD 2000
Caloosahat- chee River and Estuary	SFWMD	Draft May 2003	An MFL exceedance occurswhen (a) a 30 day average salinityexceeds 10 pptor (b) a single, daily averageexceeds20for two consecutive years.	<u>Vegetation</u> : The resource at risk is a 640 acre bed of tapegrass, <i>Vallisneria americana</i> , located downstream of structure S-79	Recovery (i.e., Currently significant harm is occurring)	SFWMD 2003a, b
Lower SWFWMD Under Study Hillsborough		A study is underway to reevaluate a proposed MFL to maintain existing biological communities	Test discharges of low salinity (<0.5 psu) water below the dam from various sources and biological sampling to determine what biological communities can be maintained	Recovery (i.e., Currently significant harm is occurring,)	Montagna (1999), Janicki Env. Inc. (2002)	
Lower St. Johns River	SJRWMD	Being developed	MFL identifies flows and levels that will prevent the 5 ppt isohaline from being moved more than 0.8 miles upstream	<u>Flora and fauna</u> : Considered salinity tolerances of 60 species fish, one arthropod and one plant (i.e., <i>Vallisneria americana</i>)	Prevent Sig.Harm (i.e., acknowledges 'stress' on 1,130 ac of freshwater plants)	ECT (2002)


SECTION 2 BISCAYNE BAY CHARACTERISTICS

PROJECT BOUNDARIES AND SUB-REGIONS

Biscayne Bay is a large, shallow sub-tropical estuary located in eastern Miami-Dade County, in close proximity to a highly urbanized coastal area (Figure 1). On the east side of Biscayne Bay, several miles off the coast, are a number of narrow, offshore barrier islands. In 1974, the entire Bay was designated as an Aquatic Preserve by the Florida legislature, and a draft management plan for the aquatic preserve was developed, but never adopted. The Bay has also been designated as an "Aquatic Park and Conservation Area" by the Miami-Dade Board of County Commissioners. Biscayne National Park encompasses a large portion of the Bay and along the mainland shoreline lies the longest stretch of mangrove forest on Florida's east coast. Inland, hardwood hammocks grow with various native and non-native vegetation. Seagrasses grow in beds throughout the bay wherever conditions are favorable. The Biscayne Bay watershed also includes 83,000 acres of agricultural lands that are located to the west and southwest. Vegetables, tropical fruit and nursery plants are grown within this agricultural area.

The project area (Figure 1) being examined includes all of Biscayne Bay extending from the Miami-Dade/Broward County line south to the Miami-Dade/Monroe County line, and from the western shoreline of the Bay to the eastern near-shore areas located east of the barrier islands, keys, and Sandy Shoals. In the central and southerly portions of the Bay, the effects of freshwater inflows are experienced in areas to the west of the mangrove-lined shoreline. In these areas, the project area also includes the vegetated communities that extend westward from the shoreline to the L-31 Canal.

Biscayne Bay varies considerably in a variety of physical characteristics, including width, depth, water quality and degree of connection to the open marine waters of the Straights of Florida and the Atlantic Ocean. The bay varies in width from being extremely narrow in the most northerly reaches to over nine miles wide in the central areas. Water depths within the project area vary from comparatively shallow (i.e., less than 1 foot) in intertidal shoreline areas to over 40 feet in dredged navigation channels. Within the project area, water quality varies from very poor, in deep areas that are subjected to heavy pollutant loading and little mixing, to very good, in east-central areas where there is little overland pollution and good exchange with marine waters. Surface waters of Biscayne Bay are directly connected with open marine waters in some central bay areas,

BFA

Figure 1 Biscayne Bay Approximate Sub-Regions and are connected via a series of natural, man-made and/or man-enhanced inlets at other locations where there are barrier islands.

Of significant importance in the development of an MFL rule for the Bay, is the extent to which different portions of the Bay currently serve as the receiving waters for discharges of freshwater from inland areas. Eleven major watercourses (i.e., canals, rivers) and a number of smaller ditches and other surface-water conveyances transport water directly into the Bay.

These varying physical characteristics result in the presence of highly variable floral and faunal communities being present in different areas of the Bay. Some species, such as Johnson's seagrass (*Halophila johnsonii*) have a spatial distribution such that they are present only in portions of the Bay. Others, such as red mangroves (*Rhizophora mangle*) and many species of fish may be found in all regions of the Bay.

In recognition of these differences in physical characteristics, for the purposes of establishing a meaningful MFL rule, Biscayne Bay has been separated into six sub-regions (Figures 1 -7):

- Snake Creek/Oleta River
- Northern Biscayne Bay
- Miami River/Government Cut
- Central Biscayne Bay
- South-Central Biscayne Bay
- Southern Biscayne Bay

The distinctly varying conditions in these sub-regions also led to the Bay being subdivided into approximately these same units in the Comprehensive Everglades Restoration Plan (CERP) (USACE and SFWMD 1999). For the purposes of establishing MFL rules, the CERP boundaries have been modified slightly based on the influence of canal discharges, tidal inlets and the presence/absence of submerged aquatic vegetation. Brief descriptions of the six sub-regions and highlights of the characteristics that separate each one from other areas of the Bay follow, in sequential order from north to south. More detailed descriptions of the ecological conditions in each sub-region follow in Section 2.c.

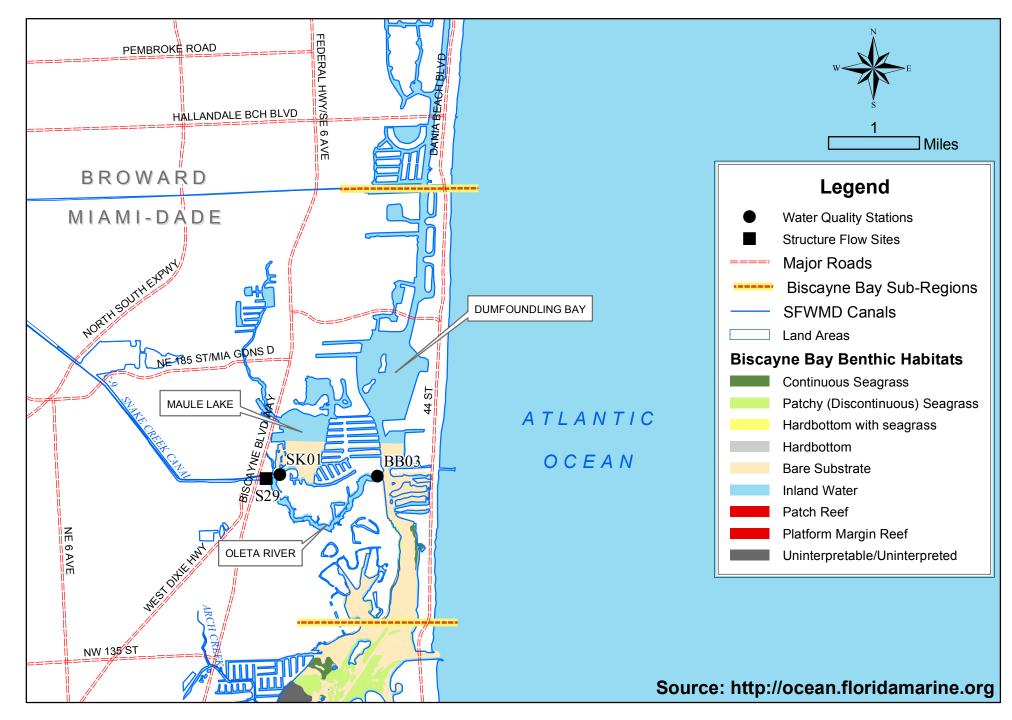
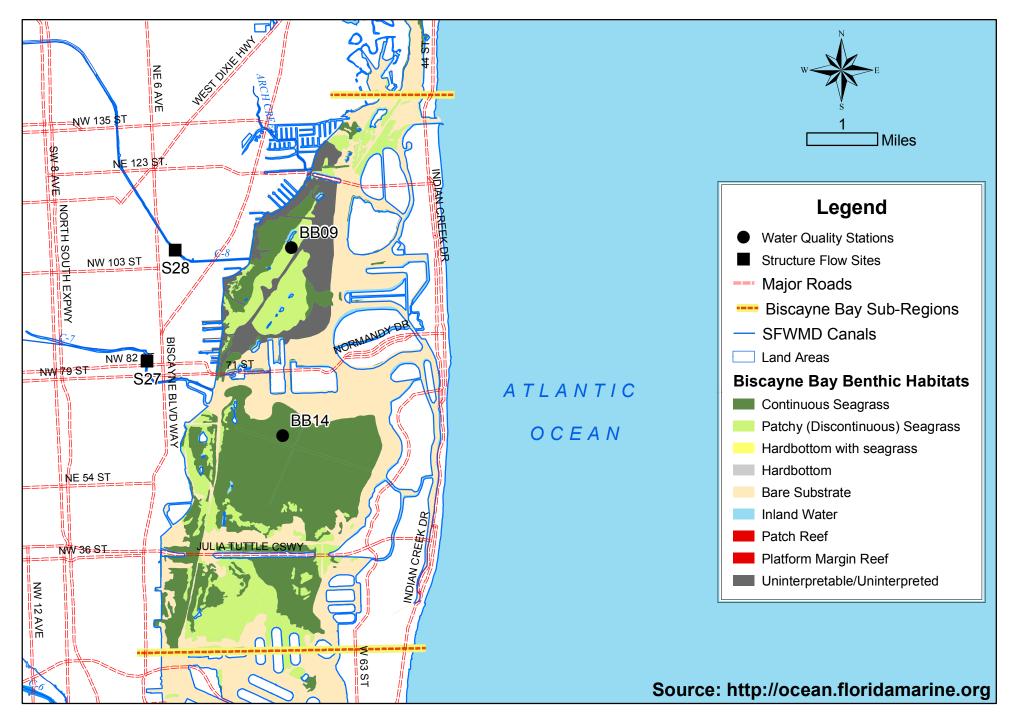



Figure 2 Approximate Snake Creek/Oleta River Sub-Region

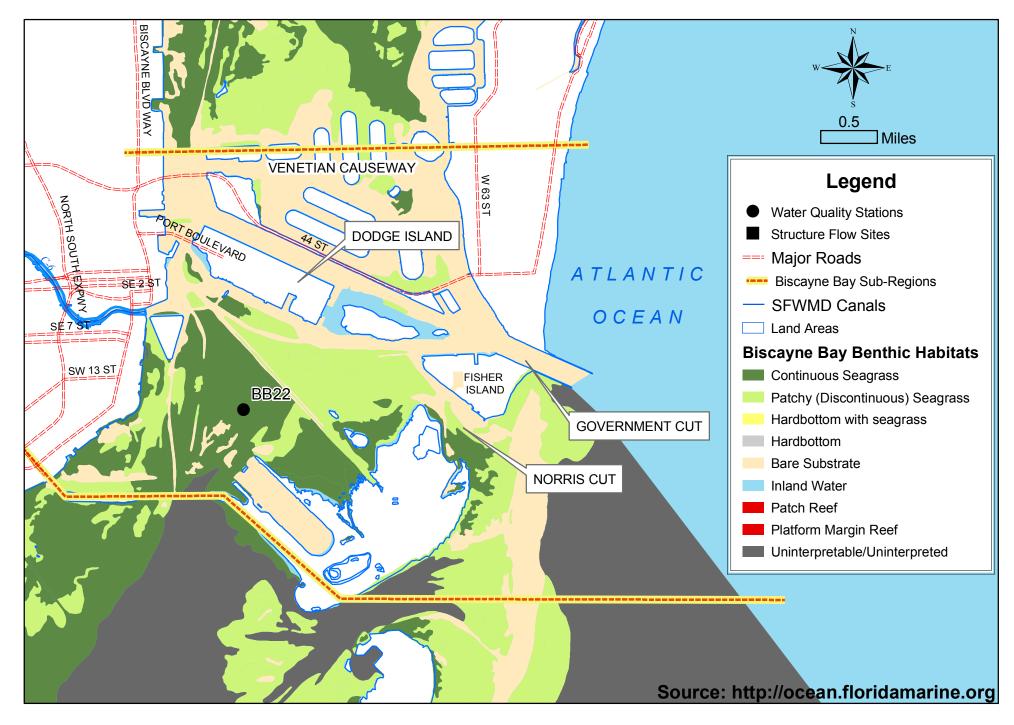
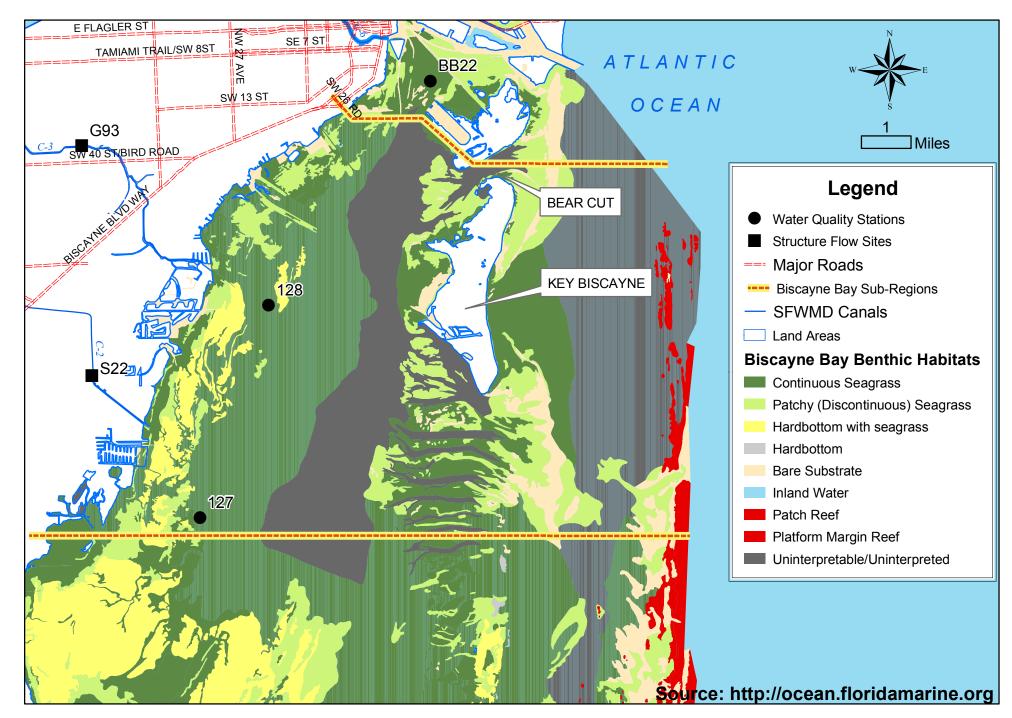



Figure 4 Approximate Miami River/Government Cut Sub-Region

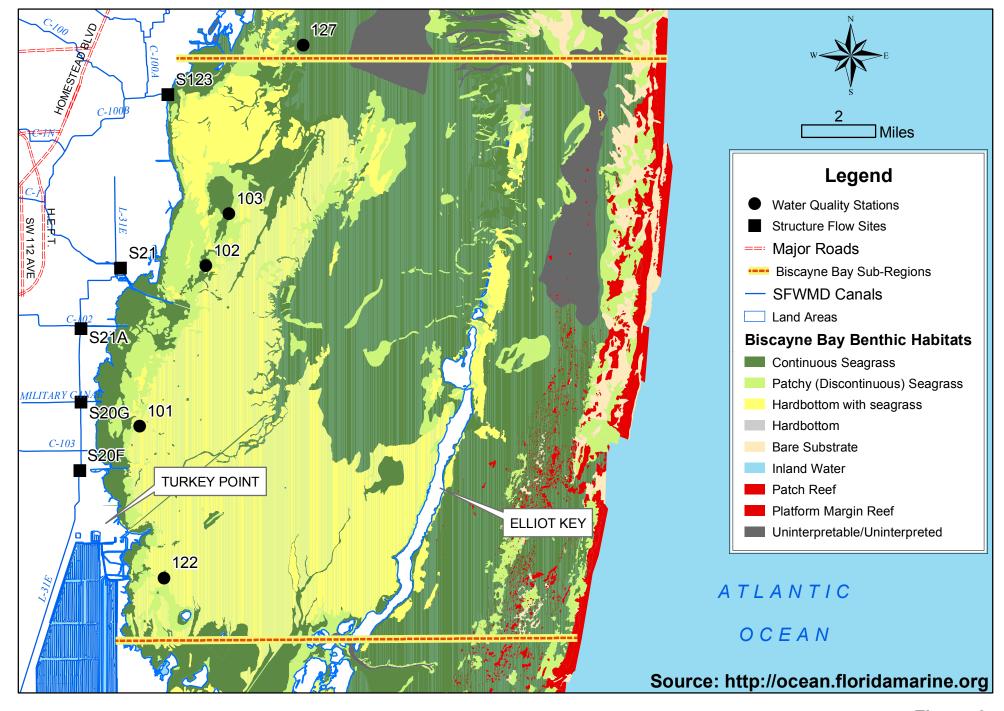


Figure 6 Approximate South-Central Biscayne Bay Sub-Region

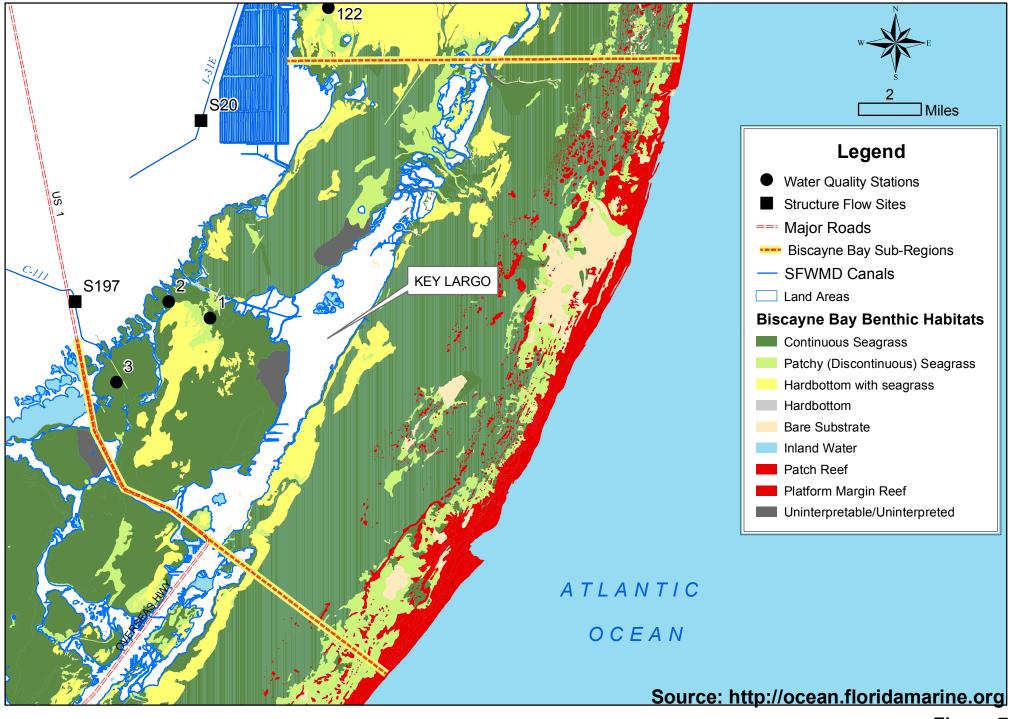


Figure 7 Approximate Southern Biscayne Bay Sub-Region

Snake Creek/Oleta River

Located at the far northern end of Biscayne Bay, this sub-region extends approximately 4.8 miles from the Broward/Miami-Dade County line southward to Oleta River State Park and Haulover Beach Park (Figure 2). This area includes Dumfoundling Bay, Maule Lake, and the Oleta River. The Bay is extremely narrow in this area; there are no direct connections to marine waters, and the Atlantic Intracoastal Waterway (ICWW), which is maintained at a depth of -10 ft. MLW. Seagrasses are largely absent from this sub-region, with the exception of narrow grassbeds that fringe the few shoreline areas where there are no vertical bulkheads/seawalls. Shoreline mangroves are also nearly non-existent within this area, with the exception of shoreline mangroves within Oleta River State Park.

Northern Biscayne Bay

Immediately south of the Snake Creek/Oleta River sub-region, Northern Biscayne Bay (Figure 3) extends approximately 7.8 miles from the Oleta River/Haulover Beach Park area south to the northern edge of the Venetian Causeway area. The Bay widens considerably in this sub-region when compared with the Snake Creek/Oleta River area, varying in width from approximately one-half mile to 2.5 miles. Seagrasses are present throughout much of this area, which also includes one inlet, Baker's Haulover. Shoreline mangroves are nearly non-existent within this sub-region.

Miami River/Government Cut

Located immediately south of the Northern Biscayne Bay sub-region, the Miami River/Government Cut sub-region (Figure 4) extends southward approximately 3.2 miles south to the south side of the Rickenbacker Causeway. Natural conditions in this portion of the Bay are limited, with nearly all of the substrate having been dredged or filled. Seagrass and shoreline mangrove communities are largely absent from this sub-region except in its most southerly reaches, and water quality is heavily influenced by both tidal action through Government Cut and Bear Cut, and freshwater discharges from the highly modified Miami River.

Central Biscayne Bay

Immediately south of the Miami River/Government Cut sub-region, the Central Biscayne Bay sub-region (Figure 5) extends approximately 9.5 miles southward to the Cutler area. Two major canals (i.e., C-3 and C-2) empty into the Bay within this sub-region, which varies from approximately 1.5 miles to over 7 miles in width. Seagrasses are a prominent component of the sediment surface in this

area, and mangroves are present sporadically along the shoreline. South of the barrier island of Key Biscayne, there is a direct connection with marine waters along the majority of the eastern portion of the Bay.

South-Central Biscayne Bay

Immediately south of the Central Biscayne Bay sub-region, the South-central subregion (Figure 6) extends approximately 15.8 miles southward to the Turkey Point/Cutter Banks area. Five major canals (i.e., C-100, C-1, C-102, Military Canal and C-103) empty into the Bay within this sub-region, which varies in width from approximately seven miles in the north to approximately five miles in the south. The substrate in this area is largely hardbottom interspersed with seagrasses and the western shoreline is primarily mangrove-lined.

Southern Biscayne Bay

Immediately south of the South-central sub-region, the Southern Biscayne Bay sub-region (Figure 7) extends approximately 17.2 miles southward from the Turkey Point area to the U.S. Highway 1 bridge that serves as the project's southern boundary. There is one major canal (C-111) that discharges into the Bay in this sub-region. Seagrasses are a prominent feature in this sub-region, mangroves line the majority of the western shoreline, and direct tidal connection with marine waters is reduced by the natural obstructions of the offshore barrier island of North Key Largo, which is approximately five miles from the mainland shoreline.

FRESHWATER FLOWS AND SALINITY CONDITIONS

Freshwater flows and salinity conditions are described in detail in the SFWMD 1995 *Biscayne Bay SWIM Plan* (Alleman et al. 1995) and the 1999 *Issue Paper on Freshwater Flows into Biscayne Bay* by Bellmund, et. al. (1999). The following provides some background taken from these references. During 2004, the District will be evaluating these freshwater flow and salinity relationships as part of MFL development for Biscayne Bay.

Biscayne Bay is the largest estuary on the coast of southeast Florida and is contiguous with the southern Everglades and Florida Bay system. Historically, the Everglades, Biscayne Bay, and Florida Bay were part of a larger hydrologically connected natural system of coastal lagoons and wetlands. Biscayne Bay served as the eastern outlet of the Everglades (Davis, 1943; Parker *et al.*, 1955). Historically, freshwater flowed overland to the Bay through natural sloughs and rivers, and as groundwater through the Biscayne Aquifer (Buchanan and Klein, 1976; Kohout and Kolipinski, 1967; Parker *et al.*, 1955). This pattern has been altered by regional drainage, canal construction and operation, urban development, as well as construction of roads, levees, and other hydrologic barriers to surface flow. The Bay currently receives freshwater inflow as canal flow, minor overland flow, and groundwater (Alleman et al., 1995, Kohout and Kolipinski 1967, Buchanan and Klein 1976.

Biscayne Bay is a shallow generally well mixed system in which circulation is primarily controlled by tidal action, proximity to inlets, water depth, salinity and wind speed and direction. Salinity is maintained by the amount of freshwater inflow and rainfall, tidal movements of sea water, and evaporation. Changes to physical features of the bay have occurred over time, resulting in changes in circulation and flushing patterns, salinity structure and the creation of different habitats. Much of the upper bay has been modified and dredged, so that depths now average six to 10 feet and include some dredged areas and channels up to 40 feet deep. Construction of inlets, channels, islands, causeways and deep holes (as sources of fill) have altered the natural circulation patterns of the bay resulting in areas that are stagnant and have poor water quality or high salinities and bottom conditions that will not support stable, viable or desirable benthic communities.

A basin of about 840 square miles drains to the bay. Drainage of surface waters from eastern Miami-Dade County into Biscayne Bay is primarily controlled by the system of canals, levees, and control structures constructed as part of the Central and Southern Florida Flood Control Project (C&SF Project). C&SF Project control structures regulate the flow of water in the canals, facilitate the discharge of excess water during flooding and control water levels during drought periods. Historically, during wet periods, large amounts of water entered the bay as surface water that flowed across adjacent freshwater marshes. Today, the construction and operation of canals has accelerated the rate at which ground water levels recede at the end of the wet season, because surface water now discharges from the canals at a much faster rate than under natural conditions. Seventeen canals in eastern Miami-Dade County operated by the SFWMD provide most of the surface flows of freshwater into the bay.

Changes made by man have altered the timing of flows to the bay increasing the amount and rate of runoff that occurs. Generally, more water now flows to the bay during the wet season and less water flows to the bay during the dry season, but freshwater can be delivered to the Bay, via the water management system, at any time. During extreme rainfall events, large volumes of water can be released over very short periods of time. Low salinity, poor quality water that is delivered in this manner may not mix well with surrounding higher salinity water and may persist for long periods of time (Brook 1982, Szmant 1997, Serafy et al. 1997). Other problems occur due to reduction of freshwater flows during the dry

season and droughts. High demands for water, to meet urban and agricultural needs, result in discharges of water from the regional system during the dry season to protect coastal well fields.

Watershed land use changes have resulted in concurrent changes to the water quality of the surface and groundwater flows to Biscayne Bay. Although overall water quality in Biscayne Bay has improved in recent years (Alleman et al 1995), water quality is still a substantial concern in the watershed. Water quality ranges from severely degraded in the Miami River to very good near the Featherbed Banks (Alleman et al 1995). The 1995 Biscayne Bay SWIM Plan reports the trend analysis for a variety of constituents.

EXISTING SPECIES AND ECOLOGICAL CONDITIONS

In its \pm 57 mile length, Biscayne Bay varies considerably in physical conditions. From its narrow northerly extreme, the Bay widens to a maximum width of over seven miles in the south-central region. Flora and faunal communities vary considerably throughout the Bay, and are generally determined by a variety of environmental factors and physical characteristics (e.g., water depths, water quality, extent of tidal exchange with the ocean), some of which are fairly static, others of which are very dynamic. As a result of these varying conditions, benthic and epibenthic habitats vary considerably. In some areas, ecologically valuable seagrasses are present in lush grassbeds. In other areas, seagrasses are absent, or are interspersed with macroalgae and/or hardbottom. Since 1966, over 512 species of fishes have been documented to occur within Biscayne Bay (R. Alleman, pers. comm.).

In addition to the salinity-related variability described above, other water quality parameters also vary considerably in different areas of Biscayne Bay. In some eastern areas, the absence of barrier islands that would restrict tidal exchange, create marine conditions which provide habitat for a wide diversity of naturallyoccurring sub-tropical floral and faunal assemblages.

In other areas, due to a combination of factors, including the presence of barrier islands that reduce tidal exchange with the Atlantic Ocean and significant destruction of naturally-occurring shoreline communities, water quality is comparatively poor and species richness, abundance, distribution and health is considerably reduced.

Although conditions in a natural, unaltered Biscayne Bay would be highly variable, human-related changes in the recent past (i.e., \pm 100-150 years) have significantly altered the Bay. These changes, which have included construction of tidal inlets, replacement of mangrove shorelines with seawalls and bulkheads,

and dredging of shallow bay bottoms to create navigation channels, marinas, and deep-water ports have resulted in Biscayne Bay being in a highly modified condition. In general, these activities have had adverse impacts on the environmental value and quality of the Bay, but it some areas, the creation of new and/or different habitats than what had previously existed may have resulted in increased biodiversity.

Although the floral and faunal assemblages at any given site may be considerably different than at other sites, the species that are present are largely the result of the combination of available habitat and ambient water quality. Some species that are tolerant of extremely variable conditions are likely present throughout the entire Bay. Other species may be restricted to certain areas based upon their individual habitat requirements. As described in Sections 2.a-c above, for the purposes of establishing a rule for Minimum Flows and Levels, Biscayne Bay has been separated into six distinct sub-regions. In the remainder of this section, information is provided about the ecological conditions and/or notable species that are present in each of the sub-regions.

Snake Creek/Oleta River Sub-region

In addition to Snake Creek and the Oleta River, this northern-most sub-region of Biscayne Bay also includes Dumfoundling Bay, Maule Lake and Oleta River State Park.

There are no direct surface water connections between these waters and the Atlantic Ocean within this sub-region, although Haulover Inlet is a short distance to the south. Prior to the opening of Haulover Inlet during the 1920s, this area was primarily a freshwater system (FDEP, 2002). Much of the historic shoreline has been altered, and previously existing native vegetation has been replaced with seawalls and bulkheads. An exception to this, however, is the + 1043-acre Oleta River State Park, which is located on the west side of the Bay, immediately south of S.R. 826. The most extensive current ecological information that is available for this region is the Unit Management Plan for Oleta River State Park (FDEP 2002) The Management Plan identifies and describes the four vegetative communities that exist within the park, including: beach dune, maritime hammock, estuarine tidal swamp and estuarine unconsolidated substrate, in addition to ruderal/disturbed and developed areas. Floral and faunal inventories conducted within the state park have documented the presence of approximately 290 species of plants and 95 animal species, consisting of six species of invertebrates, nine species of fish, one amphibian, ten reptiles, 59 species of birds and ten species of mammals.

Eighteen plant species that are designated as threatened or endangered by the State of Florida are present within the park, none of which designated as threatened or endangered by the federal government. Only one of these species, golden leather fern (*Acrostichum aureum*) is an emergent wetland-related species. The typical habitat for this herbaceous species is the low-salinity muck soils along the Oleta River. Johnson's seagrass, a submerged species that is designated as 'threatened' by the federal government, is present in shallow waters in this sub-region of the Bay. Submerged lands within this sub-region from S.R. 826 southward to the south boundary of this sub-region have been designated as critical habitat for Johnson's seagrass (Figure 8).

Twelve animal species that are listed as endangered, threatened, or species of special concern by the state are known to exist within the state park. Three of these, (i.e., bald eagle, wood stork, and West Indian Manatee) are also listed as threatened or endangered by the federal government. Several of the designated species are species that forage in, or otherwise inhabit coastal areas. These include: roseate spoonbill, mangrove cuckoo, various herons and egrets, bald eagle, wood stork, brown pelican and West Indian Manatee.

The majority of the substrate in this sub-region is barren, although seagrasses are present in some shallow areas. An oyster bioherm exists near the mouth of the Snake Creek canal. This oyster community is notable in that, although oysters, which prefer salinities between 5 and 20 ppt, were thought to have been fairly common historically, are presently nearly non-existent in other areas of Biscayne Bay.

Northern Biscayne Bay

In the Northern Biscayne Bay sub-region, which extends southward from the Oleta River sub-region to the northern edge of the Venetian Causeway, Biscayne Bay is considerably wider than it is to the north. Although the presence of the barrier island of Miami Beach separates the Bay from the Atlantic Ocean, Haulover Inlet is within this sub-region, and this tidal connection allows significant tidal exchange.

The majority of the natural shoreline vegetation in this area has been replaced by vertical seawalls, and a considerable portion of the bay bottoms have been altered by dredge and fill activities. In spite of these conditions, seagrass communities are abundant and in fairly good condition in much of this sub-region. To the north of the 79th Street Causeway, seagrasses are primarily in the western portion of the Bay. A notable feature in this area is a dense manatee grass (*Syringodium filiforme*) community, possibly the largest and healthiest manatee grass community in the Bay (Markley and Milano 1985). This grassbed

Figure 8 Designated Critical Habitat for Johnson's Seagrass (*Halophila johnsonii*)

Source: Federal Register; Vol. 65, No. 66, Wed., April 5, 2000, p17804

covers much of the Bay bottom from the 79th Street Causeway south to the Venetian Causeway. It is possible that the freshwater inputs from the Biscayne Canal and Little River result in the lower salinities which are favored by manatee grass as opposed to turtle grass (*Thalassia testudinum*) which typically prefers higher salinity areas. Another option is that this large area persists due to a tolerance for higher turbidities by manatee grass.

These extensive grassbeds, which do also include Johnson's seagrass (*Halophila johnsonii*), provide habitat for a variety of other organisms, including various fishes. The entire bay bottom in this sub-region has been designated as critical habitat for Johnson's seagrasss (Figure 8). Spotted seatrout (*Cynoscion nebulosus*), which have well-documented salinity preferences of less than 25 ppt during their juvenile stages, are documented to occur in this sub-region, which is notable in that this species is largely absent from other areas of the Bay (Serafy et al. 1997).

Manatees are documented to occur in this area, and it is believed that manatees that are attracted to the warm water discharge from the coastal power plant at Ft. Lauderdale travel to this region to forage in the dense grassbeds (DERM 1995).

Miami River/Government Cut

In comparison to the other sub-regions, the Miami River/Government Cut subregion is a relatively narrow northwest-southeast corridor that extends from the Venetian Causeway on the north to the south side of Rickenbacker Causeway on the south. This portion of the Bay has been highly altered. The Miami River, which has been channelized, is intensively used for commercial purposes. Through the years, heavy metals and other contaminants have accumulated in the sediments of the river, which presently has a comparatively low diversity of flora and fauna. Much of the natural bottom contour in this sub-region has been modified as a result of dredging and filling activities. The Port of Miami, and its associated navigation channels are within this sub-region, which also extends eastward and includes Government Cut, the tidal inlet and navigation channel that links the Bay to the Atlantic Ocean. Although seagrasses are present in the southern portion of this sub-region, large areas of dredged bottom are primarily barren.

Surprisingly, in spite of these significant alterations, from a fish diversity perspective, this sub-region actually is one of the most highly diverse regions of Biscayne Bay (Serafy et. al. 1997). This fish diversity is likely a direct result of the varying salinity regimes of the different areas within this sub-region. From upstream areas in the Miami River, where salinities are minimal, there is a salinity increase until marine conditions are encountered at the direct connections to the ocean at Government Cut and Norris Cut.

This variety of salinity regimes provides habitat for varying floral and faunal assemblages and benthic communities, including species that frequent oligohaline areas (e.g., mullet, *Mugil* spp.), those that inhabit mesohaline areas (e.g., blue crab, *Callinectes sapidus*, shoal grass, *Halodule wrightii*), those that inhabit areas with marine salinities (e.g., paddle grass, *Halophila decipiens*, blue-striped grunt, sailor's choice) and of course, those species that can tolerate highly variable salinity conditions (e.g., manatees).

During baseline studies related to potential modifications at the Port of Miami (Dial Cordy and Assoc., 2001), seagrasses mapped based on inspections of 35 transects within a portion of this sub-region documented the presence of shoalgrass, paddle grass, manatee grass and turtle grass, in decreasing order of abundance. Although not reported by Cordy and Associates as occurring within their study area, Johnson's seagrass is known to be present within this sub-region. With the exceptions of the Miami River itself and the deepwater areas of the Port of Miami, the bay bottoms within this area are designated as critical habitat for Johnson's seagrass (Figure 8).

The marine water quality conditions, including salinity, that result from the direct connections between the Bay and the Atlantic Ocean also create suitable habitat for a variety of typically marine macroalgae, including *Caulerpa prolifera*, *Halimeda* sp., *Udotea* sp., *Penicillus* sp. (Dial Cordy and Assoc., 2001, Zieman, 1982). Queen conch, long-spined sea urchins, nudibranchs, mollusks, and crustaceans, including spiny lobster and blue crab, and various soft corals and sponges were also noted within this sub-region (Dial Cordy and Assoc., 2001).

Aerial surveys and telemetry tracking have documented the presence of West Indian Manatees within this sub-region (DERM, 1995). These monitoring efforts have also documented the presence of manatees in upstream reaches of the Miami River. The extent to which fresh water and/or comparatively warmer water temperatures during winter months are the attracting features for manatees is not known.

Dial Cordy and Associates (2001) also note the presence of loggerhead turtles *(Caretta caretta)*, green turtles *(Chelonia mydas)*, and leatherback turtles *(Dermochelys coriacia)* within their study area, and the nesting of these species along suitable beaches within this sub-region, including Fisher Island. These species are designated as threatened (loggerhead) and endangered (green and leatherback) by both the State of Florida and federal resource agencies.

Central Biscayne Bay

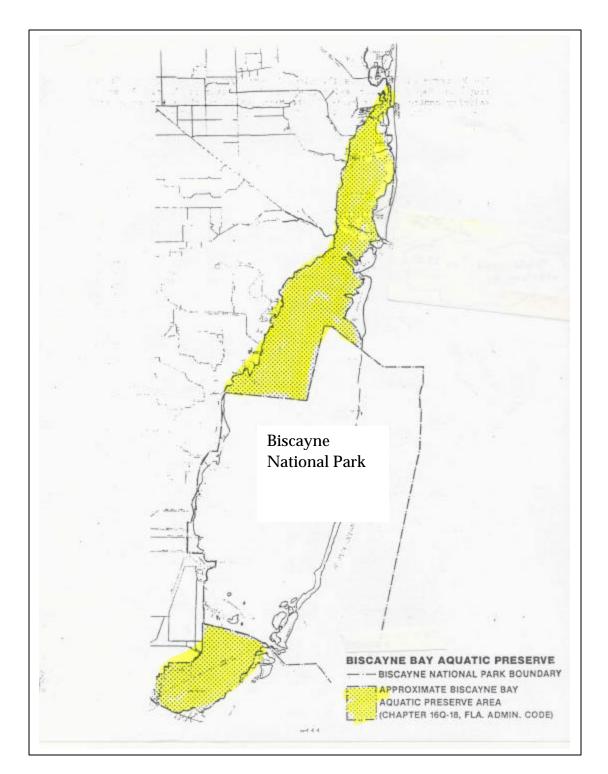
The Central Biscayne Bay sub-region extends from the Fisher Island/Virginia Key area on the north, southward to the Cutler area. Although the barrier island of Key Biscayne is present in the northerly portion of this sub-region, the absence of barrier islands to the south make this sub-region the most well-flushed area of Biscayne Bay. Freshwater inputs, which enter the west side of the Bay through the Coral Gables Waterway and Snapper Creek, result in estuarine salinities (17-32 ppt (FIU, 2002)) along the west shoreline. Salinities increase toward the east, and are marine on the east side of the project area. This salinity gradient, together with a westerly shoreline that includes mangroves and other naturally-occurring vegetation provides habitat for a comparatively high diversity of flora and fauna.

Seagrasses are a major component of the benthos, and where seagrasses are not continuous, hardbottom is interspersed with seagrasses. Seagrasses are primarily dense beds of turtle grass in the east, but shoalgrass, paddle grass and manatee grass are also present, primarily in the western areas. The southernmost extent of the known range of Johnson's seagrass is present in the northern portion of this sub-region. Designated critical habitat for Johnson's seagrass ends in this sub-region, with the 25^o 45' North latitude line (which crosses through Virginia Key) serving as the southern boundary for the critical habitat area (Figure 8).

Attached macroalgae are abundant within this sub-region, particularly on hardbottom and/or in eastern portions.

The combination of dense seagrass beds and grassbeds interspersed with hardbottom create ideal habitat conditions for a variety of crustaceans and fishes. This portion of Biscayne Bay sustains a major commercial pink shrimp (*Farfantepenaeus duorarum*) fishery. Reported landings increased greatly from 1990 (<100,000 lbs) through 1999 (> 600,000) pounds (Harper et. al., 2000).

Aerial surveys and telemetry tracking have documented the presence of West Indian Manatees within this sub-region (DERM, 1995). These monitoring efforts have also documented the presence of manatees in manatee-accessible areas of the Coral Gales waterway, Snapper Creek and the Kings Bay/Cutler area. The extent to which fresh water and/or comparatively warm water during the winter, are the attracting features for manatees is not known, however the presence of manatees in these waterways at different times of the year suggest that both fresh water and warm water may be attracting features to varying extents throughout the year. Loggerhead turtles, green turtles, and leatherback turtles are known to occur within this sub-region, although nesting habitat for these species in this subregion is exceedingly small. These species are designated as threatened (loggerhead) and endangered (green and leatherback) by both the State of Florida and federal resource agencies.


South-Central Biscayne Bay

The South-Central sub-region extends from the Cutler area on the north to the Turkey Point – Cutter Bank area on the south. Several features along the western shore of the Bay differentiate this sub-region from others to the north and south. These features include: 1) the presence of a mangrove community for almost the entire length of the sub-region, and 2) the presence of several major canals (C-100, C-1, C-102, Military Canal, and C-103) that discharge fresh water into the Bay. The majority of this sub-region is also within the boundary of Biscayne National Park, the boundary of which is shown in relation to the Biscayne Bay Aquatic Preserve on Figure 9. The National Park extends from the landward extent of the red mangrove forest on the west to the 60-foot bathymetric contour (approximately 14 miles) on the east. A natural off-shore barrier island community consisting of Ragged Keys to the north and Elliot Key to the south extends in a north northeast direction varying from approximately three miles to 4.5 miles east of the western shore.

Natural resources in this sub-region of the Bay are extremely diverse, although the more intensive scientific investigations that have occurred as a result of the national park status may partially contribute to the higher level of knowledge and awareness of the biota in this region when compared with other areas of the Bay. Seagrasses and mixed seagrass – hardbottom communities are present throughout this sub-region. Although shoalgrass, paddle grass and manatee grass are present, primarily in the western areas, extensive beds of turtle grass are the primary grassbed communities. Johnson's seagrass has not been documented to occur in this sub-region. It is widely believed that the increasing salinities that have resulted from reductions in fresh water inflows (both surface and sub-surface) into this region of Biscayne Bay during this century have resulted in changes in the submerged aquatic vegetation community; namely that turtle grass, which prefers comparatively high salinities, has gradually replaced shoalgrass and perhaps wigeon grass that prefer comparatively lower salinities, in sizable portions of this sub-region.

Graduate-level research presently being conducted by Danielle Mir-Gonzalez, a student at Florida International University, involves mapping the spatial distribution of the different species of seagrasses along the western shore of this

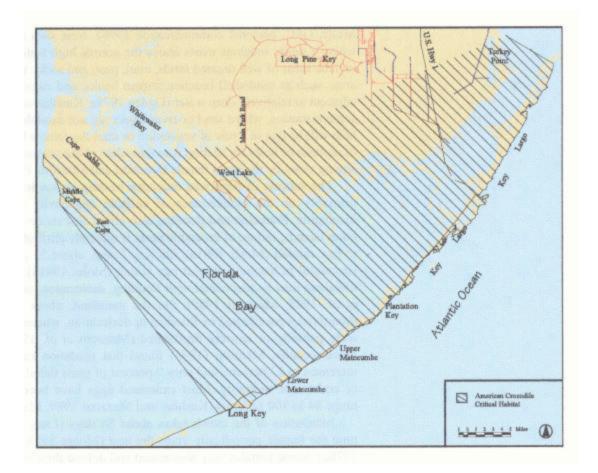
Boundaries of Biscayne Bay Aquatic Preserve and Biscayne National Park

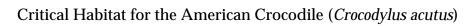
Source: Draft Biscayne Bay Aquatic Preserve Management Plan, Metro-Dade Department of Environmental Resources Managment portion of Biscayne Bay. Her research also includes monitoring of sub-surface freshwater inputs into the Bay through the installation and monitoring of seepage wells. As soon as these data become available, they should be obtained and analyzed, as the results of these efforts will likely be helpful in identifying the amounts of freshwater input that will be necessary to prevent harm to these submerged aquatic vegetation communities. Modeling will likely be necessary, using the results of the Mir-Gonzalez research, to determine the timing and volumes of fresh water flows that will be necessary to maintain a salinity envelope that will prevent harm to the existing seagrass community or change the community as a preference by managers to a more estuarine character.

As in the Central region, above, the combination of dense seagrass beds and grassbeds interspersed with hardbottom create ideal habitat conditions for a variety of crustaceans and fishes. This portion of Biscayne Bay sustains a major commercial pink shrimp fishery. Reported landings increased greatly from 1990 (<100,000 lbs) through 1999 (> 600,000 pounds) (Harper et. al., 2000). Shrimp are valuable both for the economic value of the fishery and for their contribution to the food web. Many species of fish that are valuable either commercially or recreationally feed on pink shrimp. And although sustaining an economically viable pink shrimp fishery is dependent on a variety of factors (including some that are far outside the purview of this salinity-regime study), due to their value to both the ecosystem and the economy, preventing significant harm to the pink shrimp fishery as a result of reductions in fresh water flow should be a goal of the minimum flows and levels program for this region of the Bay.

Although this area has not been designated as critical habitat for the American crocodile (*Crocodylus acutus*), surveys by Mazzotti and Cherkiss (1998) indicate that this species is present in this sub-region of the Bay, and that their population may be expanding.

Similarly, surveys and telemetry tracking have documented the presence of West Indian Manatees within this sub-region (DERM, 1995). These monitoring efforts indicate that manatees have most often been observed along the western shore of the Bay, and have also documented the presence of manatees in manatee-accessible areas of Black Creek and the C-103 (Mowry Canal). The extent to which fresh water and/or comparatively warm water during the winter, are the attracting features for manatees is not known, however the presence of manatees in these waterways at different times of the year suggests that both fresh water and warm water may be attracting features to varying extents throughout the year.


Southern Biscayne Bay


The Southern Biscayne Bay sub-region extends from the Turkey Point area on the north southwesterly to the U.S. 1 corridor that separates Biscayne Bay from Florida Bay. It includes Card Sound, Barnes Sound and Manatee Bay, and the southern boundary is also the southern boundary of the project area. The boundaries for this sub-region have been selected based on several unique features that set this area off from other sub-regions. These include the presence of a sizable scrub mangrove and brackish marsh vegetative community that exists to the west and northwest of the mangrove-lined shoreline up to the L-31E levee and canal. Although inflows of freshwater have been significantly altered as a result of dredge and fill operations, construction of Card Sound Rd. and U.S. 1 and other modifications upstream in the watershed, the changes are largely more distant than in other areas of the Bay. Florida Power and Light (FPL) Company's Turkey Point Power Plant, and its associated radiator-type system of cooling canals is present immediately adjacent to the western shoreline of the Bay at the north end of this sub-region.

The only substantive canal that delivers fresh water into this sub-region of the Bay is the Aerojet Canal (C-111). The offshore barrier island of north Key Largo, which extends parallel to the shoreline approximately 3-5 miles to the east, is connected to the mainland via two man-made roads; Card Sound Road and U.S. 1. Partially because there is no direct connection to the Straights of Florida as there is in other sub-regions to the north, recorded salinity values in this portion of the Bay have been documented to exceed 40 ppt. (DERM 1987).

This entire sub-region has been designated as critical habitat for the American crocodile (Figure 10).

Figure 10

Source: U.S. Fish & Wildlife Service; Multi-species Recovery Plan for South Florida

SECTION 3 SUMMARY OF PROJECT TASKS

TASK 2 - LITERATURE AND DATA REVIEW

In project Task 2, a detailed literature review was performed and a bibliographic database was prepared. A separate Task 2 report was prepared that provides a detailed summary of the literature review methods and contents (Appendix A). The bibliography is a result of a literature survey and represents the readily identifiable body of knowledge concerning freshwater flow and ecological relationships with respect to establishing Minimum Flows and Levels (MFLs) in Biscayne Bay. Numerous information sources were used to develop this bibliography, including various libraries and Internet web-based information. These references support various portions of the final report and recommendations.

The bibliographic database was prepared in Microsoft Access 2000 software, which allows a search of the documents through various listings and tables. The database contains 299 total bibliographic entries considered to have *some direct relevance* to the project.

A list of key words was developed for selecting bibliographic entries. These keywords were grouped into topic categories and can be used to query the database. The references contained in this MS Access database can be queried to generate the following reports:

- A listing of 86 Biscayne Bay specific references;
- A listing of 99 references that are considered most relevant;
- Topic Category 1 Animal Species (146 references);
- Topic Category 2 Aquatic Plants and Habitats (98 references);
- Topic Category 3 Ecological Indicators (45 references);
- Topic Category 4 Impact Approach (70 references);
- Topic Category 5 Water Quality Data (89 references);
- Topic Category 6 Hydrologic Data (40 references);
- An alphabetical listing by author of all 299 references;

In general, the literature search revealed that:

• A considerable amount of scientific data is available for Biscayne Bay.

- The majority of directly applicable data is the result of research that has been conducted, or is being conducted by personnel associated with academic institutions and/or state or federal governmental entities.
- The majority of site-specific data are the result of work that has been done within the physical boundaries of Biscayne National Park and/or Everglades National Park. With the exception of some individual sites (e.g., Oleta River State Park) there is comparatively less information concerning flora, fauna and ecological conditions in areas of Biscayne Bay outside Biscayne National Park.
- There is a considerable amount of information concerning water quality within Biscayne Bay, and some studies have documented that non-salinity related water quality parameters in inflows to the Bay have reached lethal limits for some biota.
- There is a reasonably detailed database concerning the presence, absence and distribution of American crocodiles and West Manatees, two species that are designated as 'endangered' by the State of Florida and the federal government.

TASK 3 – INTERVIEWS WITH EXPERTS

In Task 3, members of the project team interviewed and obtained information and data from local contacts and experts in the areas of estuarine/marine water chemistry, phytoplankton, zooplankton, algae, seagrasses, invertebrates, fisheries, ecology, and paleoecology. In completing these interviews, the project team has:

- Confirmed the literature review information and obtained recommendations for additions to the literature database (which were subsequently incorporated into the Task 2 bibliography),
- Identified additional recent and/or ongoing relevant research and data collection, and new information, and
- Identified additional sources of information (i.e., unpublished documentation, personal opinion, etc.) regarding ecological dependencies on freshwater in Biscayne Bay or other south Florida estuaries and/or other estuaries where such information could be helpful.

Interviews were conducted by senior ecologist project team members Roy R. "Robin" Lewis and Greg Braun, during September and October, 2003. These

experts were grouped by three major categories: Governmental Entities, Academia, and Other Non-Governmental Organizations. A separate Task 3 report was prepared that provides a detailed summary of these interviews with experts (Appendix B). The most substantive of findings are that:

- Most interviewees recommended that particular species (e.g., pink shrimp, oysters, shoal grass) be considered as bio-indicators.
- Other interviewees suggested that consideration be given to several individual species that occur in Biscayne Bay and which are designated as endangered or threatened species by the federal government and/or the State of Florida (e.g., West Indian Manatees, Johnson's seagrass), as Valued Ecosystem Components, regardless of the extent to which these species are useful as bio-indicators.
- Interviewees with expertise in water quality and/or relationships between water quality and biota, suggested that identifying individual species of flora and fauna that would be indicators of salinity change alone (without consideration of non salinity-related water quality parameters) would be a challenging, if not impossible, endeavor.
- Individual interviewees had varying opinions as to the extent to which subsurface inflows of freshwater affect salinity regimes in the nearshore areas of the Bay. In reality, these potentially contradictory viewpoints may be indicative of actual conditions in the Bay; subsurface in-flows may be inconsequential in certain areas of the Bay, and of significance in other areas of the Bay. Additionally, subsurface inflows in any individual area of the Bay may vary considerably at different times of the year. Field monitoring studies using seepage wells are currently under way at a number of sites in the Bay to measure sub-surface inflows. As soon as they are available, the results of these and other on-going projects should be obtained and reviewed by SFWMD, and to the extent warranted, modifications to the MFL rule should be considered.

TASK 4 - ALTERNATIVE MFL APPROACHES

Task 4 of this contract has sought to establish a scientific connection between various methods to establish Minimum Flows and Levels for Biscayne Bay, and indicators of conditions in the Bay. Approaches used by other Florida water management districts, as well as other MFL projects within the SFWMD, were evaluated for their applicability to Biscayne Bay (Table 1). A focus of this task was to identify salinity-habitat-species relationship(s) to define significant harm for various sub-regions of Biscayne Bay.

Based on the results of Tasks 1-3, information was compiled on the salinity tolerances, preferred habitats and life cycles of potential indicator species or suites of organisms that are currently present in Biscayne Bay, and whose continued existence, abundance and/or spatial distribution is affected by or dependant on deliveries of fresh water into the Bay. This task includes evaluations of the advantages and disadvantages of using various MFL approaches and provides information on the applicability of using various species of plants and animals as potential biological indicators.

The recommended over-all process has been to apply numerical rankings to potential indicator species and potential MFL approaches in order to determine the most appropriate approach for each of six sub-regions of the Bay. This is necessary due to the Bay being a large heterogeneous ecosystem that has undergone major anthropogenic changes in the last 100 years. Each of the six identified sub-regions has unique characteristics that demand unique treatment regarding necessary freshwater flows to either maintain existing conditions, or restore some semblance of historical conditions to allow for a particular ecological function to exist at some level that is acceptable to water managers, citizens and scientists.

SECTION 4 VALUED ECOSYSTEM COMPONENTS

SFWMD (2002d) defines valued ecosystem components as "...a species, community, or set of environmental conditions and associated biological communities that is considered to be critical for maintaining the integrity..." of a given estuarine ecosystem. In this section, descriptions are provided of the major ecosystems and species that are present in Biscayne Bay which have significant value in the ecological functioning of the Bay.

HABITATS

Mangrove Forests

Biscayne Bay's mangrove forests are composed of three species of true mangroves: the red mangrove, black mangrove (*Avicennia germinans*) and white mangrove (*Laguncularia racemosa*). Mangrove forests are important ecological components, providing a source of fixed carbon in the form of detritus to local and adjacent marine communities, and habitat for aquatic, arboreal and canopy resident flora and fauna (Odum et al. 1982). Fish use of mangroves and the role of mangroves as nursery habitat for fish and invertebrates is described in Lewis et al. (1985).

Harlem (1979) reported that northern Biscayne Bay had lost 82% of its mangrove forest cover with a decline to 27,417 acres from 156,351 acres, and additional mangrove losses have been experienced subsequent to the Harlem report.

McIvor et al. (1994) summarize the effects of freshwater flow on mangroves and note that moderate salinities produce the optimum conditions within the mangrove community and maximize primary productivity.

Tidal Marshes

Located landward of the mangrove zone are various transitional zones. The vegetation makeup of these transitional zones depends upon local topography, historical rates of sea level rise, frequency of fire, surface water flows and surface and subsurface soil salinities. Historically, there were greater surface and subsurface freshwater flows near the coast, and thus descriptions of the coastal vegetation of the Bay describe freshwater marshes composed of herbaceous vegetation located immediately behind a narrow fringe of mangroves. Ross et al. (2000) describes changes to this "white zone" in the "Southeast Saline Everglades" 50 years after the original description by Engler (1952), and

describes four marsh types starting with the coastal prairie behind a mangrove fringe, then the *Rhizophora* scrub, *Cladium-Eleocharis-Rhizophora* marsh, and finally the *Cladium* marsh located farthest from the coast. A total of 29 species of plants are documented to occur in these zones.

Ross et al. (2002) further documents the characteristics of the "white zone" and adds details about the microflora, specifically the distribution of 154 diatom species along a salinity gradient from coast to inland saline marsh.

Grossenbacker (pers. comm.) has indicated that for most of Biscayne Bay proper, less than 70 acres of true tidal marsh may still exist based upon the "Advanced Identification of Possible Future Disposal Sites..." (ADID) study conducted in 1994 jointly by the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers and Dade County (U.S. E.P.A. 1994).

Tidal marshes perform similar functions to mangroves, and often have lower salinities than mangrove areas, thus overlapping the important oligohaline habitat type where water flows are sufficient to reduce salinities to 5 psu or less. In other parts of Florida, the oligohaline salt or tidal marsh is often a critical nursery habitat for commercially and recreationally important fish and shellfish including snook (*Centropomus undecimalis*), tarpon (*Megalops atlanticus*), redfish (*Scieanops ocellatus*), and blue crab. In addition, these habitats support the forage fish food base (*Fundulus* spp., *Cyprinodon variegatus, Lucania parva, Floridichthys carpio, Peocilia latipinna*) for many other species (Lewis et al. 1985) (Durako et al. 1985). Documentation of this functional role in salt marshes of Biscayne Bay is only well documented for the forage fish food base (Lorenz 1999, 2000, Lorenz et al. 2002).

Seagrass Meadows and Macroalgae

Seven species of seagrass occur in the Bay: turtlegrass (*Thalassia testudinum*), shoal grass (*Halodule wrightii*), manatee grass (*Syringodium filiforme*), paddlegrass (*Halophila decipiens*), stargrass (*Halophila englemanii*), Johnson's seagrass (*Halophila johnsonii*), and wigeon grass (*Ruppia maritima*).

Macroalgae occur mixed with seagrass meadows, and as dominant macrophytes where sediment thickness is too shallow to support seagrass (< 15 cm), or water depths too great to support seagrass which typically require more light (i.e., 25% of the light striking the water's surface), or too turbid to transmit the required levels of light. Generally, macroalgae fall into three categories as to life-form: epiphytic on other plants, drift and attached. Epiphytic algae on mangrove prop roots and pneumatophores include *Bostrychia montagnei*. Drift algae include *Hypnea* spp., *Laurencia* spp. and *Gracilaria* spp. Attached green algae are very

common mixed with seagrasses, or as stand-alone communities in hardbottom areas mixed with sponges and soft corals and include *Halimeda* spp., *Penicillus* spp., and *Caulerpa* spp.

Seagrass distribution consists of few meadows around the mouth of the Oleta River, large areas of shoal grass and manatee grass in the northern portion of the Bay transitioning to predominantly turtlegrass in the southern three sub-regions. A band of shoal grass occurs along the western shore of the central and southcentral portions of the Bay. Recent work indicates that some wigeon grass occurs where the lowest salinities occur (D. Mir-Gonzalez, pers. comm.). It appears that Johnson's seagrass, a species designated as "threatened" by the federal government, does not occur south of Virginia Key (NMFS, 2002), but the reasons for this pattern of spatial distribution are not known.

As noted by Alleman et al. (1995), many species of small shrimp (both caridian shrimp and juvenile penaeid shrimp), crabs, polycheate worms, clams, snails, echinoderms and fish (both adult and juvenile) are found in this habitat. The commercially and recreationally important fish and shellfish species, pink shrimp (*Farfantepenaeus duorarum*), stone crabs (*Menippe mercenaria*), spiny lobster (*Panulirus argus*) and spotted seatrout (*Cynoscion nebulosus*) are important components of the fauna of seagrass meadows.

Oyster Bars

The American oyster, *Crassostrea virginica*, is a common component of the estuarine fauna from the Gulf of St. Lawrence down the Atlantic Coast, into the Gulf of Mexico and around to the Yucatan peninsula (Galtsoff 1964). The bar or bioherm formation is typical and provides a physical structure supporting dozens of resident species including polycheate worms, amphipods, crabs and small fish (Bahr 1981).

As a habitat component of Biscayne Bay, oysters were historically very common. Smith (1896) states "...There is a luxuriant growth of oysters in parts of Biscayne Bay." Meeder et al. (1997) report that "North Bay supported an active oyster fishery until the 1920's when Haulover Cut was constructed and reduced North Bay renewal time..."

In contrast Alleman et al. (1995) only mention in passing that "Historical freshwater inflows (both ground and surface water) were large and well distributed spatially and seasonally, which presumably supported a richer estuarine fish fauna than we find today...", and mentions that Smith (1896) "reported black drum (*Pogamias cromis*) as common near oyster beds in the bay and red drum (*Sciaenops occelatus*) abundant in all seasons. These estuarine fish

are no longer common in Biscayne Bay..." presumably because of the lack of this habitat feature (both dynamic and static components, Browder and Moore 1981).

The Unit Management Plan for Oleta River State Park (FDEP, 2002) reports the existence of a live oyster reef (bioherm) at the mouth of the Oleta River. No further details are given.

Meeder et al. (1997) characterize three submerged plant communities along five transects located from Dinner Key to the Mowry Canal and notes that only fossil oyster bars were found "...buried by only a few centimeters to decimeters of sediment." No live oysters were reported observed. Meeder et al. (1997) also notes that "No extensive fossil oyster bars have been located..." in South Biscayne Bay.

Meeder et al. (1999), reports that no live oyster reefs, but nine historic reefs were found in a survey of 48 tidal creeks between the Coral Gables Canal and Mowry Canal, but that "oysters were seasonally abundant..." and "coon oysters (those that live on mangrove prop roots) were much more abundant." These may not be the American oyster, but are likely one of three other species of oysters that are found associated with mangroves; *Ostrea (Lopha) frons, Crassostrea rhizophorae* and *Isognomon alatus* (Britton and Morton 1989). Meeder (pers. comm.) has confirmed recent observations of submerged live American oysters in this same vicinity.

Healthy oyster bars are typically found in brackish water where salinities routinely drop below 15 psu. This provides protection from less euryhaline predators such as predatory gastropods and starfish. Changes in freshwater flows to Biscayne Bay (see above under "Mangrove Forests") have altered conditions that historically were more favorable to oyster reef formation and persistence.

Restoration of oyster reefs has been proposed as an indicator of successful management of freshwater flows to Biscayne Bay (Meeder 2001).

Hardbottom

Hardbottom refers to exposed rock or limestone where there are attached algae (*Halimeda* spp, *Penicillus* spp., *Rhipocephalus* spp., and *Udotea* spp.), sponges (*Hippospongia lachne, Spongia barbara, S. germinea, S. cheiris*), hard corals (*Porites* sp., *Solenastrea* sp. *Siderastrea*), fire coral (*Millepora* sp.) and/or soft corals (*Eunicea* spp., *Plexaurella dichotoma* and *Pseudopterogorgia* spp.) (Milano 1983).

Softbottom

Alleman et al. (1995) state that a benthic survey by Schroeder (1984) resulted in documentation of over 800 species of invertebrates. For softbottom habitats generally devoid of submerged aquatic vegetation and attached algae or invertebrates, the predominant organisms are epibenthic or infaunal invertebrates and some benthic fish like the toadfish, *Opsanus beta*. It is reported that Milano (1983) determined that 14% of Biscayne Bay was bare or softbottom habitat, supporting polycheate worms, molluscs (clams and snails), tunicates, nematodes, crabs, shrimp, amphipods and echinoderms, including sea cucumbers.

POTENTIAL INDICATOR SPECIES

The task of identifying individual species or suites of species that would serve as good indicators of ecosystem health is a challenging endeavor that must take into account a variety of inter-related factors, including:

- The existing spatial distribution and abundance of the organism;
- The salinity tolerance range of the species;
- The degree to which non-salinity water quality parameters could affect changes in the presence/absence and spatial distribution of the species;
- The extent to which changes in the species presence/absence over time could be determined to be based primarily on changes in salinity regime; and
- The extent to which impacts to the species that might result from changes in fresh water flows could result in enforcement actions by local, state and/or federal governmental agencies (i.e., impacts to listed species)..

Based on these criteria, a number of species and/or ecological communities have been identified as potential indicators for Biscayne Bay. Each species, or group of species is identified and described in the remainder of this section.

Micro-organisms

Several groups of micro-organisms have been analyzed for their potential utility as indicators of environmental health in Biscayne Bay. The groups that are analyzed in this sub-section include foraminiferans, phytoplankton and benthic diatoms.

Formaniferans

Foraminiferans (forams), tiny protozoans of the Order Foraminifera, are present in fairly large numbers on the surface of sediments in tidal waters.

They are chiefly marine rhizopods that typically have calcareous shells that are often perforated with minute holes through which protrude slender pseudopodia. Although many species are comparatively minute, some exceed 3-5 cm in total length when various spines and ridges are included. Some forams cement sand grains and shell fragments that are gathered from the surface of the sediments, others secrete calcium carbonate. These organisms are a major component of the limestone sediments in tidal areas. They consume unicellular algae, algal spores, bacteria, other micro-organisms such as copepods, ciliates and worms, and organic debris.

Fossil forams are particularly useful in identifying and interpreting historical sediment conditions, due to their overall widespread abundance and occurrence and their 'convenient' size; sufficiently small to be recovered intact and an in large numbers, yet not so small that they cannot be easily examined, identified and counted.

Life spans vary from species to species and generally range from a period of a week or so to several months. Different species have differing sensitivities to certain water quality parameters, and salinity is a key factor in determining the presence/absence of some species.

Analyses of core samples taken at 23 sites located throughout Biscayne Bay during 1996 revealed the presence of 69 foram taxa (Ishman et. al., 1997). Two foram species (*Ammonia parkinsoniana tepida* and *Elphidium galvestonense mexicanum*) appear to have such similar water quality requirements that they often occur in close enough proximity to one another and have been characterized as constituting an *Ammonia-Elphidium* assemblage (Ishman et. al., 1997). These species presently exist in western areas of Biscayne Bay, and could serve as potential indicators of maintenance of desirable salinity regimes (S. Ishman, pers. comm.). Based on various characteristics, including their: a) life cycles, b) relatively narrow salinity tolerance range; c) high tolerance of non-salinity water quality parameters (e.g., elevated nutrients); d) relative abundance; and e) comparatively fast response time, the presence, absence and/or abundance of these species could be an excellent gauge of the extent to which reductions in freshwater flow (and the resulting changes in salinity) are causing harm or significant harm in Biscayne Bay.

On-going studies by Ishman have led to the identification of four benthic foraminiferan assemblages in surficial sediment samples collected in Biscayne Bay. One such assemblage, a "restricted environmental assemblage" is controlled by salinity and has been identified to occur in oligohaline to polyhaline conditions at locations where fresh water inflow is presently occurring. A record of past ecosystem conditions can be reconstructed by analysis of sediment cores, and several such studies have been conducted in Biscayne Bay. Stone et. al. (2000) used analysis of sediment cores to reconstruct changes in conditions in the Featherbed Bank area of Biscayne Bay. Wingard et al. (2003a, b) have examined cores from Central, South-Central and Southern Biscayne for stratigraphic evidence of pollen, forams, ostracodes, mollusks, and combined this information with geochemical data as part of a paleoecological study of Biscayne Bay. Evidence suggests that over the last 500 years significant changes have occurred, including a general increase in the salinities in South Central Biscayne Bay, and more stable conditions over the last 100 years.

Phytoplankton

Phytoplankton are microscopic floating aquatic single-celled plants. They grow abundantly in oceans around the world and are the foundation of the oceanic food chain. Small fish, and some species of whales, eat them as food. Because phytoplankton depend upon certain conditions for growth, they are a good indicator of change in their environment. Even under ideal conditions an individual phytoplankton only lives for about a day or two. The largest phytoplankton include diatoms, coccolithophorids, and dinoflagellates. The smallest phytoplankton, the ultraphytoplankton (which includes picophytoplankton), include a single-cell planktonic form of the blue-green algae known as the cyanobacteria.

A significant amount of present research is being conducted on the phytoplankton that are associated with 'red tide', an increasingly frequent condition in which specific phytoplankton become so numerous that they become toxic to other marine life. In Biscayne Bay, the interest in phytoplankton has primarily been related to the blooms that are associated with discharges of nutrient-laden run-off from uplands. Although phytoplankton are vitally important as primary producers, due to a variety of factors, including their relatively short life cycles, and current-related transport, most phytoplankton would not serve as good indicators of the salinity regimes that are desired in the Biscayne Bay MFL project. A potential exception to this, however, are benthic diatoms, which are described below..

Diatoms

Diatoms are minute unicellular or colonial algae, organisms that are abundant in fresh water, estuarine and marine aquatic ecosystems from tropical areas to polar seas. Although sometimes epibenthic or epiphytic, most diatoms are planktonic. Benthic diatoms have been used as indicators of environmental change, and interpretation of data from sediment cores taken in northeastern Florida Bay have been used to reconstruct changing historical salinity regimes in that Bay (Huvane & Cooper (2000)). Diatoms are a constituent of periphyton, and as such, are being used as an indicator of environmental conditions in Everglades National Park. Wanless (1984) reported that in Biscayne Bay, living diatoms were generally most numerous in northern Biscayne Bay and that their abundance decreased toward the south.

Although phytoplanktonic diatoms are a valuable component at low levels of the food web, for a variety of reasons, including varying sensitivities to salinity and other water quality parameters, their typical existence as plankton, small size, difficulty in sampling and analyzing, diatoms do not appear to be suitable as indicators of estuarine conditions in Biscayne Bay.

Benthic diatoms, however, have been used to examine trends in salinity associated with the "white zone" (Ross et al. 2002, Gaiser and Wachnicka 2003) and may be useful for such situations.

Listed Species

Listed species are those individual species of flora and fauna that have been designated by the state of Florida as 'endangered', 'threatened' or 'species of special concern' and/or designated by the federal government as 'endangered' or 'threatened. Review of information (FGC, 1997) and other information from the State of Florida (Chap 68, F.A.C), the U.S. Fish and Wildlife Service (USFWS), the National Marine Fisheries Service (NMFS) and others, indicate that several species that are listed at the state and/or federal levels are known to inhabit the project area (Table 2). Although extremely low numbers and/or their vulnerability to other non-freshwater flow related conditions render most of these species inappropriate as indicators of estuarine health, the presence of some individuals of these species within the project area requires that specific consideration be given to ensure that reductions in fresh water do not result in situations that could be viewed as non-compliance with state and/or federal protected species regulations (e.g., Florida Wildlife Code, Federal Endangered Species Act, as amended). Narrative descriptions are provided for those species which could potentially be affected by reductions in freshwater.

Table 2 Marine and Estuarine Species that are State-listed and/or Federally-listed Species and which are known to occur in Biscayne Bay and/or Adjacent Areas

Common Name	Scientific Name	Designation FL Federal		Potentially adversely affected by reductions in freshwater?	Comments	
Fish						
Key Silverside	Menidia conchorum	Т		No	Year-round resident in lower Keys, euryhaline Not known to occur in Biscayne Bay	
Mangrove Rivulus	Rivulus marmoratus	SSC		No	Year-round resident, seems to prefer salinities of 20-35 ppt Distribution largely coincident with <i>Cardisoma guanhumi</i>	
Key Blenny	Starksia starki	SSC		No	Not known from Biscayne Bay, but present on Looe Key, Monroe Co. Prefers coral reef habitat; marine salinities	
Smalltooth Sawfish	Pristis pectinata		Е	No	NMFS advises species largely absent from Biscayne Bay, & that preferred patchy seagrass habitat would not be affected	
Reptiles						
American Alligator	Alligator mississippiensis	SSC	T(S/A)	No	Year-round resident, primarily in fresh water or low-salinity waters along west side of Biscayne Bay; habitat appears to somewhat overlap with <i>Crocodylus acutus</i>	
Atlantic Loggerhead Turtle	Caretta caretta	Т	Т	No	Primarily summertime visitor, nesting on east-facing ocean beaches, prefers marine salinities	
American Crocodile	Crocodylus acutus	Е	Е	Yes *	All size/ages seem to prefer intermediate (< 20 ppt), salinities, number are few, distributed from south boundary to Coral Gables area	
Atlantic Green Turtle	Chelonia mydas mydas	E	Е	No	Primarily summertime visitor, nesting on east-facing ocean beaches, prefers marine salinities	
Leatherback Turtle	Dermochelys coriacia	Е	Е	No	Primarily pelagic, except during spring-summer nesting on east-facing ocean beaches, prefers marine salinities	
Eastern Indigo Snake	Drymarchon corais couperi	Е	Е	No	Range may include mangrove wetlands west of shoreline, year-round resident, when present	
Red Rat Snake (Lower Keys Population)	Elaphe guttata guttata	SSC		No	Not documented to occur north of lower Keys.	
Atlantic Hawksbill Turtle	Eretmochelys imbricata imbricata	E	Е	No	Infrequent visitor to Biscayne Bay, feeds primarily on sponges on reefs Prefers marine salinity regime	
Florida Keys Mole Skink	Eumeces egregious egregious	SSC		No	Primarily inhabits sandy areas near the shoreline Northerly extent of range is Key Largo	
Atlantic Ridley Turtle	Lepidochelys kempi	Е	Е	No	Migrant around Florida, may be an infrequent visitor to Biscayne Bay, prefers marine salinities	

Table 2 Marine and Estuarine Species that are State-listed and/or Federally-listed Species and which are known to occur in Biscayne Bay and/or Adjacent Areas

Common Name	Scientific Name	Designation FL Federal		Potentially adversely affected by reductions in freshwater?	Comments
Birds					
Roseate Spoonbill	Ajaia ajaja	SSC		Yes *	Uncommon year-round resident, foraging & nesting success appear to be partially dependant on estuarine salinity regimes occurring in suitable foraging habitats
Piping Plover	Charadrius melodus	Т	Т	No	Occasional passage migrant or winter resident, forages in intertidal zone, on sandspits, coastal inlets and mud flats
White-crowned Pigeon	Columba leucocephala	Т		No	Uncommon year-round resident; primarily inhabits upland tropical hammocks, feeding on fruit-bearing species, including <i>Ficus</i> and <i>Metopium</i> .
Little Blue Heron	Egretta caerulea	SSC		No	Fairly common year-round resident; forages in shallow waters (fresh, marine and/or estuarine); No apparent salinity preferences
Reddish Egret	Egretta rufescens	SSC		No	Uncommon year-round resident; spring-summer nesting in coastal mangroves Appears to prefer mesohaline to hypersaline conditions
Snowy Egret	Egretta thula	SSC		No	Fairly common year-round resident; forages in shallow waters (fresh, marine and/or estuarine); No apparent salinity preferences Fairly common year-round resident; forages in shallow waters (fresh,
Tricolored Heron	Egretta tricolor	SSC		No	marine and/or estuarine); No apparent salinity preferences
White Ibis	Eudocimus albus	SSC		No	Fairly common year-round resident; forages in shallow waters (fresh, marine and/or estuarine); No apparent salinity preferences
Arctic Peregrine Falcon	Falco peregrinus tundris	Е		No	Migrant/winter resident; opportunistic predator, primarily on other birds No apparent salinity preferences
American Oystercatcher	Haemotopus palliatus	SSC		No	Infrequent visitor, forages on benthic and benthonic organisms, relative absence may be related to lack of <i>Crassostrea virginica</i>
Bald Eagle	Haliaetus leucocephalus	Т	Т	No	Occasional sightings throughout the year; no documented nests within project area; primarily piscivorous, no salinity regime preference
Wood Stork	Mycteria americana	Е	Е	No	Uncommon winter resident, although year-round in nearby Everglades; forages primarily in shallow fresh or estuarine waters; Nesting not known in project area
Brown Pelican	Pelecanus occidentalis	SSC		No	Abundant to common year-round resident, but no nesting colonies within project area; Prefers estuarine/marine salinity regimes
Black Skimmer	Rhynchops niger	SSC		No	Rare to uncommon within project area; forages on small fish near surface, (e.g., <i>Menidia</i> , <i>Fundulus</i> , <i>Anchoa</i> and <i>Mugil</i>); prefers estuarine/marine salinity regimes
Least Tern	Sterna antillarum	Т		No	Summertime breeding resident, feeds on small fish on surface; Nests on barren or sparsely-vegetated beaches & rooftops near estuarine/marine salinity regimes
Roseate Tern	Sterna dougallii	Т	Т	No	Rare winter visitor; feeds on small fish on surface. Prefers estuarine/marine salinity regimes

Table 2 Marine and Estuarine Species that are State-listed and/or Federally-listed Species and which are known to occur in Biscayne Bay and/or Adjacent Areas

Common Name			nation Federal	Potentially adversely affected by reductions in freshwater?	Comments
Mammals					
Everglades mink	Mustela vison mink	Т		No	Primary habitat is the shallow freshwater marshes of the Everglades and Big Cypress Swamp; unlikely to be present in tidally-affected areas of Biscayne Bay
Key Largo Woodrat	Neotoma floridana smalli	Е	Е	No	Habitat is dry tropical forest on northern Kay Largo, where it forages primarily in the forest canopy
Key Largo Cotton Mouse	Peromyscus gossypinus allapaticola	Е	Е	No	Habitat is primarily dry tropical forest on northern Kay Largo, but it has been documented to occur in Salicornia-dominated coastal strand
West Indian Manatee	Trichechus manatus latirostris	E	Е	Yes *	Year-round resident, but more numerous during winter Seeks canal discharges during winter for warm &/or fresh water
Corals					
Pillar coral	Dendrogyra cylindrus	E		No	Present on coral reefs in eastern portions of project area, prefers marine salinity regime
Molluscs					
Florida Tree Snails	Liguus fasciatus	SSC		No	Inhabits upland hammocks, feeding primarily on epiphytic growths (i.e., lichens, fungi and algae on smooth-barked trees, including <i>Lysiloma</i> and <i>Ficus</i> .
Invertebrates					
Shaus' Swallowtail	Papilio aristodemus	Е	Е	No	Present in uplands (tropical hardwood hammocks and neighboring scrub area) within project area, host plants in Rutaceae
Miami Blue Butterfly	Hemiargus thomasi bethunebakeri	Е		No	Present in openings and edges of tropical hardwood hammocks within project area, host plants include <i>Cardiospermum halicacabum</i> , possibly <i>Chiococca alba</i> , and various legumes
Marine Plants					
Johnson's Seagrass	Halophila johnsonii		Т	Yes	Prefers less than marine salinities, South end of natural range appears to be near Virginia Key

American Crocodile

The American crocodile (*Crocodylus acutus*) is protected pursuant to the Florida Wildlife Code and the federal Endangered Species Act, as amended. Its designation at both levels is 'endangered'. An initial recovery plan for this species was developed in 1979. The plan was updated in 1994, and recovery actions are currently being implemented in accordance with the Multi-species Recovery Plan for South Florida (USFWS, 1999), which among other things, states that: "The American crocodile is a valuable indicator species of the health of South Florida's estuarine environments". Critical habitat has been designated for this species (Figure 10); the northern portion of which is included within the Biscayne Bay MFL project area.

Crocodiles are large, greenish-gray reptiles that reach lengths of approximately 3.8 m (11.4'). Males are somewhat larger than females, both of which can be distinguished from alligators by having a longer, narrower, more tapered snout.

Together with the American alligator (*Alligator mississippiensis*), the American crocodile is one of two species of crocodilians endemic to the United States. Although their historic range may have extended up the east coast as far as Lake Worth Lagoon (Palm Beach County), up the west coast to the Tampa Bay area and south to Key West, crocodiles presently inhabit only coastal areas of extreme South Florida, being found primarily in mangrove communities in Monroe, Miami-Dade, Collier and Lee Counties. Their range also includes the Caribbean, Mexico, Central America and northern South America.

Hunting, habitat loss and fragmentation due to increased urbanization and agricultural lands uses have all contributed to the reduction in numbers of these large, reptilian carnivores (USFWS, 1999). Losses may also be attributable to vehicle-related mortality (particularly on U.S. 1 and Card Sound Road), and depredation of eggs or young, primarily by raccoons. At varying times and location, nest failures have also been attributed to both flooding and dessication (Mazzotti et. al., 1988, and Mazzotti 1989). Ogden (1978a) suggests that the disappearance of crocodiles from much of Florida Bay came about, "at least in part" because of increased mortality rates among salt-stressed juveniles.

The American crocodile is found primarily in mangrove swamps and lowenergy mangrove-lined bays, creeks and inland swamps (Kushlan and Mazzotti, 1989). Nest areas typically include creek banks and other locations where sandy shorelines or raised marl creek banks are adjacent to deep water, particularly at locations that are protected from wind and wave action (USFWS, 1999). During the non-nesting season, crocodiles typically inhabit fresh and brackish water inland swamps, creeks, and bays (Kushlan and Mazzotti, 1989).

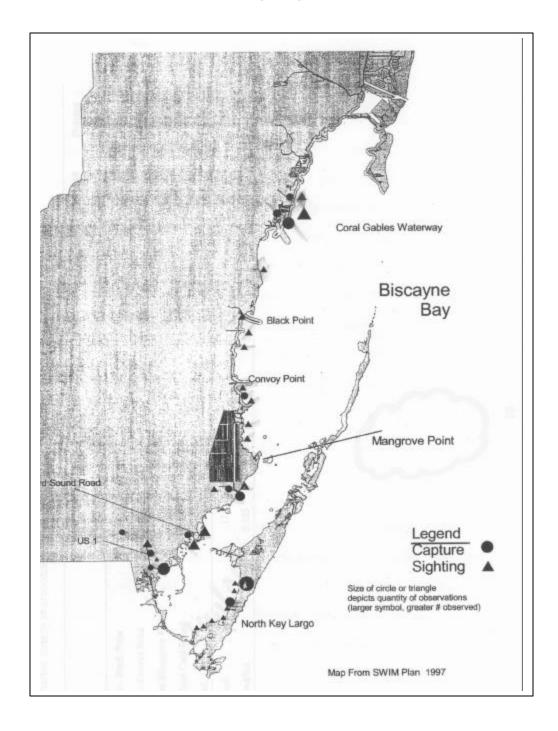
American crocodiles forage primarily from shortly before sunset to shortly after sunrise. Juveniles typically eat fish, crabs, snakes, and other small invertebrates. Adults eat fish, crabs, snakes, turtles, birds and small mammals (Ogden 1978b, Ross and Magnusson, 1989).

Field data collected from Florida Bay, Dunson (1982) documented that although American crocodile hatchlings are intolerant of 35 ppt water, his laboratory studies indicated that most small American crocodiles maintained body mass at salinities up to 17 ppt, and some even gained mass at 26 ppt. Kushlan (1988) suggests that hatchling crocodiles possess a number of behavioral adaptations for survival in hypertonic conditions, including consuming water-laden prey items, drinking freshwater from pools and lenses riding on top of salt water and avoidance of salt uptake. Also regarding salinity preferences and tolerances, USFWS (1999) states that:

"Water salinity affects habitat use and may be locally important, especially during periods of low rainfall. Although American crocodiles have salt glands that excrete excess salt and physiological mechanisms to reduce water loss...maintenance of an osmotic balance requires access to low salinity for juveniles. Hatchling crocodiles are particular susceptible to osmoregulatory stress and may need to have brackish to fresh water (4 ppt) available at least once per week to increase growth (Mazzotti et, al. 1986). Crocodiles larger than 200 g have sufficient mass to withstand osmoregulatory stress and are not typically believed to be affected by drought (Mazzotti and Dunson 1984). Freshwater needs of the crocodile are usually met with frequent rainfall, which results in a "lens" of fresh water on the surface for several days after rainfall (Mazzotti and Dunson 1984). Hatchling crocodiles are probably stressed and occasionally die during periods of low rainfall. Anthropogenic changes in the amount and timing of fresh water flow to South Florida may have resulted in shifts in the distribution of American crocodiles."

Estimates of the population of crocodiles in South Florida suggest that from historical numbers of 1,000 to 2,000, numbers dropped to all-time lows during the 1960s and 1970s during which it is thought that there were between 100 and 400 non-hatchlings (USFWS 1999.), and that numbers have increased substantially since that time.

The most recent surveys for crocodiles in Biscayne Bay which are reflected in publications were performed by Mazzotti and Cherkiss (1998) pursuant to a contract with the SFWMD. Surveys were conducted from September 1996 through May 1998. During that period, a total of 132 crocodile observations were made. Sightings ranged from Chapman Field and the Coral Gables Waterway at the north to the U.S. 1 corridor and the Crocodile Lakes National Wildlife Refuge on Key Largo at the south. Figure 11 shows the locations and comparative numbers of crocodile sightings and captures as reported by Mazotti and Cherkiss (1998). Surveys did not include the cooling canal system at Florida Power and Light Company's Turkey Point Power Plant, an area long known for its population of crocodiles.


Limited water quality data were recorded at the locations of observations. Although salinities varied from 0 ppt to nearly 40 ppt, 45% of all nonhatchling crocodile observations were in water with salinity measurements of 0-5 ppt (Figure 12). In discussion of their findings, Mazzotti and Cherkiss (1998) state that: "Crocodiles benefit from restoration and maintenance of freshwater flows into the estuarine habitat. Location, timing, and amount of flow are important. For example, when possible freshwater flows should be directed through the remaining fringing mangrove swamp rather than simply discharged through canals. In general flow should peak at the end of the rainy season and continue discharging into the dry season. Freshwater flow should be adequate to maintain estuarine conditions (< 20 ppt salinity) into December in most years."

USFWS (1999) corroborates that "The timing and frequency of the freshwater hydroperiod substantially influences the health of the estuarine environment in South Florida and may be one of the most important large-scale factors influencing crocodile populations on the mainland".

Roseate Spoonbill

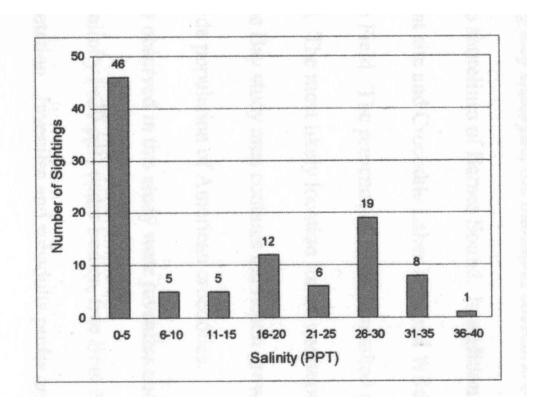

The Roseate Spoonbill (*Ajaia ajaja*), a brightly-colored, long-legged wading bird with a spatulate bill, is the only spoonbill native to the western hemisphere. It has been designated as a 'Species of Special Concern' by the State of Florida. Although it is protected pursuant to the federal Migratory Bird Treat Act, this species is not protected pursuant to the federal Endangered Species Act. No recovery plan has been developed and there is no designated critical habitat for this species.

Figure 11 Locations of Crocodile Sightings and Captures

Source: Mazotti and Cherkiss, 1998. Status and Distribution of the American Crocodile (*Crocodylus acutus*) in Biscayne Bay

Figure 12 Crocodile Sightings in Relation to Salinities

Source: Mazotti and Cherkiss, 1998. Status and Distribution of the American Crocodile (*Crocodylus acutus*) in Biscayne Bay

Accounts of historical populations suggest that the spoonbill population in the United States numbered in the thousands prior to the 1850s, after which a rapid decline occurred. This decline, which was attributed to the disturbance of colonies, plume hunting and collection of nestlings and adults for food and which occurred between 1850 and 1920, reduced the nationwide population to approximately 25 pairs (Allen 1942). By 1941, only one nesting colony (Bottle Key) was known to exist in Florida (Lorenz et. al., 2002). Populations began to rebound, however after protection mechanisms were enacted, particularly in coastal Texas and Louisiana, and estimates were that 2,200 to 2,700 nesting individuals existed in the 1970s.

Presently, although there are several widely-spaced individual nesting sites in other coastal areas in the southern half of peninsular Florida, the primary nesting areas for this species are in extreme south Florida. Ninety percent of spoonbill nesting in Florida has been on mangrove islands in Florida Bay in Everglades National Park, although a colony was recently documented to occur in coastal areas west of the mangrove shoreline in southern Biscayne Bay (Lorenz, pers. comm.). Lorenz et al. (2002) report that in recent years there have been more than 30 islands in Florida Bay with spoonbill nesting colonies. Cumulatively, the lack of terrestrial predators (primarily raccoons), minimal amount of human disturbance, lack of parasites and disease, and the presence and availability of prey items all likely contribute to the continued viability of individual nesting sites (Lorenz et. al., 2002).

Spoonbills forage in shallow marine, brackish and freshwater sites, including tidal ponds, and sloughs, mud flats, mangrove-dominated pools, freshwater sloughs and marshes and man-made impoundments (R. Bjork, 1996). Mangrove-dominated shorelines and the marine-estuarine transition zone have been documented as the primary foraging areas used by the spoonbills that nest in Florida Bay. The dwarf mangrove community that is present in areas where there is little soil accumulation overlaying a rock substrate appears to provide valuable foraging habitat for spoonbills.

Spoonbills forage in shallow by sweeping a partially-open bill back and forth in a semi-circular motion while slowly walking forward in search of small prey items. When the bill strikes a prey item, it immediately snaps shut; a process known as tactolocation. This unusual foraging strategy is successful only when water depths are less than 20 cm (Lorenz, 2000). Investigations regarding prey items (Allen, 1942, Dumas, 2000, Lorenz et. al., 2002) indicate that small fishes, including sheepshead minnows (*Cyprinodon variegatus*), sailfin mollies (*Poecilia latipinna*) are the primary prey items. Shrimp (*Palaemonetes* sp.) are also taken. Annual wet season and dry season water level fluctuations that are typically present in south Florida are critical to the nesting success of many wading birds, including spoonbills. Their annual nesting cycle is timed around the decreasing water levels that are associated with the winter-spring dry season. Foraging by adults is most effective during this period, when the population of prey, which has increased during the wet season, becomes concentrated as surface waters diminish.

Although most spoonbills nest on islands in Florida Bay, they make daily flights to foraging areas to mainland wetlands north of Florida Bay. By conducting studies of flight distance from nesting sites during 1989-90, Lorenz, et. al. (2002), documented that the mean flight distance for spoonbills nesting in Florida Bay was 12.4 km \pm 5.8 km (mean \pm standard deviation), with approximately 83% of the flights being less than 16 km.

Recent studies by Lorenz (1999, 2000) in Florida Bay have revealed that comparatively higher, and more variable salinities in the same coastal wetlands has resulted in reduced prey biomass for foraging spoonbills. Additionally, long-term studies of spoonbill nesting territories indicates that spoonbills do respond to the destruction or degradation of their foraging grounds by relocating to other areas in closer proximity to suitable foraging areas. For these reasons, spoonbills appear to be an excellent indicator of ecosystem health for southern Biscayne Bay, as indicated by the maintenance of a nesting population adjacent to the Bay. Maintaining suitable foraging habitat for spoonbills may also contribute to the success of spoonbills and other bird species that nest outside the boundary of the project area

Additionally, because a variety of other vertebrate predators, including piscivorous fishes, reptiles and wading birds also depend on the same prey items, the continued presence of spoonbills will likely also indicate success for other species.

West Indian Manatee

West Indian manatees are large, herbivorous, air-breathing aquatic mammals that can be found within suitable habitat throughout much of peninsular Florida. They are protected pursuant to the Florida Wildlife Code and the federal Endangered Species Act, as amended. Their current designation at both levels is 'endangered', although the Florida Fish and Wildlife Conservation Commission is considering a 'downlisting' to threatened. An initial federal recovery plan for this species was developed in 1996, and the Multi-species Recovery Plan for South Florida (USFWS, 1999), contributed information pertinent to South Florida and Biscayne Bay. Critical habitat was designated for this species in the early 1970s as areas occupied by manatees 'which have those physical or biological features essential to the conservation of the manatee and/or which may require species management considerations". No specific locations, maps or other descriptions were provided to more specifically define critical habitat.

Miami-Dade County was one of 13 key counties that were required by the State of Florida to develop a county-specific Manatee Protection Plan (MPP). That Plan, DERM Technical Report 95-5 (DERM 1995), provides extensive information regarding manatees in Miami-Dade County, including sections on: habitat, manatee-human Interaction, local land development, education and awareness, governmental coordination and habitat protection. The MPP was approved by the State of Florida on December 21, 1995.

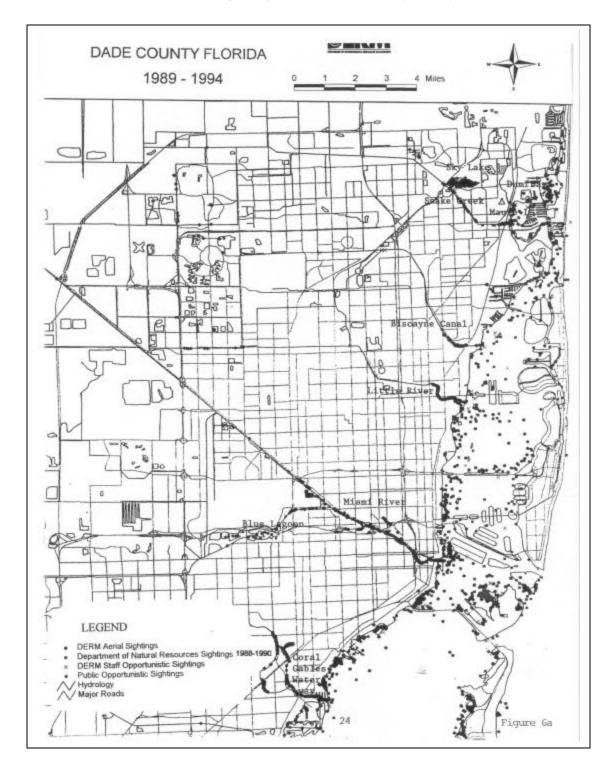
Manatees potentially inhabit all areas of Biscayne Bay. Depending on the design of any individual water control structure, manatees may also travel upstream of these structures. Although manatees may be present in the Bay during any month of the year, they are most numerous in Biscayne Bay during the winter months, a time in which manatees that have ranged to more northerly latitudes during other times of the year, return to south Florida as ambient water temperatures cool. Water temperatures lower than approximately 20°C appear to increase manatee's susceptibility to cold-related stress and cold-induced mortality. In north and central Florida, manatees' winter-time distribution is primarily centered around reliable sources of warm water (e.g., power plant discharges, springs). Other manatees move south, where it is less likely that ambient water temperatures will drop below acceptable levels.

Manatees inhabit both freshwater and saltwater habitats, and the USFWS (1999) reports that: "Several factors contribute to the distribution of manatees in Florida. These factors are habitat-related and include proximity to warm water during cold weather, aquatic vegetation unavailability, proximity to channels of at least 2 m in depth, and location of fresh water sources." Natural or artificial sources of freshwater are sought by manatees, particularly those individuals that spend time in both estuarine and brackish water."

Manatees are opportunistic herbivores that feed on a variety of submerged, emergent and floating plants. Although their most well-known forage species are seagrasses, including turtle grass, and manatee grass they are also known to consume algae (Lewis et al. 1983). Although manatees unquestionably inhabit areas with marine salinities, and appear to survive equally well in fresh and salt waters, in areas of primarily marine salinities, manatees are well known for their desire to drink fresh water. They will drink water from hoses, and frequently travel upstream into rivers and canals, at least in part to reach freshwater areas.

Surveys and censuses of manatees have been performed annually for many years by local, state and/or federal agency personnel. These surveys have included aerial observations (typically fly-overs in fixed-wing aircraft immediately after the passage of cold fronts) and tracking of manatee movement by radio and/or satellite telemetry. The data, which were compiled for the period from 1989-94 reveals a number of specific area where there were repeated sightings (Figures 13a - c).

Based on the analyses of these data, the MPP identified 'preferred manatee habitats' as areas with dense vegetation for feeding, freshwater sources for drinking, and warm water refuges for warmth during the cold and further identified "Essential Manatee Habitat" as "any land or water area constituting elements necessary to the survival and recovery of the manatee population from endangered status which may require special management considerations and protective measures. The constituent elements include, but are not limited to: space for individual and population growth, and for normal behavior; available food sources with adequate water depth and quality; warm and fresh water sources; sites for breeding and rearing of offspring; and habitats protected from disturbances that are representative of the geographical and seasonal distribution of the species." It additionally identifies eight such Essential Manatee Habitat areas (Figures 14 a - d). Each of the six sub-regions that have been identified for the MFL project contains at least one of these Essential Manatee Habitat areas.


In general terms, the manatee habitat areas that could be adversely affected by reductions in the flows of freshwater include the following MPP designations; 1) Fresh Water Sources; 2) Warm Water Refuges and; 3; Other Aggregating Areas.

Fresh Water Sources

Regarding Fresh Water Sources, the MPP states that:

"Manatees utilize freshwater canal systems in Dade County, particularly during warm weather. They travel through open flood gates to access these areas. Manatees are observed as flood gates yearround, but aggregate at these locations in large numbers during cool weather. Those flood gates where manatees are most frequently

Figure 13 a Manatee Sightings – Northern Biscayne Bay

Source: Manatee Protection Plan. Miami-Dade Department of Environmental Resources Management

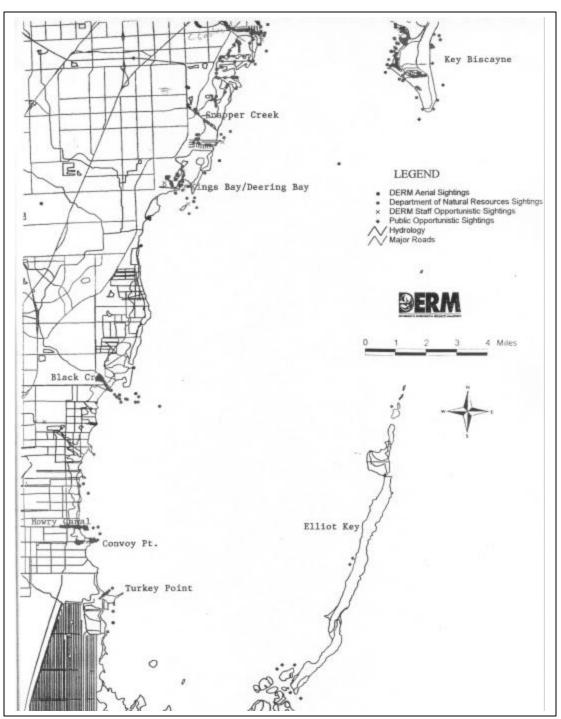


Figure 13 b Manatee Sightings – Central Biscayne Bay

Source: Manatee Protection Plan. Miami-Dade Department of Environmental Resources Management

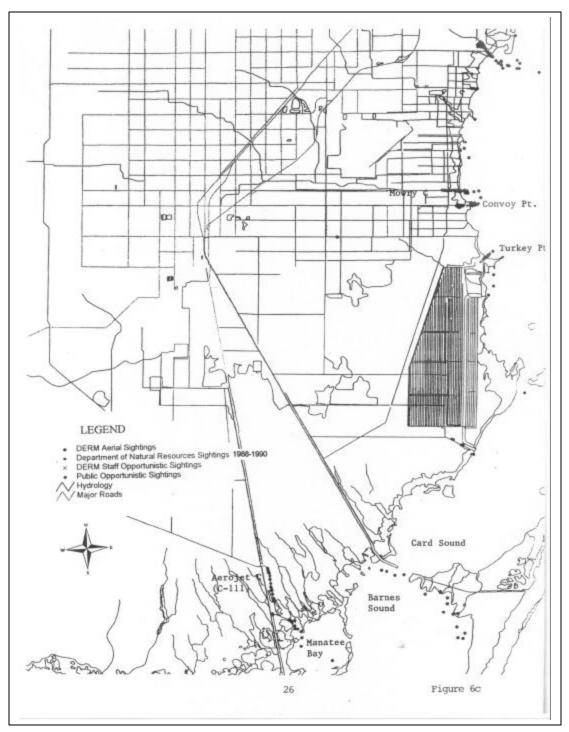


Figure 13 c Manatee Sightings – Southern Biscayne Bay

Source: Manatee Protection Plan. Miami-Dade Department of Environmental Resources Management

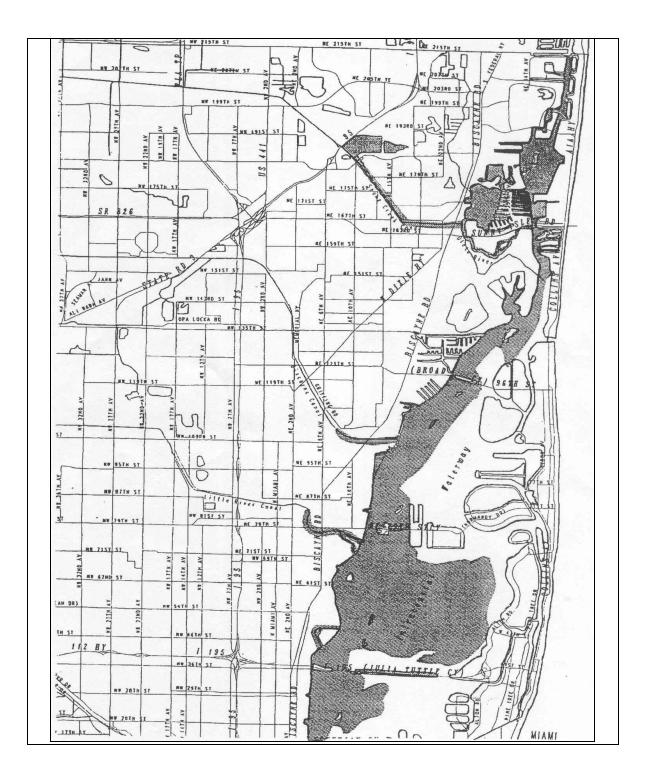


Figure 14 a – Essential Manatee Habitat Areas

Source: Manatee Protection Plan. Miami-Dade Department of Environmental Resources Management

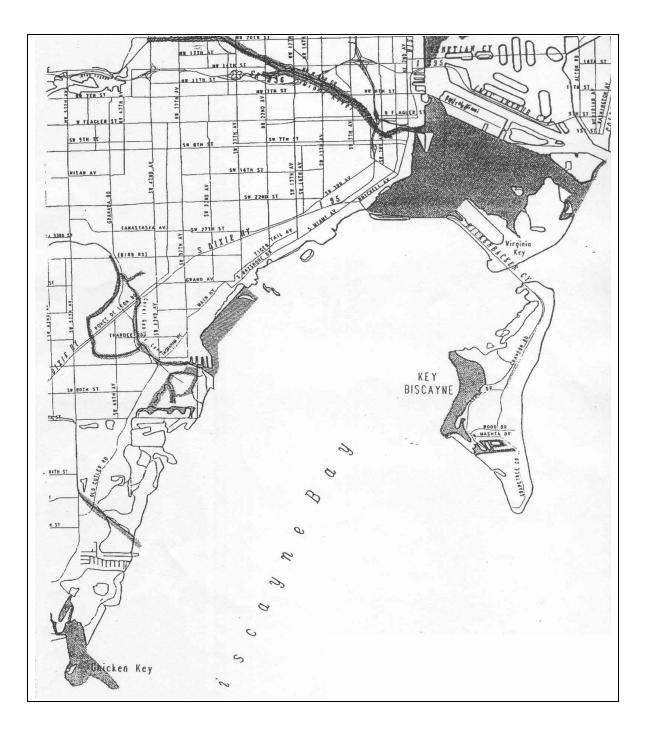


Figure 14 b – Essential Manatee Habitat Areas

Source: Manatee Protection Plan. Miami-Dade Department of Environmental Resources Management

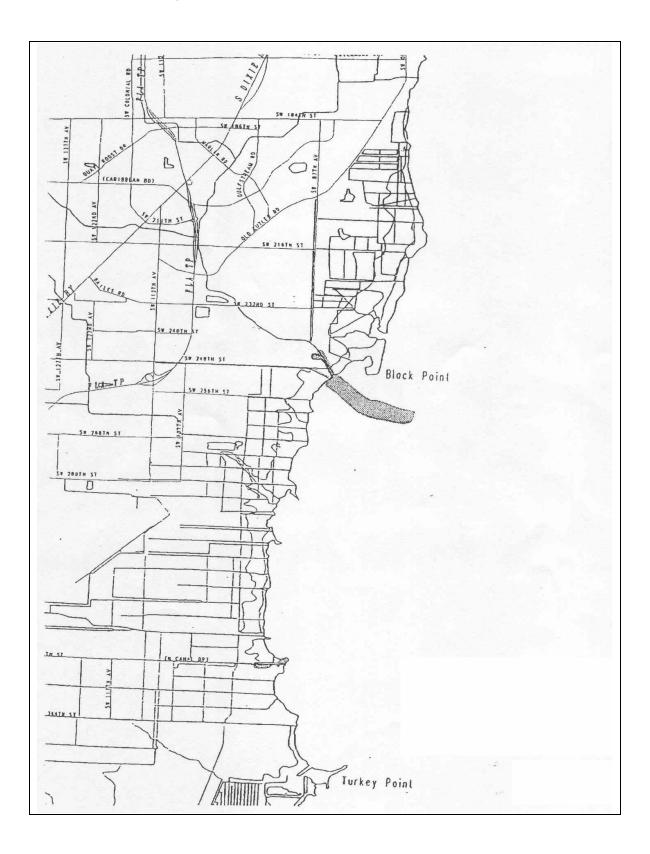


Figure 14 c – Essential Manatee Habitat Areas

Source: Manatee Protection Plan. Miami-Dade Department of Environmental Resources Management

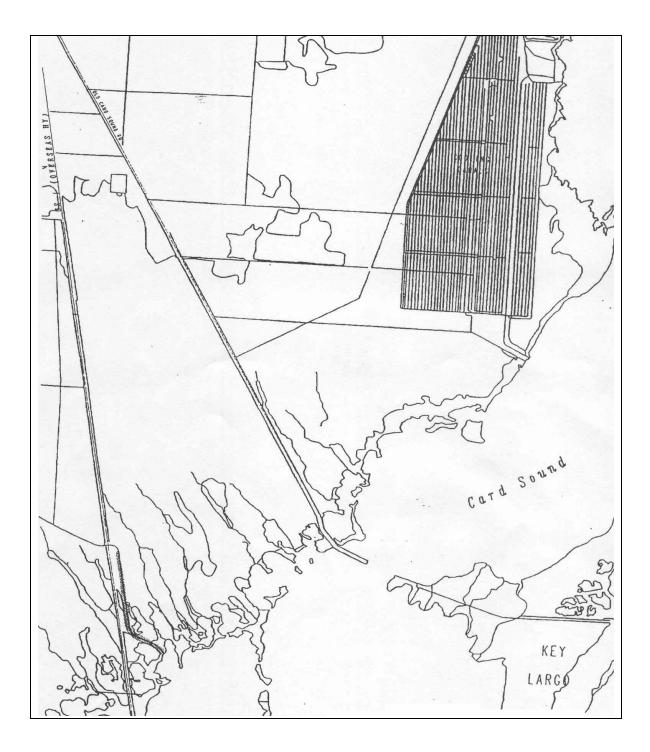


Figure 14 d – Essential Manatee Habitat Areas

Source: Manatee Protection Plan. Miami-Dade Department of Environmental Resources Management

observed are located on Snake Creek, Biscayne Canal, Little River, Miami River, Tamiami Canal and Black Creek. Another popular manatee fresh water source is a stormwater outfall structure on a canal connected to Coral Gables Waterway. A daily pattern has been observed by manatee trackers in Dade County during cold weather months: many manatees leave Biscayne Bay in the morning and travel up rivers and canals to the fresh water source where they drink and rest, and will return to the Bay in the afternoon (Pers comm..., Kathryn Curtin, USFWS, 1990).

The portion of Little River immediately downstream of the salinity control structure is a consistent manatee gathering place during the winter months. Manatees drink freshwater water which leaks through the structure".

Warm Water Refuges

Regarding warm water refuges, it is well known that manatees are attracted to springs and the warm-water discharges from power plants during the winter, however, due to its sub-tropical location, ambient water temperatures in Biscayne Bay are thought to be warm enough for manatee use, "except during prolonged periods of cold temperatures" (DERM 1995). There are no springs in Miami-Dade County that are known to attract manatees. There are two power plants in Miami-Dade County, and both are located in coastal areas. The largest of these, the Florida Power and Light Company (FPL) Turkey Point Plant uses a cooling canal system that has no direct surface connection to Biscayne Bay, and therefore manatees are not attracted to this facility. FPL also maintains a power plant in the Cutler area. The Cutler Power Plant discharges thermally enhanced water into a tidal canal adjacent to Biscayne Bay. However, this facility is intermittently used, and is not a major aggregating site for manatees. FPL's Port Everglades Power Plant in Broward County does attract manatee in large numbers during the winter, and some of these manatees travel back and forth from the warm water discharge to foraging areas in Miami-Dade County.

Although there are no major sources of warm water in Miami-Dade County, aerial censuses have documented that manatees that are in County waters during prolonged periods of cold weather move upstream into rivers and canals and into deeper, protected waters that tend to stay slightly warmer than the shallow, exposed Bay (DERM 1995). Specific areas that are known to be used for this purpose are the Coral Gables Waterway, the upper Miami River and Little River.

Other Aggregation Areas

In addition to the known attractants of fresh water and warm water, localized conditions are known to attract manatees at several specific locations. Locations within the MFL project area include: 1) an extensive seagrass bed located on the northwest side of Virginia Key; and 2) a portion of the Black Creek marina.

Although it is not specifically designated as 'Aggregation Area', manatees have been documented to forage in the seagrass beds in South Dumfoundling Bay and between the Port of Miami and Rickenbacker Causeway. It is thought that the manatees that forage in these areas may be individuals that are attracted to the warm water discharges from the Port Everglades Power Plant (Broward County), and which move southward to these areas to feed.

Because manatees forage primarily on seagrasses, and because the presence, absence, distribution and density of individual seagrasses are somewhat dependant on salinity, manatees may potentially be affected by modifications to the delivery of fresh water into Biscayne Bay. However, because the likely effect of even a total cessation of freshwater inflows would be a shift in the species composition of seagrasses (replacement of manatee grass, shoalgrass and paddle grass with turtle grass) and not a significant overall reduction in seagrass biomass, reductions of inflows would not likely result in adverse impacts to manatee foraging habitat.

The MPP identifies a number of causes of manatee mortality and identifies corrective measures that are to be implemented to address these causes. Because flood gates, where manatees had gotten crushed when automatic sensors directed flood gates to close, were a major component of manatee mortality (46% during the period from 1974 through 1994) (DERM, 1995), direct attention was paid to re-designing the structures to reduce manatee mortality. Because collisions with vessels was the second highest known cause of death (27% during the period from 1974 through 1994), the County adopted a variety of zones where boat speeds were to be restricted. Vessel speed restriction zones are found in five of the six MFL-designated sub-regions of Biscayne Bay; there are no restriction zones in the Southern Bay sub-region. The location of these zones is shown on a variety of brochures (e.g., Boating and Angling Guide to Biscayne Bay) and distributed free to the public.

West Indian Manatees have been identified by USFWS (1999) as an indicator species for aquatic habitats, including seagrasses and mangroves in the South Florida ecosystem. Because seagrasses and mangrove habitats provide areas for foraging, calving, resting and mating, the presence, abundance and distribution of manatees are indicators of the health and vitality of these systems.

Johnson's Seagrass

Johnson's seagrass (*Halophila johnsonii*) is a small, rare aquatic plant that is known only to occur along the east and southeast coast of Florida from Brevard County to Biscayne Bay. It was designated as a threatened species in 1998 pursuant to the federal Endangered Species Act, as amended. It is not currently protected under State of Florida statutes, rules or regulations, although Section 581.185 F.S. 'provides for the automatic listing as a state endangered species of "all species determined to be endangered or threatened pursuant to the federal ESA of 1973" (NMFS 2002). A federal recovery plan for this species has been developed and was approved by the National Martine Fisheries Service, National Oceanic and Atmospheric Administration in 2002. Critical Habitat was designated for this species in ten distinct areas. The largest of these areas encompasses a significant portion of Biscayne Bay, and includes portions of the MFL Snake Creek/Oleta River, Northern Biscayne Bay and Miami Rover/Government Cut Sub-regions.

Johnson's seagrass is one of twelve species of *Halophila*, a genus that is distributed in warm-temperate and tropical waters worldwide (NMFS 2002). It is one of three species that is documented to occur in Biscayne Bay, and can be differentiated from the other species by having pairs of 2-5 cm long, linear leaves that extend upward from a rooted rhizome that is located just below the sediment surface. Johnson's seagrass somewhat resembles paddle grass, *Halophila decipiens*, with which it will occur (pers. observations) and was relatively recently recognized as a separate species. It is the first marine plant to be listed pursuant to the Endangered Species Act, and because it is a recent addition and because its Recovery Plan was very recently developed, information concerning the abundance and distribution of this species is very up-to-date.

Johnson's seagrass has been documented to occur only on the east coast of Florida, being found in coastal lagoons along approximately 200 km of coastline from approximately Sebastian Inlet (Brevard County) to Biscayne Bay, including areas of the Indian River Lagoon, Lake Worth Lagoon and Biscayne Bay. Based upon this limited range, Johnson's is thought to be the most spatially-restricted species of seagrass in the world (NMFS 2002). The largest known areas of Johnson's seagrass within this range are in the Indian River Lagoon and Lake Worth.

Within this range, Johnson's seagrass grows in a patchy, non-contiguous distribution in water depths from within the intertidal zone to maximum depths of approximately 3 m (Kenworthy, 1993; Virnstein et. al., 1997). Due to its presence in very shallow waters, and even being exposed at extreme low tides, it is thought to be tolerant of moderate desiccation and wide temperature ranges. Although it is reported to be more commonly found in monotyic patches, it may also be present with shoal grass and manatee grass.

Relatively little work has been done to identify the salinity, temperature and/or water quality preferences and tolerances of Johnson's seagrass. Research to date, however suggests that Johnson's seagrass survives in at least salinities from 15-43 ppt, and that its range may be greater (NMFS, 2002). It also grows in areas of varying water clarity, from comparatively turbid areas to clear-water areas near inlets, where currents are fast and strong.

In spite of its comparatively small size, studies indicate that Johnson's seagrass serves a food source for other organisms, as a refuge, habitat and nursery for wildlife species, assists in sediment stabilization and therefore reduces turbidity and erosion.

The federal recovery team identified five criteria on which to consider designation of critical habitat: 1) populations that have been documented to persist for 10 or more years; 2) persistent flowering populations; 3) the northern and southern limits of the species range; 4) unique genetic diversity; and 5) a documented high abundance compared to other areas in the species' range. Based on these criteria, ten areas, ranging in size from approximately 2 acres to 18, 757 acres have been designated as critical habitat for Johnson's seagrass. The largest of these, and the only one to occur within the MFL project area is the Biscayne Bay area, which accounts for 83% of the designated critical habitat for this species (Figure 8).

The recovery plan identifies a number of actions that are to be taken place in order to meet the recovery goal of delisting the species after assuring its persistence throughout its range. Although implementation of many of the identified actions will have no effect on MFL rule development, specific activities that are worth monitoring include: Action #2: Initiate a range-wide monitoring program. Monitoring is to be performed to detect any changes in the southern distributional limits or range extensions, and specifically; "An important goal of the initial mapping would be to identify if any major distributional gaps presently exist in the southern part of the range." (NMFS 2002).

Action #3: Refine habitat requirements. Data are to be collected regarding various water quality parameters, including temperature, salinity, light intensity... to increase understanding of the conditions in which Johnson's seagrass survives.

Action #5: Determine and implement habitat management needs and techniques. The recovery team intends to work with FDEP and WMDs to develop water quality based targets for use in protecting seagrass populations. WMDs will develop Pollutant Load Reduction Goals (PLRGs) for SWIM waters. FDEP will use these PLRGs to determine Total Maximum Daily Loads (TMDLs) for waters that are on the State's list of impaired waters.

Oysters

This summary of American oyster biology related to salinity is formatted after that of Meeder et al. (2001) with additional review information from Galtsoff (1964), Castagna and Chanley (1973), Lough (1975) Bahr (1981) and Burrell (1986).

While live oysters have been collected across their range at temporary salinities ranging from 0 psu to 40 psu, the various life stages of the oyster each has different optimum requirements: Egg and sperm production does not occur below salinities of 7.5 psu, maximum survival of 2 day old larvae occurs at salinities of 19-30 psu, and 10 day larvae at 8-30.5 psu. Temperature is another important parameter and certain optimums are reported for various populations.

Larval development is optimum at 25-29 psu, and spat grow best at 15-26 psu. Best adult growth is in the same range, 14-30 psu. Moderate salinities of less than 15 psu for a significant period in the year may be beneficial through exclusion of less euryhaline predators and reduction in common disease organisms (Burrell 1986).

Oysters can close their shells and survive on stored reserves and apparently carry out anaerobic respiration to avoid death when external conditions are lethal, such as long periods of 0 psu salinities. Periods of closure can range up to

10 days. In his review of requirements for establishment and persistence of oysters as oyster bars, Meeder et al. (2001) notes that salinity and "steady food bearing water currents are essential." Oysters are very specific suspension feeders, filtering seawater for phytoplankton. Evidence shows they can be very specific for certain phytoplankton groups or even species.

Oyster larvae settle from a planktonic life form onto many surfaces. Galtsoff (1964) describes these as "...rocks, gravel, cement, wood, shells of other mollusks, stems and leaves of marsh grass...tin cans, rubber boots,... tires, glass, tar paper...plastic...There is no evidence that the larvae are selective in finding a suitable place to set, provided the surface is not covered with slimy film, detritus or soft mud." The latter two are however common features in certain areas along the west side of Biscayne Bay where historical oyster bar deposits are found.

Meeder et al. (2001) concluded that "a range of salinities of 5-20 psu...may be optimal for *C. virginica* in South Florida" and proposed a target salinity range for a tidal creek restoration project of 5-15 psu in the wet season and 10-19 psu in the dry season. The existing salinities in the area have a mean of 15 psu in the wet season and 25 psu in the dry season.

For this restoration project specific construction activities and freshwater flows were recommended along with the addition of several barge loads of shell to provide a base for a new oyster reef to overcome the problem of needing suitable settling substrate for oyster larvae (Meeder et al 2001, 2002).

Crustaceans

Crustaceans, which include lobsters, shrimp, crabs and barnacles are mostly aquatic arthropods that are categorized in the class Crustacea. Numerous species of crustaceans inhabit Biscayne Bay. Most are marine organisms that prefer typical marine salinities of \pm 35 ppt, and are species whose presence, absence and/or abundance would not serve as good indicators of adverse impacts associated with reductions of inflow of fresh water. Many individual species tolerate wide variations in salinity. Several species, however which are present in Biscayne Bay for all or portions of their life cycles could potentially serve as indicators of desired salinity regimes. These include shrimp and crabs (Order Decapoda), as described hereafter. In addition to having life cycles that include estuarine waters (see Appendix C), several of these species (i.e., pink shrimp, blue crab and stone crab) are recognized as being "of major importance to commercial, sport or bait fisheries" (Idyll, 1966).

Shrimp

Shrimp found in Florida's coastal areas include members of the Penaeidae, which include pink shrimp (*Farfantepenaeus duorarum*), and brown shrimp (*Farfantepenaeus aztecus*) and members of the Palaemonidae, which include grass shrimp (*Palaemonetes pugio*). Of the several kinds of shrimp that are documented to occur in Biscayne Bay, pink shrimp are the most abundant (Cantillo, et. al., 2000). Grass shrimp, which are known to inhabit Biscayne Bay are well documented to be able to withstand wide ranges of salinity. Anderson (1985) reports that adult grass shrimp tolerate salinities of 2 to 36 ppt and their larva exist in salinities from 3-31 ppt. As a result of this broad euryhaline tolerance for salinity changes, and their lack of commercial fishery value when compared with pink shrimp, grass shrimp do not appear to be suitable for detailed consideration as a potential indicator species for MFL related analyses in Biscayne Bay.

Because pink shrimp, however have more restricted salinity tolerances, are more economically valuable and are a major food source for higher trophic level organisms, are a potential indicator species. Pink shrimp inhabit broad shallow continental shelf areas, shallow bays and estuaries. In Florida, pink shrimp nursery areas are found in estuaries and nearshore marine areas from Biscayne Bay, Florida Bay, the Ten Thousand Islands area and up the west coast to approximately the Tampa Bay area (Bielsa, et. al. 1983.).

The pink shrimp fishery is the most economically important of all the fisheries in Florida (Bielsa et. al. 1983). Records of pink shrimp landings, which are kept annually by the National Marine Fisheries Service, document that the millions of pounds of pink shrimp that are harvested annually in Florida waters are a valuable financial commodity.

Pink shrimp are also an important component of the aquatic food web, serving as food for a large variety of other organisms, including many fishes that are important either recreationally or commercially.

Estuaries and other coastal seagrass communities are important nursery grounds for pink shrimp during portions of their life cycle. Studies in Florida Bay and/or Biscayne Bay have documented that post-larvae pink shrimp settle in seagrass beds that are less than 1 m deep and that the highest densities of juveniles were found in seagrass communities 1-2 m deep on the western portion of Biscayne Bay (Diaz 2000).

Although details of the life cycle of pink shrimp in South Florida are still being learned, it is known that they emigrate from shallow, coastal nursery areas to deeper offshore waters in the last juvenile or early adult stage. They spawn throughout the year on the Tortugas shelf at water depths of 15-48 m (Bielsa et. al. 1983), although the peak in spawning activity generally is believed to coincide with maximum bottom-water temperatures (Munro et. al. 1968). Pelagic larvae go through several stages and are carried into the Florida Current from the Tortugas grounds by westerly and southwesterly currents where they settle into estuaries. Postlarvae become benthic and concentrate at locations where suitable habitat exists. Pink shrimp then spend from 2-6 months in nursery areas, where growth rate varies based on a variety of factors, including gender, water quality conditions, including temperature and salinity, and available food. They then emigrate back to offshore spawning areas.

Pink shrimp are omnivorous consumers, foraging primarily in seagrass communities, primarily at night. Studies of feeding habits that revealed that prey items include dinoflagellates, foraminiferans, nematodes, polychaetes, ostracods, copepods, mysids, isopods, amphipods, caridean shrimp and their eggs, molluscs, squid, annelids, other crustaceans, small fishes and plant material (Bielsa 1983).

In turn, pink shrimp are prey for a variety of other organisms, including fish, reptiles, aquatic mammals, including bottle-nose dolphins and birds. Fishes that prey on them include inshore species (e.g., common snook, spotted seatrout, and various snappers), reef species (e.g., groupers) and pelagic species (e.g., king mackerel). Wading birds, such as herons, egrets also forage for shrimp at locations where water depths are suitable.

(Bielsa et. al. 1983) provide an excellent summary of what is known about the salinity preferences of pink shrimp, as follows:

"Pink shrimp exhibit different degrees of preference to salinity at different stages of their life cycle. Hughes (1969) indicated that tidal transport of postlarvae may be initiated by increases in salinities of flood tides. Hildebrand (1955) reported that juveniles exhibited a preference for salinities of 20 ppt or more. As they grow, they move into deeper, saltier water, until finally they leave the bays and enter the open sea (Williams 1955). Gunter et. al. (1964) reported the greatest biomass of pink shrimp along the gulf coast was distributed "around the South Florida islands, where the salinities are oceanic." Tabb et. al. (1962) found postlarvae at salinities from 12 to 43 ppt, juveniles from 5 to 47 ppt and adults from 25 to 45 ppt in Florida Bay. Adult pink shrimp have been found on the Tortugas grounds at salinities from 36.2 to 37.7 ppt (Iversen and Idyll 1960).

Interactions between water temperature and salinity impose strict environmental restraints on shrimp populations. At low temperatures, all shrimp have difficultly adjusting to changes in salinity; survival rates are higher at moderate to high salinities under conditions of low water temperatures (Williams 1960)."

Maintaining desirable salinity regimes has been described as one of the critical factors for maintaining seagrass communities and habitat for pink shrimp. (Bielsa et. al. 1983) identify that "direct saltwater intrusion (or diversion of natural freshwater discharge), which causes unfavorable salinity regimes" is a leading cause of degradation of shrimp nursery habitats".

Browder et al. (1999) used two modeling approaches to explore the potential basis for variation in recruitment of pink shrimp from its Florida Bay nursery grounds to the Tortugas fishing grounds. The results indicate a strong relationship between density of juvenile shrimp and sea-surface temperatures. Three other variables (rainfall, water levels in Everglades National Park and mean wind speed) were also correlated with juvenile pink shrimp densities.

Although pink shrimp are vulnerable to a variety of diseases, none exerts an appreciable impact on the commercial pink shrimp fishery (Bielsa et. al. 1983). For these various reasons, the pink shrimp appears to be an excellent potential indicator species for maintaining desirable salinity regimes in those portions of Biscayne Bay where the shrimp fishery is currently thriving.

Crabs

There are three species of crabs (i.e., blue crab *Callinectes sapidus*, stone crab, *Menippe mercenaria* and horseshoe crab, *Limulus polyphemus*)) that are present in Biscayne Bay and which are potential indicators of desirable estuarine salinities. Information regarding the life cycles and salinity preferences for each of these species is provided below.

Blue Crab

The blue crab is a fairly abundant marine crustacean that inhabits coastal waters from Massachusetts Bay southward to the eastern coast of South America (Hill et. al. 1989.). They are the major commercial crab fishery in the U.S., representing approximately 50% of the total weight of all species of crabs harvested (Thompson 1984, NMFS 1986). A considerable amount of work regarding the life cycle and other aspects of blue crab biology has been conducted, with much of it centered on the economically important population that exists in Chesapeake Bay.

The blue crab appears to use areas of varying salinities at various times of their life cycle. Mating occurs primarily in relatively low-salinity waters in the upper areas of estuaries and lower portions of rivers (Pyle and Cronin, 1950; Darnell 1959; Williams 1965; Tagatz 1968). After mating, females migrate to high-salinity waters in lower estuaries sounds, and nearshore spawning areas (Churchill 1919; Darnell 1959; Fischler and Walberg 1962). Hill et. al. (1989) indicate that blue crab zoeae hatch in Chesapeake Bay Chincoteague Bay, Delaware Bay, and other estuaries, and then drift out to sea, where they fed and grow, after which they migrate vertically in the water column to reach flood and ebb tides which then transport them back into the bay area.

The blue crab is a major entity in estuarine food webs, both by consuming a variety of other plants and animals, and by serving as prey for a variety of commercially and/or recreationally important species of fish, birds and other animals.

Various studies reported by Hill et. al. (1989) have documented that the blue crab exists in waters of highly variable salinities, ranging from 0-34 ppt; that salinities of 22-28 ppt are needed for normal hatching of eggs and for normal development of zoeae; and that "specific salinity levels are not critical for post-larval crabs". Laboratory studies reported by Guerin et. al. (1997) corroborate these data, which led to a conclusion that: "Salinity had no effect of growth rates of *C. sapidus* by any measure or weight or carapace width".

Stone crab

The stone crab is a fairly abundant marine crustacean that inhabits coastal waters from approximately Cape Lookout, North Carolina southward throughout the Gulf of Mexico to the Yucatan, Mexico, the Bahamas, Cuba and Jamaica. (Lindberg 1984). It is a major commercial crab fishery in

Florida (Lindberg 1984). As a result of this economic value, a considerable amount of work regarding the life cycle and other aspects of stone crab biology.

The stone crab appears to use areas of fairly constant, nearly marine salinities throughout their life cycle. Mating and spawning has been documented to occur year-round in Biscayne Bay (Lindberg 1984), with spawning peaking during August and September. Development of the planktonic larvae to first crab stage usually takes 27-30 days, and larvae pass through five zoeal stages. Although field studies documenting larval growth may be lacking, culture-reared specimens were documented to have optimal growth rates and best survival at a temperature of 30°C and "salinities in the range of 30 to 35 ppt" (Lindberg 1984).

The stone crab is a significant entity in both marine and estuarine food webs, both by using their powerful claws to catch and consume a variety of animals, and by serving as prey for a variety of fish, cephalopods, sea turtles and predatory gastropods.

Various studies reported by Lindberg (1984)) have documented that the stone crab is generally considered to be a euryhaline species. Ambient salinities at stone crab study sites have been documented to range from 16.3-32 ppt near Cedar Key (Bender 1971) and 29-38 ppt in Biscayne Bay (Cheung 1969).

Horseshoe crabs

The horseshoe crab is a fairly abundant marine arthropod that inhabits estuarine and marine waters from mid-coast Maine southward to the Gulf of Mexico. Horseshoe crab eggs have fairly recently been identified as a major food source for migrating shorebirds, and various research is currently being conducted to learn more about the habits and habitats of this unusual benthic creature. In Florida, the FWC's Florida Marine Research Institute is currently conducting a survey to obtain records and ultimately develop a database of horseshoe crab mating/spawning areas. A query of their database revealed several reportings from Biscayne Bay, but the Bay does not appear to be a major stronghold for this species.

Horseshoe crabs typically inhabit estuaries and coastal areas where they spend nearly all of their lives under water. Adults emerge to lay eggs on sandy beaches, after which larvae eventually become planktonic. Mating and spawning has been documented to occur year-round in Florida, with spawning peaks apparently being coincident with tidal and/or climatic conditions that resulted in atypically high water levels (Ehrlinger 2002).

Various studies reported by Ehrlinger (2002) have documented that horseshoe crabs are very tolerant of widely variable salinities. Embryos have been shown to develop at salinities up to 40 ppt, and optimal salinity ranges are generally accepted to be 20-30 ppt, and laboratory tests have revealed that both embryos and larvae successfully developed, hatched and molted at salinities as high as 60 ppt (Ehrlinger (2002)).

Fish

Alleman et al. (1995) notes that 512 fish species have been reported from Biscayne Bay. Commercial fisheries catches, both by weight and value, were however dominated by bait shrimp (juvenile to adult *F. duoaram*) based upon data reported in 1984. Gray snapper (*Lutjanus griseus*), white mullet (*Mugil curema*), pilchard (scaled sardine), white grunt (*Haemulon plumieri*) and spotted seatrout were the five most abundant finfish harvested by recreational fisherman.

Creel survey data for Biscayne National Park (BNP) for the years 1976 to 1998 (29,940 interviews) is reported by Ault et al. (2001). One-hundred forty three of the 325 species of fish and invertebrates documented in that study were part of the recreational fishery. Again the dominant single species was an invertebrate, the spiny lobster (*Panulirus argus*), followed by grunts and snappers. The "highly prized gamefishes, such as bonefish, tarpon and snook" were hardly present in any of the samples. Even spotted seatrout, identified by Alleman et al. (1995) one of the top five fish species harvested in the Bay based upon data reported in 1984, was only a minor component of the creels sampled (565 fish in 30,000 interviews). Apparent harvest of this species by numbers and CPUE (catch per unit effort) peaked in the early 1980's and has declined since. The 983 randomly located night time trawls (1996-2000) in BNP targeting pink shrimp yielded just 53 spotted seatrout (Ault et al. 2001).

Certainly sampling bias, both in which areas of BNP fisherman choose to fish in and for what species, and the lack of larger seine samples in inshore waters, skewed the samples to capture or document harvest of the "highly prized gamefishes" above, but not likely the presence of spotted seatrout, which should have shown up in nighttime shrimp trawls.

Similarly, a 14 month study with 224 samples, spotted seatrout comprised less than 0.02% of the total catch (Serafy et al. 1997). Ninety-six percent (96%) of all

trout were captured north of Rickenbacker Causeway, and 68% came from just one of the eight sampled areas, the most northerly station at the mouth of the Biscayne Canal. Clearly spotted seatrout are not a common species in the sampling efforts described, or in the recreational creel. It can only be hypothesized that some as-yet-unidentified habitat factor is not appropriate, a particular food source is not available, or that the very intense shrimp trawling in what is identified by Ault et al. (1999) as the highest quality habitat for juvenile spotted seatrout (west side of Central and South-central Biscayne Bay) may be eliminating juvenile spotted seatrout as bycatch. Although Bortone (2003) has characterized spotted seatrout as a potentially ideal indicator species for monitoring estuaries, it does not appear it is a good indicator within Biscayne Bay for establishing MFL's.

Although sampling within mangrove lined tidal creeks has occurred in other portions of Florida (Lewis et al. 1985, Edwards 1991, Ley and McIvor 2002, Flannery et al. 2002), no known sampling of this type is known for Biscayne Bay. Serafy et al. (2003) visually sampled transects in mangrove prop root habitat in surveys parallel to the shore, similar to Ley and McIvor (2002) and found a similar group of fishes dominant. Part of the problem is likely the lack of any "natural" mangrove lined tidal creek, since most have been channelized, or denied historical levels of freshwater flow (Meeder et al 1999, 2001, 2002). Although there is much discussion about the potential nursery habitat role of mangroves, tidal marshes and tidal creeks within them, specific data is often lacking (Sheridan and Hays 2003). This is more likely a problem of sampling rather than any factual basis to reject the potential hypothesized role of coastal wetlands as nursery habitat for fish and decapods.

In summary, while there is an abundant fish community in Biscayne Bay, past modifications to freshwater flow have likely eliminated most if not all of the historical mangrove or tidal marsh lined tidal creeks with any kind of "natural" tidal and freshwater drainage hydrology. Thus use of these systems, and any potentially associated species as a biological indicator for freshwater inflow management, would be fraught with speculative outcomes, rather than predictable outcomes.

This is further supported by the work on Faunce et al. (2002) where visual sampling for gray snapper in an area protected from fishing, was compared to an area open to fishing. Differences in the size structure of the two observed populations were significant, with those observed in the closed area being two size classes larger. The fishery for gray snapper is characterized as "growth-overfished" in both this paper and in Ault et al. (1998). With the confounding error introduced by overexploitation, and the inherent difficulty in quantitatively sampling for fish, use of any fish species or community as an indicator for

freshwater management in Biscayne Bay seems unwarranted until much more data is available about nearshore and tidal creek fish populations, and perhaps better management of these fisheries is introduced.

Seagrass

Fourqurean et al. (2003) have recently published the results of water quality sampling and seagrass occurrence by species and cover for 677 stations in Florida Bay sampled between March 1991 and March 2000. The sampling and correlations derived from the data were intended to attempt to construct "habitat requirements" models for the five species of seagrass encountered: turtle grass, manatee grass, shoal grass, paddle grass and wigeon grass. No stargrass was observed in the sampling, and Johnson's seagrass has never been observed south of Key Biscayne in Biscayne Bay, and therefore is not known to occur in Florida Bay. Eight seagrass community types, including no seagrass, were identified, and characterized as to the various sampled parameters.

For salinity, the results can be summarized as: "*Ruppia-Halodule* communities had the lowest and most variable salinity...while yearly mean salinity in the *H. decipiens, Syringodium filiforme*, and dense mixed-species beds was relatively high, with low variability. Intermediate yearly mean salinities and relatively high annual variability were found in the *Halodule wrightii*, dense *Thalassia*, and sparse *Thalassia* communities."

Thus all the seagrasses, and mixed seagrass communities exhibited some apparent habitat requirements for specific mean salinities, and could tolerate various ranges of variation. From the perspective of MFLs, the goal to manage shoal grass and overlying salinities to maximize production of shrimp in a polyhaline zone (18-30 psu) along the west shore of Central and South-Central Biscayne Bay would appear to be best accomplished by lowering mean annual salinity and increasing variability in salinity to reestablish a range of salinities to support a *Ruppia-Halodule* gradient into deeper water where *Thalassia* would likely predominate.

SALINITY TOLERANCES, PREFERRED HABITATS AND LIFE CYCLES OF POTENTIAL INDICATOR SPECIES OR SUITES OF SPECIES

As stated by Sklar and Browder (1998) "Although estuarine organisms are generally euryhaline, few occur throughout the entire range of salinities from full seawater strength to brackish. Rather, several communities of organisms occur within an estuary, each more abundantly within a relatively narrow part of the salinity spectra...As a result, shifts in isohalines cause major changes in community structure...Such shifts reduce or eliminate suitable living habitat by placing favorable salinities out of reach of animals that require bottom or shoreline habitat not found in the new location..."[see Appendix C].

The general life history of seven species found in Biscayne Bay are shown in Appendix C. These include the snook (Figure C-1), tarpon (C-2), redfish (C-3), spotted seatrout (C-4), gray snapper (C-5), pink shrimp (C-6) and spiny lobster (C-7). The figures are arrange roughly in order of true estuarine and low salinity dependency, with the snook, tarpon and redfish typical examples where spawning occurs in higher salinities, and the larvae seek lower salinity oligohaline habitat where they metamorphose into early juveniles and later leave these natal areas for higher salinity waters. This life cycle differs from that of the seatrout, shrimp and gray snapper where inshore movements of spawned larvae occur, but more often into muddy bottoms or shoreline vegetation with slightly higher salinities (mesohaline for redfish), or mangroves/seagrass meadows with mesohaline to polyhaline ranges of salinities (for gray snapper and shrimp). Finally, the spiny lobster exhibits use on inshore waters and macroalgae and sponge habitats as nursery areas with polyhaline to euhaline ranges of salinities and can be negatively impacted by too large of an input of freshwater to these areas.

The potential indicator species have been selected in part due to salinity tolerances. Tables 3a and 3b list common plants and animals found in Biscayne Bay, and their salinity preferences, both for juvenile and adult, if known. Habitat preference is also noted if known. As shown in the table, the vast majority of species have very broad tolerances for salinities as would be expected for species found under estuarine conditions. It is important to note that these are data typically reported for "salinity at time of capture" and not the optimum salinities for minimum physiological stress, or maximum productivity. For most of these species such detailed information is not available, limiting the usefulness of simple presence or absence of any species as an indicator for use in establishing and monitoring MFLs.

Table 3a

Salinity and Habitat Requirements for Potential Vegetative Indicator Species

Species	Salinity (ppt)	Substrate/habitat	Comments						
Avicennia germinans Black mangrove	0-90	Soft mud or sand	Emergent woody species; long-lived; can excrete excess salt						
<i>Cladium jamaicense</i> Sawgrass	0-5	Soft mud or sand	Herbaceous emergent; typically inhabits fw areas; is outcompeted in areas of high nutrients						
Conocarpus erecta Buttonwood	0-50	Firm sand or muck	Emergent woody species; typically found at slightly higher elevations than red, black or white mangroves						
<i>Distichlis spicata</i> Saltgrass	0-80	Firm sand or muck	Herbaceous emergent; quite tolerant of varying salinity regimes						
<i>Eleocharis cellulosa</i> Spikerush	0-1	Firm sand or muck	Herbaceous emergent; within project area only in upstream (freshwater) areas						
<i>Halophila decipiens</i> Paddle grass	20-40	Soft sand	Diminutive, submerged, herbaceous species; may be found in mixed beds with other seagrasses						
Halophila englemanii Stargrass	20-40	Soft sand	Submerged, herbaceous species; relatively uncommon; may be with other seagrasses						
<i>Halophila johnsonii</i> Johnson's seagrass	15-43	Soft sand or mud	Diminutive, submerged, herbaceous species; threat-ened species; distribution only north of Virginia Key						
<i>Halodule wrightii</i> Shoal grass	6-40	Soft sand or mud	Submerged, herbaceous species; relatively abun-dant, may be found mixed with other seagrasses						
<i>Juncus roemerianus</i> Black needlerush	0-35	Soft sand or mud	Emergent herbaceous species; within project area, found west of shoreline						
<i>Laguncularia racemosa</i> White mangrove	0-50	Soft sand or mud	Emergent woody species; typically found at elevations higher than red and black mangroves						
<i>Rhizophora mangle</i> Red mangrove	0-55	Soft sand or mud	Emergent woody species; typically found at elevations lower than black and white mangroves						
<i>Ruppia maritima</i> Wigeon grass	0-390 0-40	Soft sand or mud	Submerged, herbaceous species; relatively rare in project area; only known in shallows near Black Pt.						
Spartina spartinae Cordgrass	0-35	Soft sand or mud	Emergent herbaceous species; within project area, found west of shoreline						
<i>Syringodium filiforme</i> Manatee grass	5-45	Soft sand or mud	Submerged, herbaceous species; fairly common in project area; best bed is in Northern sub-region						
<i>Thalassia testudinum</i> Turtle grass	11-70	Soft sand or mud	Submerged, herbaceous species; fairly common throughout project area; is the primary seagrass in higher salinity areas						

Table 3b

Salinity and Habitat Requirments of Potential Faunal Indicator Species

Species	Salinity (ppt) Juv. Adult		Substrate &/or habitat	Comments
Invertebrates				
Callinectes sapidus	5-28	0-34	Sand, salt	Salt marsh habitat important nursery for juven-iles;
Blue crab			marsh	adults in creeks, rivers and estuaries
Crassostrea virginica	7-39	0-42	Solid	Although tolerant of varying temp, salinity and
American oyster	15-26	14-30	substrate	water quality conditions, preferred S% as noted
Farfantepenaeus			Over	Biscayne Bay population continually recruits from
duorarum	5-47	25-45	seagrasses	and returns to Tortugas grounds to the west;
Pink shrimp				economically valuable species
Limulus polyphemus	10-15	5-34	Sand	Suitable shoreline profile appears to be more im-
Horseshoe crab				portant than salinity for successful reproduction
Menippe mercenaria	> 20	6-40	Hardbottom	Habitats variable; nearshore shallow-water
Stone crab			juv-seagrass	grassflats, hardbottom with sponges, rubble
Vertebrates				
Mammals				
<i>Trichechus manatus</i> W. Indian Manatee	0 - 35+		open water, seagrasses	Inhabit fresh water, estuaries & marine en- vironments. In Biscayne Bay, combination of warm water and fresh water in a predominately marine system causes aggregations
Turciops truncatus	20-	35+	open water	Inhabits primarily marine environments, although
Bottlenose Dolphin	20 00 1		open water	also present in estuaries
Reptiles				
Crocodylus acutus	0-	40	shallow open	Although tolerates wide salinity varioations, studies
American crocodile	pref < 20		water	in BB documented approx. 45% of non-hatchling crocs were in s% of 1-5 ppt.
<i>Malaclemys terrapin tequesta</i> Diamondback terrapin	9-	25	Estuarine waters	Prefers shallow, medium-salinity estuaries, where it feeds on sanils, crabs and other invertebrates
Birds				
Ajaia ajaja Roseate Spoonbill	0-40+		Sand	Feeds in waters of varying salinities; but requires abundant supply of salinity-dependant small fishes to nest successfully
Egretta caerulea			Sand	Feeds in shallow waters of varying salinities; nests
Little Blue Heron	0-40+			successfully in coastal and inland areas
<i>Egretta rufescens</i> Reddish Egret	0-40+		Sand	Feeds in waters of varying salinities; but requires abundant supply of salinity-dependant small fishes to nest successfully
<i>Egretta thula</i> Snowy Egret	0-4	40+	Sand	Feeds in shallow waters of varying salinities; nests successfully in coastal and inland areas

Salinity and Habitat Requirments of Potential Faunal Indicator Species

Species	Salinity (ppt) Juv. Adult		Substrate &/or habitat	Comments
<i>Egretta tricolor</i> Tri-colored Heron	0-40+		Sand	Feeds in shallow waters of varying salinities; nests successfully in coastal and inland areas
<i>Eudocimus alba</i> White Ibis	0-4	40+	Sand	Feeds on land & in waters of varying salinities; nests successfully in coastal and inland areas
<i>Mycteria americana</i> Wood Stork	0-4	40+	Sand	Feeds in shallow waters of varying salinities; nests successfully in coastal and inland areas
Pelicanus occidentalis Brown Pelican	0-4	40+	Open water	Feeds in open waters of varying salinities; nests primarily in coastal areas
Fish				
<i>Bairdiella chrysoura</i> Silver perch	5-	25	Estuarine waters	Habitat generalist
<i>Centropomus undecimalis</i> Common Snook	0-25	5-37	Estuarine waters & tidal creeks	Shallow, low-salinity habitats preferred at early juvenile stages
<i>Cynoscion nebulosus</i> Spotted seatrout	1-25	5-37	Estuarine waters & seagrass	Prefers seagrass habitats, if present
Cypinodom variegatus Sheepshead killifish	0-37	0-160	Estuarine waters	Prefers very shallow estuarine waters (i.e., < 3 ft deep)
<i>Eucinostomus gula</i> Silver jenny	0-	30	Estuarine waters	Habitat generalist
<i>Floridichthys carpio</i> Goldspotted killifish	0-	30	Estuarine waters	Prefers very shallow estuarine waters (i.e., < 3 ft deep)
<i>Fundulus confluentus</i> Marsh killifish	0-	30	Estuarine waters	Prefers very shallow estuarine waters (i.e., < 3 ft deep)
<i>F. grandis</i> Gulf killifish	0-	30	Estuarine waters	Prefers very shallow estuarine waters (i.e., < 3 ft deep)
Haemulon sciurus Bluestriped grunt	14	-37	Estuarine & marine waters	Prefers hardbottom and reef habitats
<i>H. plumieri</i> White grun <i>t</i>	14	-37	Estuarine & marine waters	Prefers hardbottom and reef habitats
<i>H. parra</i> Sailors choice	14	-37	Estuarine & marine waters	Prefers hardbottom and reef habitats
<i>Lagodon rhomboides</i> Pinfish	14	-37	Estuarine & seagrasses	Prefers hardbottom and reef habitats
<i>Lucania parva</i> Rainwater killifish	0-	30	Estuarine waters	Prefers very shallow estuarine waters (i.e., < 3 ft deep)

Species	Salinity (ppt) Juv. Adult		Substrate &/or habitat	Comments		
<i>Lutjanus griseus</i> Grey snapper	10-40		Estuaries, mar- ine waters, seagrasses & tidal creeks	Habitat for early juveniles includes tidal mangrov creeks		
<i>Myteroperca microlepis</i> Gag grouper	10-37		Estuaries, mar- ine waters, seagrasses	Early juveniles use seagrass beds, then migrate to offshore.		
<i>Megalops atlanticus</i> Tarpon	1-10	10-37	Estuarine & marine waters	Obligate air-breather; early juveniles use shallow tidal ponds		
<i>Mugil</i> spp Mullet	11	-37	Estuarine & marine waters	Bottom feeder; shallow estuarine waters preferred by early juveniles		
<i>Opsanus beta</i> Gulf toadfish	2-22		Estuarine & marine waters	Generalist; benthic feeder		
<i>Sphyraena barracuda</i> Great barracuda	8-37	10-37	Estuarine & marine waters	Predatory, may carry dinoflagellate-based ciguatera poisoning when feeding on some tropical reefs		

SECTION 5 POTENTIAL ALTERNATIVE APPROACHES FOR MFL DEVELOPMENT FOR BISCAYNE BAY

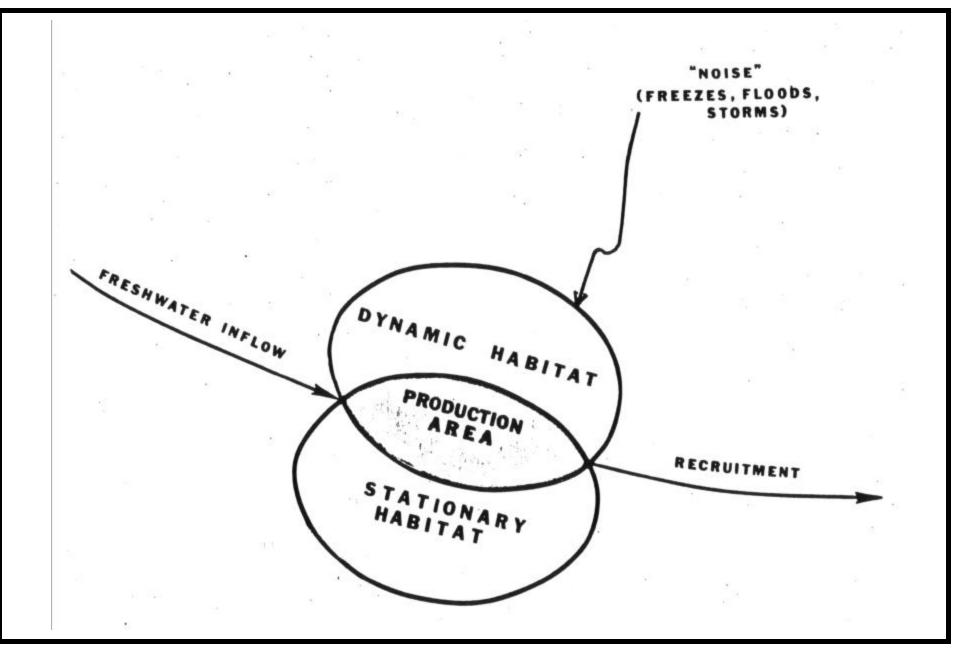
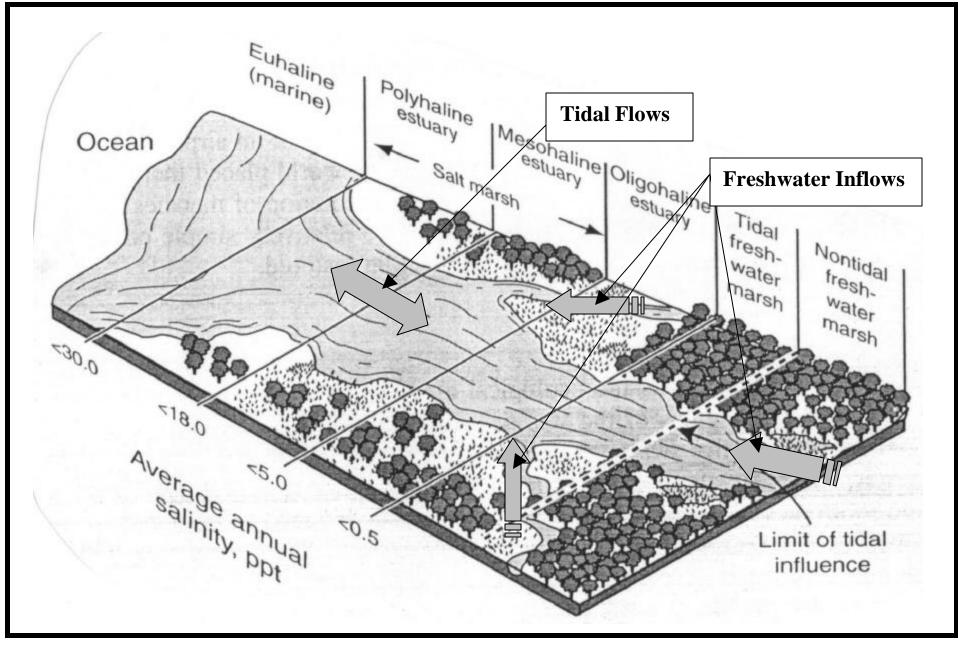
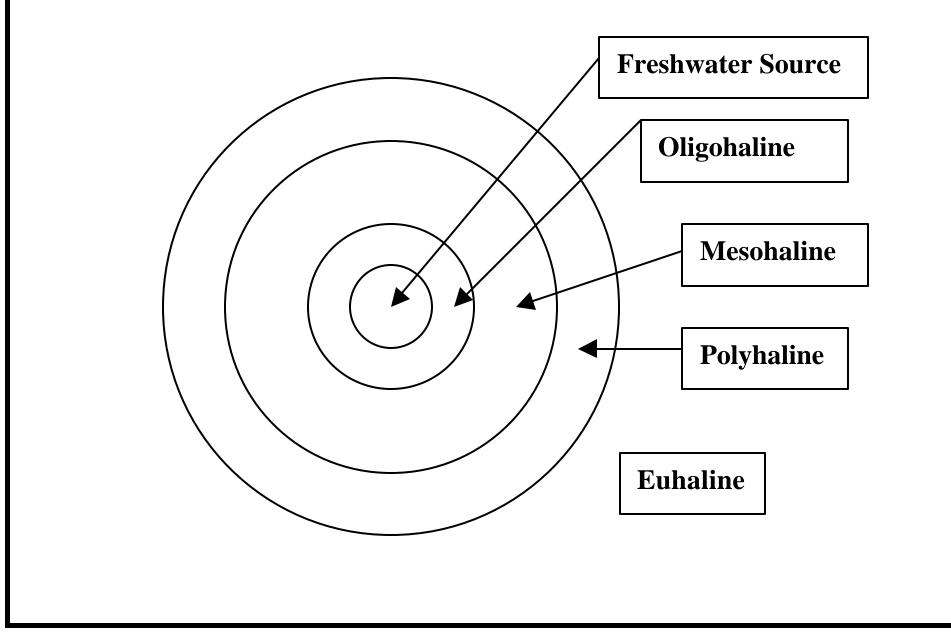
STATIC AND DYNAMIC HABITATS

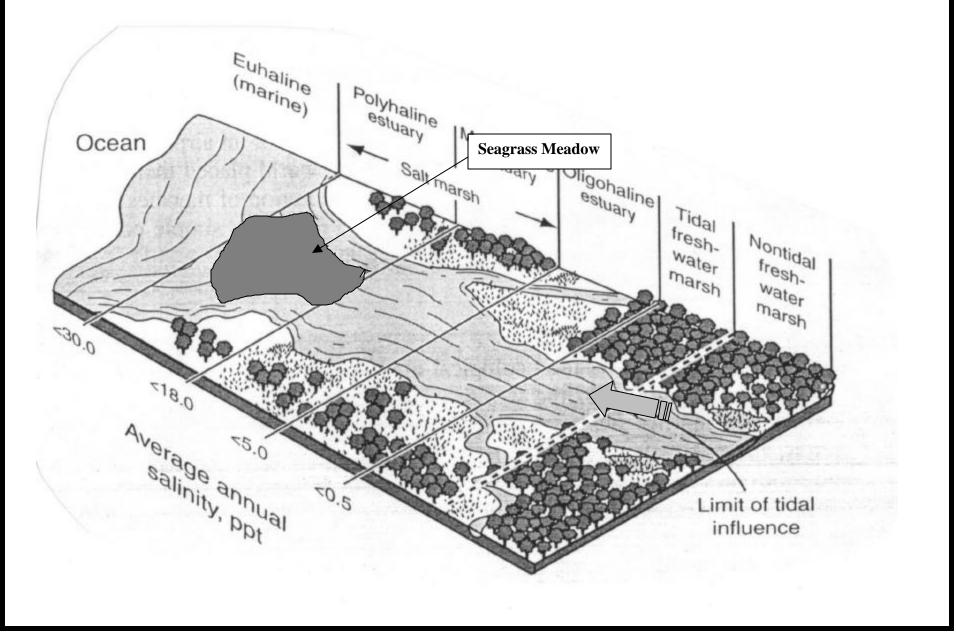
Browder and Moore (1981) introduced the concept of dynamic and stationary or static habitats (Figure 15) to differentiate the two important components of estuarine habitat. Static habitat components are those more fixed in time and location. These are the classic habitats, such as mangrove forests and seagrass meadows, that are typically fixed in place. Only over very long time frames can they move. An example of this movement is the reports by Ross et al. (2000, 2002) of migration of the edge of the white zone landward due to salt water intrusion over a fifty year period.

The dynamic habitat component is typically a water quality parameter such as salinity or dissolved oxygen, or a water volume or level parameter. These are components that can change very quickly, often on a daily basis. The point that Browder and Moore (1981) initially made was that it is the overlap of specific dynamic and static habitat components produces the optimum productivity within a given ecosystem (Figure 15).

Figure 16 shows a typical estuarine stream ecosystem with an overlay of salinity zones as they might appear in a normal flow situation. Tidal flows and inputs of freshwater inputs are shown (diagram modified from Mitsch and Jorgenson 2004). Figure 17 shows a similar diagram for a hypothetical groundwater discharge into the Bay similar to that reported by Kohout and Kolipinski (1967). Figure 18 shows a typical static feature added to the figure (a seagrass meadow). Figure 19 shows how the interaction of the salinity regimes (dynamic component) and the location of the seagrass meadow (static component) produce some seagrasses within the euhaline and mesohaline zone, but the majority of the seagrass is within the polyhaline zone. Assuming that the ideal environment for a given species, or the maximum zone of production (or growth, survival, food web production for that species) is this type of habitat, the freshwater flows shown are optimum for creating habitat for that species. Conversely, if freshwater inputs are reduced the overlaps change, and less polyhaline seagrass meadow is available. Thus depending on what the Valued Ecosystem Component (VEC) may be for a given area, freshwater inputs can be designed (if they can be controlled) to optimize habitat for that VEC.

This concept of static and dynamic habitats can be used in a number of ways to evaluate the necessary freshwater needs of an estuary. As discussed below, these can include, Valued Ecosystem Components, as discussed in the previous Section


Figure 15 Stationary and dynamic habitat components, from Browder and Moore (1981).

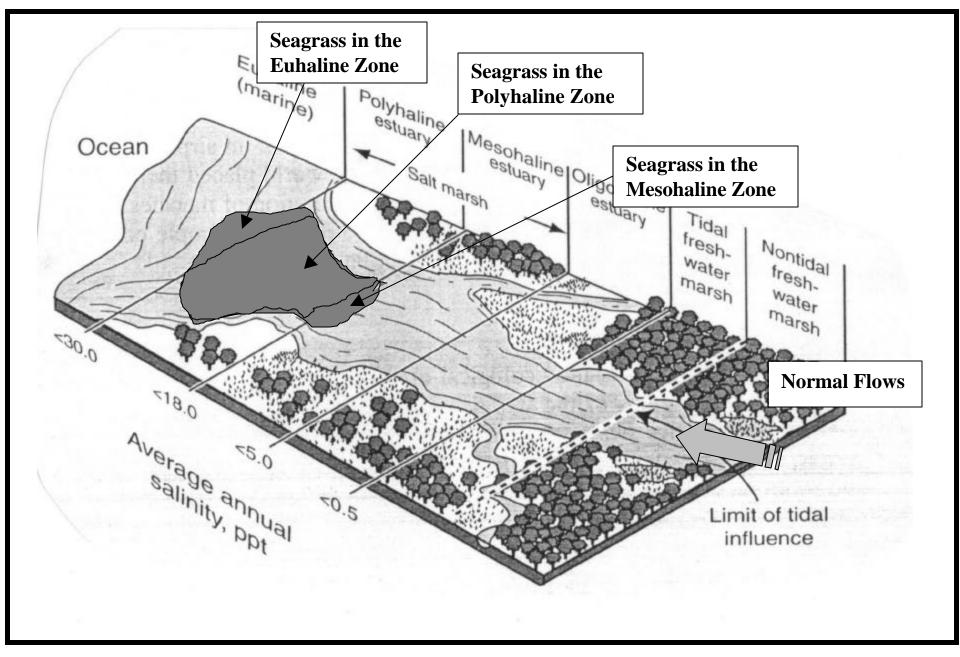


Figure 16

Graphic representation of the range of salinity zones overlaid on a typical tidal creek system entering a higher ocean habitat (modified from Mitsch and Jorgensen 2004).

Figure 19

Graphic showing static habitat (seagrass meadow) with dynamic habitat (freshwater inflow) overlay and resulting seagrass/salinity zones under normal flow conditions.

4, indicator species, presence/absence/vitality of preferred habitats, ecological preservation, pre-development scenarios, requirements for preferred fish communities, community indices, food web support and soil characteristics.

Jackson et al. (2000) outlines a process to evaluate ecological indicators specifically of interest to the Office of Research and Development of the U.S.E.P.A. The outline lists 15 guidelines for indicator evaluation to structure presentation of alternatives for evaluation but does not describe a selection process. Some of the guidelines are however relevant to the process of Biscayne Bay MFL ecological indicator identification. These include relevance to identified assessment questions and ecological functions within the specific ecosystem under evaluation; logistics requirements and ultimately the costs for implementation; discriminatory ability among sites along a known gradient; ability to provide information to support a management decision or to quantify the success of past and future decisions.

Two presentations at the Estuarine Indicators Workshop (29-31 OCT 2003, Sanibel Island, Florida) were applicable to the question of how to evaluate various ecological indicators for final selection for the Biscayne Bay MFL.

The presentation by Bill Dunson (Dunson 2003) on choosing fish "bio-indicators" listed five characteristics of an ideal estuarine indicator:

- 1. Mix of taxonomic groups
- 2. Mix of tropic groups
- 3. Sensitivity to the abiotic parameter(s) of interest
- 4. Important to stakeholders
- 5. Existence of robust prior database on the bio-indicator(s)

Similarly, Louis Toth (Toth 2003) explained the process of prioritizing 140 potential indicators of success in the restoration of the Kissimmee River. Seven characteristics were evaluated:

- 1. Sensitivity to project effects
- 2. Reliability of response
- 3. Rapidity of response (for early warning and mid-course corrections)
- 4. Ease/economy of monitoring
- 5. Feedback to management (adaptive management)
- 6. Relevance to endpoint (sociopolitical evaluation and data availability)
- 7. Importance of endpoint (subjective evaluation of public opinion)

A scale of 1-5, with 1 being the highest rating (thus the lowest total value of a given rating meant the highest priority) was used. A combination of the Dunson and Toth methods were used in the analyses presented here.

Alternative approaches considered for the Biscayne Bay MFL development included:

- Valued ecosystem components
- Indicator species
- Presence/Absence/Vitality of Populations of Indicator Species
- Pre-development scenarios
- Ecological preservation at existing conditions
- Requirements for preferred fish communities
- Community index
- Food web support
- Soils

These nine approaches were then individually evaluated for each sub-region of the Bay for strengths, weaknesses, opportunities, threats, cost effective performance standards and speed of information return to managers for adaptive management decisions.

VALUED ECOSYSTEM COMPONENTS

SFWMD (2002d) defines valued ecosystem components (VEC's) as "...a species, community, or set of environmental conditions and associated biological communities that is considered to be critical for maintaining the integrity..." of a given estuarine ecosystem.

VEC's represent the full suite of plant and animal communities, individual species, substrate characteristics (hardbottom, softbottom), and water quality conditions (salinity zones, dissolved oxygen zones, etc.) that when taken together or individually are valued for aesthetics, commercial or recreational fisheries values, or heritage values. Once these are listed as they are in Section 6 above, the question is which of these, or components of each, may have higher or lower "values", and which are indeed sensitive to freshwater inputs to the estuary. Mangroves for example are VEC's for all the estuaries in the southern half of Florida, but are relatively insensitive to salinity changes over a very wide range since they are facultative halophytes not obligate halophytes. That is they can grow in totally fresh water, or survive in interstitial salinities as high as 55 psu for red mangroves and 90 psu for black mangroves. The American oyster, on the other hand is an obligate marine organism, but cannot persist in any numbers to

form an oyster bar unless very specific salinity and bottom characteristics are present.

INDICATOR SPECIES

SFWMD (2002d) defines an indicator species as one where a change in abundance, distribution or condition can be related to flow or salinity. Criteria for selection may include commercial, recreational or aesthetic value, ecological importance, and whether it is a listed species or an endemic species.

Starting with the full suite of VEC's for Biscayne Bay, Table 4 was prepared and lists potential indicator species for minimum flows and levels, based upon their occurrence in Biscayne Bay, life history, review general estuarine literature and specific literature on Biscayne Bay, interviews and personal communications. Sources of information include Serafy et al (1997) who collected 95 taxa of fish from the Bay, Serafy et al (2003) who extended this work to mangrove fringed shorelines in the central, south-central and southern portions of the Bay, and Alleman (personal communication) who has prepared a draft table of species salinity relationships in the Bay that lists twelve species of fish, three invertebrates, wading birds as a group, and two species of seagrasses. Ault et al. (2001) reported via visual census or creel survey data, and collected a total of 325 species of fish and macroinvertebrates from 77 families within Biscayne National Park. Thorhaug et al (2001) lists two marine mammals, eight marine or estuarine reptiles, thirteen coastal birds, two fish, twenty-nine corals and ten marine plants as listed marine or estuarine species of concern in the Bay. Diatoms appear to be a sensitive indicator of both existing salinities and historic salinities (Ross et al., 2002, Gaiser and Wachnicka 2003) and are included as a group. Alleman et al. (1995) specifically cite the diamondback terrapin (Malaclemys terrapin), the mangrove water snake (*Nerodia fasciata compressicauda*), and the American crocodile (*Crocodylus acutus*) as important potential indicator species for freshwater inputs to the Bay.

From the information provided in this table it is apparent that not all the species considered occur throughout the entire Bay. For a species to be considered for use as an indicator species for a particular portion of the Bay, it must occur there, or have occurred there in the recent past and have some reasonable chance of returning in sufficient numbers to persist there if it is to be considered. Thus the American crocodile can be considered for portions of the Bay, but not all, since it is not reported for all parts of the Bay and is not likely to occur in some parts of the Bay except very rarely.

Table 4Potential indicator species for freshwater minimum flows and levels
establishment in Biscayne Bay.

Potential In	Sub-region							
Scientific Name	Common Name	Snake Cr & Oleta R.	North	Miami River	Central	South Central	S	
PLANTS (Microphyt	es – diatoms)						***	
							SSS	
PLANTS (Macrophytes								
Avicennia germinans	Black mangrove	* S			** S	* S	* S	
Cladium jamaicense	Sawgrass						* S	
Conocarpus erecta	Buttonwood						*	
Distichilis spicata	Saltgrass						*	
Eleocharis cellulosa	Spikerush						* SS	
Halophila decipiens	Paddle grass			*				
Halophila englemanii	Stargrass							
Halophila johnsonii	Johnson's	*	*	*				
	seagrass							
Halodule wrightii	Shoal grass		*	*	*	*	*	
Juncus roemerianus	Black needlerush						*	
Laguncularia racemosa	White mangrove	*			**	*	*	
Rhizophora mangle	Red mangrove	* S			** S	* S	** S	
Ruppia maritima	Wigeon grass				*	*	*SSS	
Spartina spartinae	Cordgrass							
Syringodium filiforme	Manatee grass	*	*	*	*	*	*	
Thalassia testudinum	Turtle grass			*	*	**	**	
ANIMALS								
Invertebrates								
Callinectes sapidus	Blue crab							
Crassostrea virginica	American oyster	*			*			
Farfantepenaeus duorarum	Pink shrimp				***SSS	***SSS		
Limulus polyphemus	Horseshoe crab							
Menippe mercenaria	Stone crab							
Mixed spp of benthic		*	*	*	**		*	
macroinvertebrates,								
(epifauna & infauna)								
Vertebrates								
Mammals								
Trichechus manatus	W. Indian Manatee			***				
Turciops truncatus	Bottlenose Dolphin							
Reptiles								
Crocodylus acutus					***	***	***	
2.000 <i>a</i> /ms aomms					SSS	SSS	SSS	

Table 4
Potential indicator species for freshwater minimum flows and levels
establishment in Biscavne Bay.

	Diamandhaak	in Discuyii	C Duy.		*	*	*
Malaclemys terrapin	Diamondback				Ť	Ť	*
tequesta	terrapin						_
Birds							
Ajaia ajaja	Roseate Spoonbill	*			*	*	**
							SSS
Egretta caerulea	Little Blue Heron	*			*		
Egretta rufescens	Reddish Egret						
Egretta thula	Snowy Egret				*		
Egretta tricolor	Tri-colored Heron	*			*		
Eudocimus alba	White Ibis	*			*		
Mycteria americana	Wood Stork						
Pelicanus occidentalis	Brown Pelican	*	*				
Fish							
Bairdiella chrysoura	Silver perch	*		*			
Centropomus undecimalis	Common Snook	*	*	*	*		
Cynoscion nebulosus	Spotted seatrout	*	*	*	*		
Cypinodom variegatus	Sheepshead killifish		*				
Eucinostomus gula	Silver jenny	*	*	*	*		*
Floridichthys carpio	Goldspotted		*				*
	killifish						
Fundulus confluentus	Marsh killifish		*				
F. grandis	Gulf killifish	*	*				
Haemulon sciurus	Bluestriped grunt	*	*	*	*		*
H. plumieri	White grunt	*	*	*	*		*
H. parra	Sailors choice	*	*	*	*		*
Lagodon rhomboides	Pinfish	*	*	*	*		*
Lucania parva	Rainwater	*	*	*	*		*
	killifish						
Lutjanus griseus	Grey snapper	*	*	*	*		*
Myteroperca microlepis	Gag grouper	*		*			
Megalops atlanticus	Tarpon	*					
Mugil spp	Mullet	*		*			
Opsanus beta	Gulf toadfish	*	*	*	*		*
Sphyraena barracuda	Great barracuda		*				

Explanation - For each species, an indication is given as to whether that species is reported for a specific section of the Bay, and if present, how much life history and population information is available. * indicates present, but with little information. ** indicates present and some information and *** indicates present with a good set of local life history and population or map location data. If no * is present, it means we could find no record of the occurrence of this species in this part of the Bay. The existing data base in Biscayne Bay for freshwater sensitivity of a given species is reflected in the same way: S = some information, SS = good information, SSS = detailed information, no S = no information.

Appendix D Tables D-1 to D-6 take the analyses one step further by rating each of the potential indicator species for seven characteristics to determine usability as an indicator species. These seven categories were: presence/absence in the sub-region, sensitivity of applicable parameters (salinity), reliability of response, rapidity of response, ease and economy of monitoring, meaningful feedback to management and importance of endpoint. If a species was not reported to exist, or existed in too small a population to be usable as an indicator species, it received no further consideration. If it was present in suitable populations, it was rated for the remaining six categories. The scale for each rating was 0-5, with 0 indicating a poor response by this species for a given usability factor, 3 a medium response, and 5 an excellent response. Thus for species present in a sub-region, a maximum value of 30 could be achieved with these analyses. The highest rated species were highlighted in the tables and for each region were: the American oyster (Oleta), shoalgrass, manatee grass and spotted seatrout (Northern), forams and diatoms (Miami River), shoalgrass and pink shrimp (Central), shoalgrass, pink shrimp and spike rush (South-Central) and American crocodile and Roseate spoonbill (Southern).

PRESENCE/ABSENCE/VITALITY OF POPULATIONS OF INDICATOR SPECIES

From the analyses in Tables D-1 to D-6, it is apparent that while presence/absence data is available for a suite of indicator species, details on population sizes and vitality of those populations is generally lacking. Monitoring population sizes is difficult and expensive and has not been undertaken for any but the most easily visible and typically charismatic species, such as the manatee. For this reason, this approach to establishing MFLs did not rate high in the individual analyses by sub-region. (Appendix E Tables E-1 to E-6).

PRE-DEVELOPMENT SCENARIOS

When an estuary has a very low level of anthropogenic impacts, establishment of MFLs may look at the pre-development conditions for the estuary and watershed and determine if it is possible to restore some or all of the pre-development estuarine functions. Given the level of development in all the watersheds in Florida, this is not a common approach. Mattson (2002), however, describes the approach to the management of freshwater flows in the Suwannee River estuary and characterizes the approach as a "natural flow regime principle" which assumes that an altered hydrologic regime (i.e., the MFL) "...is still near-natural in terms of magnitude, frequency, duration and timing of freshwater inflows..."

modifications to historical flows (Bellmund et al., 1999, Browder and Wanless 2001, Wanless and Browder 2001, Browder et al. 2001, Serafy et al. 2001).

ECOLOGICAL PRESERVATION

Under circumstances where some anthropogenic alterations to the watershed and estuary have occurred, but the extent of change has not caused significant harm, it is possible to manage freshwater inflows by carefully establishing the existing abiotic and biotic conditions for VEC's and indicator species, and plan for preserving those indicators in population sizes similar to that which currently exists by designing a percent-of-flow withdrawal plan. This is similar to what is currently underway for the Alafia, Little Manatee and Manatee Rivers that flow to Tampa Bay (Flannery et al. 2002) where commercial and recreationally important fish species, and their food sources and habitats, are targets for preservation. Again, the significant modifications to the watershed and the estuary of Biscayne Bay, and the resulting changes in VECs and indicator species, do not appear to show promise for successful use of this method (Serafy et al 2001).

REQUIREMENTS FOR PREFERRED FISH COMMUNITIES

Valued fish communities in Biscayne Bay include the snapper-grunt complex that is most often caught by recreational fisherman, and the "highly prized gamefishes, such as bonefish, tarpon and snook" (Ault et al. 2001). This former group of fish is currently over-fished in the Bay, and the latter group is rarely caught, as is the spotted seatrout which was historically a popular gamefish, but is now almost non-existent in fisherman's creels. The redfish is simply non-existent, and nine years of stocking efforts have failed to bring it back (Serafy et al. 2001).

All of this points to extreme pressure on existing fish populations, and the reduction or disappearance of some of the historically prized gamefish likely due to reductions in both the static and dynamic estuarine fish nursery habitat essential to most of these species (Lewis et al. 1985). Thus these types of habitats need to be restored in Biscayne Bay, following plans similar to those prepared by Meeder et al. (2001, 2002). Restoration of tidal creeks and their appropriate tidal flows was a popular recommendation among interviewees for this project but is not the subject of this particular effort, but that of CERP, RECOVER, and the Biscayne Bay Coastal Wetlands project.

COMMUNITY INDEX

Various indices, usually combining abundance, density and uniqueness of species composition to create a mathematical formula to describe the "health" or biotic index of an ecosystem have been proposed (see review in Engle 2000). The biotic index necessarily integrates multiparameter effects on a particular suite of species.

Graves et al. (2003) (Estuarine Indicators Workshop, Sanibel) presented the results of their study of the macrobenthos and water quality along two transects extending seaward from the shoreline at C-103 and C-2 into Biscayne Bay. The results were indicative of multi-parameter affects, with changes in the inshore macrobenthos at the C-103 site, as compared to the C-3 site in spite of very similar canal discharge rates and presumed salinities. The cause of the differences was determined to be a ten-fold increase in nitrate nitrogen in the discharge water from the canal at C-103. The point being, that trying to use a mixed suite of macrobenthos as an indicator of salinity differences or changes would not be a good idea, at least in this area of Biscayne Bay. Use of a biotic index to manage freshwater flows into Biscayne Bay, therefore, does not appear to be useful at this time.

FOOD WEB SUPPORT

Carbon and nutrient flows can be measured and modeled for estuarine ecosystems. If a particular source of carbon or nutrients can be linked to the health of the estuary, or support of a particular VEC or indicator species, and also tied to freshwater flows, it might be useful to manage freshwater flows. For Biscayne Bay, however, the level of modeling is at the conceptual stage (Lirman et al. 2002, Browder et al. 2003) and genuinely identifying where food web support for Biscayne Bay is controlled by freshwater inflows is still only at the conceptual stage except for the work of Lorenz (1999, 2000) and Lorenz et al. (2002) for the food web of Southern Biscayne Bay. Thus this approach does not appear useful at this time for any of the sub-areas except this one.

SOIL CHARACTERISTICS)

Soil conditions have been used by the St. John River Water Management District as the primary indicator for establishing Minimum Flows and Levels rules for many water bodies that are located within their region. Soils that are inundated and/or saturated for long periods of time develop various characteristics that are so predictable and measurable that their presence and/or absence is used as an indicator in identifying wetland boundaries. Because soils are comparatively slow to respond to changes in water levels, soil conditions are used for wetland delineation primarily when there have been changes in vegetative cover or hydrology.

In the context of MFL rule-making, soils have been used as indicators primarily in fresh water lakes and ponds, where changes in soil characteristics at a specific location could be an indication that levels have decreased to the extent that the existing floral and faunal communities would be subject to harm. The use of soils as an indicator in estuarine habitats would only be potentially useful in the transition zone between open-water areas and uplands. Within this gradient, measurements of soil salinity and/or depths to water during the dry season could be helpful in ensuring that reduced levels and flows do not cause harm to existing biota. Because the majority of the wetland/upland transition zone along the shoreline within the Biscayne Bay project area has been replaced with seawalls and bulkheads, the use of soil conditions as an indicator of estuarine conditions would be potentially useful only along the southern portions of the Bay. Even in these regions, the measurements would need to be taken in areas west of the mangrove shoreline. Some of these areas are already being considered for restoration through the Biscayne Bay Coastal Wetlands project.

The major potential drawback to using soils as an MFL indicator is the comparatively slow response time; by the time there are actual measurable changes in soil characteristics, the harm to previously-existing flora and fauna will have already occurred.

EVALUATION OF ALTERNATIVE APPROACHES

These nine approaches have been individually evaluated by sub-region of the Bay for strengths, weaknesses, opportunities, threats, speed of information return to managers for adaptive management decisions, and cost effectiveness of potential performance standards. Tables D-1 to D-6 list the nine alternatives considered for use for each of the six sub-regions, with values established on a scale of 0-5 by best-professional-judgment by the BFA Team combined with knowledge derived from the reviewed literature, and comments by interviewees to the principal scientists. The six values were then added together for a final score. The minimum score could therefore be 0, and the maximum 30. Table 5 lists the results of all of the analyses and shows that for each sub-region the following approaches had the highest ratings: indicator species (Oleta and Northern, Score 22 for both), community index (Miami River, Score 20), VECs and indicator species tied for Central Biscayne Bay (Scores 22), VECs (South Central, Score 22) and food web support (Southern, Score 26).

Table 5

	Sub-Region							
POTENTIAL APPROACHES	Oleta River Snake Creek	Northern Biscayne Bay	Miami River Gov't Cut	Central Biscayne Bay	South-Central Biscayne Bay	Southern Biscayne Bay		
Valued Ecosystem Component(s)	18	18	16	22	22	16		
Indicator Species	22	22	15	22	21	16		
Presence/Absence/Vitality of Preferred Habitats	17	17	17	12	12	13		
Ecological Preservation	14	14	8	15	15	15		
Pre-development Scenario	6	6	5	5	5	5		
Requirement for preferred fish communities	14	15	11	10	10	10		
Community Index	12	12	20	12	12	12		
Food Web Support	12	12	5	12	12	26		
Soil Characteristics	12	12	6	12	12	12		

Comparison of Different MFL Approaches for Each Sub-region

Shaded bocks indicate the recommended approach for each sub-region, based on it receiving the highest ranking. It is important to note that these values represent a composite of multiple factors (see Appendix E).

SECTION 6 RECOMMENDATION OF PREFERRED APPROACHES

The recommended approach to establishing minimum flows and levels for Biscayne Bay is to utilize a different approach for each of the six sub-regions of the Bay. Biscayne Bay is a large heterogeneous ecosystem that has undergone major anthropogenic changes in the last 100 years. Thus each of the sub-regions has unique characteristics that demand unique treatment regarding necessary freshwater flows to either maintain existing conditions, or restore some semblance of historical conditions to allow for a particular ecological function to exist at some level satisfactory to water managers, citizens and scientists.

Appendix E Tables E-1 to E-6 list the various alternatives considered for use for each of the six sub-regions, with values established on a scale of 0-5 for by bestprofessional-judgment by the two principal scientists writing this report: Greg Braun and Roy R. "Robin" Lewis III, combined with knowledge derived from the reviewed literature, and comments by interviewees to the principal scientists.

Each potential approach was rated on a scale of 0-5, and the six values were then added together for a final score. The minimum score could therefore be 0, and the maximum 30. Each of these final totaled values is listed in summary in Table 5. The highest scores are highlighted. For one region, Central Biscayne Bay, two possible approaches are tied with the same score, 22. Since the valued ecosystem components and the chosen indicator species are the same for this region, this does not impact the choice of approach.

Table 6 is modified from Table 5 to now include a subjective rating by the principal scientists of the currently existing strength of scientific data support for a particular recommended approach. On a rating scale of 0-5, 0 is pure conjecture with no data support, 3 is moderate data support, and 5 is very strong data support. For most of the recommended approaches, the current scientific data base to support a specific quantitative MFL is low to moderate. As noted by Browder et al. (2001), "(D)evelopment of the information and modeling tools necessary to link water management, salinity envelopes, and biological performance measures is still in their early stages with respect to Biscayne Bay...thus far it has not been possible to translate changes in freshwater flow into terms meaningful to the Bay ecosystem in more than a general sense."

The highest rated approaches, strength of scientific data support for that approach and recommended contingency plan for each region are listed below.

Table 6

	Sub-Region								
POTENTIAL APPROACHES	Oleta River Snake Creek	Northern Biscayne Bay	Miami River Gov't Cut	Central Biscayne Bay	South-Central Biscayne Bay	Southern Biscayne Bay			
Valued Ecosystem Component(s)	18	18	16	22	22	16			
Indicator Species	22	22	15	22	21	16			
Presence/Absence/Vitality of Preferred Habitats	17	17	17	12	12	13			
Ecological Preservation	14	14	8	15	15	15			
Pre-development Scenario	6	6	5	5	5	5			
Requirement for preferred fish communities	14	15	11	10	10	10			
Community Index	12	12	20	12	12	12			
Food Web Support	12	12	5	12	12	26			
Soil Characteristics	12	12	6	12	12	12			
Relative Strength of Scientific Support (0-5)	2	3	2	2	2	4			

Comparison of the Relative Strength of Scientific Support for the Different MFL Approaches for Each Sub-region

Shaded bocks indicate the recommended approach for each sub-region, based on it receiving the highest ranking.

It is important to note that these values represent a composite of multiple factors (see Appendix E).

OLETA RIVER/SNAKE CREEK

The recommended approach rated highest at 22 with a range of values from 6-22. The approach is the **Indicator Species** approach, with the indicator species being the American oyster, West Indian manatee and Johnson's seagrass (Table E-1).

The scientific data to support for using this approach is rated 2 on a scale of 0 to 5, where 0 is pure conjecture with no data support, 3 is moderate data support, and 5 is very strong data support (Table 6).

While we know oysters are present (FDEP 2002), there is no definitive mapping of the existing oyster resources in this area, and the health of the oysters is unknown. Therefore it is not possible to say it maintaining the existing water flows and levels will protect this resource. We know manatees use this area (DERM 1995), but whether the existing water flows are optimum or sub-optimum for manatee protection is unknown. We know Johnson's seagrass is present in the park (FDEP 2002), but this species is only described in the Johnson's seagrass recovery plan as being euryhaline and found in a salinity range of 15-43 psu, "...but has been observed growing perennially near the mouths of freshwater discharge canals..." (page 1.2-3 in NMFS 2002). Again, whether flows are optimum or not in this area is unknown.

Given these uncertainties, the recommended contingency option is to maintain all the existing flows through wetlands and into the Bay in this area until additional scientific information on the specific freshwater flows and levels for these, or additional species occurring in this location, are scientifically documented.

NORTHERN BISCAYNE BAY

The recommended approach rated highest at 22 with a range of values from 6-22. The approach is the **Indicator Species** approach, with the indicator species being the spotted seatrout and manatee grass (Table E-2).

The scientific information data support for this option is rated as a 3 on a scale of 0-5 (Table 6).

The moderate level of information available is reflected in the reported capture of 96% of all seatrout from one study (Serafy et al. 1997) north of Rickenbacker Causeway, and 68% in this portion of the Bay. Bellmund et al. (1999)(page 7) confirm the use of this species with the statement that "...In North Biscayne Bay

sea trout spawning is believed to be linked to the presence of stable low salinity areas which are available seasonally..."

The dominant species within seagrass beds in this area is manatee grass. This species also appears to grow best in stable salinity fluctuation areas, but data to support the existing freshwater flows as being protective of these seagrass beds is lacking. Fourqueran (pers. comm..) feels its tolerance of lower light levels than other species of seagrass may be the cause of its persistence and perhaps competitive advantage at this location, rather than a tolerance of lower salinities than other seagrass species.

Given these uncertainties, the recommended contingency option is to maintain all the existing flows into this sub-area of the Bay until additional scientific information on the specific freshwater flows and levels for these, or additional species occurring in this location, are scientifically documented.

MIAMI RIVER/GOVERNMENT CUT

The recommended approach rated highest at 20 with a range of values from 5-20. The approach is the **Community Index** approach, intended to utilize a biodiversity index similar to that developed by Berkely and Campos (1984) for the Bay (Table E-3)

The scientific information data support for this option is rated as a 2 on a scale of 0-5 (Table 6).

We have been able to find very little specific information on indicator species for this area of the Bay. Alleman (pers. comm.) notes that this part of the bay was reported by Serafy et al. (1997) to have the highest fish species diversity of all the sampled stations. The Miami River is known to have highly polluted bottom sediments that are now the subject of a maintenance dredging project, but the existing water flows likely maintain a complete gradient from freshwater in its upper reaches, to euhaline at the entrance to the port. This range of salinities overlaps a wide variety of bottom communities, and may be the reason for such a high diversity of fish and possibly also invertebrates.

Given these uncertainties, the recommended contingency option is to maintain all the existing flows into this sub-area of the Bay until additional scientific information on the specific freshwater flows and levels for these, or additional species occurring in this location, are scientifically documented.

CENTRAL BISCAYNE BAY

The recommended approach rated highest at 22 with a range of values from 5-22. Both the **Indicator Species** approach and the **Valued Ecosystem Component** approach scored the same (Table E-4). The **Indicator Species** approach was judged the better of the two by the principal scientists, and the species chosen were being the pink shrimp and shoalgrass. Benthic infaunal and epifaunal invertebrate communities were not chosen as good indicators due to the multiparameter responses that are not directly connected with salinity changes in this sub-area of the Bay (Graves et al. 2003).

The scientific information data support for this option is rated as a 2 on a scale of 0-5 (Table 6).

This level of uncertainty is supported by the following quotes from the proposal (currently funded) for the "Biscayne Bay Coastal Biological Community Performance Measures Project" (Browder 2001): "...major water management initiatives will influence the quantity, timing and quality of freshwater inflow to Biscayne Bay..." however "...Biscayne Bay is handicapped by lack of information about conditions and communities in the western nearshore Bay...The benthic animal community, consisting of small forage fish, juvenile game fish, and invertebrates such as pink shrimp...blue crab...gray snapper...are linked to nearshore environments, but their relationships with freshwater inflow have received little investigative attention in Biscayne Bay." The data for the first year of this sampling are expected to be available in nine months, and a second year of sampling is proposed.

The study plan for the above reference study (Robblee et al. 2001) stated that the dominant vegetation type(s) for the sampling areas will be measured and reported along with the invertebrate and fish collected. Water quality data will be collected using hydrolabs. Although Fourqueran et al. (2003) characterized shoalgrass as a species more characteristic of variable salinities, no simultaneous fauna data was gathered. Therefore, the data from this ongoing study should provide a more definitive answer to the question about what salinity over what habitat type results in a greater catch of specific species. Until that is known, it is very difficult to define species/salinity/habitat relationships for this sub-area of the Bay.

Given these uncertainties, the recommended contingency option is to maintain all the existing flows into this sub-area of the Bay until such time as additional scientific information on the specific freshwater flows and levels for the above mentioned suite of species, or additional species occurring in this location, are scientifically documented, a revised and more scientifically based freshwater flow plan can be studied.

SOUTH-CENTRAL BISCAYNE BAY

The recommended approach rated highest at 22 with a range of values from 5-22. The approach is the **Valued Ecosystem Component** approach, with the VEC a sustainable pink shrimp harvest (Table E-5).

The scientific information data support for this option is rated as a 2 on a scale of 0-5 (Table 6).

South Central Biscayne Bay shares many of the same characteristics as Central Biscayne Bay except that all of this area is within Biscayne National Park, it has less dense seagrass area, and more hardbottom mixed with seagrass. Robblee et al. (2001) note that the work of Diaz (2001) indicates that pink shrimp abundance north of Black Point is greater than that found south of Black Point possibly indicating some major difference in seagrass and/or salinity regimes in the two areas. The discussion above about the Biscayne Bay Coastal Biological Community Performance Measures Project and associated narratives applies here as well as sampling is taking place in both areas.

Given the similar uncertainties found in Central Biscayne Bay, the recommended contingency option is similar, to maintain all the existing flows into this sub-area of the Bay until such time that additional scientific information on the specific freshwater flows and levels for the above mentioned suite of species, or additional species occurring in this location, are scientifically documented, and a revised and more scientifically based freshwater plan can be studied.

SOUTHERN BISCAYNE BAY

The recommended approach rated highest at 26 with a range of values from 5-26 (Table E-6). The approach is the **Food Web Support** approach, with the intent that the forage fish food base for both the Roseate spoonbill (and several other wading bird species) and the American crocodile would be the target reference point.

The scientific information data support for this option is rated as a 4 on a scale of 0-5 (Table 6).

This high rating is based upon the detailed studies reported in Lorenz et al. (2002) and Mazzotti and Cherkiss (1998). Unlike the other areas of the Bay, the problems of historic freshwater input modifications to this area have been looked

at in more detail related to the C-111 canal which enters the most southerly portion of this area at Manatee Bay (Bellmund et al. 1999). Lorenz (pers. comm.) has recently been made aware of significant Roseate spoonbill use of the wetlands west of Turkey Point and is of the professional opinion that restoring freshwater flows to this area could have significant positive benefits to the Roseate spoonbill, associated wading bird species, and the American crocodile. This is due to a similar biological response described in Bellmund et al. (1999), Lorenz (1999), Lorenz (2000) and Lorenz et al. (2002). This response is an increase in the small demersal fish (i.e., Cyprinodon variegatus and Poecilia latipinna) and benthic epifaunal shrimp of the genus *Palaemonetes* "...found in virtually every analysis of spoonbill diet..." as a result of lower salinities, and reduced variation in overall salinities within brackish marsh and scrub mangrove habitat typical of the landward zone behind a narrow fringe of mangroves. These same food items are also important for subadult crocodiles (USFWS 1999) which also respond favorably to reduced salinity stress. Bellmund et al. (1999) referred to the response as the production of "high fish biomass" (p. 9). Lorenz et al. (2002) stated that "...the biomass of the prey base is impacted by hydrographic conditions: specifically, fish production is related to the salinity regime such that increased freshwater flow is correlated with increased prey-base fish stock..." (p. 601).

It is likely that the current conditions in this sub-area of the Bay result in some reduction to this "prey-base fish stock", and to increased salinities impacting survival of juvenile American crocodiles. Until these potential impacts can be better quantified, the contingency alternative should be to maintain the existing fresh water flows.

SECTION 7 INFORMATION DEFICIENCIES AND NEEDS

In conducting the literature search, interviewing experts and analyzing the information that is available concerning historical and existing conditions in Biscayne Bay, the project team has identified a number of areas in which additional information would be extremely valuable in developing and/or refining MFL rules and thresholds. In many cases, such as analysis of oyster populations, surveys and/or mapping has been done only in portions of the Bay. Having and analyzing the results of a bay-wide mapping effort of this estuarine-dependant species would be extremely valuable in understanding existing salinity regimes and in identifying conditions that could prevent significant harm. A preliminary list of data needs includes:

- 1) Actual locations of oyster bars and seagrass in and around Oleta River Park need to be confirmed and mapped.
- 2) Current and historical water quality data needs to be synthesized to determine what the seasonal salinity regimes are, particularly in the western inshore (and canal) areas of Central, South-Central and Southern Bay. If data are lacking, a water quality sampling program needs to be instituted. Probably ten year minimum sampling on a monthly basis at a network of 25 stations.
- 3) For the same locations above, detailed maps of live and fossil or recent historical American oyster and other oyster species, and seagrass (from D. Mir-Gonzalez study), and fresh and saltwater wetlands need to be mapped very accurately. Results from research presently being conducted (e.g., FIU graduate student D. Mir-Gonzalez) should be obtained and analyzed, and any adjustments/modifications to the MFL process that may be warranted should be considered.
- 4) The role of salinity/habitat interactions and population data for spotted seatrout in Biscayne Bay needs clarification.
- 5) The reason for the lack of spotted seatrout in Central and South-Central Bay needs to be determined, and potential bait shrimp bycatch impacts, and roller-frame trawl impacts to habitat, need to be elucidated to avoid blaming lack of freshwater as the culprit for absence of this species.

- 6) Means of moderating pulses of freshwater via canals need to be developed to better utilize the existing freshwater supplies to nourish existing, restored or created wetlands along the western shoreline.
- 7) The most up-to-date information on Roseate spoonbill nesting and foraging in conjunction with other wading birds in the Turkey Point area needs further clarification to confirm this species can be used as an indicator in South-Central to Southern Biscayne Bay.
- 8) The data collection efforts by the Roblee/Browder team needs to be extended to overlap both wet and dry years in order to have data that encompasses the entire range of possible seasonal salinity regimes for MFL establishment or modification in the future.
- 9) The forage fish prey base in both the "white zone" and in the mangroves and brackish marshes along the western shore of the Bay needs further sampling in relation to salinity/habitat interactions and food web interactions.
- 10) Additional research and/or monitoring should be performed to help understand the extent to which fresh water and/or warm water are attractants for manatees at locations of surface flow into Biscayne Bay.

REFERENCES

Alleman, R.W., S.A. Bellmund, D.W. Black, S.E. Formati, C.A. Gove and L.K. Gulick. 1995. Biscayne Bay surface water improvement and management – technical supporting document. South Florida Water Management District, West Palm Beach, Florida.

Allen, R.P. 1942. The Roseate Spoonbill. Res. Rept. No.2, National Audubon Society, New York, New York. 142 pp.

Anderson, G. 1985. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico) – grass shrimp. U.S. Fish and Wildlife Service Biol. Report 82(11.35) U.S. Army Corps of Engineers, TR EL-82-4. 19 pp.

Ault, J.S., S.G. Smith, G.A. Meester, J. Juo and J.A. Bohnsack. 2001. Site characterization for Biscayne National Park.: assessment of fisheries resources and habitats. NOAA Technical Memorandum NMFS-SEFSC-468. 156 pp.

Bahr, L.M. 1981. The ecology of intertidal reefs of the south Atlantic coast: a community profile. FWS/OBS-81/15. U.S. Fish and Wildlife Service, Washington, DC.

Bellmund, S., J. Browder and S. Alspach. 1999. Appendix B – Issue paper on freshwater flows to Biscayne Bay for the Alternative Evaluation Team.

Bender,E.S. 1971. Studies of the life history of the stone crab, Menippe mercenaria (Say), in the Cedar Key area. M.S. Thesis. University of Florida, Gainesville. 110. pp.

Berkeley, S.A., and W. L. Campos. 1984. Fisheries assessment of Biscayne Bay. Final report to Dade County, Department of Environmental Resource Management.

Bielsa, L.M., W.H. Murdich and R.F. Labisky. 1983. Species profile life histories and environmental requirements of coastal fishes and invertebrates (south Florida) – pink shrimp. U.S. Fish Wildl. Serv. FWS/OBS-82/11.17. U.S. Army Corps of Engineers, TR EL-82-4. 21 pp.

Bjork, R. 1996. Roseate Spoonbill, in Rare and Endangered Biota of Florida, Volume V. Birds. University Press of Florida.

Bortone, S.A.. 2003. Fishes as indicators of estuarine conditions: the quest for the "perfect" species and attributes (abstract). Page 29 in the Program of the Estuarine Indicators Workshop, 29-31 October 2003, Sanibel, Florida. Sanibel-Captiva Conservation Foundation Marine Laboratory.

Britton, J.C., and B. Morton. 1989. Mangrove shores. Pages 222-240 in Shore ecology of the Gulf of Mexico. University of Texas, Austin, Texas.

Brook, I.M. 1982. The effect of freshwater canal discharge on the stability of two sea grass benthic communities in Biscayne National Park, Florida. Oceanologica Acta 4:63-72.

Browder, J.A., and D. Moore. 1981. A new approach to determining the quantitative relationship between fishery production and the flow of fresh water to estuaries. Pages 403-430 in Proceedings of the National symposium on Freshwater Inflow to Estuaries. Vol. !. U.S. Fish and Wildlife Service, Washington, DC. FWS/OBS-81/04.

Browder, J.A., V. R. Restrepo, J.K. Rice, M.B. Robblee and Z. Zein-Eldin. 1999. Environmental influences on potential recruitment of pink shrimp, *Farfantepenaeus duorarum*, from Florida Bay nursery grounds. Estuaries 22(2B):484-499.

Browder, J.A., and H. R. Wanless. 2001. Executive summary. Pages 69-74 in Biscayne Bay Partnership Initiative, Survey Teams Final Report. FAU/FIU Joint Center for Environmental and Urban Problems, Ft. Lauderdale, Florida.

Browder, J.A., S.A. Bellmund, M. Davis, S.T. Sutterfield, R. Patterson, S. Sculley, and C. Langevin. 2001. Watershed hydrology. Pages 141-162 in Biscayne Bay Partnership Initiative, Survey Teams Final Report. FAU/FIU Joint Center for Environmental and Urban Problems, Ft. Lauderdale, Florida.

Browder, J.A., R. Alleman, P. Ortner and S. Markley. 2003. Biscayne Bay conceptual ecological model. Appendix A. Conceptual ecological models. Draft CERP Monitoring and Assessment Plan.

Buchanan, T.J., and H. Klein. 1976. Effects of water management on fresh-water dishcard to Biscayne Bay. Pages 271-273 in A. Thorhaug and A. Volker (Eds.), Biscayne Bay: Past/Present/Future. Florida Sea Grant Special Publication No. 5. University of Miami.

Burrell, V.G. 1986. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic) – American

oyster. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.57). U.S. Army Corps of Engineers TR EL-82-4.

Castagna, M., and P. Chanley. 1973. Salinity tolerance of some marine bivalves from inshore and estuarine environments in Virginia waters on the western mid-Atlantic coast. Malacologia 12(1):47-96.

Cantillo, A.Y., K. Hale, E. Collins, L Pikula and R. Caballero. 2000. Biscayne Bay: Environmental History and Annotated Bibliography. National Oceanic and Atmospheric Administration Technical Memorandum NOS NCCOS CCMA 145.

Cheung, T.S. 1969. The environmental and hormonal control of growth and reproduction in the adult female stone crab (*Menippe mercenaria*. Biol. Bull. (Woods Hole). 136(3):327-346.

Churchill, E.P., Jr. 1919. Life history of the blue crab. Bull. Bur. Fish. 36:95-128.

Darnell, R.M. 1959. Studies of the life history of the blue crab *Callinectes sapidus* Rathbun) in Louisiana waters. Trans. Am. Fish. Soc. 88:294-304.

Davis, J.H. 1943. The natural features of Southern Florida, especially the vegetation and the Everglades. Bull. No. 25, Florida Geological Survey, Tallahassee, Florida.

Dial Cordy and Associates, Inc. 2001. Environmental baseline study – Miami Harbor General Reevaluation Report. Appendix E. U.S. Army Corps of Engineers, Jacksonville, Florida.

Diaz, G.A. 2000. Spatial and Temporal patterns of pink shrimp past-larval settlement in Biscayne Bay.

Diaz, G.A. 2001. Population dynamics and assessment of pink shrimp (*Farfantepenaeus duorarum*) in subtropical nursery grounds. Ph.D. Dissertation. University of Miami, Coral Gables, Florida.

Dumas, j. 2000. Roseate Spoonbill (*Ajaia ajaja*), in the Birds of North America, Poole, A. and Gill, F., Eds., No. 490, The Birds of North America, Inc., Philadelphia, PA.

Dunson, W. A. 1982. Salinity relations of crocodiles in Florida Bay. Copeia 1982(2):374-385.

Dunson, W.A. 2003. Choosing fish bio-indicators: the use of physiological tolerance to abiotic stress as a means of selecting the most appropriate species for estuarine habitats (abstract). Page 31 in the Program of the Estuarine Indicators Workshop, 29-31 October 2003, Sanibel, Florida Sanibel-Captiva Conservation Foundation Marine Laboratory.

Durako, M. J., J.A. Browder, W. L. Kruczynski, C.B. Subrahmanyam and R.E. Turner. 1985. Tidal marsh habitat and fishery resources of Florida. Pages 189-280 in W. Seaman, Jr. (Ed.), Florida Aquatic Habitat and Fishery Resources, Florida Chapter, American Fisheries Society. Eustis, Florida.

Edwards, R.E. 1991. Nursery habitats of important early-juvenile fishes in the manatee river estuary system of Tampa Bay. Pages 237-251 in S.F. Treat and P. A. Clark (Eds.), Proceedings – Tampa Bay Area Scientific Information Symposium 2, TEXT, Tampa, Florida.

Engle, V.D. 2000. Application of the indicator evaluation guidelines to an index of benthic condition for Gulf of Mexico estuaries. Pages 3-1-3-29 in Jackson, L.E., J. C. Kurtz, and W. S. Fisher (eds.). 2000. Evaluation guidelines for ecological indicators. EPA/620/R-99/005. U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC.

Engler, F.E. 1952. Southeast saline Everglades, Florida, and its management. Vegetatio 3:213-265.

Environmental Consulting and Technology (ECT). 2003 Environmental evaluations for the development of minimum flows and levels for the St. Johns River near Deland at State Road 44, Volusia County. St. Johns River Water Management District.

Ehrlinger, G.S. 2002. Spawning Behavior and Larval Biology of the American Horseshoe Crab, *Limulus polyphemus*, in a Microtidal Coastal Lagoon., Ph. D. dissertation.

Estevez, E.D. 2000. A review and application of literature concerning freshwater flow management in riverine estuaries. South Florida Water Management District, West Palm Beach, FL.

Estevez, E.D. 2002. Review and assessment of biotic variables and analytical methods used in estuarine inflow studies. Estuaries 25(6B):1291-1303.

Faunce, C.H., J.J. Lorenz, J.A. Ley and J. E. Serafy. 2002. Size structure of gray snapper (*Lutjanus griseus*) within a mangrove "no-take" sanctuary. Bull. Mar. Sci. 70(1):211-216.

Fischler, K.J. and C.H. Walberg. 1962. Blue Crab movement in coastal South Carolina, 1958-59. Trans. Am. Fish Soc. 91:275-278.

Flannery, M.S., E.B. Peebles, and R. T. Montgomery. 2002. A percent-of-flow approach for managing reductions of freshwater inflows from unimpounded rivers to southwest Florida estuaries. Estuaries 25(6B):1318-1332.

Florida Department of Environmental Protection (FDEP). 2002. Oleta River State Park Unit Management Plan.

Florida Fish and Wildlife Conservation Commission. 2000. Boating and Angling Guide to Biscayne Bay.

Florida Game and Fresh Water Fish Commission. 1997. Florida's Endangered Species, Threatened Species and Species of Special Concern.

Fore, P.L., and T.W. Schmidt. (1973). Biology of juvenile and adult snook, *Centropomus undecimalis*, in the Ten Thousand Islands. Pp SVI-1-18 in Ecosystems analysis of the Big Cypress Swamp and Estuaries. U.S. Environmental Protection Agency, Surv. Anal. Division, Athens, Ga.

Fourqurean, J.W., J.N. Boyer, M.J. Durako, L.N. Hefty and B.J. Peterson. 2003. Forecasting responses of seagrass distributions to changing water quality using monitoring data. Ecol. Appl. 13(2):474-489.

Gaiser, E., and A. Wachnicka. 2003. Diatom indicators of habitat change in coastal wetlands (abstract). Page 15 in the Program of the Estuarine Indicators Workshop, 29-31 October 2003, Sanibel, Florida Sanibel-Captiva Conservation Foundation Marine Laboratory.

Galtsoff, P.S. 1964. The American oyster, *Crassostrea virginica* Gmelin. Fishery Bulletin, Vol. 64. U.S. Department of the Interior, USFWS, Bureau of Commercial Fisheries. U.S. Government Printing Office, Washington, DC.

Graves, G.A., M.A. Thompson, G. Schmitt, D. Fike, C. Kelly and J. Tyrell. 2003. Documenting a stormwater-induced nutrient gradient in a sub-tropical estuary utilizing macroinvertebrates, Biscayne Bay, Florida, USA (abstract). Page 24 in the Program of the Estuarine Indicators Workshop, 29-31 October 2003, Sanibel, Florida Sanibel-Captiva Conservation Foundation Marine Laboratory. Guerin, J.L. and W.B. Stickle. 1997. A comparative study of two sympatric species within the genus *Callinectes*: osmoregulation, long-term acclimation to salinity and the effects of salinity on growth and molting. Journal of Experimental Marine Biology and Ecology, 218 (1997) 165-186.

Gunter, G., J.Y. Christmas, and R. Killebrew. 1964. Some relations of salinity to population distribution of motile estuarine organisms, with special reference to penaeid shrimp. Ecology 45:181-185.

Harper, D., J. Bohnsack and B. Lockwood. 2000. Recreational fisheries in Biscayne National Park, Florida 1976-1991. Marine Fisheries Review 62(1):8-26.

Harlem, P.W. 1979. Aerial photographic interpretation of the historical changes in northern Biscayne Bay, Florida: 1926 to 1976. Univ. Miami, Sea Grant Tech. Bull. 40, Coral Gables, Florida.

Hildebrand, H.H. 1955. A study of the fauna of the pink shrimp grounds in the Gulf of Campeche. Publ. Inst. Mar. Sci. Univ. Tex. 4:168-232.

Hill, J., D.L. Fowler, and M.J. Van Den Avyle. 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic) – Blue crab. U.S. Fish and Wildlife Service Biol. Report 82(11.100) U.S. Army Corps of Engineers, TR EL-82-4. 18 pp.

Hughes, D.A. 1969. Responses to salinity change as tidal transport mechanism of pink shrimp, *Penaeus duorarum*. Biol. Bull. (Woods Hole, Mass) 136:43-53.

Huvane, J.K. and S.R. Cooper. 2000. Diatoms as Indicators of Environmental Change in Sediment Cores from Northeastern Florida Bay.

Idyll, C.P. 1966. Economically Important Marine Organisms in Biscayne Bay. Division of Fishery Sciences, Institute of Marine Sciences, University of Miami. 6 pp.

Ishman, S.E., A. Graham and J. D'Ambrosio. 1997. Modern Benthic Foraminifera Distributions in Biscayne Bay: Analogs for Historic Reconstructions.

Iversen, E.S. and C.P. Idyll. 1960. Aspects of the biology of the Tortugas pink shrimp, *Penaeus duorum*. Trans. Am. Fish. Soc. 89:1-8.

Janicki Environmental, Inc. 2002. Lower Hillsborough River minimum flow study controlled-flow experimental design. Southwest Florida Water Management District, Brooksville, FL.

Kohout, F.A., and M.C. Kolipinski. 1967. Biological zonation related to groundwater discharge along the shore of Biscayne Bay, Miami, Florida. Pages 487-499 in Estuaries. American Association for the Advancement of Science. Washington, DC.

Kenworthy, W.J. 1993. The Distribution, abundance and ecology of *Halophila johnsonii* Eisman in the lower Indian River, Florida. Final report to the office of Protected Resources, National Marine Fisheries Service, Silver Spring, MD. 66pp.

Kushlan, J.A. 1988. Profiles: Conservation and Management of the American Crocodile, in Environmental Management Vol. 12, No. 6, pp 777-790.

Kushlan, J.A., and F.J. Mazzotti. 1989. Historic and present distribution of the American Crocodile in Florida. Journal of Herpetology 23(1):1-7.

Lewis, R. R., J. M. Carlton and R. Lombardo. 1983. Algal consumption by the manatee (*Trichechus manatus* L.) in Tampa Bay, Florida. Fla. Scientist 47(2):189-191.

Lewis III, R.R., R.G. Gilmore, Jr., D.W. Crewz and W.E. Odum. 1985. Mangrove habitat and fishery resources of Florida. Pages 281-336 in W. Seaman, Jr. (Ed.), Florida Aquatic Habitat and Fishery Resources, Florida Chapter, American Fisheries Society. Eustis, Florida.

Ley, J.A., and C.C. McIvor. 2002. Linkages between estuarine and reef fish assemblages: enhancement by the presence of a well-developed mangrove shoreline. Pages 539-562 in J. W Porter and K.G. Porter (Eds.), The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem source book. CRC Press, Boca Raton, FL.

Lindberg, W.J., and M.J. Marshall. 1984. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (south Florida) – stone crab. U.S. Fish and Wildlife Service FWS/OBS-82/11.21. U.S. Army Corps of Engineers, TR EL-82-4. 17 pp.

Lirman, D., E.A. Irlandi and W.P. Cropper, Jr. 2002. A conceptual model of Biscayne Bay. Center for Marine and Environmental Analyses, University of Miami, Miami, Florida. Lorenz, J.J. 1999. The responses of fishes to physiochemical changes in the mangroves of northeast Florida Bay. Estuaries 22:500-517.

Lorenz, J.J. 2000. Impacts of water management on Roseate Spoonbills and their piscine prey in the coastal wetlands of Florida Bay. Ph.D. Dissertation, University of Miami, Coral Gables, Florida.

Lorenz, J.J., J.C. Ogden, R.D. Bjork and G.V.N. Powell. 2002. Nesting patterns of Roseate spoonbills in Florida Bay 1935-1999: implications of landscape scale anthropogenic impacts. Pages 563-606 in J. W Porter and K.G. Porter (Eds.), The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem source book. CRC Press, Boca Raton, FL.

Lough, R.G. 1975. A reevaluation of the combined effects of temperature and salinity on survival and growth of bivalve larvae using response surface techniques. Fishery Bulletin 73(1):86-94.

Markley, S., and G. Milano. 1985. Biscayne Bay today: a summary report on its physical and biological characteristics. Miami-Dade County Department of Environmental Resources Management. Miami, Florida.

Mattson, R.A. 2002. A resource-based framework for establishing freshwater inflow requirements for the Suwannee River estuary. Estuaries 25(6b):1333-1342.

Mazzotti, F.J. 1989. Structure and function. Pages 42-57 in C.A. Ross ed. Crocodiles and Alligators, Facts on File, Inc.; New York, New York.

Mazzotti, F.J., and M.S. Cherkiss. 1998. Status and Distribution of the American Crocodile (*Crocodylus acutus*) in Biscayne Bay. 29 pp.

Mazzotti, F.J. and W.A. Dunson, 1984. Adaptations of *Crocodylus acutus* and Alligator mississippiensis for life in saline water. Comparative Biochemical Physiology 79(4);641-646.

Mazzotti, F.J., J.A. Kushlan, and A. Dunbar-Cooper. 1988. Dessication and cryptic nest flooding as probable causes of egg mortality in the American crocodile, *Crocodylus acutus*, in Everglades National Park, Florida. Florida Scientist 51(2):65-72.

McIvor, C.C., J.A. Ley and R.D. Bjork. 1994. Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes. Pages 117-146 in S. M. Davis and J.C. Ogden (eds.), Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, Florida. Meeder, J.F., J. Alvord, M. Byrns, M.S. Ross and A. Renshaw. 1997. Distribution of benthic nearshore communities and their relationship to groundwater nutrient loading. Final report to Biscayne National Park. Southeast Environmental Research Program, Florida International University, Miami, Florida.

Meeder, J.F., M. S. Ross, and P. Ruiz. 1999. Characterization of historic Biscayne Bay watersheds. First quarterly report, SFWMD, West Palm Beach. Florida.

Meeder, J.F., P.W. Harlem and A. Renshaw. 2001. Historic creek watershed study final results: Year 1. South Florida Water Management District, West Palm Beach, Florida.

Meeder, J.F., P.W. Harlem and A. Renshaw. 2002. Restoration of the Black Creek coastal wetlands and adjacent nearshore estuarine zone of Biscayne Bay. South Florida Water Management District, West Palm Beach, Florida.

Miami-Dade County Department of Environmental Resources Management (DERM). 1987. Draft Biscayne Bay Aquatic Preserve Management Plan.

Miami-Dade County Department of Environmental Resources Management (DERM). 1995 Dade County Manatee Protection Plan. Technical Report 95-5.

Milano, G.S. Jr. 1983. Bottom communities of Biscayne Bay (map with text). Metropolitan Dade County, Florida. Department of Environmental Resource Management.

Montagna, P. A. (Ed). 1999. Final report by the Lower Hillsborough River minimum flow scientific peer review panel to the Southwest Florida Water Management District. SWFWMD, Brooksville, FL.

Munro, J.L., A.C. Jones and D. Dimitriou. 1968. Abundance and distribution of the larvae of the pink shrimp (*Penaeus duorarum*) on the Tortugas Shelf of Florida, August 1962-October 1964. U.S. Fish and Wildlife Service Fisheries Bulletin 67:165-181.

National Marine Fisheries Service (NMFS) 1986. Fisheries of the United States, 1985. U.S. National Mar. Fish. Serv. Curr. Fish. Stat. No. 8368. 122 pp.

National Marine Fisheries Service (NMFS). 2002. Recovery plan for Johnson's seagrass (Halophila johnsonii). Prepared by the Johnson's seagrass recovery team for the National Marine Fisheries Service, Silver Springs, Maryland.

Odum, W.E., C.C. McIvor, and T.J. Smith, III. 1982. The ecology of the mangroves of south Florida: a community profile. U.S. Fish and Wildlife Service, Office of Biological Services. FBS/OBS-81-24.

Ogden, J.C. 1978a. Status of nesting biology of the American crocodile, *Crocodylus acutus*, (Reptilia, Crocodilidae) in Florida. Journal of Herpetology 12(2):183-196.

Ogden, J.C. 1978b. American crocodile. Pages 21-22. in R.W. McDiarmis ed. Rare and Endangered biota of Florida, Volume 3: Amphibians and Reptiles. University of Florida Presses of Florida; Gainesville, Florida.

Parker, G. G., G.E. Fergeuson, and S.K. Love. 1955. Water resources of southeastern Florida with special reference to the geology and groundwater of the Miami area. Water Supply Paper 1255, U.S. Geological Survey, Washington, DC.

Pyle, R.W., and L.E. Cronin. 1950. The general anatomy of the blue crab *Callinectes sapidus* Rathbun. Chesapeake Biol. Lab. Publ. No. 87, Solomon's Md. 40 pp.

Robblee, M.B., J. Lorenz and J.A. Browder. 2001. Work plan – Biscayne Bay performance measure development. SFWMD. West Palm Beach, Florida.

Ross. M.S., J.F. Meeder, J.P. Sah, P.L. Ruiz and G.J. Telesnicki. 2000. The southeast saline Everglades revisited: 50 years of coastal vegetation change. J. Veg. Sci. 11:101-112

Ross, M.S., E. E. Gaiser, J.F. Meeder and M. T. Lewin. 2002. Multi-taxon analysis of the "white zone," a common ecotonal feature of South Florida coastal wetlands. Pages 205-238 in J. W Porter and K.G. Porter (Eds.), The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem source book. CRC Press, Boca Raton, FL.

Ross, C.A. and W.E. Magnusson. 1989. Living crocodilians. Pages 58-75 in C.A. Ross, ed. Crocodiles and alligators, Facts on File, Inc. New York, New York.

Schroeder, P. 1984. Benthic sampling program. Final report to Metropolitan Dade County, Florida. Department of Environmental Resource Management.

Seaman, W., Jr., and M. Collins. 1983. Species Profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Florida) –

Snook. U.S. Fish and Wildlife Service. FWS/OBS-82/11.16. U.S. Army Corps of Engineers, TR EL-82-4. 16 pp.

Serafy, J.E., K.C. Lindeman, T.E. Hopkins and J.S. Ault. 1997. Effects of freshwater canal discharge on fish assemblages in a subtropical bay: field and laboratory observations. Mar. Ecol. Prog. Ser. 160:161-172.

Serafy, J.E., J.S. Ault, P. Ortner and R. Curry. 2001. Coupling Biscayne Bay's natural resources and fisheries to environmental quality and freshwater inflow management. Pages 163-174 in Biscayne Bay Partnership Initiative, Survey Teams Final Report. FAU/FIU Joint Center for Environmental and Urban Problems, Ft. Lauderdale, Florida.

Serafy, J.E., C.H. Faunce and J.J. Lorenz. 2003. Mangrove shoreline fishes of Biscayne Bay, Florida. Bull. Mar. Sci. 72(1):161-180.

Sheridan, P., and C. Hays. 2003. Are mangroves nursery habitat for transient fishes and decapods? Wetlands 23(2):449-458.

Sklar, F. H., and J.A. Browder. 1998. Coastal environmental impacts brought about by alterations to freshwater flow in the Gulf of Mexico. Environmental Management 22(4):547-562.

Smith, H.M. 1896. Notes on Biscayne Bay, Florida, with reference to its adaptability as the site of a marine hatching and experiment station. Pages 169-186 in Report of the commissioner for the year ending June 30, 1895, United States Commission of Fish and Fisheries, Washington, DC.

South Florida Water Management District (SFWMD). 2000. Minimum flows and levels for Lake Okeechobee, the Everglades, and the Biscayne aquifer. Draft.. SFWMD, Water Supply Department, West Palm Beach, FL.

South Florida Water Management District (SFWMD). 2002a. Technical documentation to support development of minimum flows and levels for the Northwest Fork of the Loxahatchee River. Final Draft. SFWMD, Water Supply Department, West Palm Beach, FL.

South Florida Water Management District (SFWMD). 2002b. Technical documentation to support development of minimum flows and levels for the Northwest Fork of the Loxahatchee River. Appendices A-F. Final Draft. SFWMD, Water Supply Department, West Palm Beach, FL. South Florida Water Management District (SFWMD). 2002c. Technical documentation to support development of minimum flows and levels for the Northwest Fork of the Loxahatchee River. Appendices G-S. Final Draft. SFWMD, Water Supply Department, West Palm Beach, FL.

South Florida Water Management District (SFWMD). 2002d. Technical documentation to support development of minimum flows for the St. Lucie River and estuary. Final Draft. SFWMD, Water Supply Department, West Palm Beach, FL.

South Florida Water Management District (SFWMD). 2002e. Technical documentation to support development of minimum flows for the St. Lucie River and estuary. Appendices. Draft. SFWMD, Water Supply Department, West Palm Beach, FL.

South Florida Water Management District (SFWMD). 2003a. Technical documentation to support development of minimum flows for the Caloosahatchee River and estuary. Status Update Report. SFWMD, Water Supply Department, West Palm Beach, FL.

South Florida Water Management District (SFWMD). 2003b. Technical documentation to support development of minimum flows for the Caloosahatchee River and estuary. Draft Appendices. SFWMD, Water Supply Department, West Palm Beach, FL.

Stone, J.R., T.M. Cronin, G.L. Brewster-Wingard, S.E. Ishman, B. R. Wardlaw and C.W. Holmes. 2000. A paleoecological reconstruction of the history of Featherbed Bank, Biscayne National Park, Biscayne Bay. U.S. Geological Survey, Open File Report 00-191. 21 pp.

Szmant, A.M. 1987. Biological investigations of the Black Creek vicinity, Biscayne National Park. U.S. National Park Service, Report SER-87. USNPS, Atlanta, GA.

Tabb, D.C., D.L. Dubrow, and A.E. Jones. 1962. Studies on the biology of the pink shrimp, *Penaeus duorum* Burkenroad, in Everglades National Park, Florida. Fla. Board Conserv. Mar. Lab. Tech. Ser. 37. 30 pp.

Tagatz, M.E. 1968. Biology of the blue crab, *Callinectes sapidus* Rathbun, in the St. Johns River, Florida. U.S. Fish Wildl. Serv. Fish. Bull. 67:17-33.

Thompson, B.G. 1984. Fisheries of the United States, 1984. U.S. National Fish Serv. Curr. Fish. Stat. No. 7500.

Thorhaug, A, J.A. Browder, H.R. Wanless, M. Roessler, R. Ewing, G. Burzycki, M.S. Ross, R.H. Skinner, S. Bellmund, L. Cantral, M. Kraus, L. Coburn and S. Traxler. 2001. Habitat and species of concern. Pages 175-218 in Biscayne Bay Partnership Initiative, Survey Team Final Reports. FAU/FIU Joint Center for Environmental and Urban Problems. Ft. Lauderdale, Florida.

Toth, L.A. 2003. Establishing indicators for broad ecological goals: restoration of ecological integrity (abstract). Page 38 in the Program of the Estuarine Indicators Workshop, 29-31 October 2003, Sanibel, Florida. Sanibel-Captiva Conservation Foundation Marine Laboratory. Manuscript provided.

United States Army Corps of Engineers and the South Florida Water Management District (USACE and SFWMD). 1999. Central and Southern Florida Project Comprehensive Review Study, Final Integrated Feasibility Report and Programmatic Environmental Impact Statement. USACE, Jacksonville, Florida and the SFWMD, West palm Beach, Florida.

United States Environmental Protection Agency, United States Army Corps of Engineers and Metro-Dade Department of Environmental Resources Management. 1994. Technical Summary Document for the Advance Identification of Possible Future Disposal Sites and Areas Generally Suitable for Disposal of Dredged or Fill Material in Wetlands Adjacent to Southwest Biscayne Bay, Dade County, Florida. 128 pp.

United States Fish and Wildlife Service, Southeast Region (USFWS). 1999. South Florida Multi-Species Recovery Plan; a Species Plan, an Ecosystem Approach.

Virnstein, R.W., L.J. Morris, J.D. Miller and R. Miller-Myers. 1997. Distribution and abundance of *Halophila johnsonii* in the Indian River Lagoon. St. Johns River Water Management District Technical Memorandum #24. 14 pp.

Wanless, H. R., and J.A. Browder. 2001. Science team co-chairs' report . Pages 75-108 in Biscayne Bay Partnership Initiative, Survey Teams Final Report. FAU/FIU Joint Center for Environmental and Urban Problems, Ft. Lauderdale, Florida.

Wingard, G.L., T.C. Cronin, G.S. Dwyer, S.E. Ishman, D.A. Willard, C.W. Holmes, C.E. Bernhardt, C.P. Williams, M.E. Marot, J.B. Murray, R. G. Stamm, J.H. Murray, and C. Budet. 2003a. Ecosystem history of southern and Central Biscayne Bay: summary report on sediment core analyses. U.S. Geological Survey Open File Report 03-375. Wingard, G. L., T. M. Cronin, C. Williams, W. Orem, D.A. Willard and S.E. Ishman. 2003b. Results from additional analyses of 2002 cores and status of workReport for the Biscayne Bay paleoecoligcal salinity study. U.S. Geological Survey

Williams, A.B. 1955. A contribution to the life histories of commercial shrimps (Penaeidae) in North Carolina. Bull. Mar. Sci. Gulf Caribb. 5:116-146.

Williams, A.B. 1960. The influence of temperature on osmotic regulation in two species of estuarine shrimps *(Penaeus)*. Biol. Bull. (Woods Hole, Mass.) 119:560-571

Williams, A.B. 1965. Marine decapod crustaceans of the Carolinas. U.S. Fish Wild. Serv. Fish. Bull. 65:1-298.

Zieman, J.C. 1982. The ecology of the seagrasses of south Florida: a cummunity profile. U.S. Fish and Wildlife Services. FWS/OBS-82/25. Washington, DC.

APPENDIX A

TASK 2 REPORT LITERATURE AND DATA REVIEW

BIBLIOGRAPHY DATABASE IN SUPPORT OF LITERATURE AND DATA REVIEW – TASK 2

FOR THE PROJECT

FRESHWATER FLOW AND ECOLOGICAL RELATIONSHIPS IN BISCAYNE BAY

BY

BARNES FERLAND AND ASSOCIATES, INC.

AND SUBCONSULTANTS

APPLIED TECHNOLOGY MANAGEMENT, INC. LEWIS ENVIRONMENTAL SERVICES, INC.

SOUTH FLORIDA WATER MANAGEMENT DISTRICT WEST PALM BEACH, FLORIDA

OCTOBER, 2003

INTRODUCTION

This literature review and bibliography database are part of the overall scope of the project titled, *Freshwater Flow and Ecological Relationships in Biscayne Bay* and is presented in fulfillment of the requirements of the Task 2 – Literature Search and Data Review and detailed in Contract No. C-15967-WO04-06. The bibliography is a result of a literature survey and represents the readily identifiable body of knowledge concerning freshwater flow and ecological relationships with respect to establishing Minimum Flows and Levels (MFLs) in Biscayne Bay. These references will likely support some portion of the final report and recommendations. A bibliography database was prepared in Microsoft Access 2000 software that allows a search of the documents through various listings and tables. The following describes the information sources used and the bibliographic database contents.

REFERENCE SOURCES

Numerous information sources were used to develop this database including various libraries and Internet web-based information. A list of key words was developed for selecting bibliographic entries and is included as Table 1.

University Library Sources

The libraries at the University of Miami and the University of Florida were used for source material. The University of Miami Rosenstiel School of Marine and Atmospheric Sciences maintains an online annotated bibliography of Biscayne Bay related materials. An online search of this database was conducted. The University of Florida Marston Science Library provided access to the entire state library system as well as a number of proprietary literature databases such as Cambridge Scientific Abstracts and Web of Science. The University of Florida journal collection also allowed hard copies of most citations to be made.

A particularly large number of relevant citations were found in the journal *Estuaries*, published by the Estuarine Research Federation (ERF). This journal was called *Chesapeake Science* prior to 1978. A CD obtained through the ERF was used to search all past issues of *Estuaries* and *Chesapeake Science* from 1960 through 1999. Hard copies of the journal for the years 2000 through the current 2003 issue were reviewed at the library. The December 2002 *Esturaries* was dedicated to the subjects of minimum flow with a dedicated issue titled *Freshwater Inflow: Science*, *Policy, Management* and provided a number of relevant citations that

summarize the MFL programs and methods at several of the Florida Water Management Districts.

Internet Sources

A primary method of research has been use of the Internet web-based information to screen for titles, preferably with abstracts, and then follow up by obtaining printed copies of those references that appear most relevant. The *key word* search feature is useful to identify relevant titles from each agency/entity web site. The web sites listed below were useful in identifying references related to this project:

www.leg.state.fl.us/statutes

Establishing minimum flows and levels (MFLs) is mandated by state water policy (Section 373.042 F.S.). The MFL designate the minimum hydrologic/hydraulic conditions that must be maintained to prevent significant harm to the ecology or water resources of the area resulting from permitted withdrawals. The MFL state statue can be obtained from this web site.

www.sfwmd.gov; www.sjrwmd.com; www.swfwmd.state.fl.us

Technical reports, published by each Water Management District, can be identified from their web sites and printed copies can be downloaded or ordered online and sent by mail. The SFWMD, SWFWMD, SRWMD, and SJRWMD websites were searched for publications regarding their ongoing MFL programs. Several reports/documents were obtained regarding their MFL efforts. Several related project descriptions are also provided on their websites. Citations are also included from interviews with the District MFL staff.

www.fws.gov

The U.S. Fish and Wildlife Service (FWS) provided a number of the species profiles that are included in the literature review. These species profiles include detailed discussions of life history stages and salinity tolerances. Species profiles in the literature review results include those for spotted seatrout, American oyster, pink shrimp, and the blue crab. Also obtained through the FWS were habitat suitability index (HIS) models for these species.

www.epa.gov

The U.S. Environmental Protection has numerous publications, which printed copies can be ordered online and sent by mail. The Surf Your Watershed site (<u>www.cfpub.epa.gov/surf/</u>) provides general information and links that describe water related issues in the vicinity of Biscayne Bay.

www.usgs.gov

The USGS "on-line catalog" was used to search references using several key word combinations. Copies of some reports can be downloaded but most still have to be obtained by mail. The publication database is limited largely to in-house reports, but does contain some outside papers by USGS authors. Related ongoing USGS project descriptions are also described. Online water levels, quality and flow data can also be downloaded.

www.discoverbiscaynebay.org

This is a very useful web-site for specific information that provides an understanding of the various issues on Biscayne Bay. This website has been developed to improve communication among those involved in improving Biscayne Bay. It serves as a central clearinghouse to collect information on Biscayne Bay protection, restoration, and enhancement efforts, and make it accessible electronically. The site map shows information categories, which include maps, news articles, over 150 publications and links to agencies and special projects.

BIBLIOGRAPHY DATABASE

This database lists documents that may be used to prepare the final project report and also lists documents that may not specifically be used in preparing the final report, but which contain information of related interest. This version of the database contains 299 total bibliographic entries considered to have *some direct relevance* to the project. References, suggested during the interviews with experts (Task 3), are included in the database as well as those provided by District Staff. It is anticipated that a few additional entries or adjustments to the database may occur throughout this project, as new references are discovered or acquired. The final version of this bibliography database will be delivered with the final report.

A list of key words was developed for selecting bibliographic entries and is included as Table 1. These keywords were grouped into topic categories and can be used to query the database. Many of the entries are associated with more than one code and therefore can be cross-referenced to more than one subject area.

The references contained in this MS Access database can be queried to generate the following reports:

- A listing of 86 Biscayne Bay specific references;
- A listing of 99 references that are considered most relevant;

- Topic Category 1 Animal Species (146 references);
- Topic Category 2 Aquatic Plants and Habitats (98 references);
- Topic Category 3 Ecological Indicators (45 references);
- Topic Category 4 Impact Approach (70 references);
- Topic Category 5 Water Quality Data (89 references);
- Topic Category 6 Hydrologic Data (40 references);
- An alphabetical listing by author of all 299 references;

Appendix A includes a report that lists all 299 references alphabetically by author. Each bibliographic entry contains the author name(s), date, title of publication, publication, publisher, and check boxes for topic categories.

minimum flows and levels	estuarine invertebrates	habitat
salinity effects	estuarine indicators	habitat requirements
salinity ranges	estuarine hydrologic	habitat suitability
salinity requirements	alterations	hypersaline
salinity sensitivity	estuarine nursery habitat	target species
salinity tolerance	estuarine organisms	valued ecosystem
salinity preference	estuarine stratification	component
seagrasses	estuarine refugia	fish osmoregulation
submerged aquatic	fisheries	fish osmotic regulation
vegetation	fishery resources	grass shrimp
isohaline	fish nursery habitat	seatrout
oligohaline habitat	adaptability	gray snapper
mesohaline habitat	American oyster	mangrove snapper
oligohaline wetlands	American crocodile	mullet
mesohaline wetlands	benthos/benthic	snook
ecology	benthic communities	red drum
ecological communities	benthic structure	black drum
ecological significance	epibenthic community	tarpon
epiphytes	Biscayne Ba y	blue crab
estuary	brackish	eastern oyster
estuarine dependent	forage fish	shoal grass
estuarine fish	killifish	manatee grass
estuarine fisheries	freshwater requirements	Halophila
estuarine reptiles	life history	manatee
estuarine criteria	indicator species	

TABLE 1 – BISCAYNE BAY KEY WORDS

ATTACHMENT A

BIBLIOGRAPHY DATABASE ALPHABETICAL LISTING BY AUTHOR

SFWMD Biscayne Bay MFL Literature Review

Complete Alphabetical Listing by Author

=

Author:	Abraham, H	3.J.				Date: 1985	
Title:		files: Life histories and Mummichog and Striped		onmental requirements of co ïsh	oastal	fishes and invertebrates	(mid-
Publication:							
Publisher:	USFWS						
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat [Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Adams, J.B	e. et al				Date: 2002	
Title:	A method t Africa	o assess the freshwater in	nflow	requirements of estuaries ar	nd ap	plication to the Mtata Es	tuary, Soutl
Publication:	Estuaries 2:	5(6B): 1382-1393					
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	
Author:	Alber, M.					Date: 2002	
Title:	A conceptu	al model of estuarine fre	shwat	ter inflow management			
Publication:	Estuaries 2:	5(68):1246-1261					
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat [Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	

Author:	Alleman, R					Date: 1991	
Title:	A synopsis	of the water quality and	moni	toring program in Biscayne	Bay,	Florida	
Publication:		equirements of seagrasse l D.E. Haunert, eds.)	s: res	ults and recommendations of	of a v	vorkshop (Kenworthy, W	., W.
Publisher:							
High Releva	nce 🗸	Biscayne Bay 🗸					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	✓	- Water Quality Data		Hydrologic Data	
Author:	Alleman, R					Date: 2003	
Title:	Biscayne B	ay coastal wetlands perfe	orman	ce measures			
Publication:	SFWMD: V	Version 7/31/03					
Publisher:	SFWMD						
High Releva	nce 🗹	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach	✓	Water Quality Data		Hydrologic Data	
Author:	Alleman, R					Date: 2003	
Title:	Graphics re	lated to the Biscayne Ba	y TAI	BS - MDS Model			
Publication:	SFWMD						
Publisher:	SFWMD						
High Releva		Biscayne Bay 🔽					
Other Categ				A quotia Dianta/IIabitat		Englacion Indiantera	
Since Sures		Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	\checkmark

Author:	Alleman, R					Date: 1995		
Title:	Update, surface water improvement and management plan for Biscayne Bay							
Publication:	: Biscayne Bay SWIM Planning Document							
Publisher:	SFWMD							
High Releva	nce 🗸	Biscayne Bay 🗸						
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	\checkmark	
Author:	Alleman, R					Date: 1995		
Title:	Update, sur	face water improvemen	t and r	nanagement plan for Bisca	yne B	ay		
Publication:	Biscayne B	ay SWIM Technical Ap	pendix	K				
Publisher:	SFWMD							
High Releva	nce 🗸	Biscayne Bay 🔽						
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data	✓	Hydrologic Data		
Author: Title:		a., T. Stone, and S. Dign beneficial surface fresh		flows into Biscayne Bay (d	raft)	Date: 2003		
Publication:	-				,			
Publisher:	SFWMD							
		Diggoryng Dorr						
High Releva		Biscayne Bay 🔽	_		_			
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data	✓	Hydrologic Data	\checkmark	

-

Author:	Anderson,	G.				Date: 1985		
Title:	Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): Grass shrimp							
Publication:	U.S. FWS	Biological Report 82						
Publisher:	USFWS							
High Releva	ince	Biscayne Bay						
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		
Author:	Araujo, F.C	G., W.P. Williams, and I	R.G. B	ailey		Date: 2000		
Title:	Fish assem	blages as indicators of v	vater q	uality in the Middle Tham	es Est	uary, England (1980-198	9)	
Publication:	Estuaries 2	3(3):305-317						
Publisher:	Estuarine F	Research Federation						
High Releva	ince	Biscayne Bay						
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators		
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data		
Author:	Ault, J., S.	Smith, G. Meester, J. L	uo and	l J. Bohnsack.		Date: 2001		
Title:	Site charac	terization for Biscayne	Nation	al Park: Assessment of fish	neries	resources and habitats		
Publication:	NOAA Teo	chnical Memorandum N	MFS-S	SEFSC-468				
Publisher:	NOAA							
High Releva								
	nce 🗸	Biscayne Bay 🗸						
Other Categ		Biscayne Bay 🗹 Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators		

Author:	Ault, J., S. Smith, G. Meester, J. Luo and J. Bohnsack. Date: 2001							
Title:	Site characterization for Biscayne National Park: Assessment of fisheries resources and habitats.							
Publication:	ion: NOAA Technical Memorandum NMFS-SEFSC-468.							
Publisher:	Publisher: NOAA							
High Releva	nce 🔽	Biscayne Bay 🔽						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		
Author:	Ault, J.A.,	G.A. Diaz, S.G. Smith,	J. Luo	, J. A.Serafy		Date: 1999		
Title:	An efficien	t sampling survey desig	n to es	sitmate pink shrimp population	on ał	oundance in Biscayne Bay	y, Florida	
Publication:	North Ame	rican Journal of fisherie	es Man	agement 19:696-712				
D-11-1-1								
Publisher:								
	nce 🗸	Biscayne Bay 🗸						
High Releva				Aquatic Plants/Habitat		Ecological Indicators		
High Releva		Biscayne Bay ✓ Animal Species Impact Approach		Aquatic Plants/Habitat [Water Quality Data [Ecological Indicators Hydrologic Data		
High Releva		Animal Species		-	V	-		
High Releva Other Categ Author:	g ories: Ault, J.S., J	Animal Species Impact Approach	Serafy	Water Quality Data		-		
High Releva Other Categ	g ories: Ault, J.S., J	Animal Species Impact Approach	Serafy	Water Quality Data		Hydrologic Data		
High Releva Other Categ Author: Title:	g ories: Ault, J.S., J A spatial dy	Animal Species Impact Approach	Serafy	Water Quality Data [, R. Humston, and G.A. Dia model		Hydrologic Data		
High Releva Other Categ Author: Title:	g ories: Ault, J.S., J A spatial dy	Animal Species Impact Approach J. Luo, S.G. Smith, J.E. ynamic multistock produ	Serafy	Water Quality Data [, R. Humston, and G.A. Dia model		Hydrologic Data		
High Releva Other Categ Author: Title: Publication:	avit, J.S., J Ault, J.S., J A spatial dy Canadian J	Animal Species Impact Approach J. Luo, S.G. Smith, J.E. ynamic multistock produ	Serafy	Water Quality Data [, R. Humston, and G.A. Dia model		Hydrologic Data		
High Releva Other Categ Author: Title: Publication: Publisher:	Ault, J.S., J A spatial dy Canadian J nce 🔽	Animal Species Impact Approach I. Luo, S.G. Smith, J.E. ynamic multistock produced ournal of Fisheries and	Serafy	Water Quality Data [, R. Humston, and G.A. Dia model	ιz	Hydrologic Data		

Author:	Austin, H., D.S. Haven, and M.S. Moustafa Date: 1993							
Title:	The relationship between trends in a condition index of the American oyster, Crassostrea virginica, and environmental parameters in three Virginia estuaries							
Publication:	Estuaries 1	6(2): 362-374						
Publisher:	Estuarine R	esearch Federation						
High Releva	nce 🔽	Biscayne Bay						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data	✓	Hydrologic Data		
Author:	Baker, P., I	D. Bergquist, and S. Bak	er			Date: Unknow	wn	
Title:	Oyster reef	assessment in the Suwa	nnee I	River Estuary: Final Report	t			
Publication:								
Publisher:	Departmen	t of Fisheries and Aquat	ic Scie	ences, Univ. Florida				
High Releva	nce 🗌	Biscayne Bay						
Other Categ								
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators		
Other Categ	ories:	Animal Species Impact Approach	✓	Aquatic Plants/Habitat Water Quality Data		Ecological Indicators Hydrologic Data		
	ories:	-		-		-		
Author:	ories: Bancroft, C	Impact Approach		-		-		
	Bancroft, C	Impact Approach		-		Hydrologic Data Date: 1994		
Author: Title:	Bancroft, C Relationshi	Impact Approach	oragin	Water Quality Data		Hydrologic Data Date: 1994		
Author: Title:	Bancroft, C Relationshi	Impact Approach T. et al ps among wading bird for The Ecosystem and Its	oragin	Water Quality Data		Hydrologic Data Date: 1994		
Author: Title: Publication:	Bancroft, C Relationshi Everglades: St. Lucie Pr	Impact Approach T. et al ps among wading bird for The Ecosystem and Its	oragin	Water Quality Data		Hydrologic Data Date: 1994		
Author: Title: Publication: Publisher:	Bancroft, C Relationshi Everglades: St. Lucie Pr nce	Impact Approach a.T. et al ps among wading bird for the Ecosystem and Its ress	oragin	Water Quality Data	S, and	Hydrologic Data Date: 1994		

Author:	Banks, M.A	Banks, M.A., G.J. Holt, and J.M. Wakeman Date: 1991							
Title:	Age-linked changes in salinity tolerance of larval spotted seatrout (Cynoscion nebulosus, Cuvier)								
Publication:	on: Journal of Fish Biology 39: 505-514								
Publisher: The Fisheries Society of the British Isles									
High Releva	nce 🗸	Biscayne Bay							
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach		Water Quality Data	✓	Hydrologic Data			
Author:	Beare, A. a	nd J.B. Zedler				Date: 1987			
Title:	Cattail inva	sion and persistence in a	a coas	tal salt marsh: the role of s	salini	ty reduction			
Publication:	Estuaries 10	0(2) 165-170							
Publication: Estuaries 10(2) 165-170									
Publisher:									
Publisher: High Releva	nce 🔽	Biscayne Bay 🗌							
				Aquatic Plants/Habitat		Ecological Indicators			
High Releva		Biscayne Bay 🗌 Animal Species Impact Approach		Aquatic Plants/Habitat Water Quality Data		Ecological Indicators Hydrologic Data			
High Releva		Animal Species		_		-			
High Releva		Animal Species Impact Approach		_		-			
High Releva Other Categ	g ories: Beck, M.W	Animal Species Impact Approach		Water Quality Data		Hydrologic Data			
High Releva Other Categ Author: Title:	pories: Beck, M.W The role of	Animal Species Impact Approach		Water Quality Data		Hydrologic Data			
High Releva Other Categ Author: Title:	g ories: Beck, M.W The role of Issues in Ec	Animal Species Impact Approach . et al nearshore ecosystems a		Water Quality Data		Hydrologic Data			
High Releva Other Categ Author: Title: Publication:	Beck, M.W The role of Issues in Ec The Ecolog	Animal Species Impact Approach . et al nearshore ecosystems a cology Number 11		Water Quality Data		Hydrologic Data			
High Releva Other Categ Author: Title: Publication: Publisher:	Beck, M.W The role of Issues in Ec The Ecolog nce	Animal Species Impact Approach (. et al nearshore ecosystems a cology Number 11 cical Society of America		Water Quality Data		Hydrologic Data			

Author:	Bedient, P.	et al				Date: 1999						
Title:			panel	on the data, theories, and	metho		ninimum					
	flows and levels rule for the northern Tampa Bay area, Florida											
Publication:	SWFWMD											
Publisher:	SWFWMD											
High Releva	nce 🔽	Biscayne Bay										
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators						
		Impact Approach		Water Quality Data		Hydrologic Data						
Author:	Bellmund	S., J. Browder, and S. A	lenac	h		Date: 1999						
Title:		in freshwater flows to E	•			Date. 1999						
Publication:	issue paper	In neshwater nows to L	iscay	lie Day								
Publisher:												
High Releva	nce 🗹	Biscayne Bay 🔽										
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators						
		Impact Approach		Water Quality Data		Hydrologic Data						
Author:	Berkeley, S					Date: 1984						
Title:	-	sessment of Biscayne B	ay									
Publication:	Final repor	-										
Publication: Final report												
Publichare	1	L										
Publisher:	-											
Publisher: High Releva	-	Biscayne Bay 🗹										
	nce 🔽			Aquatic Plants/Habitat		Ecological Indicators						

Author:	Berkeley, S	. and W. Campos			Date: 1984		
Title:	Fisheries assessment of Biscayne Bay						
Publication:	Final draft						
Publisher:	Rosenstiel	School of Marine and A	tmosp	heric Science, University of M	ami, Miami, FL		
High Releva	nce 🔽	Biscayne Bay 🗸					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🗌	Ecological Indicators		
		Impact Approach		Water Quality Data	Hydrologic Data		
Author:	Berkeley, S	., D. Pybas, and W. Cam	ipos		Date: 1985		
Title:	Bait shrimp	fishery of Biscayne Bay	7				
Publication:	Florida Sea	a Grant Program, Techni	cal Pa	aper 40			
Publisher:	Florida Sea	Grant College Program,	, Gain	esville, FL			
High Releva	nce 🔽	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators		
		Impact Approach		Water Quality Data	Hydrologic Data		
Author:	Bert, T.M.,	J. Dodrill, G.E. Davis, a	and J.	Tilmont	Date: 1983		
Title:	The popula	tion dynamics of the stor	ne cra	b (Menippe mercenaria) in Eve	rglades and Biscayne National parks		
Publication:	Florida Scie	entist 43					
Publisher:							
High Releva	nce 🗌	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat	Ecological Indicators		
		Impact Approach		Water Quality Data	Hydrologic Data		

Author:	Bielsa, L.M., W.H. Murdich, and R.F. Labinsky Date: 1983								
Title:	Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Florida): Pink shrimp								
Publication:	: U.S. FWS Biological Report 82								
Publisher:	r: USFWS								
High Releva	nce 🔽	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Birnak, B.I					Date: 1974			
Title:	An examina estuaries	ation of the influence of	freshv	water canal discharges on s	alinit	y in selected Southeastern	ı Florida		
Publication:	NTIS # PB-	-231 610							
Publisher:	National Te	echnical Information Ser	vice						
High Releva	nce 🔽	Biscayne Bay 🔽							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	\checkmark		
Author:	Bishop, T.I	D. and C.T. Hackney				Date: 1987			
Title:	-	tive study of the mollusc of abundance and biom		nunities of two oligohaline	e inter	tidal marshes: spatial and	l temporal		
Publication:	Estuaries 10	0(2): 141-152							
Publisher:	Estuarine R	esearch Federation							
High Releva	nce 🔽	Biscayne Bay							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	\checkmark	Ecological Indicators			
		Impact Approach		Water Quality Data	✓	Hydrologic Data			

Author:	Black, D.W	7.				Date: 1994	
Title:	Protecting	the water quality of Bisca	ayne E	Bay			
Publication:	Florida Sci	entist 57(1): 51-52					
Publisher:							
High Releva	nce 🗌	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	
Author:	Bornman,	Г.G., J.B. Adams, and G	.C. Ba	ate		Date: 2002	
Title:	Freshwater	requirements of a semi-	arid si	upratidal and floodplain sa	lt mai	rsh	
Publication:	Estuaries 2	5(6B): 1394-1405					
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		- Impact Approach		- Water Quality Data		Hydrologic Data	
Author:	Bortone, S.	A, and J.L. Williams				Date: 1986	
Title:		ofiles: Life histories and Gray, Land, Mutton, and		onmental requirements of c wtail snappers	coasta	l fishes and invertebrates	(South
Publication:	U.S. FWS	Biological Report 82					
Publisher:	USFWS						
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	

Author:	Bortone, S.	A. Ed.				Date: 2003	
Title:	Biology of	the spotted seatrout					
Publication:	CRC Marir	ne Biology Series					
Publisher:	CRC Press						
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	\checkmark
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	
Author:	Bortone, St	even A.				Date: 2003	
Title:	Spotted sea	atrout as a potential indic	ator o	f estuarine conditions			
Publication:	? Chapter 1	6 297-300					
Publisher:	CRC Press	LLC					
High Releva	nce 🔽	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Brook, I.M					Date: 1982	
Title:		of freshwater canal disch ark, Florida	arge o	on the stability of two seage	rass b	enthic communities in Bis	cayne
Publication:	Oceanol. A	cta 1982: 63-72					
Publisher:	SCOR/IAB	O/UNESCO					
High Releva	nce 🗌	Biscayne Bay 🖌					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat			
				riquatic 1 lants/ Habitat		Ecological Indicators	

Author:	Browder, J. Johnson	, Z. Zein-Eldin, M. Cria	ales, N	I. Robblee, S. Wong, T. Jack	cson a	and D. Date: In pres	S
Title:	•	of pink shrimp (Farfante e in Florida Bay. Estuari	-	us duorarum) recruitment po	tentia	al in relation to salinity a	and
Publication:							
Publisher:							
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Browder, J.	, R. Alleman, P. Ortner,	and S	. Markley		Date: 2003	
Title:	Biscayne B	ay conceptual ecological	mode	1			
Publication:	TBD						
Publisher:							
High Releva	nce 🗸	Biscayne Bay 🔽					
High Releva Other Categ				Aquatic Plants/Habitat 🛛		Ecological Indicators	
		Biscayne Bay Animal Species Impact Approach	✓	Aquatic Plants/Habitat		Ecological Indicators Hydrologic Data	
		Animal Species		-			
	ories:	Animal Species Impact Approach		-			
Other Categ	ories: Browder, J.	Animal Species Impact Approach , V.R. Restrepo, J.K. Ric ntal influences on potent	✓ ce, M.	Water Quality Data	in	Hydrologic Data Date: 1999	n Florida
Other Categ	ories: Browder, J. Environme Bay nursery	Animal Species Impact Approach , V.R. Restrepo, J.K. Ric ntal influences on potent y grounds.	✓ ce, M.	Water Quality Data	in	Hydrologic Data Date: 1999	n Florida
Other Categ Author: Title:	ories: Browder, J. Environme Bay nursery	Animal Species Impact Approach , V.R. Restrepo, J.K. Ric ntal influences on potent y grounds.	✓ ce, M.	Water Quality Data	in	Hydrologic Data Date: 1999	n Florida
Other Categ Author: Title: Publication:	ories: Browder, J. Environmer Bay nursery Estuaries 22	Animal Species Impact Approach , V.R. Restrepo, J.K. Ric ntal influences on potent y grounds.	✓ ce, M.	Water Quality Data	in	Hydrologic Data Date: 1999	n Florida
Other Categ Author: Title: Publication: Publisher:	Browder, J. Environmer Bay nursery Estuaries 22	Animal Species Impact Approach , V.R. Restrepo, J.K. Rid ntal influences on potent y grounds. 2:484-499	✓ ce, M.	Water Quality Data	 in	Hydrologic Data Date: 1999	n Florida

			-			
Author:	Browder, J	.A.			Date: 1981	
Title:	A new approved a new approved a new approved app		quant	titative relationship between fis	hery production and the flo	ow of fresh
Publication:	Proceeding	s of the National Sympo	sium (on Freshwater Inflow to Estuar	ies	
Publisher:	USFWS					
High Releva	ince	Biscayne Bay				
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach		Water Quality Data	Hydrologic Data	
Author:	Browder, J	.A.			Date: 1994	
Title:	Watershed	management and the imp	portar	nce of freshwater flow to estuar	ies	
Publication:	Proceeding	s, Tampa Bay Area Scie	ntific	Information Symposium 2: 7-2	2	
Publisher:	TEXT, Tar	npa				
High Releva	nce	Biscayne Bay				
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	
Author:	Browder, J	.A. and J. Tashiro, E. Co	lemai	n-Duffle, A. Rosenthal, and J.I	D. Wang Date: 1989	
Title:	Documenti	ng estuarine impacts of f	reshw	vater flow alterations and evalu	ating proposed remedies	
Publication:	Proceeding	s of the International We	etland	Symposium: 300-312		
Publisher:	Association	n of Wetland Managers,	lnc.			
High Releva	nce	Biscayne Bay				
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	

Author:	Browder, J	A. et al			Date: 1997
Title:	Chapter 15	: Success criteria based	on a f	ishery species, Pink shrimp	
Publication:	Ecologic ar	nd precursor success crite	eria fo	r south Florida ecosystem rest	pration
Publisher:	South Flori	da Ecosystem Restoratio	n Tas	k Force	
High Releva	nce 🔽	Biscayne Bay			
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🖌	Ecological Indicators
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data
Author:	Browder, J	.A., et al.			Date: 2002
Title:		of pink shrimp (Farfante) e in Florida Bay.	penae	us duorarum) recruitment pote	ntial in relation to salinity and
Publication:	Estuaries				
Publisher:					
Publisher: High Releva	nce	Biscayne Bay			
		Biscayne Bay 🗌 Animal Species		Aquatic Plants/Habitat 🔽	Ecological Indicators
High Releva				Aquatic Plants/Habitat ✔ Water Quality Data 🖌	Ecological Indicators 🗌 Hydrologic Data 🗌
High Releva		Animal Species		-	-
High Releva	ories:	Animal Species		-	-
High Releva Other Categ	g ories: Browder, J.	Animal Species Impact Approach .A., F.H. Sklar		-	Hydrologic Data
High Releva Other Categ Author: Title:	g ories: Browder, J. Coastal env	Animal Species Impact Approach .A., F.H. Sklar	Ight al	- Water Quality Data ☑	Hydrologic Data
High Releva Other Categ Author: Title:	g ories: Browder, J. Coastal env	Animal Species Impact Approach A., F.H. Sklar vironmental impacts brou	Ight al	- Water Quality Data ☑	Hydrologic Data
High Releva Other Categ Author: Title: Publication:	gories: Browder, J. Coastal env Environme	Animal Species Impact Approach A., F.H. Sklar vironmental impacts brou	Ight al	- Water Quality Data ☑	Hydrologic Data
High Releva Other Categ Author: Title: Publication: Publisher:	Browder, J. Coastal env Environme	Animal Species Impact Approach A., F.H. Sklar vironmental impacts brou ntal Management 22:547	Ight al	- Water Quality Data ☑	Hydrologic Data

Author:	Browder, J	A., J. Tahsiro, E Colema	an-Du	ffie, A. Rosenthal	Date: 1989	
Title:	Documenti	ng estuarine impacts of f	freshw	ater flow alterations and evalu	ating proposed remedies	
Publication:	Wetlands a	nd River Corridor Mana	gemer	nt Proceedings of the Internati	onal Wetlands Symposium	
Publisher:						
High Releva	nce 🗌	Biscayne Bay				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	
Author:	Brown, G.				Date: 2001	
Title:	Physics bas	ed numerical hydrodyna	mic ar	nd salinity model of Biscayne	Bay, FL	
Publication:	Proceeding	s of the 16th Biennial Co	onfere	nce of the Estuarine Research	Federation	
Publisher:	Estuarine R	esearch Federation				
High Releva	nce 🗌	Biscayne Bay 🔽				
Other Categ		Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach		Water Quality Data	Hydrologic Data	
					iljulologie Dum	<u> </u>
Author:	Brown-Pete & J.R. War		n, D.L	Nieland, M.D. Murphy, R.C	Taylor, Date: 2002	
Title:	Reproducti	ve hiology of female spo	ttad se	eteret. Companying a charle and		
	among estu		ticu sc	carout, Cynoscion nebulosus,	n the Gulf of Mexico: diff	erences
Publication:	among estu				n the Gulf of Mexico: diff	erences
Publication: Publisher:	among estu Environme	aries?			n the Gulf of Mexico: diff	rences
	among estu Environme Klower Act	aries? ntal Biology of Fishes 63			n the Gulf of Mexico: diff	rences
Publisher:	among estu Environme Klower Ac: nce 🔽	aries? ntal Biology of Fishes 63 ademic Publishers			n the Gulf of Mexico: diff Ecological Indicators	`erences

Author:	Bulger, A.J	., B.P. Hayden, M.E. Mo	naco,	D.M. Nelson, M.G. McCo	ormick	x-Ray Date: 1993	
Title:	Biologically	y-based estuarine salinity	zone	s derived from multivariate	e anal	ysis	
Publication:	Estuaries 16	5:311-322					
Publisher:							
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach	✓	Water Quality Data		Hydrologic Data	
Author:	Bulger, A.J Nelson	., B.P. Hayden, M.G. Mc	Corm	nick-Ray, M.E. Monaco, ar	nd D.N	M. Date: 1990	
Title:	A proposed	estuarine classification:	analy	sis of species salinity rang	ges		
Publication:	ELMR Rep	ort No. 5					
Publisher:	NOS/NOAA	A					
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	✓	Water Quality Data		Hydrologic Data	
Author:	Burrel, V.G	ŀ.				Date: 1986	
Title:		files: Life histories and American oyster	enviro	onmental requirements of c	coasta	l fishes and invertebrates	(South
Publication:	U.S. FWS I	Biological Report 82					
Publisher:	USFWS						
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat	\checkmark	Ecological Indicators	
		Impact Approach	✓	Water Quality Data		Hydrologic Data	

Author:	Byrne, D.M	[.				Date: 1978	
Title:	Life history	of the spottin killifish,	Fundu	lus luciae (Pisces: Cyprino	donti	dae) in Fox Creek Marsh,	Virginia
Publication:	Estuaries 1	(4): 211-227					
Publisher:	Estuarine R	esearch Federation					
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	
Author:	Campbell,	H.W.				Date: 1972	
Title:	Ecological	or physiological interpre	etation	s of crocodilian nesting hal	bits		
Publication:	Nature 238	: 404-405					
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Chamberla	n, R.H. and P.H. Doerir	ıg			Date: 1998	
Title:	Freshwater	inflow to the Caloosaha	tchee	Estuary and the resource-ba	ased 1	nethod for evaluation	
Publication:	Charlotte H	arbor Technical Report	No. 98	8-02			
Publisher:	Charlotte H	larbor National Estuary	Progra	am			
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	\checkmark	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	

Author:	Chamberlai	in, R.H. and P.H. Doerir	ng			Date: Unknow	vn
Title:	Preliminary	estimate of optimum from	eshwa	ter inflow to the Caloosaha	atchee	Estuary: A resource-base	d approacl
Publication:	Preliminary	estimate of optimum from	eshwa	ter inflow to the Caloosaha	atchee	Estuary: A resource-base	d approacl
Publisher:	SFWMD						
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	\checkmark
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	
Author:	Chervinski,	J.				Date: 1984	
Title:	Salinity tole	erance of young catfish,	Claria	as lazera (Burchell)			
Publication:	J. Fish Biol	. 25: 147-149					
Publisher:	The Fisheri	es Society of the British	Isles				
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Chervinski,	J.				Date: Unknow	vn
Title:	Salinity tole	erance of young gilthead	l sea b	ream			
Publication:							
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Christianse	n, J.D., M.E. Monaco, a	nd T.A	A. lowery		Date: 1997
Title:	An index to	assess the sensitivity of	Gulf	of Mexico species to chang	ges in	estuarine salinity regimes
Publication:	Gulf Resear	rch Reports Vol.9 Nol. 4	:219-2	229		
Publisher:						
High Releva	nce 🗸	Biscayne Bay				
Other Categ						
Other Categ	01105.	Animal Species		Aquatic Plants/Habitat		Ecological Indicators
		Impact Approach	\checkmark	Water Quality Data	\checkmark	Hydrologic Data
Author:	Clark, R.D.	, W. Morrison, J.D. Chri	istense	en, M.E. Monaco and M.S.	Coy	ne Date: Unknown
Title:	-	he distribution and abund nagement needs	lance	of spotted seatrout: integra	ation (of ecology and GIS technology to
Publication:						
Publisher:	NOAA/NO	C/NCCOS/CCMA Biog	eograp	bhy Program		
High Releva	nce 🗸	Biscayne Bay				
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	✓	Ecological Indicators
		Impact Approach	\checkmark	Water Quality Data	✓	Hydrologic Data
Author:	Coen, L.D.	and M.W. Luckenbach				Date: 2000
Title:	Developing exploitation	-	ls for	evaluating oyster reef resto	ration	n: ecological function or resource
Publication:	Ecological	Engineering 15: 323-343	3			
Publisher:						
High Releva	nce	Biscayne Bay				
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat	✓	Ecological Indicators
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data

Author:	Coen, L.D.	, M.W. Luckenbach, and	ID.L.	Breitburg		Date: 1999	
Title:	The role of	oyster reefs as essential	fish h	abitat: a review of current	know	ledge and some new pers	spectives
Publication:	Fish habita	t: essential fish habitat a	nd reh	nabilitation pp. 438-454			
Publisher:	American I	Fisheries Society					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	✓	Ecological Indicators	\checkmark
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Cofer-Shab	oica, S.V., J.D. Wang				Date: 1989	
Title:	The effects	of freshwater canal disc	harges	s on salinities in Biscayne	Natio	nal Park	
Publication:	Coastal Zo	ne 89 Proeceedings of th	e Sixt	h Symposium on Caostal a	nd O	cean Management 2738 -	2753
Publisher:	ASCE						
	TIDEE						
High Releva		Biscayne Bay 🔽					
	nce 🗸	Biscayne Bay 🔽 Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
High Releva	nce 🗸			Aquatic Plants/Habitat Water Quality Data		Ecological Indicators Hydrologic Data	
High Releva	nce 🗸	Animal Species		-			
High Releva	nce 🗸	Animal Species Impact Approach		-			
High Releva Other Categ	nce 🗹 gories: Collins, M. Species pro	Animal Species Impact Approach R.	enviro	-		Hydrologic Data Date: 1985	
High Releva Other Categ Author: Title:	nce gories: Collins, M. Species pro Florida) - S	Animal Species Impact Approach R.	enviro	Water Quality Data		Hydrologic Data Date: 1985	
High Releva Other Categ Author: Title:	nce gories: Collins, M. Species pro Florida) - S	Animal Species Impact Approach R. ofiles: life histories and of striped mullet	enviro	Water Quality Data		Hydrologic Data Date: 1985	
High Releva Other Categ Author: Title: Publication:	nce ories: Collins, M. Species pro Florida) - S U.S. FWS 1 USFWS	Animal Species Impact Approach R. ofiles: life histories and of striped mullet	enviro	Water Quality Data		Hydrologic Data Date: 1985	
High Releva Other Categ Author: Title: Publication: Publisher:	nce ories: Collins, M. Species pro Florida) - S U.S. FWS USFWS nce	Animal Species Impact Approach R. ofiles: life histories and of striped mullet Biological Report 82	enviro	Water Quality Data	Dastal	Hydrologic Data Date: 1985	

Author:		on a Systems Assessme esearch Council	nt of I	Marine Environmental Monito	oring,	Date: 1990	
Title:	Chapter 4:	Designing and Impleme	enting	Monitoring Programs			
Publication:	Managing '	Troubled Waters: The F	Role of	f Marine Environmental Mon	itoring	5	
Publisher:	National A	cademy of Sciences					
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	E	cological Indicators	
		Impact Approach		Water Quality Data	H	ydrologic Data	
Author:	Comp, G. a	and W. Seaman				Date: 1985	
Title:	Estuarine h	abitat and fishery resour	ces of	Florida. In: Florida Aquatic	Habita	at and Fishery Resourc	es
Publication:	Florida Cha	apter, American Fisherie	s Soci	iety, Kissimmee, FL			
Publisher:							
Publisher: High Releva	nce 🗸	Biscayne Bay 🗌					
		Biscayne Bay 🗌 Animal Species		Aquatic Plants/Habitat 🖌	e Ed	cological Indicators	
High Releva				Aquatic Plants/Habitat 🗹 Water Quality Data		cological Indicators ydrologic Data	
High Releva		Animal Species		-		-	
High Releva	ories:	Animal Species		-		-	
High Releva Other Categ	cories:	Animal Species Impact Approach J., D.M. Allen and geographic distribu		-] H;	ydrologic Data Date: 1966	
High Releva Other Categ Author: Title:	costello, T Migrations Grounds, F	Animal Species Impact Approach J., D.M. Allen and geographic distribu		Water Quality Data] H;	ydrologic Data Date: 1966	
High Releva Other Categ Author: Title:	costello, T Migrations Grounds, F	Animal Species Impact Approach .J., D.M. Allen and geographic distribu lorida		Water Quality Data] H;	ydrologic Data Date: 1966	
High Releva Other Categ Author: Title: Publication:	costello, T Migrations Grounds, F Fishery Bu	Animal Species Impact Approach .J., D.M. Allen and geographic distribu lorida		Water Quality Data] H;	ydrologic Data Date: 1966	
High Releva Other Categ Author: Title: Publication: Publisher:	Costello, T Migrations Grounds, F Fishery Bu	Animal Species Impact Approach J., D.M. Allen and geographic distribu lorida lletin 65:449-459		Water Quality Data] H	ydrologic Data Date: 1966	

Author:	Countryma	n, R.A. and M.T. Stewa	rt		Date: 1997	
Title:	Geophysica	al delineation of the posi	tion o	f the saltwater interface in the L	lower Suwannee River Bas	sin
Publication:	Final Contr	act Report for SRWMD	and U	JSGS		
Publisher:	Geology D	epartment, University of	South	n Florida		
High Releva	nce	Biscayne Bay				
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	
Author:	Crisp, D.J.				Date: 1967	
Title:	Chemical f	actors inducing settleme	ent in (Crassostrea virginica		
Publication:	J. Anim. E	col 36: 329-335				
Publisher:						
High Releva	ince	Biscayne Bay				
High Releva Other Categ		Biscayne Bay 🗌 Animal Species		Aquatic Plants/Habitat 🗸	Ecological Indicators	
-				Aquatic Plants/Habitat ☑ Water Quality Data □	Ecological Indicators Hydrologic Data	V
-		Animal Species		-	-	
Other Categ	gories: Cropper, W	Animal Species Impact Approach /.P., D. Lirman, S.C. To		Water Quality Data	-	
Other Categ Author: Title:	gories: Cropper, W Population	Animal Species Impact Approach V.P., D. Lirman, S.C. To dynamics of a commerc	ial spo	Water Quality Data	Hydrologic Data	
Other Categ Author: Title: Publication:	gories: Cropper, W Population Estuarine, 0	Animal Species Impact Approach V.P., D. Lirman, S.C. To dynamics of a commerc Coastal and Shelf Science	ial spo	Water Quality Data	Hydrologic Data	
Other Categ Author: Title:	gories: Cropper, W Population	Animal Species Impact Approach V.P., D. Lirman, S.C. To dynamics of a commerc Coastal and Shelf Science	ial spo	Water Quality Data	Hydrologic Data	
Other Categ Author: Title: Publication:	gories: Cropper, W Population Estuarine, G Academic I	Animal Species Impact Approach V.P., D. Lirman, S.C. To dynamics of a commerc Coastal and Shelf Science	ial spo	Water Quality Data	Hydrologic Data	
Other Categ Author: Title: Publication: Publisher:	Cropper, W Population Estuarine, C Academic I	Animal Species Impact Approach V.P., D. Lirman, S.C. To dynamics of a commerc Coastal and Shelf Science Press	ial spo	Water Quality Data	Hydrologic Data	

Author:	Cummins, I	К.				Date: Unkno	own
Title:	Chapter 14	: South Florida success	criteri	a estuarine and inland fish	рори	lations and communities	
Publication:	Ecologic ar	nd precursor success crite	eria fo	r south Florida ecosystem	restor	ation	
Publisher:	South Flori	da Ecosystem Restoratio	n Tasl	k Force			
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	
Author:	Dame, R.					Date: 1996	
Title:	Ecology of	marine bivalves: an eco	systen	n approach			
Publication:	CRC Marin	e Biology Series					
Publisher:	CRC						
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	
Author:	Dame, R.F.	., J.D. Spurrier, R.G. Zir	ıgmarl	k		Date: 1992	
Title:	In situ meta	abolism of an oyster reef					
Publication:	Journal Exp	perimental Marine Biolo	gy and	d Ecology 171: 251-258			
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

-

Author:	Darst, M.R	., H.M. Light, and L.J. I	ewis			Date: 2002	
Title:		ver vegetation in wetland flow reductions	l fores	ts of the Lower Suwannee	River	floodplain, Florida, and I	ootential
Publication:	Water Reso	ources Investigations Rep	oort 02	2-4027			
Publisher:	USGS						
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	✓	Water Quality Data		Hydrologic Data	
Author:	Davenport,	J.				Date: 1982	
Title:	Environme	ntal stimulation experin	ents o	on marine and estuarine an	imals		
Publication:	Adv. Mar.	Biol. 19: 133-256					
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Davis, G.E					Date: Unkno	wn
Title:	National Pa	ark Service spiny lobster	fisher	ry research in Florida a pro	gress	report	
Publication:							
Publisher:	National Pa	ark Service					
High Releva	nce	Biscayne Bay 🖌					
Other Categ	gories:	Animal Species	\checkmark	A			_
		•		Aquatic Plants/Habitat		Ecological Indicators	

Author:	De Sylva, I)			Date: 1970
Title:	Ecology an	d distribution of postlarv	al fish	nes of southern Biscayne Bay,	Florida
Publication:		port to the U.S.E.P.A. W 30 September 1970	ater (Quality Office. Contract FWQ	A 18050 DIU, covering the period 1
Publisher:	Rosenstiel	School of Marine and At	mosp	heric Science, University of M	iami, Miami, FL
High Releva	nce 🔽	Biscayne Bay 🔽			
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🗌	Ecological Indicators
		Impact Approach		Water Quality Data	Hydrologic Data
Author:	De Sylva, I)			Date: 1969
Title:	Sport fisher	ries			
Publication:		., F. Bayer, C. Robins, M onument, Miami	1. Goi	mon and E. LaRoe (eds.), The	marine ecology of the Biscayne
Publisher:	Rosenstiel	School of Marine and A	tmosp	oheric Sciences, University of	vliami. Miami, FL
High Releva	nce 🗸	Biscayne Bay 🔽			
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🗌	Ecological Indicators
		Impact Approach		Water Quality Data	Hydrologic Data
Author:	De Vries, N	I.C., R.B. Forward, and	W.F.	Hettler	Date: 1995
Title:					Date: 1795
		response of larval Atlan to rates of salinity chang		enhaden Brevoortia tyrannus (I	Latrobe) and spot Leiosomus xanthurus
Publication:	(Lacepede)	to rates of salinity chang	ge	enhaden Brevoortia tyrannus (I and Ecology 185: 93-108	
Publication: Publisher:	(Lacepede)	to rates of salinity chang Experimental Marine Bio	ge	•	
	(Lacepede) Journal of I Elsevier Sc	to rates of salinity chang Experimental Marine Bio	ge	•	
Publisher:	(Lacepede) Journal of I Elsevier Sc nce	to rates of salinity chang Experimental Marine Bio ience Ltd.	ge	•	
Publisher: High Releva	(Lacepede) Journal of I Elsevier Sc nce	to rates of salinity chang Experimental Marine Bio ience Ltd. Biscayne Bay	ge blogy	and Ecology 185: 93-108	Latrobe) and spot Leiosomus xanthurus

Author:	DeAngelis,	D.L., W.F. Loftus, J.C.	Trexl	er, and R.E. Ulanowicz	Date:	1997
Title:	Modeling f	ish dynamics and effects	of str	ess in a hydrologically pulsed	ecosystem	
Publication:	Journal of A	Aquatic Ecosystem Stres	s and	Recovery 6: 1-13		
Publisher:	Kluwer Ac	ademic Publishers				
High Releva	nce	Biscayne Bay				
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat	Ecological Indic	cators
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	a 🗸
Author:	Defeo, O.				Date:	Unknown
Title:	Testing hyp	potheses on recruitment,	growt	th, and mortality in exploited l	oivalves: an experim	nental prospective
Publication:	Proceeding	s of the North Pacific Sy	mpos	ium on Invertebrate Stock Ass	sessment and Manag	gement: 257-264
Dellehour						
Publisher:						
High Releva	nce	Biscayne Bay 🗌				
		Biscayne Bay 🗌 Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indic	cators
High Releva				Aquatic Plants/Habitat 🗌 Water Quality Data 🗌	Ecological Indic Hydrologic Data	
High Releva		Animal Species		-	-	
High Releva		Animal Species Impact Approach		-	-	a 🗌
High Releva Other Categ	gories: Defeo, O., .	Animal Species Impact Approach A. de Alva numan activites on lon-te		-	Hydrologic Data Date:	a 1995
High Releva Other Categ Author: Title:	gories: Defeo, O., . Effects of I in Uruguay	Animal Species Impact Approach A. de Alva numan activites on lon-te	erm tre	Water Quality Data	Hydrologic Data Date:	a 1995
High Releva Other Categ Author: Title:	gories: Defeo, O., . Effects of I in Uruguay	Animal Species Impact Approach A. de Alva numan activites on lon-te	erm tre	Water Quality Data	Hydrologic Data Date:	a 1995
High Releva Other Categ Author: Title: Publication:	gories: Defeo, O., . Effects of h in Uruguay Marine Eco	Animal Species Impact Approach A. de Alva numan activites on lon-te	erm tre	Water Quality Data	Hydrologic Data Date:	a 1995
High Releva Other Categ Author: Title: Publication: Publisher:	Defeo, O., . Effects of h in Uruguay Marine Eco	Animal Species Impact Approach A. de Alva numan activites on lon-te blogy Progress Series 12	erm tre	Water Quality Data	Hydrologic Data Date: ns: the wedge clam I	a 1995 Donax hanleyanus

Author:	Dennis, G.I	D., K.J. Sulak				Date: 2001	
Title:	Mangrove J	prop-root habitat as esse	ntial f	ish habitat in northeastern	Floric	la Bay	
Publication:	Florida Bay	Science Conference Pre	esenta	tion, April 2001			
Publisher:							
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	\checkmark
Author:	deSylva, D.	Р.				Date: 1976	
Title:	Fishes of B	iscayne Bay, Florida					
Publication:		2 in A.L. Thorhaug, A.S. Special Publication 5)	. Volk	er, eds., Biscayne Bay - Pa	ist, Pr	esent, Future (University	of Miami
Publisher:	University	of Miami					
High Releva	nce 🗌	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Diaz, G.					Date: 2001	
Title:	Population grounds	dynamics and assessmen	nt of p	ink shrimp (Farfantepenae	us du	orarum) in subtropical nu	rsery
Publication:	Ph.D. Disse	ertation					
Publisher:	University	of Miami					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	

Author:	Diaz, G.A.					Date: Unkno	own
Title:	Spatial and	temporal patterns of pir	nk shri	imp post-larval settlement	in Bis	cayne Bay	
Publication:	Presentatio	n					
Publisher:							
High Releva	nce 🗌	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	\checkmark
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Diaz, G.A.	, S.G. Smith, J.E. Searfy	, and .	J.S. Ault		Date: 2001	
Title:	Allometry	of the growth of pink sh	rimp F	Farfantepenaeus duorarum	in a s	ubtropical bay	
Publication:	Transaction	ns of the American Fishe	eries S	ociety 130:328-335			
Publisher:	American I	Fisheries Society					
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		- Water Quality Data	\checkmark	Hydrologic Data	
Author:	Doering, P	.H., R.H. Chamberlain, a	and D.	.E. Haunert		Date: 2002	
Title:	-	nerged aquatic egetation chee Estuary, Florida	to est	ablish minimum and maxir	num	freshwater inflows to the	
Publication:	Estuaries 2	5(6B): 1343-1354					
Publisher:	Estuarine F	Research Federation					
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Drouin, G.	and J.H. Himmelman				Date: 1985	
Title:	Impact of t	idal salinity fluctuations	on ec	hinoderm and mollusc popu	ılatio	ns	
Publication:	Can. J. Zoo	ol. 63: 1377-1387					
Publisher:	NRC Cana	da					
High Releva	ince	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Dunson, W	.А.				Date: 1982	
Title:	Salinity rel	ations of crocodiles in F	lorida	Bay			
Publication:	Copeia 2:3'	74-385					
Publisher:							
High Releva	nce	Biscayne Bay					
High Releva Other Categ		Biscayne Bay 🗌 Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
-				-		Ecological Indicators Hydrologic Data	
-		Animal Species		-		_	
-		Animal Species Impact Approach		-		_	
Other Categ	g ories: Edwards, C	Animal Species Impact Approach		-		Hydrologic Data	
Other Categ	g ories: Edwards, C Giant shrin	Animal Species Impact Approach C.E.		-		Hydrologic Data	
Other Categ Author: Title:	g ories: Edwards, C Giant shrin	Animal Species Impact Approach C.E.		-		Hydrologic Data	
Other Categ Author: Title: Publication:	gories: Edwards, C Giant shrin Of Sea and	Animal Species Impact Approach C.E.		-		Hydrologic Data	
Other Categ Author: Title: Publication: Publisher:	Edwards, C Giant shrin Of Sea and	Animal Species Impact Approach C.E. np in Biscayne Bay Shore		Water Quality Data		Hydrologic Data	

Author:	Edwards, R	e.E.			Date: 1991	
Title:	Nursery ha	bitats of important early-	juven	ile fishes in the Manatee River	Estuary System of Tampa	Bay
Publication:	Proceeding	s, Tampa Bay Area Scier	ntific	Information Symposium 2: 23	7-251	
Publisher:	TEXT, Tar	npa				
High Releva	nce 🗌	Biscayne Bay				
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach		Water Quality Data 🔽	Hydrologic Data	
Author:	Egler, F.				Date: 1950	
Title:	Southeast s	aline Everglades vegetat	ion			
Publication:	Florida and	l Its Management				
Publisher:	American N	Museum of Natural Histo	ory			
High Releva	nce 🗌	Biscayne Bay				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗹	Ecological Indicators	
		Impact Approach		Water Quality Data	Hydrologic Data	
Author:	Ehrhardt, N	J.M. and C.M. Legault			Date: 1999	
Title:	Pink shrim	p, Farfantepenaeusduora	rum, r	ecruitment variability as an inc	licator of Florida Bay dyna	amics
Publication:	Estuaries 2	2(2B): 471-483				
Publisher:	Estuarine R	Research Federation				
High Releva	nce 🔽	Biscayne Bay				
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	Ecological Indicators	\checkmark
		Impact Approach		Water Quality Data	Hydrologic Data	

Author:	Ellis, T.M.					Date: 1981	
Title:	Tolerance of	of sea water by the Amer	ican c	rocodile, Crocodylus acutus			
Publication:	J. Herpetol.	15(2): 187-192					
Publisher:							
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat 🗸	E	cological Indicators	
		Impact Approach		Water Quality Data	Н	lydrologic Data	
Author:	Engel, D.W	., W.F. Hetter, L. Costo	n-Cler	nents, D.E. Hoss		Date: 1987	
Title:	The effect of tyrannus	of abrupt salinity change	s on tł	ne osmoregulatory abilities of	the A	Atlantic Menhaden Brev	oortia
Publication:	Comparativ	e Biochemisrty and Phy	siolog	y 86A: 723-727			
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	E	cological Indicators	
		Impact Approach		Water Quality Data	H	lydrologic Data	
Author:	Environme	ntal Consulting & Techr	nology	, Inc.		Date: 2003	
Title:		ntal Evaluations for the last tate Road 44, Volusia C		opment of Minimum Flows a	nd Le	vels for the St. Johns Ri	iver Near
Publication:	Prepared for	or St. Johns River Water	Mana	gement District, Palatka, Flor	rida		
Publisher:	Prepared by	y ECT, Gainesville, Flor	ida, E	CT No. 020157-0100			
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	E	cological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Л	lydrologic Data	

Author:	EPA					Date: 2000	
Title:	Chapter 1:	Introduction: Bioassess	ment	and Biocriteria Technical Gu	uida	nce	
Publication:	Estuarine a	nd Coastal Marine Wate	rs: Bi	ioassessment and Biocriteria	ı Teo	chnical Guidance	
Publisher:	EPA						
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Estevez, E.					Date: 2002	
Title:	Review and	l assessment of biotic va	riables	s and analytical methods use	d in	estuarine inflow studies	
Publication:	Estuaries 2	5(6B): 1291-1303					
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Estevez, E.	D.				Date: 2000	
Title:	A review a	nd application of literatu	re con	cerning freshwater flow man	nage	ement in riverine estuaries	8
Publication:	Mote Marin	ne Laboratory Technical	Repoi	rt 680			
Publisher:	SFWMD						
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat	✓	Ecological Indicators	\checkmark
		Impact Approach	✓	Water Quality Data	✓	Hydrologic Data	\checkmark

Author:	Estevez, E.	D. and J. Sprinkel			Date: 1999	
Title:	-	and abundance of submo ty, and related variables	erged	aquatic vegetation in the tital S	uwannee River, Florida in	relation to
Publication:						
Publisher:	Mote Marin	ne Laboratory				
High Releva	nce 🗌	Biscayne Bay				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	
Author:	Estevez, E.	D. and J. Sprinkel			Date: 2000	
Title:	-	and abundance of wood ow-related variables	habita	nt of the Santa Fe and Lower Su	wannee River Systems in	relation to
Publication:						
Publisher:	Mote Marin	ne Laboratory				
High Releva	nce 🗌	Biscayne Bay				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	Ecological Indicators	
		Impact Approach				
		I	V	Water Quality Data	Hydrologic Data	
				Water Quality Data	Hydrologic Data	
Author:	Estevez, E.	D., R.E. Edwards, D.M.			Hydrologic Data Date: 1991	
Author: Title:			Hayw	rard		
Title:	An ecologi	D., R.E. Edwards, D.M.	Hayw Bay's t	rard	Date: 1991	
Title:	An ecologi	D., R.E. Edwards, D.M. cal overview of Tampa E s, Tampa Bay Area Scie	Hayw Bay's t	vard idal rivers	Date: 1991	
Title: Publication:	An ecologi Proceeding TEXT, Tar	D., R.E. Edwards, D.M. cal overview of Tampa E s, Tampa Bay Area Scie	Hayw Bay's t	vard idal rivers	Date: 1991	
Title: Publication: Publisher:	An ecologi Proceeding TEXT, Tar nce	D., R.E. Edwards, D.M. cal overview of Tampa E s, Tampa Bay Area Scie npa	Hayw Bay's t	vard idal rivers	Date: 1991	

Author:	Fatt, J.C. a	nd J.D. Wang				Date: 1987			
Title:	Canal disch	narge impacts on Biscayr	ne Bay	v salinities, Biscayne Natio	nal P	ark			
Publication:	National Pa	ark Service Research/Res	ource	s Management Report SER	R-89				
Publisher:	National Pa	ark Service							
High Releva	nce 🗌	Biscayne Bay 🔽							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Flannery, M.S., E.B. Peebles, and R.T. Montgomery Date: 2002								
Title:	A percent-of-flow approach for managing reductions of freshwater inflows from unimpounded rivers to southwest Florida estuaries								
Publication:	Estuaries 2	5(6B): 1318-1332							
Publisher:	Estuarine F	Research Federation							
High Releva	nce 🗸	Biscayne Bay							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data			
Author:	Florida De	partment of Natural Reso	ources			Date: 1991			
Title:	Biscayne B	ay- Card Sound aquatic	preser	eve management plan.					
Publication:	Cabinet dra	ıft							
Publisher:	Florida De	partment of Natural Reso	ources	, Tallahassee, FL					
High Releva	nce 🔽	Biscayne Bay 🔽							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data			

Author:	Fonseca, M	I.S., W.J. Kensworthy, a	nd G.V	W.Thayer	Date: 1992				
Title:	Seagrass be	eds: nursery for coastal s	pecies						
Publication:	-	the Tide of Coastal Fish on Conservation of Coa			l Fisl	heries 14 Proceedings of A			
Publisher:									
High Releva	nce	Biscayne Bay							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Author: Foster, Ann M., T.J. Smith III Date: 2001								
Title:	Changes in	the mangrove/marsh eco	otones	of the Florida Everglades					
Publication:	Sixteenth B	iennial Conference of th	e Esti	arine Research Federation	USG	S Poster			
Publisher:									
High Releva	nce 🗌	Biscayne Bay							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Frisbie, C.M	И.				Date: 1961			
Title:	Young blac Delaware B	-	s, in ti	idal fresh and brackish wat	ers, e	especially in the Chesapeake and			
Publication:	Chesapeake	e Science 2(1-2): 94-100							
Publisher:	Estuarine R	esearch Federation							
High Releva	nce 🔽	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data			

-

Author:	Frithsen, J.	rithsen, J.B., A.F. Holland Date: Unkno							
Title:	Benthic cor	nmunities as indicators of	of ecos	system condition					
Publication:									
Publisher:									
High Relevance 🗌 Biscayne Bay									
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data			
Author:	Frusher, S.D., R.L. Giddins, and T.J. Smith III Date: 1994								
Title:	Distribution and abundance of grapsid crabs (Grapsidae) in a mangrove estuary: effects of sediment characteristics, salinity tolerances, and osmoregulatory ability								
Publication:	Estuaries 1	7(3): 647-654							
Publisher:	Estuarine R	esearch Federation							
High Releva	nce 🔽	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat [Ecological Indicators			
		Impact Approach		Water Quality Data	✓	Hydrologic Data			
Author:	Gaby, R., N	I.P. McMahon, F.J. Maz	zotti, V	V.N. Gillies and J.R. Wilcox	ζ.	Date: 1985			
Title:	Ecology of	a population of Crocody	lus ac	utus at a power plant site in	Flori	da			
Publication:	J.Herpetol.	19(2): 189-198							
Publisher:									
High Releva	nce 🗌	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat [Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			

Author:	Gaumet, F.,	, G. Boeuf, J.P. Truchot	, and C	G. Nonnott	Date: 1994					
Title:	Effects of e L.)	nvironmental water salin	nity on	n blood acid-base status in juve	nile turbot (Scophthalmus maximus					
Publication:	Comp. Biod	chem. Physiol. 109A: 98	5-994							
Publisher:	Elsevier Sc	ience Ltd.								
High Releva	nce 🗌	Biscayne Bay								
Other Categories:		Animal Species	\checkmark	Aquatic Plants/Habitat 🗌	Ecological Indicators					
		Impact Approach		Water Quality Data	Hydrologic Data					
Author:	Gleason, P.	Gleason, P.J. ed. Date: 1984								
Title:	Environme	nts of South Florida pres	sent an	nd past II						
Publication:										
Publisher:	Miami Geo	logical Society								
High Releva	nce 🗌	Biscayne Bay 🔽								
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators					
		Impact Approach		Water Quality Data	Hydrologic Data					
Author:	Godcharles	, M.F. and M.D. Murph	у		Date: 1986					
Title:		files: life histories and King mackerel and Spani		1	ll fishes and invertebrates (South					
Publication:	U.S. FWS I	Biological Report 82								
Publisher:	USFWS									
High Releva	nce	Biscayne Bay								
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🗌	Ecological Indicators					
		Impact Approach		Water Quality Data	Hydrologic Data					

Author:	Golder Ass	Golder Associates, Inc. Date: 2000											
Title:	Report on r	napping low-salinity sub	omerge	ed aquatic vegetation beds in the	lower Suwannee River								
Publication:													
Publisher:	Golder Ass	ociates, Inc.											
High Releva	nce	Biscayne Bay											
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	✓							
		Impact Approach	✓	Water Quality Data	Hydrologic Data								
Author:	uthor: Good, J.C. and J.M. Jacobs Date: 2001												
Title:	Ecologicall	y sustainable watershed	mana	gement using annualized flow d	uration curves								
Publication:	Proceeding	s of the World Water &	Envir	onmental Congress 9ASCE) Ma	y 20-24, 2001, Orlando, FL								
Publisher:													
High Relevance 🗌 Biscayne Bay 🗌													
High Releva	nce	Biscayne Bay											
High Releva Other Categ		Biscayne Bay		Aquatic Plants/Habitat 🗌	Ecological Indicators								
-				Aquatic Plants/Habitat	Ecological Indicators [Hydrologic Data [
-		Animal Species		_	-								
-	ories:	Animal Species		_	-								
Other Categ	g ories: Gore, J.A.,	Animal Species Impact Approach C. Dahm, and C. Klima	15	_	Hydrologic Data [Date: 2002								
Other Categ	g ories: Gore, J.A.,	Animal Species Impact Approach C. Dahm, and C. Klima	15	Water Quality Data	Hydrologic Data [Date: 2002								
Other Categ Author: Title:	g ories: Gore, J.A.,	Animal Species Impact Approach C. Dahm, and C. Klima	15	Water Quality Data	Hydrologic Data [Date: 2002								
Other Categ Author: Title: Publication:	Gore, J.A., A review o SFWMD	Animal Species Impact Approach C. Dahm, and C. Klima	15	Water Quality Data	Hydrologic Data [Date: 2002								
Other Categ Author: Title: Publication: Publisher:	Gore, J.A., A review o SFWMD nce ☑	Animal Species Impact Approach C. Dahm, and C. Klima f "Upper Peace River: a	15	Water Quality Data	Hydrologic Data [Date: 2002								

Author:	Greer, A.E.					Date: 1975			
Title:	Clutch size	in crocodilians							
Publication:	J. Herpetol.	. 9(3): 319-322							
Publisher:									
High Releva	nce	Biscayne Bay							
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Guerin, J.L	. and W.B. Stickle				Date: 1997			
Title:	A comparative study of two sympatric species within the genus Callinectes: osmoregulation, long-term acclimation to salinity and the effects of salinity on growth and moulting								
Publication:	Journal of I	Experimental Marine Bio	ology	and Ecology, 218: 165-168					
Publisher: Elsevier Science									
Publisher:	Elsevier Sc	ience							
Publisher: High Releva		ience Biscayne Bay							
	nce 🗸			Aquatic Plants/Habitat [Ecological Indicators			
High Releva	nce 🗸	Biscayne Bay		-		Ecological Indicators Hydrologic Data			
High Releva	nce 🗸	Biscayne Bay	_	-			_		
High Releva	nce 🗹 gories:	Biscayne Bay	_	-			_		
High Releva Other Categ	nce 🗹 gories: Guerin, J.L	Biscayne Bay Animal Species Impact Approach		-		Hydrologic Data Date: 1997	_		
High Releva Other Categ Author: Title:	nce 🗹 gories: Guerin, J.L Effect of sa	Biscayne Bay Animal Species Impact Approach		Water Quality Data		Hydrologic Data Date: 1997	_		
High Releva Other Categ Author: Title:	nce 🗹 gories: Guerin, J.L Effect of sa	Biscayne Bay Animal Species Impact Approach and W.B. Stickle linity on survival and bio logy 129: 63-69		Water Quality Data		Hydrologic Data Date: 1997	_		
High Releva Other Categ Author: Title: Publication:	nce gories: Guerin, J.L Effect of sa Marine Bio Springer-V	Biscayne Bay Animal Species Impact Approach and W.B. Stickle linity on survival and bio logy 129: 63-69		Water Quality Data		Hydrologic Data Date: 1997	_		
High Releva Other Categ Author: Title: Publication: Publisher:	nce gories: Guerin, J.L Effect of sa Marine Bio Springer-V nce	Biscayne Bay Animal Species Impact Approach . and W.B. Stickle linity on survival and bio logy 129: 63-69 erlag		Water Quality Data		Hydrologic Data Date: 1997	_		

Author:	Gunderson,	Gunderson, L.H. Date: 1994								
Title:	Vegetation	of the Everglades: deter	minar	nts of community composit	ion					
Publication:	Everglades	: The Ecosystem and Its	Resto	oration						
Publisher:	St. Lucie P	ress								
High Releva	nce 🗌	Biscayne Bay								
Other Categories:		Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators				
		Impact Approach		Water Quality Data		Hydrologic Data				
Author:	Hackney, C	Hackney, C.T. Date: 2000								
Title:	Restoration	Restoration of coastal habitats: expectation and reality								
Publication:	Ecological	Engineering 15: 165-170)							
Publisher:	Elsevier									
High Releva	nce 🗌	Biscayne Bay								
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators				
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data				
Author:	Halley, R.B	3				Date: 2001				
Title:	Productivit health	y measurements of benth	nic cor	mmunities in Biscayne Nat	ional	Park as an indicator of ec	osystem			
Publication:	USGS Ope	n File Report 01-091								
Publisher:	USGS St. F	Petersburg								
High Releva	nce 🗌	Biscayne Bay 🔽								
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators				
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data				

Author:	Handeland,	Handeland, S.O., T. Jarvi, A. Ferno, and S.O. Stefansson Date: 1996							
Title:	Osmotic str	ress, antipredator behavi	our, ai	nd mortality of Atlantic sal	lmon	(Salmo salar) smolts			
Publication:	Can. J. Fish	n. Aquat. Sci. 53: 2673-2	2680						
Publisher:	NRC Cana	da							
High Releva	nce 🗌	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data	✓	Hydrologic Data			
Author:	Haney, D.C. Date: 1999								
Title:	Osmoregul	ation in the sheepshead i	ninno	w, Cyprinodon variegatus:	Influ	sence of a fluctating salini	ty regime		
Publication:	Estuaries 2	2(4): 1071-1077							
Publisher:	Estuarine R	Research Federation							
High Releva	nce 🔽	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data	✓	Hydrologic Data			
Author:	Harding, J.	M. and R. Mann				Date: 1999			
Title:	Fish specie	s richness in relation to	restore	ed oyster reefs, Piankatank	Rive	r, Virginia			
Publication:	Bulletin of	Marine Science 65: 289-	-300						
Publisher:									
High Releva	nce	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			

Author:	Harding, J.M. and R. Mann Date: 2001								
Title:	Temporal v	variation and patchiness	of zoc	plankton around a restored oys	ter reef				
Publication:	Estuaries 2	4(3): 453-466							
Publisher:	Estuarine F	Research Federation							
High Releva	ince	Biscayne Bay							
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🖌	Ecological Indicators				
		Impact Approach		Water Quality Data	Hydrologic Data				
Author:	Harlem, P				Date: 1979				
Title:	Aerial phot	Aerial photographic interpretation of the historical changes in northern Biscayne Bay, Florida: 1925-1976							
Publication:	University	of Miami: Sea Grant Te	chnica	l Bulletin No. 40					
Publisher:	University	of Miami							
High Releva	ince	Biscayne Bay 🗹							
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators				
		Impact Approach		Water Quality Data	Hydrologic Data				
Author:	Harper, D.,	J. Bohnsack and B. Loc	ckwoo	d	Date: 2000				
Title:	Recreation	al fisheries in Biscayne	Natior	al Park, Florida, 1976-1991					
Publication:	Marine Fis	heries Review. 62(1), 20	000						
Publisher:	Marine Fis	heries							
High Releva	ince 🗸	Biscayne Bay 🖌							
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🗌	Ecological Indicators 🗸				
		Impact Approach		Water Quality Data	Hydrologic Data				

Author:	Hartman, D).				Date: 1979				
Title:	Ecology an	d behavior of the manate	ee (Tri	chechus manatus) in Flori	da					
Publication:	Dept. of Co	onservation, Cornell Univ	v., NY	7. Special Pub. No. 5						
Publisher:	The Americ	can Society of Mammolo	ogists							
High Releva	nce	Biscayne Bay								
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	\checkmark			
		Impact Approach		Water Quality Data		Hydrologic Data				
Author:	Harwell, M.A. Date: 1997									
Title:	Ecosystem management of South Florida									
Publication:	Publication: Unknown									
Publisher:	Unknown									
High Releva	nce 🗌	Biscayne Bay 🔽								
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators				
		Impact Approach		Water Quality Data		Hydrologic Data				
Author:	Hill, J. and	C.E. Cichra				Date: 2002				
Title:	Minimum f	lows and levels criteria	develo	pment						
Publication:	The Effects	of Water Levels on Fish	ı popu	lations						
Publisher:	University	of Florida, Institute of Fo	ood an	d Agricultural Sciences						
High Releva	nce 🗸	Biscayne Bay								
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators				
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data				

Author:	Hill, J., D.I	. Fowler, and M.J. Van	Den A	Avyle		Date: 1989			
Title:	Species pro Atlantic): b		envir	onmental requirements of co	oasta	l fishes and invertebrates	(mid-		
Publication:	U.S. FWS	Biological Report 82							
Publisher:	USFWS								
High Releva	nce	Biscayne Bay							
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Holm Jr., C	G.O. and C.E. Sasser				Date: 2001			
Title:	Differential salinity response between two Mississippi River subdeltas: implications for change in plant composition								
Publication:	Estuaries 2	4(1): 78-89							
Publisher:	Estuarine R	Research Federation							
High Releva	nce	Biscayne Bay							
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Hopkins, S	.H.				Date: 1973			
Title:	Annotated	bibliography on effects of	of saliı	nity and salinity changes on	life	n coastal waters			
Publication:	U.S. ACOF	E Waterways Experiment	Statio	on					
Publisher:	Texas A&N	A University							
High Releva	nce	Biscayne Bay							
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data	✓	Hydrologic Data			

Author:	Houde, E.D. Date: Unknown								
Title:	Survey of the	he literature relating to s	port a	nd commercial fishes of So	outh F	lorida			
Publication:									
Publisher:									
High Relevance 🗌 Biscayne Bay									
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	\checkmark	Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Houde, E.D). and J.D.A. Lovdal				Date: 1985			
Title:	Patterns of	variability in icthyoplan	kton o	ccurrence and abundance in	n Bise	cayne Bay, Florida			
Publication:	Estuarine C	Coastal and Shelf Science	e (20):	79-103					
Publisher:									
High Releva	nce	Biscayne Bay 🗸							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Huey, Rayn	nond B.				Date: 1991			
Title:	Physiologic	al consequences of habi	tat sele	ection					
Publication:	The Americ	can Naturalist 137: 91 -	115						
Publisher:	University	of Chicago							
High Releva	nce	Biscayne Bay							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data			

Author:	Hughes, J.H	E., L.A. Deegan, M.J. W		Date: 2002		
Title:	Regional ap	oplication of an index of	estuai	rine biotic integrity based o	on fish	communities
Publication:	Estuaries 2:	5(2): 250-263				
Publisher:	Estuarine R	Research Federation				
High Releva	nce	Biscayne Bay				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data
Author:	Idyll, C.P.					Date: Unknown
Title:	Economica	lly important marine org	anism	s in Biscayne Bay		
Publication:						
Publisher:	University	of Miami				
High Releva	nce 🗌	Biscayne Bay 🔽				
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators
		Impact Approach		Water Quality Data		Hydrologic Data
Author:	Idyll, C.P.					Date: Unknown
Title:	Economica	lly important organisms	in Bis	cayne Bay		
Publication:						
Publisher:	University	of Miami				
High Releva	nce	Biscayne Bay				
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat		Ecological Indicators
		Impact Approach		Water Quality Data		Hydrologic Data

Author:	Irlandi, E., B. Orlando, S. Macia, P. Biber, T. Jones, L. Kaufman, D. Lirman, and Date: 2002 E.T. Patterson										
Title:	The influer	nce of freshwater runoff	on bio	mass, morphometrics, and J	produ	ction of Thalassia testudi	inum				
Publication:	Aquatic Bo	otany 7: 67-78									
Publisher:	Elsevier Sc	ience									
High Releva	nce 🗸	Biscayne Bay									
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators					
		Impact Approach		Water Quality Data	✓	Hydrologic Data					
Author:	thor: Irlandi, E., B. Orlando, S. macia, P. Biber, T. Jones, L. Kaufman, D. Lirman, and Date: 2002 E.T. Patterson										
Title:	The influence of freshwater runoff on biomass, morphometrics, and production of Thalassia testudinum										
Publication:	Aquatic Bo	otany 72(1): 67-78									
Publisher:											
Publisher:											
High Releva	nce	Biscayne Bay									
		Biscayne Bay 🗌 Animal Species		Aquatic Plants/Habitat		Ecological Indicators					
High Releva				Aquatic Plants/Habitat Water Quality Data		Ecological Indicators Hydrologic Data					
High Releva		Animal Species		-		-					
High Releva	ories:	Animal Species		-		-					
High Releva Other Categ	g ories: Irlandi, E., Salinity rec	Animal Species Impact Approach S. Macia, J. Serafy	canal o	Water Quality Data		Hydrologic Data Date: 1997					
High Releva Other Categ Author: Title:	gories: Irlandi, E., Salinity rec variegatus)	Animal Species Impact Approach S. Macia, J. Serafy luction from freshwater of	canal o ooma t	Water Quality Data		Hydrologic Data Date: 1997					
High Releva Other Categ Author: Title:	gories: Irlandi, E., Salinity rec variegatus)	Animal Species Impact Approach S. Macia, J. Serafy luction from freshwater and a gastropod (Lithop	canal o ooma t	Water Quality Data		Hydrologic Data Date: 1997					
High Releva Other Categ Author: Title: Publication:	gories: Irlandi, E., Salinity rec variegatus) Bulletin of	Animal Species Impact Approach S. Macia, J. Serafy luction from freshwater and a gastropod (Lithop	canal o oma t	Water Quality Data		Hydrologic Data Date: 1997					
High Releva Other Categ Author: Title: Publication: Publisher:	Irlandi, E., Salinity rec variegatus) Bulletin of nce	Animal Species Impact Approach S. Macia, J. Serafy luction from freshwater of and a gastropod (Lithop Marine Science 61 869-	canal o oma t	Water Quality Data	ity ar	Hydrologic Data Date: 1997					

Author:	Ishman, S				Date: 1997			
Title:	Ecosystem	history in south Florida	: Bisca	ayne Bay sediment core descript	ions			
Publication:	U.S. Geolo	gical Survey. USGS ope	en file	report 97				
Publisher:	USGS							
High Releva	nce 🔽	Biscayne Bay 🖌						
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators			
		Impact Approach	✓	Water Quality Data	Hydrologic Data			
Author:	Ishman, S.	E., I. Graham, and J. D'	Ambro	osio	Date: 1997			
Title:	Modern be	nthic foraminifer distrib	utions	in Biscayne Bay: Analogs for	historical reconstructions			
Publication:	USGS Rep	ort 97-34						
Publisher:	USGS							
High Releva	nce 🗸	Biscayne Bay 🔽						
Other Categ				Aquatic Plants/Habitat	Ecological Indicators			
-		Animal Species		Aquatic Plants/Habitat 🗌 Water Quality Data 🗌	Ecological Indicators Hydrologic Data			
-		Animal Species			-			
-	ories:	Animal Species Impact Approach			Hydrologic Data			
Other Categ	g ories: Ishman, S.J Verardo	Animal Species Impact Approach E., T.M. Cronin, G.L. B	rewste	Water Quality Data	Hydrologic Data			
Other Categ Author: Title:	g ories: Ishman, S.I Verardo A record of	Animal Species Impact Approach E., T.M. Cronin, G.L. B	rewste	Water Quality Data	Hydrologic Data			
Other Categ Author: Title:	g ories: Ishman, S.I Verardo A record of	Animal Species Impact Approach E., T.M. Cronin, G.L. B f ecosystem change, Ma	rewste	Water Quality Data	Hydrologic Data			
Other Categ Author: Title: Publication:	gories: Ishman, S. Verardo A record of Journal of (Animal Species Impact Approach E., T.M. Cronin, G.L. B f ecosystem change, Ma	rewste	Water Quality Data	Hydrologic Data			
Other Categ Author: Title: Publication: Publisher:	Ishman, S. Verardo A record of Journal of (nce	Animal Species Impact Approach E., T.M. Cronin, G.L. B f ecosystem change, Ma Coastal Research. (SI)20	rewste	Water Quality Data	Hydrologic Data			

Author:	Jackson, L.	E., J.C. Kurtz, and W.S.	Fishe	r	Date: 2000
Title:	Evaluation	guidelines for ecologica	l indic	cators	
Publication:	EPA ORD				
Publisher:	EPA				
High Releva	nce 🗌	Biscayne Bay			
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	Ecological Indicators
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data
Author:	Jacob, W.F	. and M Taylor			Date: 1983
Title:	The time co	ourse of seawater acclim	ation i	in Fundulus heteroclitus L.	
Publication:	Journal of I	Experimental Zoology 22	28: 33	-39	
Publisher:	Alan R. Lis	s, Inc.			
High Releva	nce 🗌	Biscayne Bay			
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	Ecological Indicators
		Impact Approach		Water Quality Data	Hydrologic Data
Author: Title:	•	W., B. Madden, B.Raffer rganisms as a guide to es	•	Dwyer, and J.G. Wilson ne management	Date: Unknown
Publication:					
Publisher:					
High Releva	nce	Biscayne Bay			
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	Ecological Indicators
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data

Author:	Johnson, D	.R., and W. Seaman				Date: 1986				
Title:	1 I	files: life histories and e potted seatrout	enviro	nmental requirements of co	oastal	fishes and invertebrates (South				
Publication:	USFWS Bi	ol. Rep. 82(11.43)								
Publisher:	USFWS									
High Releva	nce 🔽	Biscayne Bay								
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators 🗸				
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data				
Author:	Jory, D.E. a	and E.S. Iversen				Date: 1989				
Title:	Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Florida) - Black, Red, and Nassau Groupers									
Publication:	U.S. FWS I	Biological Report 82								
Publisher:	USFWS									
High Releva	nce 🗌	Biscayne Bay								
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators				
		Impact Approach		Water Quality Data		Hydrologic Data				
Author:	Joseph, E.E	B. and V.P. Saksena				Date: 1966				
Title:	Determinat induced spa	•	in m	ummichog (Fundulus heter	oclitu	s) larvae obtained from hormone-				
Publication:	Chesapeake	e Science 7(4): 193-197								
Publisher:	Estuarine R	esearch Federation								
High Releva	nce 🗸	Biscayne Bay								
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat		Ecological Indicators				
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data				

Author:	Kennedy, V	/.S.			Date: 1991
Title:	Habitat req	uirements for Chesapeak	e Bay	v living resources: eastern oyst	er.
Publication:	Habitat req	uirements for Chesapeak	e Bay	v living resources	
Publisher:	Chesapeak	e Research Consortium,	Inc.		
High Releva	nce	Biscayne Bay			
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🖌	Ecological Indicators
		Impact Approach		Water Quality Data	Hydrologic Data
Author:	Kimmerer,	W.J.			Date: 2002
Title:	Physical, b	iological, and manageme	ent res	sponses to variable freshwater f	low into the San Francisco Estuary
Publication:	Estuaries 2	5(6B): 1275-1290			
Publisher:	Estuarine F	Research Federation			
High Releva	nce	Biscayne Bay			
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data
Author:	Klaoudatos	, S.D. and A.J. Conides			Date: 1996
Title:		od conversion, maintena fter abrupt transfer to lov		•	id sea bream, Spatus auratus L.,
Publication:	Aquacultur	e Research 27: 765-774			
Publisher:	Blackwell	Science Ltd.			
High Releva	nce 🗌	Biscayne Bay			
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	Ecological Indicators
		Impact Approach		Water Quality Data	Hydrologic Data

Author:	Kohout, F.	А.			Date: 1987	
Title:	Aquifer-est	uary fresh-salt water ba	lance			
Publication:	Groundwat	er Problems in coastal a	ireas			
Publisher:	Unesco					
High Releva	nce	Biscayne Bay 🖌				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	Ecological Indicators	
		Impact Approach		Water Quality Data	Hydrologic Data	
Author:	Kohout, F.	A.			Date: 1967	
Title:	Relation of	seaward and landward	flow o	f groundwater to the salinity of I	Biscayne Bay, (Florida)	
Publication:	Masters Th	esis, Univ. of Miami				
Publisher:						
High Releva	nce	Biscayne Bay 🗸				
High Releva Other Categ				Aquatic Plants/Habitat	Ecological Indicators	
-		Animal Species		Aquatic Plants/Habitat 🗌 Water Ouality Data 🗌	Ecological Indicators Hydrologic Data	
-				Aquatic Plants/Habitat	Ecological Indicators Hydrologic Data	
Other Categ	ories:	Animal Species Impact Approach		-	Hydrologic Data	
Other Categ	g ories: Kohout, F.2	Animal Species Impact Approach A. and M.C. Kolipinski		Water Quality Data	Hydrologic Data Date: 1967	
Other Categ Author: Title:	g ories: Kohout, F., Biological	Animal Species Impact Approach A. and M.C. Kolipinski	ndwate	-	Hydrologic Data Date: 1967	
Other Categ Author: Title: Publication:	g ories: Kohout, F., Biological	Animal Species Impact Approach A. and M.C. Kolipinski	ndwate	Water Quality Data	Hydrologic Data Date: 1967	
Other Categ Author: Title:	Kohout, F., Biological Estuaries	Animal Species Impact Approach A. and M.C. Kolipinski		Water Quality Data	Hydrologic Data Date: 1967	
Other Categ Author: Title: Publication:	Kohout, F., Biological Estuaries American A	Animal Species Impact Approach A. and M.C. Kolipinski zonation related to grou		Water Quality Data	Hydrologic Data Date: 1967	
Other Categ Author: Title: Publication: Publisher:	Kohout, F., Biological Estuaries American A nce	Animal Species Impact Approach A. and M.C. Kolipinski zonation related to grou		Water Quality Data	Hydrologic Data Date: 1967	

Author:	Konstantin	ov, A.S. and V.V. Marty	nova			Date: 1993			
Title:	Effect of sa	linity fluctuations on end	ergetic	cs of juvenile fish					
Publication:	Journal of I	cthyology 33: 1-8							
Publisher:	Scripta Tec	hnica, Inc.							
High Releva	nce	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Kostecki, P.T. Date: 1984								
Title:	Habitat suit	ability index models: sp	otted	seatrout					
Publication:	USFWS								
Publisher:	USFWS								
High Releva	nce 🔽	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data	✓	Hydrologic Data			
Author:		I., C.K. Faul, and G.J. H			-1 - 6	Date: 2002			
Title:		-	-	vning salinity on the surviv	alor	larval Cynoscion nebulos	us		
	Journal of I	Fish Biology 61(3): 726-	738						
Publisher:									
High Releva	nce	Biscayne Bay							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data			

Author:	Kucera, C.J., C.K. Faul, and G.J. Holt Date: 2002							
Title:		of spawning salinity on e different salinity regime		f spotted seatrout (Cynoscie	on ne	bulosus, Cuvier) from two	bays with	
Publication:	Journal of]	Experimental Marine Bio	ology	and Ecology 272(2): 147-1	58			
Publisher:								
High Releva	nce	Biscayne Bay						
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators		
		Impact Approach		Water Quality Data	✓	Hydrologic Data		
Author:	Kumlu, M.	and D.A. Jones				Date: 1995		
Title:	Salinity tol	erance of hatchery-reare	d post	larvae of Penaeus indicus	H. Mi	ilne Edwards originating f	rom India	
Publication:	Aquacultur	e 130: 287-296						
Publisher:	Elsevier Sc	ience B.V.						
High Releva	nce 🗌	Biscayne Bay 🗌						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data	✓	Hydrologic Data		
Author:	Kushlan, J.	А.				Date: 1988		
Title:	Profiles - c	onservation and manage	ment o	of the American Crocodile				
Publication:	Environme	ntal Management 12:77	7-790					
Publisher:								
High Releva	nce	Biscayne Bay 🔽						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	\checkmark	
		Impact Approach		Water Quality Data		Hydrologic Data		

Author:	Kushlan, J.A. and D.A. White Date: 1977							
Title:	Nesting wa	ding bird populations in	south	ern Florida				
Publication:	Florida Sci	entist 40: 65-72						
Publisher:								
High Releva	nce 🗌	Biscayne Bay 🔽						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		
Author:	Kushlan, J.	A. and F. Mazzotti				Date: 1989		
Title:	Population	biology of the American	croco	odile				
Publication:	J. Herpetol	. 23(1): 7-21						
Publisher:								
High Releva	nce 🗌	Biscayne Bay						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	✓	Ecological Indicators		
		Impact Approach		Water Quality Data	✓	Hydrologic Data		
Author:	Kushlan, J.	A., F.J. Mazzotti				Date: 1989		
Title:	Historic and	d present distribution of	the A	merican crocodile in florida	ì			
Publication:	Journal of I	Herpetology 23: 1-7						
Publisher:								
High Releva	nce 🗌	Biscayne Bay 🔽						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	\checkmark	
		Impact Approach		Water Quality Data		Hydrologic Data		

Author:	Langevin,	C.D.				Date: 2000	
Title:	Simulation	of ground-water dischar	ge to	Biscayne Bay, southeastern I	Flori	da	
Publication:	USGS Wat	er Resources Investigation	on Rej	port 00-4251			
Publisher:	USGS						
High Releva	nce	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	\checkmark
Author:	Lankford,	Γ.E., and T.E. Targett				Date: 1994	
Title:	Suitability	of estuarine nursery zone	es for	juvenile weakfish (Cynoscion	n reg	galis)	
Publication:	Marine Bio	logy 119: 611-620					
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
Other Categ	ories:	Animal Species Impact Approach		-		Ecological Indicators Hydrologic Data	
Other Categ	ories:	-		-			
Other Categ		-		-			
	Lasserre, P Osmoregul	Impact Approach		-		Hydrologic Data Date: 1975	ramada
Author:	Lasserre, P Osmoregul (Risso) in e	Impact Approach . and J.L. Gallis ation and differential per estuarine fish ponds		Water Quality Data		Hydrologic Data Date: 1975	ramada
Author: Title:	Lasserre, P Osmoregul (Risso) in e	Impact Approach . and J.L. Gallis ation and differential per estuarine fish ponds e 5:323-344		Water Quality Data		Hydrologic Data Date: 1975	ramada
Author: Title: Publication:	Lasserre, P Osmoregul (Risso) in e Aquacultur Elsevier Sc	Impact Approach . and J.L. Gallis ation and differential per estuarine fish ponds e 5:323-344		Water Quality Data		Hydrologic Data Date: 1975	ramada
Author: Title: Publication: Publisher:	Lasserre, P Osmoregul (Risso) in e Aquacultur Elsevier Sc nce	Impact Approach . and J.L. Gallis ation and differential per estuarine fish ponds e 5:323-344 ientific		Water Quality Data		Hydrologic Data Date: 1975	ramada

Author:	Leak, J.C. a	and E.D. Houde				Date: 1987			
Title:	Cohort grov	wth and survival of bay a	anchov	y Anchoa mitchilli larvae	in Bis	scayne Bay, Florida			
Publication:	Marine Eco	ology Progress Series 36:	109-1	22					
Publisher:									
High Releva	nce 🗌	Biscayne Bay 🔽							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			
Author:	Lee, T.N. a	nd C. Booth				Date: Unkno	wn		
Title:	Exchange processes in shallow estuaries								
Publication:	Quarterly J	ournal of the Florida Aca	ademy	of Sciences					
Publisher:	Florida Aca	ademy of Sciences							
High Releva	nce	Biscayne Bay 🗸							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data	\checkmark		
Author:	Lehman, P.	W.				Date: 2000			
Title:	Phytoplank Francisco E		er, and	d species composition in th	e low	salinity zone of northern	San		
Publication:	Estuaries 2	3(2): 216-230							
Publisher:	Estuarine R	Research Federation							
High Releva	nce	Biscayne Bay							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			

Author:	Lehnert, R.L. and D.M. Allen Date: 2002						
Title:	Nekton use	of subtidal oyster shell	habita	t in a southeastern U.S. est	uary		
Publication:	Estuaries 2	5(5): 1015-1024					
Publisher:	Estuarine R	Research Federation					
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Lenihan, H	.S., F. Micheli, S.W. Sh	elton,	and C.H. Peterson		Date: 1999	
Title:		ce of multiple environm on with oysters	ental	stressors on susceptibility	to par	asites: an experimental	
Publication:	Limnology	and Oceanography 44: 9	910-92	24			
Publisher:							
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Light, H.M	., M.R. Darst, L.J. Lewis	s, and	D.A. Howell		Date: 2002	
Title:	• ••	vegetation, and soils of al impacts of flow reduc		ne and tidal floodplain fore	ests of	the lower Suwannee Rive	er, Florida,
Publication:	USGS Prof	essional Paper 1656A					
Publisher:	USGS						
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	

Author:	Lindall, W.	N.				Date: 1974	
Title:	Alterations	of estuaries of South Flo	orida:	a threat to its fish resources	3		
Publication:	Operculum						
Publisher:							
High Releva	nce 🗌	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	
Author:	Lindberg, V	W.J. and M.J. Marshall				Date: 1984	
Title:	Species pro Florida): S		envir	onmental requirements of co	oastal	l fishes and invertebrates	(South
Publication:	U.S. FWS	Biological Report 82					
Publisher:	USFWS						
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Lindeman,	K.C., R. Pugliese, G.T.	Waug	h, and J.S. Ault		Date: 2000	
Title:	Developme and protect	-	ultispe	ecies reef fishery: managem	ent a	applications for essential	fish habitat:
Publication:	Bulletin of	Marine Science 66: 929	-956				
Publisher:							
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		- Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Lirman, D.	Lirman, D. and W.P. Cropper, Jr. Date: 2003							
Title:		ce of salinity on seagras		wth, survivorship, and distril s	butio	n within Biscayne Bay, F	lorida:		
Publication:	Estuaries 2	6(1): 131-141							
Publisher:	Estuarine R	esearch Federation							
High Releva	nce 🗸	Biscayne Bay 🗸							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data			
Author:	Author: Lirman, D., B. Orlando, S. Macia, D. Manzello, L. Kaufman, P. Biber and T. Date: 2003 Jones								
Title:		nunities of Biscayne Bay mental correlates	y, Floi	rida and adjacent offshore ar	eas:	diversity, abundance, dist	tribution,		
Publication:	Aquatic Co	nservation: Marine and	Fresh	water Ecosystems 13:121-13	35				
Publisher:	Wiley Inter	Science							
High Releva	nce 🗌	Biscayne Bay 🔽							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat					
				Aqualic I failts/flabilat		Ecological Indicators			
		Impact Approach		_		Ecological Indicators Hydrologic Data			
		-		_		-			
Author:	Lirman, D.	-		Water Quality Data		-			
Author: Title:		Impact Approach	Crop	Water Quality Data		Hydrologic Data			
Title:	A conceptu	Impact Approach	Crop	Water Quality Data		Hydrologic Data			
Title:	A conceptu	Impact Approach , E.A. Irlandi, and W.P. al model of Biscayne Ba .rsmaas.miami.edu/grou	Crop	Water Quality Data		Hydrologic Data			
Title: Publication:	A conceptu http://www University	Impact Approach , E.A. Irlandi, and W.P. al model of Biscayne Ba .rsmaas.miami.edu/grou	Crop	Water Quality Data		Hydrologic Data			
Title: Publication: Publisher:	A conceptu http://www University nce	Impact Approach , E.A. Irlandi, and W.P. al model of Biscayne Ba .rsmaas.miami.edu/grou of Miami	Crop	Water Quality Data		Hydrologic Data			

-						
Author:	Llanso, R.J	. et al			Date: 2002	
Title:		e benthic index of biotic on of assemblages and h	-	grity for the mid-Atlantic region definition	of the United States. I.	
Publication:	Estuaries 2	5(6A): 1219-1230				
Publisher:	Estuarine R	Research Federation				
High Releva	nce	Biscayne Bay				
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🖌	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	
Author:	Llanso, R.J	. et al			Date: 2002	
Title:	An estuarin Developme		integ	grity for the mid-Atlantic region	of the United States. II. 1	Index
Publication:	Estuaries 2	5(6A): 1231-1242				
Publisher:	Estuarine R	Research Federation				
High Releva	nce	Biscayne Bay				
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🔽	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	
Author:	Lonereraga	n, N.R., I.C. Potter, R.C	.J. Le	nanton, and N. Caputi	Date: 1986	
Title:	Spatial and	seasonal differences in	the fis	sh fauna in the shallows of a lar	ge Australian estuary	
Publication:	Marine Bio	logy 92: 575-586				
Publisher:						
High Releva	nce	Biscayne Bay				
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🖌	Ecological Indicators	
		Impact Approach		Water Quality Data	Hydrologic Data	

Author:	Long, E.R.,	M.J. Hameedi, G.M. Sl	oane,	and L.B. Read	Date: 2002			
Title:		ontamination, toxicity, a ortions of Biscayne Bay		nthic community indices in sed da	iments of the lower Miami	River and		
Publication:	Estuaries 2	5(4A): 622-637						
Publisher:	Estuarine R	esearch Federation						
High Relevance 🗌 Biscayne Bay 🖌								
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators			
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data			
Author:	Lorenz, J.J.	, et al			Date: 2002			
Title:	Nesting pat anthropoge		ills in	Florida Bay 1935-1999: Implic	cations of landscape scale			
Publication:	The Evergl	ades, Florida Bay, and C	oral R	eefs of the Florida Keys: An E	cosystem Sourcebook			
Publisher:	CRC Press							
High Releva	nce	Biscayne Bay						
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🖌	Ecological Indicators			
		Impact Approach		Water Quality Data	Hydrologic Data			
Author:	Lough, R.C	ł.			Date: 1975			
Title:		ion of the combined effe nse surface techniques	ects of	temperature and salinity on sur	vival and growth of bivaly	ve larvae		
Publication:	Fishery Bu	lletin 73: 86-94						
Publisher:								
High Releva	nce 🗸	Biscayne Bay						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	Ecological Indicators	\checkmark		
		Impact Approach		Water Quality Data	Hydrologic Data			

Author:	Low, R.A					Date: 1973	
Title:	Shoreline g	rassbed fishes in Biscay	ne Ba	y, Florida, with notes on th	e avai	lability of clupeid fishes	
Publication:	Masters Th	esis, Univ. of Miami					
Publisher:							
High Releva	nce 🗌	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Luckenbacl	h, M.W., R. Mann and J.	A. W	esson		Date: 1999	
Title:	Oyster reef	habitat restoration. A sy	ynopsi	is and synthesis of approac	hes		
Publication:	Virginia In	stitute of Marine Science	e Pres	s			
Publisher:	VIMS						
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		- Impact Approach		- Water Quality Data	✓	Hydrologic Data	
Author:	Luo, J., J.E	. Serafy				Date: 2002	
Title:	Data qualit National Pa		alysis	and statistical modeling of	salin	ity and canal discharges in	n Biscayne
Publication:	Final Report	rt to Biscayne National F	Park 1	-26			
Publisher:							
High Releva	nce 🗸	Biscayne Bay 🗸					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Markley, S	. and G. Milano				Date: 1985	
Title:	A summary	report on its physical a	nd bio	logical characteristics			
Publication:	Miami-Dad	le County Department of	f Envi	ronmental Resources Mana	ageme	ent	
Publisher:	Miami-Dad	le County					
High Releva	nce 🔽	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	\checkmark	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Martinez-P	alacios, C.A., L.G. Ross	, and]	M. Rosado-Vallado		Date: 1990	
Title:	The effects	of salinity on the surviv	al and	growth of juvenile Cichla	soma	urophthalmus	
Publication:	Aquacultur	e 91: 65-75					
Publisher:	Elsevier Sc	ience B.V.					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Mattson, R	.A.				Date: 2002	
Title:	A resource-	-based framework for est	tablish	ning freshwater inflow requ	ireme	ents for the Suwannee Riv	er Estuary
Publication:	Estuaries 2	5(6B): 1333-1342					
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	

Author:	Mattson, R.A. and J. Krummrich Date: 1995						
Title:	Determinat	ion of salinity distribution	ons in	the Upper Suannee River E	stuar	У	
Publication:	Final Repo	rt					
Publisher:	Florida Ga	me and Freshwater Fish	Comn	nission and SRWMD			
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	✓	Hydrologic Data	
Author:	Mazzotti, H	7				Date: 1983	
Title:	The ecolog	y of Crocodylus acutus i	n Flor	ida; A thesis in ecology. Ph.	.D. d	issertation	
Publication:	Pennsylvar	ia State University, Univ	versity	v Park, PA			
Publisher:	Pennsylvar	ia State University					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Mazzotti, I	J. and M.S. Cherkiss				Date: 1998	
Title:	Status and	distribution of the Amer	ican c	rocodile (Crocodylus acutus) in l	Biscayne Bay	
Publication:	SFWMD P	oject Report					
Publisher:	Everglades	Research and Education	n Cent	er, Univ. Florida			
High Releva	nce 🔽	Biscayne Bay 🖌					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Mazzotti, F.J., B. Bohnsack, M.P. McMahon, and J.R. Wilcox Date: 1986						
Title:	Field and la acutus	aboratory observations of	n the e	ffects of high temperature	and s	alinity on hatchling Croce	odylus
Publication:	Herpetolog	ica 42(2): 191-196					
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	McAdory, I	R.				Date: 2001	
Title:	Large syno	ptic tide, velocity, salinit	y, and	weather data set for use in	n mod	eling Biscayne Bay, FL	
Publication:	Proceeding	s of the 16th Biennial Co	onfere	nce of the Estuarine Resea	rch Fe	ederation	
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	McGeer, J.	C., L. Baranyi, and G.K.	Iwam	a		Date: 1991	
Title:	Physiologic	cal responses to challeng	e tests	in six stocks of Coho Salı	non (Oncorhynchus kisutch)	
Publication:	Can. J. Fish	n. Aquat. Sci. 48: 1761-1	771				
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

Author:	McIvor, C.	C., J.A. Ley, and R.D. B	jork			Date: 1994		
Title:	Changes in processes:		the Ev	verglades to Florida Bay inclu	uding	g effects on biota and bio	tic	
Publication:	Everglades	: The Ecosystem and Its	Resto	oration				
Publisher:	St. Lucie Pr	ress						
High Relevance 🗌 Biscayne Bay 🗌								
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🛽		Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		
Author:	McMichael	l, R. and TS. Tsou				Date: 2000		
Title:		fisheries data in associa River/Estuary	tion v	with the development of minin	mum	flows and levels for the	Lower	
Publication:								
Publisher:	Florida Fisl	h and Wildlife Conserva	tion C	Commission				
Publisher: High Releva		h and Wildlife Conserva Biscayne Bay	tion C	Commission				
	ince		tion C	Commission Aquatic Plants/Habitat]]	Ecological Indicators		
High Releva	ince	Biscayne Bay	tion C			Ecological Indicators Hydrologic Data		
High Releva	ince	Biscayne Bay		Aquatic Plants/Habitat 🗌				
High Releva	nce 🗌 gories:	Biscayne Bay		Aquatic Plants/Habitat 🗌				
High Releva Other Categ	nce gories: Meeder, J.,	Biscayne Bay Animal Species Impact Approach		Aquatic Plants/Habitat		Hydrologic Data		
High Releva Other Categ Author: Title:	nce gories: Meeder, J., Characteriz	Biscayne Bay Animal Species Impact Approach M. Ross, and P. Ruiz ation of historic Biscayn	□ ✓ ne Bay	Aquatic Plants/Habitat		Hydrologic Data		
High Releva Other Categ Author: Title:	nce gories: Meeder, J., Characteriz	Biscayne Bay Animal Species Impact Approach M. Ross, and P. Ruiz ation of historic Biscayn	□ ✓ ne Bay	Aquatic Plants/Habitat		Hydrologic Data		
High Releva Other Categ Author: Title: Publication:	nce gories: Meeder, J., Characteriz First Quarte	Biscayne Bay Animal Species Impact Approach M. Ross, and P. Ruiz ation of historic Biscayn	□ ✓ ne Bay	Aquatic Plants/Habitat		Hydrologic Data		
High Releva Other Categ Author: Title: Publication: Publisher:	nce gories: Meeder, J., Characteriz First Quarte	Biscayne Bay Animal Species Impact Approach M. Ross, and P. Ruiz cation of historic Biscayn erly Report to Florida Co	□ ✓ ne Bay	Aquatic Plants/Habitat]]	Hydrologic Data		

Author:	Meeder, J., P. Harlem, and A. Renshaw Date: 2001						
Title:	Historic cre	eek watershed study; Fin	al Res	ults: Year 1			
Publication:							
Publisher:							
High Releva	nce 🗸	Biscayne Bay 🔽					
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat [Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Meeder, J.,	P. Harlem, and A. Rens	shaw			Date: 2002	
Title:	Restoration	of the Black Creek coa	stal we	etlands and adjacent nearsho	re es	tuarine zone of Biscayne	Bay
Publication:							
Publisher:							
High Releva	nce 🗸	Biscayne Bay 🔽					
		Biscayne Bay 🗹 Animal Species		Aquatic Plants/Habitat [Ecological Indicators	
High Releva				Aquatic Plants/Habitat [Water Quality Data [Ecological Indicators Hydrologic Data	
High Releva		Animal Species		_		_	
High Releva	gories:	Animal Species		_		_	
High Releva Other Categ	gories: Meyer, D.L	Animal Species Impact Approach		_		Hydrologic Data Date: 2000	
High Releva Other Categ Author:	gories: Meyer, D.L Faunal utili States	Animal Species Impact Approach and E.C. Townsend ization of created intertio		Water Quality Data		Hydrologic Data Date: 2000	
High Releva Other Categ Author: Title:	gories: Meyer, D.L Faunal utili States	Animal Species Impact Approach and E.C. Townsend ization of created intertio		Water Quality Data		Hydrologic Data Date: 2000	
High Releva Other Categ Author: Title: Publication:	gories: Meyer, D.L Faunal utili States Estuaries 2	Animal Species Impact Approach and E.C. Townsend ization of created intertio		Water Quality Data		Hydrologic Data Date: 2000	
High Releva Other Categ Author: Title: Publication: Publisher:	Meyer, D.L Faunal utili States Estuaries 2	Animal Species Impact Approach and E.C. Townsend ization of created intertion 3: 33-45		Water Quality Data	ginic	Hydrologic Data Date: 2000	

Complete	Alphabetical	Listing b	y Author
----------	--------------	-----------	----------

Author:	Miami-Dad	e County Department of	Envi	ronmental Resources Mana	geme	nt Date: 1995	
Title:	Dade Coun	ty Manatee Protection Pl	an				
Publication:							
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Miami-Dad	e County Department of	Envii	ronmental Resources Mana	igeme	nt Date: 1994	
Title:		nsuitable for disposal of		anced identification of pose ed or fill material in wetlan			
Publication:							
Publisher:							
High Releva	nce 🗌	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Milano, G					Date: 1983	
Title:	Bottom con	nmunities of Biscayne B	ay				
Publication:	Miami-Dad	e County Department of	Envii	ronmental Resources Mana	geme	nt, Miami, FL.	
Publisher:	Miami-Dad	e County					
High Releva	nce 🗸	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		- Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Moler, P. a	nd C. Abercrombie				Date: 1992	
Title:	Growth and	l survival of Crocodylus	acutu	s in South Florida, USA			
Publication:	Crocodiles.	Proceedings of the 11th	h Wor	king Meeting of the Croco	dile S	pecialist Group	
Publisher:	IUCN						
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	
Author:	Monaco, M	I.E. and J.D. Christenser	1			Date: 1997	
Title:	Coupling s	pecies distributions and	habita	t			
Publication:	Changing (Dceans and Changing Fi	sherie	s: Environmental Data for	r Fish	eries Research and Mana	gement
Publisher:	NMFS						
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	\checkmark
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	
Author:	Monaco, M	I.E., T.A. Lowery, and R	l.L. Er	nmett		Date: 1992	
Title:	Assemblage	es of U.S. west coast est	uaries	based on the distribution of	of fish	28	
Publication:	Journal of I	Biogeography 19: 251-2	.67				
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Montague,	C.L. and J. Ley				Date: 1993	
Title:	-	effect of salinity fluctuat n Florida Bay.	ion or	a abundance of benthic veg	etatio	on and associated fauna in	
Publication:	Estuaries 1	6:703-717					
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Moser, M.I	L. and L.R. Gerry				Date: 1989	
Title:	Differential undulatus	l effects of salinity chang	ges on	two estuarine fishes, Leios	stoma	s xanthurus and Micropog	gonias
Publication:	Estuaries 12	2:35-41					
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	✓	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	National Pa	urk Service Southeast Re	gion			Date: 1989	
Title:	Canal disch	narge impacts on Biscayı	ne Bay	v salinities, Biscayne Natio	nal P	ark	
Publication:	Research/R	esources Management R	eport	SER-89			
Publisher:							
High Releva	nce 🗸	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	✓	Hydrologic Data	

Author:	Neill, W.H.	, J.M. Miller, H.W. Var	ı der V	/eer, and K.O. Winemiller		Date: 1994	
Title:	Ecophysiol	ogy of marine fish recru	itmen	t: a conceptual framework for	or un	derstanding interannual	variability
Publication:	Netherlands	s Journal of Sea Researc	h 32:	135-152			
Publisher:							
High Releva	nce	Biscayne Bay					
Other Catego	ories:	Animal Species		Aquatic Plants/Habitat 🛛		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Nelson, D.,	E. Irlandi, L. Settle, M.	Mona	aco and L. Coston-Clements		Date: 1991	
Title:	Distribution	n and abundance of fishe	es and	invertebrates in southeast est	tuarie	es. ELMR Rep. No. 9.	
Publication:	NOAA/NO	S Strategic Env. Assess	. Div.,	Silver Spring, MD. 167			
Publisher:	NOAA/NO	S					
High Releva	nce	Biscayne Bay					
High Relevan Other Categ		Biscayne Bay		Aquatic Plants/Habitat 🗌		Ecological Indicators	
-				Aquatic Plants/Habitat 🗌 Water Quality Data 🗌		Ecological Indicators Hydrologic Data	
-		Animal Species	_	-			
-		Animal Species	_	-			
Other Categ	ories: NOAA	Animal Species		Water Quality Data		Hydrologic Data	
Other Catego Author: Title:	ories: NOAA Estuarine-d	Animal Species Impact Approach ependent marine fishes. da ecological study. Nat	Appe	Water Quality Data		Hydrologic Data Date: 1973	
Other Catego Author: Title:	ories: NOAA Estuarine-d South Flori	Animal Species Impact Approach ependent marine fishes. da ecological study. Nat	Appe	Water Quality Data		Hydrologic Data Date: 1973	
Other Catego Author: Title: Publication:	NOAA Estuarine-d South Flori Fisheries Se NOAA	Animal Species Impact Approach ependent marine fishes. da ecological study. Nat	Appe	Water Quality Data		Hydrologic Data Date: 1973	
Other Catego Author: Title: Publication: Publisher:	NOAA Estuarine-d South Flori Fisheries Se NOAA nce	Animal Species Impact Approach ependent marine fishes. da ecological study. Nat	Appe	Water Quality Data	eric .	Hydrologic Data Date: 1973	

Complete	Alphak	oetical L	listing b	by A	Author
----------	--------	-----------	------------------	------	--------

Author:	NOAA					Date: 1973	
Title:	Section IV	major environmental fac	ctors a	ffecting fishery resources			
Publication:	South Flori	da Ecologicla Study, Ap	pendi	x E-Estuarine Dependent Ma	rine Fishes 6	0-65	
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🗸	Ecologic	al Indicators	
		Impact Approach		Water Quality Data	Hydrolo	gic Data	
Author:	Nordlie, F.	G.				Date: 1987	
Title:	Plasma osn	notic, Na+ and Cl- regul	ation 1	under euryhaline conditions in	n Cyprinodor	n variegatus lac	epede
Publication:	Comp. Bio	chem. Physiol. 80A: 57-	61				
Publisher:	Pergamon	Journals Ltd.					
High Releva	ince	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat	Ecologic	al Indicators	
		Impact Approach		Water Quality Data	Hydrolo	gic Data	
Author:	Nordlie, F.	G.				Date: 1986	
Title:	Salinity tol	erance and osmotic regu	lation	in the diamond killfish, Adir	ia xenica		
Publication:	Environme	ntal Biology of Fishes 20): 229	-232			
Publisher:	Dr W. Juni	c Publishers					
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat	Ecologic	al Indicators	
		Impact Approach		Water Quality Data 🗸	Hydrolo	gic Data	

Author:	Odum, W					Date: 1970	
Title:	Insidious al	Iteration of the estuarine	envir	onment			
Publication:	Transactior	ns of the American Fishe	ries S	ociety			
Publisher:	American H	Fisheries Society					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	\checkmark	Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Ogden, J.C					Date: 1994	
Title:		on of wading bird nestir conditions in the souther		ony dynamics (1931-1946 rglades	and 1	974-1989) as an indication	n of
Publication:	Everglades	The Ecosystem and Its	Resto	oration			
Publisher:	St. Lucie Pr	ress					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	\checkmark
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Ogden, J.C					Date: 1978	
Title:	Status and	nesting biology of the A	merica	an crocodile, Crocodylus a	cutus,	(Reptilia, Crocodilidae) i	n Florida
Publication:	Journal of I	Herpetology 12: 183-196					
Publisher:							
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Ogden, J.C					Date: 1977	
Title:	Status of C	rocodylus actus					
Publication:	192-196						
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Ortega, S.	and J.P. Sutherland				Date: 1992	
Title:	Recruitmer	nt and growth of the east	ern oy	vster, Crassostrea virginica,	in N	orth Carolina	
Publication:	Estuaries 1	5(2): 158-170					
Publisher:	Estuarine F	Research Federation					
High Releva	nce 🗸	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	
Author:	Parado-Est	epa, F.D.				Date: 1991	
Title:	Survival of	newly-hatches larvae of	f Epine	ephelus malabaricus at diffe	erent	salinity levels	
Publication:	Proceeding	s of Larvi '91 - Fish & C	Crustac	cean Larviculture Symposiu	ım		
Publisher:	European A	Aquaculture Society					
High Releva	nce	Biscayne Bay 🗸					
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	

Author:	Patterson, I	E. and E.A. Irlandi				Date: 1998	
Title:		nd inter-annual comparis ying salinity in Biscayne		f density, biomass, and mor	rphor	netrics of Thalassia testuc	linum at
Publication:	Proceeding Meeting	s of the American Societ	ty of L	imnology and Oceanograp	hy/Eo	cological Society of Amer	rica Annual
Publisher:	American S	Society for Limnology a	nd Oce	eanography			
High Releva	nce 🗌	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Patterson, I	Χ.				Date: 2002	
Title:	Final Proje Mapping Pr	1	River	Water Management Distric	t Suv	vannee Estuary 2001 Oys	ter Habitat
Publication:							
Publisher:	AGRA Bay	vmont, Inc.					
High Releva							
	nce 🗌	Biscayne Bay 🗌					
Other Categ		Biscayne Bay		Aquatic Plants/Habitat		Ecological Indicators	
-				Aquatic Plants/Habitat Water Quality Data		Ecological Indicators Hydrologic Data	
-		Animal Species		-		-	
-	ories:	Animal Species		Water Quality Data		-	
Other Categ	ories: Pattillo, M.	Animal Species Impact Approach , T. Czapla, D. Nelson a	✓ and M	Water Quality Data		Hydrologic Data Date: 1997	
Other Categ Author: Title:	p ories: Pattillo, M. Distribution	Animal Species Impact Approach , T. Czapla, D. Nelson a	✓ und M es and	Water Quality Data . Manaco invertebrates in Gulf of Me		Hydrologic Data Date: 1997	
Other Categ Author: Title:	p ories: Pattillo, M. Distribution	Animal Species Impact Approach , T. Czapla, D. Nelson a n and abundance of fishe history summaries. ELN	✓ und M es and	Water Quality Data . Manaco invertebrates in Gulf of Me		Hydrologic Data Date: 1997	
Other Categ Author: Title: Publication:	Pattillo, M. Distribution Species life NOAA/NO	Animal Species Impact Approach , T. Czapla, D. Nelson a n and abundance of fishe history summaries. ELN	✓ und M es and	Water Quality Data . Manaco invertebrates in Gulf of Me		Hydrologic Data Date: 1997	
Other Categ Author: Title: Publication: Publisher:	Pattillo, M. Distribution Species life NOAA/NO nce	Animal Species Impact Approach , T. Czapla, D. Nelson a n and abundance of fishe history summaries. ELN S	✓ und M es and	Water Quality Data . Manaco invertebrates in Gulf of Me	exico	Hydrologic Data Date: 1997	

Author:	Perez, M.A					Date: 1987	
Title:	Physiologic	cal response of the early	juveni	ile snook (Centropomus un	decim	alis) to different salinities	S
Publication:	University	of Miami Thesis					
Publisher:							
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	
Author:	Platt, S.G.,	T.R. Rainwater, and J.B	. Tho	rbjarnarson		Date: 2002	
Title:	Crocodylus	acutus. Hatchling diet.					
Publication:	Herpetol. R	ev. 33(3):202-203					
Publisher:	Society for	the Study of Amphibian	s and]	Reptiles			
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Poirrier and	l Partridge				Date: 1979	
Title:	The barnac	le, Balanus subalbidus, a	as a sa	linity bioindicator in the o	ligoha	line estuarine zone	
Publication:	Estuaries 2:	: 204-206					
Publisher:	Estuarine R	esearch Federation					
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	

Author:	Powell, G.I	L., J. Matsmoto, and D.A	A. Broc	ck		Date: 2002	
Title:	Methods fo	r determining minimum	freshv	water inflow needs of Texa	is bay	s and estuaries	
Publication:	Estuaries 2	5(6B): 1262-1274					
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	
Author:	Provencher	, L., Munro, J., and J.D.	Dutil			Date: 1993	
Title:	Osmotic pe	rformance and survival	of Atla	antic cod (Gadus morhua)	at low	salinities	
Publication:	Aquacultur	e 116: 219-231					
Publisher:	Elsevier Sc	ience B.V.					
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Quammen,	M.L. and C.P. Onuf				Date: 1993	
Title:	Laguna Ma	dre: Seagrass changes of	continu	ue decades after salinity rec	ductio	on	
Publication:	Estuaries 1	6(2): 302-310					
Publisher:	Estuarine R	Research Federation					
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	

Author:	Reagan, R.	E.				Date: 1985	
Title:	Species pro Mexico): H		envir	onmental requirements of o	coasta	l fishes and invertebrates	(Gulf of
Publication:	U.S. FWS	Biological Report 82					
Publisher:	USFWS						
High Releva	nce 🗸	Biscayne Bay 🗌					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Roessler, C	S.L. Beardsley and R. Sn	nith			Date: 1973	
Title:	Benthic con	mmunities of Biscayne E	ay, Fl	lorida			
Publication:	Unpublishe	ed report. University of	Miam	i Sea Grant 12 pp.			
Publisher:							
High Releva	nce	Biscayne Bay 🗌					
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Roessler, N	ſ.A.				Date: 1965	
Title:	An analysis	s of the variability of fisl	ı popu	lations taken by otter traw	l in B	iscayne Bay, Florida	
Publication:	Transaction	ns of the American Fishe	eries S	ociety 94: 311-318			
Publisher:	American I	Fisheries Society					
High Releva	nce 🗸	Biscayne Bay 🖌					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	

Author:	Ross, M.S.,	, et al			Date: 2002						
Title:	Multi-taxon analysis of the "white zone", a common ecotonal feature of South Florida coastal wetlands										
Publication:	tion: The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook										
Publisher:	CRC Press										
High Relevance 🗌 Biscayne Bay											
Other Categories:		Animal Species		Aquatic Plants/Habitat 🔽	Ecological Indicators						
		Impact Approach		Water Quality Data	Hydrologic Data						
Author:	Ross, M.S., J. Meeder, J. Sah, P. Ruiz, and G. Telesnicki Date: 1999										
Title:	The southeast saline Everglades revisited: a half-century of coastal vegetation change										
Publication:											
Publisher:											
Publisher: High Releva	ince 🔽	Biscayne Bay 🔽									
		Biscayne Bay 🔽 Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators						
High Releva				Aquatic Plants/Habitat 🗌 Water Quality Data 🗍	Ecological Indicators Hydrologic Data						
High Releva		Animal Species		-	-						
High Releva	ories:	Animal Species		-	-						
High Releva Other Categ	g ories: Rozas, L.P.	Animal Species Impact Approach	es and	-	Hydrologic Data Date: 1984						
High Releva Other Categ Author:	g ories: Rozas, L.P. Use of olig	Animal Species Impact Approach . and C.T. Hackney ohaline marshes by fishe	es and	Water Quality Data	Hydrologic Data Date: 1984						
High Releva Other Categ Author: Title:	gories: Rozas, L.P. Use of olig Estuaries 7	Animal Species Impact Approach . and C.T. Hackney ohaline marshes by fishe	es and	Water Quality Data	Hydrologic Data Date: 1984						
High Releva Other Categ Author: Title: Publication:	Rozas, L.P. Use of olig Estuaries 7 Estuarine R	Animal Species Impact Approach . and C.T. Hackney ohaline marshes by fishe (3): 213-224	es and	Water Quality Data	Hydrologic Data Date: 1984						
High Releva Other Categ Author: Title: Publication: Publisher:	Rozas, L.P. Use of olig Estuaries 7 Estuarine R nce I	Animal Species Impact Approach . and C.T. Hackney ohaline marshes by fishe (3): 213-224 Research Federation	es and	Water Quality Data	Hydrologic Data Date: 1984						

Author:	Russell, G.					Date: 1987					
Title:	Salinity and seaweed vegetation										
Publication:	Plant life in aquatic and amphibious habitats: Special Publication of the Britsh Ecologcial Society 35-52										
Publisher:											
High Relevance Biscayne Bay											
0											
Other Categories:		Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators					
		Impact Approach		Water Quality Data		Hydrologic Data					
Author:	Saoud, I.P.,	, and D.A. Davis				Date: 2003					
Title:	Salinity tolerance of brown shrimp Farfantepenaeus aztecus as it relates to postlarval and juvenile survival, distribution, and growth in estuaries										
Publication: Estuaries 26(4A): 970-974											
Publisher: Estuarine Research Federation											
High Relevance 🗌 Biscayne Bay 🗌											
Other Categories:		Animal Species		Aquatic Plants/Habitat	\checkmark	Ecological Indicators					
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data					
Author:	Savarese, N	I. and A.K. Volety				Date: 2001					
Title:	Impact of waterflow alteration upon oyster growth and distribution within estuaries of southwest Florida: implications for management and restoration										
Publication: Aquaculture 2001: Book of Abstracts											
Publisher:	Publisher: World Aquaculture Society										
High Relevance 🗌 Biscayne Bay											
Other Categories:		Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators					
		Impact Approach		Water Quality Data		Hydrologic Data					

-

Author:	Sayer, M.D	.J., J.P. Reader				Date: 1996	
Title:	-	f goldshiny, rock cook an and seasonal variation	nd cor	kwing wrasse to low tempe	eratur	e and low salinity: survival	, blood
Publication:	Journal of H	Fish Biology 49: 41-63					
Publisher:							
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	Schubert, A	۸.				Date: 1994	
Title:	Conservatio	on of American crocodile	e				
Publication:	Crocodile S	Specialist Group Newslet	ter 13	(3):14			
Publisher:							
High Releva	nce 🗌	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Seaman, W	., and M. Collins				Date: 1983	
Title:	Species pro Florida) s		enviro	nmental requirements of co	oastal	fishes and invertebrates (S	outh
Publication:	USFWS						
Publisher:	USACE						
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	

_

Author:	Serafy, J.A., C.H. Faunce, J.J. Lorenz Date: 2003							
Title:	Mangrove s	shoreline fisheries of Bis	cayne	Bay, Florida				
Publication:	Bulletin of	Marine Science						
Publisher:								
High Releva	nce 🗸	Biscayne Bay 🔽						
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		
							,	
Author:	Serafy, J.E.	and K.C. Lindeman				Date: 2000		
Title:	Overview o	f studies on Biscayne Ba	ıy fish	es				
Publication:								
Publisher:								
High Releva	nce	Biscayne Bay 🔽						
Other Categ		Animal Spacing	\checkmark	Aquatic Plants/Habitat		Ecological Indicators		
	ories:	Animal Species						
	ories:	Animai Species Impact Approach		Water Quality Data		Hydrologic Data		
	ories:	-		-		Hydrologic Data		
Author:		-		Water Quality Data		Hydrologic Data Date: 1997		
	Serafy, J.E.	Impact Approach ., K.C. Lindeman, T.E. H reshwater canal discharg	Hopkii	Water Quality Data	pical	Date: 1997		
Author: Title:	Serafy, J.E. Effects of f observation	Impact Approach ., K.C. Lindeman, T.E. H reshwater canal discharg	Hopkin e on f	Water Quality Data ns, J.S. Ault Tish assemblages in a subtro	pical	Date: 1997		
Author: Title:	Serafy, J.E. Effects of f observation	Impact Approach ., K.C. Lindeman, T.E. H reshwater canal discharg s blogy Progress Series 160	Hopkin e on f	Water Quality Data ns, J.S. Ault Tish assemblages in a subtro	pical	Date: 1997		
Author: Title: Publication: Publisher:	Serafy, J.E. Effects of f observation Marine Eco Inter-Resea	Impact Approach , K.C. Lindeman, T.E. H reshwater canal discharg s ology Progress Series 160 rch	Hopkin e on f	Water Quality Data ns, J.S. Ault Tish assemblages in a subtro	pical	Date: 1997		
Author: Title: Publication: Publisher: High Releva	Serafy, J.E. Effects of f observation Marine Ecc Inter-Resea nce	Impact Approach , K.C. Lindeman, T.E. H reshwater canal discharg s ology Progress Series 160 rch Biscayne Bay	Hopkin e on f	Water Quality Data Ans, J.S. Ault Tish assemblages in a subtrop 172	pical	Date: 1997 bay: field and laboratory		
Author: Title: Publication: Publisher:	Serafy, J.E. Effects of f observation Marine Ecc Inter-Resea nce	Impact Approach , K.C. Lindeman, T.E. H reshwater canal discharg s ology Progress Series 160 rch	Hopkin e on f	Water Quality Data ns, J.S. Ault Tish assemblages in a subtro	pical	Date: 1997		

Author:	SFWMD					Date: 2002	
Title:	Biscayne B	ay MFLs Technical Disc	cussio	n Group Summary			
Publication:	SFWMD						
Publisher:	SFWMD						
High Releva	nce 🗸	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🖌	/	Ecological Indicators	\checkmark
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	
Author:	SFWMD					Date: 2003	
Title:	Draft evalu	ation performance indica	ator do	ocumentation sheet			
Publication:							
Publisher:	SFWMD						
High Releva	nce 🔽	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 💆	/	Ecological Indicators	
		Impact Approach	✓	Water Quality Data		Hydrologic Data	
Author:	SFWMD					Date: 2000	
Title:	Draft minin	num flows and levels for	Lake	Okeechobee, the Everglades	s, and	the Biscayne Aquifer	
Publication:	SFWMD						
Publisher:	SFWMD						
High Releva	nce 🗸	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	\checkmark

Author:	SFWMD				Date: 2000	
Title:	Lower east	coast regional water sup	ply pl	an, Planning document, 3 volu	nes.	
Publication:	SFWMD					
Publisher:	SFWMD P	alatka Florida				
High Releva	nce 🗌	Biscayne Bay 🔽				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach		Water Quality Data	Hydrologic Data	\checkmark
Author:	SFWMD				Date: 2002	
Title:	Reservatior state law	ns of water for the enviro	onmen	t and assurances for existing least	gal sources consistent with	federal and
Publication:						
Publisher:	SFWMD					
High Releva	nce	Biscayne Bay				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data	
Author:	SFWMD				Date: 2001	
Title:		000: Linking Everglades Florida Bay fish	s resto	ration and enhanced freshwater	flows to elevated concent	rations of
Publication:						
Publisher:						
High Releva	nce 🗌	Biscayne Bay				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat 🗹	Ecological Indicators	
		Impact Approach		Water Quality Data	Hydrologic Data	

Author:	SFWMD					Date: 2003	
Title:	Technical and Estuar	11	t deve	lopment of minimum flows	s and	levels for the Caloosahate	chee River
Publication:	Caloosaha	tchee River MFL Researc	ch Pro	gram Progress Report			
Publisher:							
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	\checkmark
Author:	SFWMD					Date: Unkno	own
Title:	Technical Loxahatch		t deve	lopment of minimum flows	s and	levels for the Northwest F	Fork of the
Publication:	SFWMD						
Publisher:	SFWMD						
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	\checkmark
Author:	SFWMD					Date: 2002	
Title:	Upper Pea	ce River: an analysis of	minim	um flows and levels			
Publication:							
Publisher:	SFWMD						
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data	

Author:	Sheaves, M	[.				Date: 1996		
Title:	Do spatial of term salinit		ance o	f two serranid fishes in estuar	ries (of tropical Australia refle	ect long-	
Publication:	Marine Eco	ology Press Series 137: 3	9-49					
Publisher:								
High Releva	nce	Biscayne Bay						
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data 🔽		Hydrologic Data		
Author:	Sheldon, J.	E. and M. Alber				Date: 2002		
Title:	A comparison of residence time calculations using simple compartment models of the Altamaha River Estuary Georgia							
Publication:	Estuaries 2	5(6B): 1304-1317						
Publisher:	Estuarine F	Research Federation						
High Releva	nce 🗌	Biscayne Bay						
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		
Author:	Sheridan, F	P. and C. Hays				Date: 2003		
Title:	Are mangro	oves nursery habitat for	transie	ent fishes and decapods?				
Publication:	Wetlands 2	3(2): 449-458						
Publisher:	The Society	y of Wetland Scientist						
High Releva	nce	Biscayne Bay						
Other Categ		Animal Species		Aquatic Plants/Habitat 🗸		Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		

-

Author:	Siegsmondi	i, Linda A., L.J. Weber				Date: 1998
Title:	Changes in	avoidance response tim	e if ju	venile chinook salmon expo	osed t	o multiple acute handling stresses
Publication:	Transaction	ns of the Amercian fishe	ries Sc	ociety 117:196-281		
Publisher:						
High Releva	nce	Biscayne Bay				
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators
		Impact Approach		Water Quality Data	✓	Hydrologic Data
Author:	Skinner, R.	H. and W. Kandrashoff				Date: 1988
Title:	Abnormalit	ies and diseases observe	ed in co	ommercial fish catches from	n Bis	cayne Bay, Florida
Publication:	Water Reso	ources Bulletin: 24: 961	-996			
Publisher:	American V	Water Resources Associa	ation			
High Releva	nce 🗌	Biscayne Bay 🗹				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators
		Impact Approach		Water Quality Data		Hydrologic Data
Author:	Sklar, F.H.	and J.A. Browder				Date: 1998
Title:	Coastal env	vironmental impacts brow	ught al	oout by alterations to freshw	vater	flow in the Gulf of Mexico
Publication:	Environme	ntal Management 22: 5	47-562	2		
Publisher:	Springer-V	erlag New York Inc.				
High Releva	nce 🗸	Biscayne Bay				
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators
		Impact Approach		Water Quality Data		Hydrologic Data

Author:	Smith, H.M	Ι.				Date: 1895	
Title:	Notes on B experiment		th refe	rence to its adaptability as	the si	te of a marine hatching an	nd
Publication:	U.S. Report	t of Commissioner of Fi	sh and	Fisheries, 168-191			
Publisher:	U.S. Gover	nment Printing Office					
High Releva	nce 🗸	Biscayne Bay 🖌					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	\checkmark
Author:	Sternberg, I	L.D.S.L. and P.K. Swar	t			Date: 1987	
Title:	Utilization	of freshwater and ocean	water	by coastal plants of southe	ern Fl	orida	
Publication:	Ecology 68	:6 1898-1905					
Publisher:							
High Releva	nce 🗌	Biscayne Bay 🗌					
Other Categ	ories	Animal Species		Aquatic Plants/Habitat	\checkmark	Ecological Indicators	
e	01105.						
	011051	Impact Approach		Water Quality Data		Hydrologic Data	
		-		Water Quality Data		Hydrologic Data	
Author:		Impact Approach T. M. Cronin, G. L. Br		Water Quality Data			
	Stone, J.R., and C.W. H	Impact Approach T. M. Cronin, G. L. Br Iolmes	ewster		.R. W	ardlaw, Date: 2000	e Bay,
Author:	Stone, J.R., and C.W. H A paleoeco Florida	Impact Approach T. M. Cronin, G. L. Br Iolmes logic reconstruction of t	ewster	-Wingard, S.E. Ishman, B	.R. W	ardlaw, Date: 2000	e Bay,
Author: Title:	Stone, J.R., and C.W. H A paleoeco Florida	Impact Approach T. M. Cronin, G. L. Br Iolmes logic reconstruction of t	ewster	-Wingard, S.E. Ishman, B	.R. W	ardlaw, Date: 2000	e Bay,
Author: Title: Publication:	Stone, J.R., and C.W. H A paleoeco Florida USGS Repo USGS	Impact Approach T. M. Cronin, G. L. Br Iolmes logic reconstruction of t	ewster	-Wingard, S.E. Ishman, B	.R. W	ardlaw, Date: 2000	e Bay,
Author: Title: Publication: Publisher:	Stone, J.R., and C.W. H A paleoeco Florida USGS Repo USGS nce V	Impact Approach T. M. Cronin, G. L. Br lolmes logic reconstruction of t	ewster	-Wingard, S.E. Ishman, B	.R. W	ardlaw, Date: 2000	e Bay,

-

Author:	Surge, D.M	I. and K.C. Lohmann				Date: 2002	
Title:	-	nd spatial differences in acted watersheds	salini	ty and water chemistry in s	outh	west Florida estuaries: eff	fects of
Publication:	Estuaries 2	5(3): 393-408					
Publisher:	Estuarine R	Research Federation					
High Releva	nce	Biscayne Bay					
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Tagatz, M.	Е.				Date: 1971	
Title:	Osmoregula	atory ability of blue crab	os in di	ifferent temperature-salinity	y con	binations	
Publication:	Chesapeake	e Science 12(1): 14-17					
Publisher:							
High Releva	nce 🗸	Biscayne Bay					
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	
Author:	Tamburri, I	M.N., R.K. Zimmer-Fau	st, M.	L. Tamplin		Date: 1992	
Title:	Natural sou	arces and properties of cl	hemica	al inducers mediating settle	ment	of oyster larvae: a re-exa	amination
Publication:	Biological	Bulletin 183: 327-338					
Publisher:							
High Releva	nce	Biscayne Bay					
		Discayile Day					
Other Categ		Animal Species		Aquatic Plants/Habitat		Ecological Indicators	

Author:	TBD					Date: 1996	
Title:	Red Drum						
Publication:							
Publisher:							
High Releva	nce 🔽	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	✓	Hydrologic Data	
Author:	TBD					Date: Unkno	wn
Title:	Seagrasses						
Publication:							
Publisher:	FWS						
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Thomas, D.	L. and B.A. Smith				Date: 1973	
Title:	Studies of y	oung of the black drum,	Pogo	nias cromis, in low salinity	wate	rs of the Delaware estuary	ý
Publication:	Chesapeake	e Science 14(2): 124-130					
Publisher:	Estuarine R	esearch Federation					
High Releva	nce 🗸	Biscayne Bay					
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators	
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data	

Author:	Thorbjarna	rson, J.				Date: 1989	
Title:	Ecology of	the American crocodile,	, Croc	odylus acutus			
Publication:	Crocodiles. Specialist C	e	ement	, and Conservation. A Speci	ial Pu	blication of the Crocodi	le
Publisher:	IUCN						
High Releva	nce	Biscayne Bay					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat [Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Tilmant, J.'	Γ. and R.D. Conant				Date: 1980	
Title:	Distribution County, Flo	-	n of co	ommercially important spong	ges wi	thin South Biscayne Bay	y, Dade
Publication:	Florida Sci	entist 43					
Publisher:							
High Releva	nce	Biscayne Bay 🔽					
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat [Ecological Indicators	
		Impact Approach		Water Quality Data		Hydrologic Data	
Author:	Tsou, T.S.	and R.E. Matheson, Jr.				Date: 2002	
Title:		anges in the nekton cor	nmuni	ty of the Suwannee River Es	stuary		f freshwate
Publication:	Estuaries 2	5(6B): 1372-1381					
Publisher:	Estuarine R	esearch Federation					
Publisher: High Releva		esearch Federation Biscayne Bay					
	nce			Aquatic Plants/Habitat		Ecological Indicators	

_

Author: Turner, E.J	Turner, E.J., R.K. Zimmer-Faust, M.A. Palmer, M. Luckenbach, N.D. Pentcheff Date: 1994								
Title: Settlement	of oyster (Crassotrea vir	ginica) larvae: effects of water f	low a	nd a water-soluble chemic	cal cue			
Publication: Limnology	and Oceanography 39:1	579-1:	593						
Publisher:									
High Relevance	Biscayne Bay								
Other Categories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators				
	Impact Approach		Water Quality Data		Hydrologic Data				
Author: U.S. Geolog	gical Survey				Date: 2000				
Title: Studies sup	porting restoration of m	angro	ve habitat in Everglades N	ationa	ll Park: Faunal Componer	nt			
Publication: USGS Bull	etin								
Publisher:									
High Relevance	Biscayne Bay								
Other Categories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators				
	- Impact Approach		- Water Quality Data		Hydrologic Data				
Author: Ulanowicz,	R.E. and J.H. Tuttle				Date: 1992				
Title: The trophic	consequences of oyster	stock	rehabilitation in Chesapeal	ke Ba	у				
Publication: Estuaries 1:	5: 298-306								
Publisher:									
High Relevance	Biscayne Bay								
Other Categories:	Animal Species	\checkmark	Aquatic Plants/Habitat		Ecological Indicators				
	Impact Approach		Water Quality Data		Hydrologic Data				

-

Author:	Valesini, F.J., I.C. Potter, M.E. Platell, and G.A. Hyndes Date: 1997							
Title:	Icthyofaunas of a temperate estuary and adjacent marine embayment. Implications regarding choice of nursery area and influence of environmental changes							
Publication:	Marine Bio	logy 128: 317-328						
Publisher:	Springer-V	erlag New York Inc.						
High Releva	nce	Biscayne Bay						
Other Categ	gories:	Animal Species	\checkmark	Aquatic Plants/Habitat 🗌	Ecologic	al Indicators		
		Impact Approach		Water Quality Data	Hydrolo	gic Data		
Author:	Van de Kre	eeke, J. and J.D. Wang				Date: 1984		
Title:	Hydrograp	hy of north Biscayne Bay	. Par	t I: Results of field measurem	ents			
Publication:	RSMAS							
Publisher:	DERM and	l Sea Grant						
High Releva	ince	Biscayne Bay 🔽						
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecologic	al Indicators		
		Impact Approach		Water Quality Data	Hydrolo	gic Data		
Author:	Volety, A.I	K., S.G. Tolley, and J.T.	Winst	tead		Date: 2002		
Title:	Using resp	onses of oysters in establ	ishing	g minimum flows and levels ir	the Caloosa	ahatchee Estuar	y, Florida	
Publication:	Publication: Proceedings of the 6th International Conference on Shellfish Restoration, Charleston, SC							
Publisher:	SC Sea Gra	ant Consortium						
High Releva	ince	Biscayne Bay						
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🔽	Ecologic	al Indicators		
		Impact Approach	\checkmark	Water Quality Data	Hydrolo	gic Data		

Author:	Wade, J.S. Date: 1992							
Title:	Maintenance and restoration of freshwater flows to estuaries for fisheries habitat purposes							
Publication:	tion: Florida Sea Grant Technical Paper 65							
Publisher: FL DNR, FL Sea Grant College Program								
High Relevance 🗌 Biscayne Bay 🗌								
Other Categories: Animal Species Aquatic Plants/Habitat Ecological Indicators								
		Impact Approach		Water Quality Data		Hydrologic Data		
Author:	Wakeman,	J.M. and D.E. Wohlschl	ag			Date: 1977		
Title:	Salinity stre	ess and swimming perfor	rmanc	e of spotted seatrout				
Publication:	Proceeding Agencies 3	•	l Coni	ference of the Southeastern A	Asso	ciation of Fish and Wildl	ife	
Publisher:								
Publisher:								
Publisher: High Releva	nce 🗸	Biscayne Bay						
		Biscayne Bay 🗌 Animal Species		Aquatic Plants/Habitat		Ecological Indicators		
High Releva				-		Ecological Indicators Hydrologic Data		
High Releva		Animal Species		-				
High Releva		Animal Species Impact Approach		-				
High Releva Other Categ	ories: Wanless, H	Animal Species Impact Approach		-		Hydrologic Data		
High Releva Other Categ Author: Title:	o ries: Wanless, H Sediments (Animal Species Impact Approach	Dution	Water Quality Data		Hydrologic Data Date: 1969		
High Releva Other Categ Author: Title:	ories: Wanless, H Sediments Rosenstiel	Animal Species Impact Approach	Dution	Water Quality Data		Hydrologic Data Date: 1969		
High Releva Other Categ Author: Title: Publication:	wanless, H Sediments Rosenstiel University	Animal Species Impact Approach of Biscayne Bay: Distrib School of Marine and A	Dution	Water Quality Data		Hydrologic Data Date: 1969		
High Releva Other Categ Author: Title: Publication: Publisher:	Wanless, H Sediments Rosenstiel University nce 🗹	Animal Species Impact Approach of Biscayne Bay: Distrib School of Marine and A of Miami, Miami. FL	Dution	Water Quality Data		Hydrologic Data Date: 1969		

_

Author:	Wanless, H.R., R.W. Parkinson, and L.P. Tedesco Date: 1994							
Title:	Sea level control on stability of Everglades wetlands							
Publication:	cation: Everglades: The Ecosystem and Its Restoration							
Publisher: St. Lucie Press								
High Relevance 🗌 Biscayne Bay 🗌								
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	✓	Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		
Author:	Wanless, H	arold R.				Date: 1989		
Title:	The inunda	tion of our coastlines						
Publication:	Sea Frontie	ers 264-269						
Publisher:								
High Releva	nce	Biscayne Bay 🔽						
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach		Water Quality Data		Hydrologic Data		
Author:	Ward, G.H	., M.J. Irlbeck, and P.A.	Mont	agna		Date: 2002		
Title:	Experimental river diversion for marsh enhancement							
Publication: Estuaries 25(6B): 1416-1425								
Publisher:	Publisher: Estuarine Research Federation							
High Releva	nce	Biscayne Bay						
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat		Ecological Indicators		
		Impact Approach	\checkmark	Water Quality Data		Hydrologic Data		

Author:	Whitfield,	A.K.			Date: 1994				
Title:	Abundance of larval and 0+ juvenile marine fishes in the lower reaches of three southern African estuaries with differing freshwater inputs								
Publication:	Marine Eco	ology Press Series 105: 2	57-26	7					
Publisher:	Inter-Resea	urch							
High Releva	nce	Biscayne Bay 🔽							
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators				
		Impact Approach		Water Quality Data	Hydrologic Data				
Author:	Whitfield,	A.K. and M.N. Bruton			Date: 1989				
Title:	Some biolo assessment	• •	luced	fresh water inflow into eastern	Cape estuaries: a prelimin	ary			
Publication:	South Afric	can Journal of Science 8	5: 691	-694					
Publisher:									
High Releva	nce	Biscayne Bay							
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🖌	Ecological Indicators				
		Impact Approach		Water Quality Data	Hydrologic Data				
Author:	Wilson, J.C	Э.			Date: 1994				
Title:	The role of	bioindicators in estuari	ne ma	nagement					
Publication:	Publication: Estuaries 17(1A): 94-101								
Publisher:	Estuarine F	Research Federation							
High Releva	nce 🗸	Biscayne Bay							
Other Categ	gories:	Animal Species		Aquatic Plants/Habitat 🗌	Ecological Indicators				
		Impact Approach		Water Quality Data	Hydrologic Data				

Author:	Woodward-	-Clyde			Date: 1998				
Title:	St. Lucie estuary historical, SAV, and American oyster literature review								
Publication:	South Florida Water Management District, West Palm Beach, FL. 14 sections								
Publisher:	South Florida Water Management District								
High Relevance 🔽 Biscayne Bay 🗌									
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	Ecological Indicators				
		Impact Approach		Water Quality Data	Hydrologic Data				
Author:	Yobbi, D.A	a. and L.A. Knochenmus			Date: 1989				
Title:		l flow relations and dffee Southwest Floirda.	cts of	reduced flow in the Chassahow	itzka River and Hommosassa River				
Publication:	Water Reso	ource Investigations Repo	ort 88-	-4044					
Publisher:	U.S. Geolog	gical Survey, Tallahasse	e, Fla.						
High Releva	nce	Biscayne Bay							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	Ecological Indicators				
		Impact Approach	\checkmark	Water Quality Data	Hydrologic Data 🔽				
Author:	Zale, A.V.,	and S.G. Merrifield			Date: 1989				
Title:	Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Florida) - ladyfish and tarpon								
Publication: USFWS Biol. Rep. 82(11.104)									
Publisher:	USACE								
High Releva	nce	Biscayne Bay							
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	Ecological Indicators				
		Impact Approach		Water Quality Data	Hydrologic Data				

-

Author:	Zieman, J.C. Date: 1975								
Title:	Seasonal variation of turtle grass, Thalassia testudinum Konig, with reference to temperature and salinity effects								
Publication:	Publication: Aquatic Botany (1): 107-123								
Publisher:									
High Releva	nce	Biscayne Bay 🔽							
Other Categ	ories:	Animal Species		Aquatic Plants/Habitat	\checkmark	Ecological Indicators			
		Impact Approach		Water Quality Data	\checkmark	Hydrologic Data			
Author:	Zimmer-Fa	ust, R.K. and M.N. Tam	burri			Date: 1994			
Title:	Chemical ic	lentity and ecological in	plicat	ions of a waterborne, larva	al sett	lement cue			
Publication:	Limnology	and Oceanography 39: 1	075-1	087					
Publisher:									
High Relevance 🗌 Biscayne Bay									
Other Categ	ories:	Animal Species	\checkmark	Aquatic Plants/Habitat	✓	Ecological Indicators			
		Impact Approach		Water Quality Data		Hydrologic Data			

APPENDIX B

TASK 3 REPORT INTERVIEWS WITH EXPERTS

SUMMARY OF TASK 3 CONTACTS AND EXPERTS INTERVIEWS

FOR THE PROJECT

FRESHWATER FLOW AND ECOLOGICAL RELATIONSHIPS IN BISCAYNE BAY

BY

BARNES FERLAND AND ASSOCIATES, INC.

AND SUBCONSULTANTS

APPLIED TECHNOLOGY & MANAGEMENT, INC. LEWIS ENVIRONMENTAL SERVICES, INC.

SOUTH FLORIDA WATER MANAGEMENT DISTRICT WEST PALM BEACH, FLORIDA

NOVEMBER, 2003

INTRODUCTION

The State of Florida has adopted rules for Water Management Districts to establish Minimum Flows and Levels (MFLs) for identified priority water bodies and to implement these MFLs through water shortage plans and or the water use permitting process. Specifically, Biscayne Bay has been identified as a priority water body in which MFLs must be developed by the South Florida Water Management District (SFWMD) by December, 2004.

As one component of the SFWMD efforts to establish MFLs for Biscayne Bay, the SFWMD issued a work order to undertake a study titled, *Freshwater Flow and Ecological Relationships in Biscayne Bay*. SFWMD entered into an agreement to with the consultant team of Barnes, Ferland and Associates, Applied Technology Management, Inc. and Lewis Environmental Services, Inc. to conduct the necessary activities to complete this project.

The overall objectives of this project are to assist District staff with identifying significant harm and with development of the technical criteria for the Biscayne Bay MFLs, including:

- Performing an intensive review and documentation of existing literature and information to determine the technical relationships among freshwater flow, salinity and watershed/estuary hydrodynamics that impact key indicator biological communities or species present throughout Biscayne Bay; and
- Evaluating approaches that can be used to develop the MFLs significant harm technical criteria.

This summary of interviews with experts is part of the overall project scope and is presented in fulfillment of the requirements of Task 3 – Contacts and Experts Interviews as detailed in Contract No. C-15967-WO04-06. In this task, members of the project team have interviewed and obtained information and data from local contacts and experts in the areas of estuarine/marine water chemistry, phytoplankton, zooplankton, algae, seagrasses, invertebrates, fisheries, ecology, and paleoecology. In completing these interviews, the project team has:

- Confirmed the literature review information and obtained recommendations for additions to the literature database (which were subsequently incorporated into the Task 2 bibliography),
- Identified additional recent and/or ongoing relevant research and data collection, and new information, and
- Identified additional sources of information (i.e., unpublished documentation, personal opinion, etc.) regarding ecological dependencies on freshwater in Biscayne Bay or other south Florida estuaries and/or other estuaries where such information could be helpful.

The SFWMD provided an initial list of recommended contacts/interviewees that were to be contacted regarding the project purpose and to discuss project aspects. It was acknowledged in initial meetings between SFWMD and the project team that this list would serve as an

initial basis, that completing interviews with all of these individuals within the project schedule may not be possible, that some potential interviewees may not have the time or inclination to participate, and that, as the project progressed, additional and/or substitute interviewees would be identified. Table 1 identifies experts that were contacted and their respective areas of expertise. Attachment A provides a summary of the interview process.

An interview form (Attachment B) was developed to ensure consistency in covering the requested topics and/or aspects of the project in each interview. Interviews were conducted by senior ecologist project team members Robin Lewis and Greg Braun, during September and October, 2003. Some interviews were conducted in person, while others by telephone. The following provides a summary of these interviews and the general findings.

It is important to note that the majority of the information that follows may not represent the opinions and/or conclusions of the project team or the SFWMD; it merely recounts the essence of the opinions, comments and suggestions of the various interviewees. In several circumstances, the interviewee(s) provided comments and/or suggestions that, while pertinent to the overall issue of MFLs for Biscayne Bay, may not have been directly related to the interviewer's tasks of identifying indicator species, suites of indicators of ecosystem health and/or significant harm. In some cases, information regarding these tangential issues is included in the interview summaries, in order for the District to be aware of the opinions of the information gleaned from the Task 2 Literature and Data Review, the team will use its best professional judgment to identify potential MFL approaches, recommend a preferred approach and finally, in the fifth and final task, summarize the information and identify potential information needs.

SUMMARY OF INTERVIEWS WITH EXPERTS

The interview summaries are organized alphabetically by agency/entity within the following three major categories: Governmental Entities, Academia, and Other Non-Governmental Organizations.

GOVERNMENTAL ENTITIES

Florida Department of Environmental Protection

Interviewees: Daniel Apt, Stacey Feken (participated by conference call), Marsha Colbert (Manager of BB Aquatic Preserve). Interviewer: G. Braun. Interview date: Sep. 3, 2003.

These interviewees were only vaguely aware of the MFL process. None conduct original research in Biscayne Bay, but discussions led to numerous suggestions of various people (researchers, planners...) not on our contact list who they think could provide additional info. They suggested that maintenance of seagrass beds of *Halodule wrightii* and *Syringodium filiforme* near mouths of canals and re-establishment of salinity regimes that would sustain the historic distribution of oyster populations be considered as the mechanisms to prevent significant harm in the northern portions of the Bay; pink shrimp for southern

Summary of Contacts and Expert Interviews

Expert	Agency or	General Area	Team	Interview
Name	Association	of Expertise	Interviewer	Date
Mr. Richard Alleman	SFWMD	Biscayne Bay	G.B & R.L.	1-Oct-03
Mr. Daniel Apt	FDEP - (CERP)	CERP	G. Braun	3-Sep-03
Ms. Sarah Bellmund	Biscayne National Park	Marine Ecology	R. Lewis	23-Sep-03
Mr. Steven Blair	DERM (Restoration)	Seagrasses	G. Braun	4-Sep-03
Mr. David Boyd	FDEP-Reg. Biologist Pks	Marine Ecology	G. Braun	10-Oct-03
Dr. Joseph Boyer	Fl. International Univ.	Bisc Bay water quality	G. Braun	24-Sep-03
Dr. Joan Browder	NOAA NMFS CASC	Marine Ecology	R. Lewis	26-Sep-03
Mr. Rick Clark	Biscayne National Park	Marine Ecology and Mgmt.	R. Lewis	23-Sep-03
Ms. Marsha Colbert	FDEP	Bisc Bay Aquatic Preserve	G. Braun	3-Sep-03
Mr. Richard Curry	Biscayne National Park	Marine Ecology	G. Braun	23-Sep-03
Mr. Guillermo Diaz	U of Miami	Fishes	G. Braun	10-Oct-03
Mr. Steven Dale	Oleta River State Pk	Park Management	G. Braun	20-Oct-03
Dr. Ernie D. Estevez	Mote Marine Laboratory	Marine Ecology	R. Lewis	29-Sep-03
Dr. Craig Faunce	U of Miami	Fishes	G. Braun	21-Oct-03
Ms Stacey Feken	FDEP - Water Quality	Water Quality	G. Braun	3-Sep-03
Mr. Sid Flannery	SWFWMD	MFLs	R. Lewis	29-Sep-03
Dr. James Fourqurean	Fl. International Univ.	Seagrasses	R. Lewis	29-Oct-03
Dr. Grant Gilmore Jr.	Dynamac Corporation	Ichthyology	R. Lewis	27-Oct-03
Mr. Greg Graves	FDEP - Water Quality	Water Quality	G. Braun	7-Oct-03
Mr. Craig Grossenbacher	DERM	Biology	R. Lewis	31-Oct-03
Dr. Sonny Hall	SJRWMD - MFL Mgr	MFLs	G. Braun	16-Sep-03
Mr. Scott Ishman	S. Illinois Univ.	Paleo-ecology - Forams	G. Braun	9-Oct-03
Ms. Jennifer Jacukiewicz	NMFS	Protected marine species	G. Braun	23-Oct-03
Dr. Diego Lirman	U of Miami	Seagrasses	G. Braun	9-Oct-03
Dr. Jerome Lorenz	National Audubon Society	Ornithology	R. Lewis	24-Sep-03
Dr. Susan Markley	DERM	Manatees	G. Braun	4-Sep-03
Dr. John Meeder	Fl. International Univ.	Marine Ecology and Geology	R. Lewis	25-Sep-03
Danielle Mir-Gonzalez	Fl. International Univ.	Submerged Aquatic Veg	G. Braun	8-Oct-03
Mr. Patrick Pitts	U.S. Fish & Wildlife Service	Listed Species	G. Braun	11-Sep-03
Dr. Mike Robblee	U.S. Geological Survey	Marine ecology	G. Braun	21-Oct-03
Dr. Martin Roessler	M.A. Roessler Assoc., Inc.	Fishes, marine ecology	G. Braun	20-Oct-03
Mr. Michael Ross	Fl. International Univ	Coastal Wetlands	G. Braun	22-Oct-03
Dr. Joseph Serafy	NOAA NMFS CASC	Fisheries	R. Lewis	23-Sep-03
Mr. Joel VanArman	SFWMD	Estuarine Ecology	G.B & R.L.	1-Oct-03
Ms. Lynn Wingard	USGS	Molluscs	G. Braun	10-Oct-03
Mr. Herbert Zebuth	FDEP	Loxahatchee River	G. Braun	10-Sep-03

areas. They are involved with various Bay management teams, and believe that sub-surface freshwater input to the Bay should not be overlooked – suggests investigating Miami-Dade project at Deering Estate to attempt to re-establish historical water tables in a local pilot project. They also suggest investigating the State's Impaired Waters rule, as it uses chlorophyll as an indicator.

Florida Department of Environmental Protection, (Continued)

Interviewee: Herb Zebuth, FDEP. Interviewer: G. Braun. Interview date: Sep. 10, 2003.

Mr. Zebuth is very knowledgeable about MFL process, and critical of SFWMD's development of the MFL rule for the Loxahatchee River. He opines that the methodology followed was flawed – agrees with premise that sedentary organisms are preferable to motile species as indicators of MFL (even though the fishes and other non-sedentary species (e.g., arthropods, mollusks) may be the more valued ecosystem components), but believes shortcomings are that the adopted rule 1) does not use a combination of both sessile and motile indicator species, 2) does not identify the levels and durations that the adopted criteria can be violated, and; 3) restricts vegetative indicators to canopy species (where adverse impacts will be less visible) and should have included understory species and seedling health. He is not all that familiar with Biscayne Bay, but sees parallels in: a) existing conditions in Biscayne Bay, similar to the Loxahatchee River, are degraded and that WMD's interpretation of MFL authority should not be interpreted to be restricted to preventing significant harm to existing degraded condition; that the rule should target restoring degraded systems, particularly if they are currently in states of significant harm, and b) due to CERP projects and additional research being conducted, the rule needs to specifically identify the triggers for re-evaluation and re-setting of MFL criteria as new info becomes available.

Florida Department of Environmental Protection, (Continued)

Interviewee: Dana Fike for Greg Graves, FDEP – Port St. Lucie. Interviewer: G. Braun. Interview date: October 7, 2003.

FDEP's Office of Water Quality is involved in a monitoring project in Biscayne Bay that could ultimately be of significant value to the MFL effort. Their project, which is in an early stage and has not yet evolved to the point of having any definitive results, involves repetitive sampling and analysis of water quality and benthos (both macro invertebrates and SAV) at locations along fixed transects in Biscayne Bay. They monitor conditions along two transects that extend eastward from the mouth of C-103 (Mowery Canal) for several hundred meters ending at locations where they believe that the effects from the canal discharges are minimal or non-existent. They simultaneously monitor the same parameters at a 'control' site to the north near the C-2 (Snapper Creek Canal). They collected the majority of the samples during April and July 2003, and followed-up with additional sediment samples taken during Sept, 2003.

Although FDEP taxonomists have not completed their work, Ms. Fike expects that when the data are analyzed, there will be noticeable trends in the presence/absence, abundance, distribution and species diversity along the gradient from westward locations that are heavily influenced by canal discharges to easterly locations where the impacts of canal discharges are minimal. Preliminary results suggest that non-salinity water quality parameters (e.g., nitrate nitrogen) may be having a more significant role in determining the make-up of benthic communities than salinity.

Florida Department of Environmental Protection, (Continued)

Interviewees: Steven Dale (Manager, Oleta River State Park), and David Boyd (Regional Biologist for the Florida Park Service). Interviewer: G. Braun. Interview date: October 20, 2003.

Spoke with Mr. Dale and Mr. Boyd after receiving and reviewing the Unit Management Plan for Oleta River State Park. The Plan, which was most recently updated in Oct 2002, identifies coordinating with WMD regarding management of Snake Creek Canal and coordinating with "the various governmental agencies involved with resource management activities along the Oleta River and Biscayne Bay" as goals and objectives in the section on Natural Resources and Cultural Resources.

The plan also includes an inventory of flora and fauna identified within park boundaries. Regarding identification of potential indicators, they suggest that they have had some seagrass mapping done, and they do have *Halodule wrightii*, *Halophila decipiens* and *H. johnsonii*, and that *Thalassia testudinum* is nearby in areas that likely have a higher salinity regime.

Mr. Boyd feels neither oysters nor mullet would be good indicators, due to their wide salinity tolerances, but offers that his experience with blue crabs in the Chesapeake Bay suggests that this species is differentially distributed by gender based on salinity preferences. In areas where salinities are less than 10 ppt, there are proportionally more adult blue crabs and immature females, but "almost no mature females". In areas of higher salinity, he reports that commercial catches of crab average 80-90% mature females. He therefore suggests that the catch ratio of mature males to mature females might be a good indicator of the prevailing salinity regime in that portion of Biscayne Bay. Although neither interviewee had been there very long, and they offered to speak with others (Renate Skinner) and to research their files to see if there is any additional information that would be helpful, no additional feedback was received.

If additional insight is needed regarding fisheries, they suggest contacting Dr. Christopher Brown (FIU 305-919-4793) for additional information regarding fishes, Dr. Jim Bohnsack (NOAA – regarding recreational fisheries) and Nancy Cummings regarding stock assessments.

Miami-Dade County Department of Environmental Resources Management

Interviewees: Susan Markley and Steve Blair, Miami-Dade DERM. Interviewer: G. Braun. Interview Date: Sep. 4, 2003.

S. Markley is aware and knowledgeable about MFL process; S. Blair largely unaware. Collectively, they suggest that the performance measures already developed for various CERP projects (e.g., Coastal Wetlands, C-111) should guide the development of MFLs for Biscayne Bay, as they have all been developed with broad input and peer review and acknowledge that the existing conditions are degraded and should not be considered target communities. They suggest oysters, crocodiles, and pink shrimp as likely key species. DERM developed the county-wide Manatee Protection Plan, and it documents that manatees are attracted to the canal discharges along the west shore of Biscayne Bay, particularly during winter-time cold fronts, when the inflowing water is comparatively warmer than chilled bay waters. They have no data to distinguish the extent to which the attracting feature is freshwater or warm water, but they think that temperature is the more significant component. S. Blair is overseeing a long-term SAV monitoring project in Biscayne Bay; he has hundreds of stations throughout Bay, but thinks that the few along the western edge are so widely spaced that they probably would not be of much help in the understanding of salinityrelated ecosystems, ecologies, habitats and/or the identification of key indicator species.

They suggest that the project team contact Scott Ishman regarding his paleoecological study in Biscayne Bay, and recommend attendance at 10/03 Estuarine Indicator Workshop to be held at Ding Darling NWR.

Miami-Dade County Department of Environmental Resources Management (Continued) Interviewee: Craig Grossenbacker, Miami-Dade DERM. Interviewer: R. Lewis. Interview Date: October 31, 2003, by phone.

Mr. Grossenbacker was generally familiar with the MFL process. The interviewer described the process underway and mentioned that since Mr. Grossenbacker was the last interviewee, much had been learned about middle and southern Biscayne Bay, but that we still felt additional information was needed on north BB. Mr. Grossenbacker mentioned a book, "The Story of the Commodore" (may not be exact title) with anecdotal descriptions of the north bay soon after the turn of the century and before many of the changes had occurred. He suggested we review it. He also asked if plants as well and animal communities were to be considered and I indicated yes, and described the potential use of shoal grass as an indicator and why. He agreed that was a good idea. He asked specifically about tidal marsh species and we talked about the herbaceous fresh and brackish marshes that likely were more extant in BB before Baker's Haulover Canal was constructed and were replaced by mangroves. He asked if we had and were using the Dace County ADID with its wetlands maps. I indicated I had not seen it on our list. He volunteered to provide a copy and access to the maps and would get back with me on it. He indicated that only about 70 acres of brackish marsh may exist in the bay and that it may be continuing to shrink due to replacement by mangroves due to higher salinities and less fire. Finally he asked about whether we were looking at the early life history of snook and tarpon and volunteered he had observed large snook in canals along the western shore of BB during the winter when cold snaps pushed manatees into the same areas. I indicated were were.

National Marine Fisheries Service

Interviewee: Jennifer Jacukiewcz. Interviewer: G. Braun. Interview dates: September - October 23, 2003.

Ms. Jacukiewcz is the contact for federally listed marine species that occur in Biscayne Bay, replacing Shelly Norton who is temporarily on maternity leave. After discussing the MFL process during a September telephone conversation, Ms. Jacukiewcz offered to talk with NMFS experts regarding the potential need to consider impacts to Johnson's seagrass and smalltooth sawfish. After completing her in-house coordination, she responded that MFL rule development need not give special to consideration to either of these species. Her explanations are that, although the spatial distribution of *Halophila johnsonii* does end part way through the project area, this species has been documented to survive in salinities of up to 70 ppt. Although NMFS is not sure exactly what factors or combination of factors are precluding its presence in southern Biscayne Bay, they surmise that increased maximum water temperatures may be a factor. Regarding smalltooth sawfish, Ms. Jacukiewcz advises that in south Florida, this species is primarily known from Florida Bay. Even if it is present in Biscayne Bay (and she knows of no documentation of such), its presence, preferred habitats of open substrate with patches of seagrass, and life cycle would not likely to be adversely affected by reduced freshwater inflows.

National Oceanographic and Atmospheric Administration

Interviewee: Joan A. Browder, Ph.D., Systems Ecologist, NOAA Fisheries, Virginia Key, Miami. Interviewer: R.R. Lewis. Interview date: Sep. 26, 2003

Ms. Browder provided copies of two documents from the Biscayne Bay Partnership Initiative (BBPI), and introductory booklet (January 2001) and "Survey Teams Final Reports" (319 pages). With regard to literature she mentioned the annotated bibliography of literature about Biscayne Bay prepared by the RSMAS library and the BBPI publication. She said she had prepared "South Biscayne Bay Performance Measure Documentation Sheets" that could also be helpful in understanding existing conditions in relation to target communities.

Concerning ongoing research, she is currently monitoring benthic invertebrates, primarily pink shrimp, with Mike Robblee using three methods: throw traps inshore (Robblee), small trawls and larger commercial roller trawls. The work, which is being done as a result of the PPBI reports, began in August 2002 and ends during October 2003. Ms. Browder noted that the predicted model salinities by Wang et. al. do not match field measured salinities due to the coarseness of the model. As mentioned by Jack Meeder, inshore salinities have note been adequately characterized.

When asked about VECs she said that establishing a gradient of salinities and not targeting just one or a few species would be the ecosystem approach which she recommended. Obviously there is a short list of possible indicator species (similar to Alleman 2003) but accurately predicting what MFLs might provide the ideal polyhaline salinities for juvenile pink shrimp inshore on the west side of Central Biscayne Bay, for example, is not possible at this time. Thus the "Performance Standards" document she mentioned is the closest thing to an attempt at this time. A goal of trying to provide a system with a gradient from freshwater to marine, favoring oysters in shore and increasing diversity of estuarine species seems feasible. 10 years of background may be necessary to truly measure the impact of restoration with additional monitoring after restoration of habitat and flows is complete in such areas as Historic Creek.

Ms. Browder corroborated the concept offered by other interviewees that at least the Central and Southern Biscayne Bay areas suffer from "dry season shortages of freshwater", and that freshwater discharges are not "rainfall controlled" or patterned, and that freshwater pulses are a problem.

National Oceanographic and Atmospheric Administration (Continued)

Interviewees: Joseph E. Serafy, Ph.D., Research Fishery Biologist, NOAA Fisheries, Miami. Interviewer: R.R. Lewis. Interview date: Sep. 23, 2003.

Discussed the lack of success with the red drum stocking in Biscayne Bay due to stocking "in the right bay, but the wrong century." Historic conditions are described in Chardon (1975) for Biscayne Bay in 1776, and by Smith (1896) clearly show conditions in which much larger amounts of freshwater entered Central Bay. The Bay now is a

"freshwater pulsed lagoon" and with any further reductions in freshwater flow, it could move to a marine lagoon and then a hypersaline lagoon.

Salinity variation is an important as quantity of water. Abrupt salinity change leads to a natural selection for "tough guys" (limited suite of fish and invertebrates, or lack of certain benthic plants). He suggests that the evidence of historic oyster reefs and remnant oysters and oyster reefs define the very limited current extent of real estuarine habitat (very small).

Would he recommend a VEC? No. He would rather use as an indicator of success of restoration, these items in this order of priority:

- 1. Change in species composition.
- 2. For a given list of species, an increase or decrease in abundance.
- 3. Density of given monitored species
- 4. Productivity of the restored ecosystem

The basic ecosystem indicators of diversity and species composition are easily monitored and are robust measures, if measured over a long enough period of time (e.g., 5 years minimum (10 years better), pre-restoration, and 5-10 years after with provisions for adjusting water flows through adaptive management using the collected data. Real monitoring periods should be some multiple of the life spans or generation times of the monitored species.

Dr. Serafy also laments that, for any monitored species, exploitation via fishing, etc., needs to be factored in.

National Park Service; Biscayne National Park

Interviewees: Rick Clark, Todd Kellison, Sarah Bellmund, Max Flandorfer, Richard Curry and Amanda Bourque, of Biscayne National Park in Homestead. Interviewer: R.R. Lewis. Interview date: Sep. 23, 2003.

After an introduction to the MFL program by R. Lewis, and introductions to Park staff by Rick Clark (RC), which he described as an "interdisciplinary team", Sarah Bellmund (SB) was introduced as the key contact on MFL issues.

Ms. Bellmund expressed concern about a proposed flood prevention proposal for Dade County as further reducing freshwater flows to Biscayne Bay. She also mentioned the paleo-ecological studies that are underway to determine the historical estuarine conditions in Biscayne Bay. She believes that current conditions in the Bay are severely degraded, and indicated her opinion that the Bay meets the legal definition as being 'significantly degraded." Oysters are a VEC concerning restoration. Other potential species are sea trout, red drum and croaker. Preventing hypersaline conditions should be a key goal during the development of the MFL rule. Pulses of freshwater are a significant problem. Wide ranges in salinities are the issue, not a given salinity. Historically, she suggests that Biscayne Bay had fewer mangroves and more brackish and freshwater marshes than what presently exists. Historical photographs should be consulted to confirm this.

The interviewees questioned "What is the baseline? And during what time period? RRL: Not sure. Rick Alleman will need to answer.

SB: Peer review group to BB MFL - delayed. holding pattern. This is a problem. Questions asked. No answers. Logistically housekeeping needed.

Richard Curry: Reference to look at: Iver Brook, dissertation on cores in BB. Pockets of artesian activity at shoreline and into BB. Existing system of monitoring wells from Black Point to Pacific Reef. 10 ppt drop in the middle of the reef 3 feet above bottom.

SB: Conduit v. diffuse flow. Ground water leakage is important. Peter Swart is studying.

Curry: "migration to marine systems" since 1976. 5 canals. Preventing water access to the Bay. 70-100 historical tidal creeks emptied into Biscayne Bay. Information contained in studies at Turkey Point prior to power plant. 1968 - 1969. Bader. Rosentstiel. 2-3 papers on larval fish.

Todd: Compared to historical conditions, transitional areas are reduced. Suggested Goal of "establish full salinity regime." Is the distribution of oysters important?

SB: We are concerned about OTHER factors other than salinity. No to single species as a VEC.

Curry: Estuarine systems have certain biological components, not one species.

SB: EJ sampling and larval fish by Serafy. Lutz redfish. Provided list of individuals who should be contacted.

St. Johns River Water Management District.

Interviewee: G.B. (Sonny) Hall, Div. of Water Supply Mgmt. Interviewer: G. Braun. Interview date: Sep. 16, 2003.

Very familiar with MFL process, as SJRWM has developed and adopted rules for dozens of water bodies (primarily lakes and ponds) during the last \pm 10 years. He is not at all familiar with Biscayne Bay, so discussion focused on the methodologies and approaches used by SJRWMD. They rely heavily on soil conditions as the key indicator in their development of MFL criteria for the many lakes and ponds in their region where MFL rules have now been developed.

They've interpreted the MFL statute to allow them to recognize that many of their surface water bodies are currently in unacceptable hydrological conditions and they've developed MFL rules that seek to restore levels and flows to conditions that more closely approximate natural conditions. Rule development for many individual water bodies has been contentious, as, in some situations, urban population growth has become established around degraded systems (i.e., areas with artificially lowered water tables), where restoring water levels could have adverse anthropomorphic effects. They have had difficulty in defining "acceptable levels of ecosystem change".

SJRWMD is currently in legal negotiations regarding ensuring that groundwater MFLs will be adequate to maintain acceptable conditions (both short-term and long term) for manatees.

SJRWMD does not focus on identifying single minimum flows in flowing systems; rather focuses on developing a minimum flow *regime*, to allow for intermittent intentional drawdowns. Categories established within an elevation continuum include; permanently flooded, intermittently flooded, semi-permanently flooded, seasonally flooded, temporarily flooded, and intermittently flooded. Each category is given a frequency and duration for each water body. They consider not just harm to individual indicator species, but also: water quality, transfer of sediment and detritus, recreation, navigation, flood control, aesthetic attributes, fish and wildlife habitat, passage of fish, water storage and supply, listed plants and animal, estuarine resources, nutrient adsorption and soils.

South Florida Water Management District

Interviewees: Rick Alleman and Joel VanArman, SFWMD. Interviewers: G. Braun and R. Lewis. Interview date: October 1, 2003.

With both interviewees highly knowledgeable about both the MFL process and Biscayne Bay, this interview focused on a higher level of detail than most interviews. The interviewees answered a variety of questions that were primarily centered on the internal draft "Analysis of Beneficial Surface Freshwater Flows into Biscayne Bay" document that was developed by the District in January 2003 to document that existing flows (notwithstanding any water quality parameters) were not causing adverse impacts on the Bay. Regarding the boundaries for potential sub-regions, R. Alleman described that the six subregions described in the Beneficial Flows... document correspond to the boundaries included in CERP, and that the sub-divisions in the south portion of the Bay are based on the presence/absence of varying levels of overland flow. To gain increased knowledge of northerly portions of the Bay, it was agreed that we should obtain and review a copy of the Mgmt. Plan for Oleta River State Park. Although freshwater flows into northern portions of the Bay may be smaller than inflows in the south, the smaller size of the receiving body may result in the discharges having an equal or greater relative impact. Reviewing the plan might also help in determining if there is any basis for the speculation that there may be some biota (e.g., mullet) that are found primarily in the northern parts of the Bay.

Analysis of inflows is complicated by the fact that some of the automatic control structures open even when there is no rain, as a result of head pressure from higher inland water tables. Regarding other flows into the Bay, it was noted that there are a variety of non-SFWMD related discharges (e.g., storm sewers, injections wells and stormwater retention/detention systems...) and the quality of these waters may be having adverse impacts on the Bay, but that there is no comprehensive water budget for the bay and that the project teams is not to include or address these inflows in the technical review process. SFWMD and Corps are addressing some of these issues in the Biscayne Aquifer MFL and Biscayne Bay Hydrodynamic model, respectively.

Regarding indicators: it was noted that although pink shrimp may appear to be an appropriate species, their life cycle, which involves annual recruitment from the Tortugas area, may result in easily mis-construed determinations of when significant harm is reached. J. Ault's work re modeling of pink shrimp populations may be of interest, but a small sample size of predators (i.e., seatrout) in the model may present challenges. J. VanArman queried if a perceived reduction in the abundance of short-spine sea urchins had been noted by any of the interviewees; this species had not been mentioned. Grass shrimp (Genus and species not known at the time) may be a better indicator than pink shrimp due to their dependence on lower salinity water. The work by D. Deis (PBSJ) regarding development a performance measure for *Syringodium* in Biscayne Bay should be sought and reviewed.

Regarding the philosophical perspective of the MFL rule being designed to protect existing resources v. environmentally healthy communities, the interviewees advise that SFWMD legal counsel has determined that the MFL should be based on existing resources, and that, in the case of Biscayne Bay, CERP is the recovery plan that will address the fact that the existing condition is degraded. Other WMDs may have chosen to incorporate ecosystem recovery plans into their MFL rule, but as close as SFWMD has gotten to this is the highly-controversial rule for the Loxahatchee River.

Southwest Florida Water Management District

Interviewee: Sid Flannery, Senior Scientist. Interviewer: R. Lewis. Interview date: September 29, 2003.

Sid asked about what was going on as he was not at all familiar with the MFL process within the SFWMD. He has a lot of experience with MFLs for Tampa Bay and Charlotte Harbor, as he is considered the Florida West Coast expert (opinion of the interviewer) on MFLs.

After explaining the issues, and the highly modified nature of Biscayne Bay, he noted that few of the efforts he has underway are similar. The basic approach of SWFWMD has been to look at what percentage of the low flow water could be safely removed for consumptive use without causing significant harm. Several groups of scientists (including panels in which the interviewer was a participant) have examined the issue over the last 20 years. The conclusion has been that cumulative removals, including all current CUPs, should not exceed 10% of the 10 year average low flow, with particular consideration given to a reduction of that percentage during drought years if the flows fall below that average (both the estuary and the consumptive users share the load).

We discussed in some detail the role of "recovery plans" in establishing MFLs. The Lower Hillsborough River is currently in a situation similar to some of the canals into Biscayne Bay in that it has a dam on it, holding water for conversion to drinking water for the City of Tampa. Since 1972, there have been six years during which the number of zero flow days over the dam exceeded 200. In high rainfall years, large quantities of water are released into a relatively small area below the dam. These pulses have been controversial. A work plan has been prepared to test minimum flows of 10, 20 and 30 cfs through the dam to determine which of these values will be proposed for the MFL for the river. Documentation on this was provided.

His work (published in the special issue of *Estuaries* in 2002 which is included in the project team's report for Task 2) has documented the use of the Little Manatee River by early juvenile snook and other fish and shellfish of commercial and recreational importance. He is focusing now on the reason for this and preliminary evidence indicates that phytoplankton enriched zones are produced in particular reaches of estuarine rivers which subsequently may produce greater production to feed early juvenile fish and shellfish. He suggested that Chlorophyll a might me an indicator of this zone, and that it might be used as a monitoring tool in Biscayne Bay.

U.S. Fish and Wildlife Service

Interviewee: Patrick Pitts, USFWS. Interviewer: G. Braun. Interview date: Sep. 11, 2003.

Mr. Pitts is not particularly knowledgeable about MFL process, but did attend one meeting on the subject approximately one year ago. He is involved in a variety of Biscayne Bay projects, primarily CERP. He suggests that restoring water quality regimes (i.e., volumes, timing, quality [salinity & other parameters]) to re-establish sustainable population of oysters in historical ranges is a key target that should drive the MFL process.

FWS is charged with ensuring compliance with the federal Endangered Species Act (ESA), and as such, he is working on developing a "Programmatic Biological Opinion" that will identify all federally-listed endangered and threatened species that could be affected by CERP projects. He indicates that additional analysis in this regard will need to be done as individual CERP projects are designed and permitted. He suggests that there are several

federally-listed aquatic organisms that should be given specific attention during MFL rule development, due to the additional protection afforded to them under the ESA. Species that came immediately to mind, include crocodiles, manatees, smalltooth sawfish, and Johnson's seagrass, but suggests that consideration should be given to other federally listed species that are known to occur within the project area (e.g., indigo snakes, panther, bald eagle).

Mr. Pitts identified that, in addition to oysters, there is an existing target of attempting to restore the historical transition zone from Everglade-type shallow freshwater sheet flow though an *Eleocharis* and graminoid marsh to mangroves and *Ruppia/Halodule* grass beds to the more hypersaline *Thalassia* beds and offshore reefs. He suggests that any MFL rule adopted include a strategy to re-evaluate flows, levels and water quality as additional research is completed and as CERP projects come on line. He provided copies of several documents that he thinks will be helpful, including Hill and Cichra (UF paper on Effects of water levels on Fish Populations), Reservations of Water for the Environment, Effects of freshwater canal discharges on fish assemblages, and S. Fl Ecological Report.

U.S. Geological Survey

Interviewee: Dr. Guillermo Diaz. Interviewee: G. Braun. Interview date: October 10, 2003.

Dr. Diaz was interviewed based on his many years of working with pink shrimp in Biscayne Bay. He currently works for U.S.G.S., but his job responsibilities are not related to anything that would be helpful in the Biscayne Bay MFL project. Although he is not familiar with the MFL program, after discussion of its objectives and goals, he advised that, in his opinion, pink shrimp would not be a good indicator species for MFLs in Biscayne Bay. He bases this decision both on the species' wide salinity tolerances and nearly constant recruitment from the Dry Tortugas area. Although he encountered other species of shrimp in his work, he really doesn't know of their salinity tolerances or life cycles, nor does he know of anyone who is studying them. His only suggestion for another individual species that might be a good indicator is oysters, but doesn't know of any oysters currently in Biscayne Bay. Regarding suggestions for other individuals who might be helpful in this regard, he suggested J. Browder and J. Serafy, both of whom are already on our contact list.

U.S. Geological Survey (Continued)

Interviewee: Dr. Michael Robblee. Interviewer: G. Braun. Interview date: October 21, 2003.

Dr. Robblee is currently working with J. Browder on a fisheries study in southern Biscayne Bay, centered near Mowery canal. Because his sampling technique is a 1-m throw net, he's getting different varieties of fish than J. Browder's trawl sampling, even when they sample in similar areas. He rarely gets seatrout or snook, and although there may be some species of fish that are more commonly found in the lower-salinity nearshore areas, he suspects their presence is more likely the result of habitat conditions than the salinity regime itself. When I mentioned the goldspotted killifish (potential indicator sp. that had been suggested by C. Faunce), he confirmed that he has gotten them fairly routinely (17 specimens in \pm 30 samples) primarily in his lower-salinity (i.e., 15-20 ppt) sample sites.

Although fishes are his primary focus, he does suggest that our target should be to establish and/or maintain a salinity regime that is conducive to maintaining *Halodule wrightii* beds in the westerly areas of the bay.

U.S. Geological Survey (Continued)

Interviewee: Lynn Wingard. Interviewer: G. Braun. Interview date: October 10, 2003.

Ms. Wingard is a mollusk expert who has worked extensively with Scott Ishman regarding paleo-ecological investigations of sediment cores in Florida Bay and, to a lesser extent, in Biscayne Bay. She is familiar with the MFL process in general. She is working on a several-year project analyzing historical and current populations of mollusks in S. Florida, and by the project's conclusion, she may be able to identify species that would be good indicators for estuarine conditions in Biscayne Bay. At this time, however, her research indicates that most mollusks have broad tolerance ranges for salinity. Many species (e.g., scorched mussel (*Brachidontes exustis*) seem to do fine in salinities ranging from 10 ppt to 60 ppt. One species that does have oligohaline requirements is a member of the genus *Polymesota*, but she has yet to find one alive in Biscayne Bay. Her report is to be completed during July 2004. The project teams recommends that WMD receive and review this report once it becomes available, to see if there is any additional information that would be helpful.

ACADEMIA

Florida International University

Interviewee: Joseph Boyer, Ph.D., Southeast Environmental Research Center, FIU. Interviewer: G. Braun. Interview date: Sep. 24, 2003.

Dr. Boyer is not really knowledgeable or familiar with MFL rule or process. His primary focus is water quality, and he has published several reports (some funded by SFWMD) regarding his water quality work in Southern Biscayne Bay. He has documented various water quality parameters, and suggests that it will be exceedingly challenging and expensive, if not impossible, to distinguish adverse ecological impacts that occur as a result of salinity changes alone, as his research has led him to believe that SAV communities are equally affected by other (i.e., non-salinity) water quality parameters. He suggests that subsurface flows have considerable effects on nearshore water quality, and must be considered during development of the MFL for Biscayne Bay. His "Total Ammonia Concentrations…along W shoreline of BB..." paper, that he and J. Meeder authored, identifies the results of water quality analyses, and relates SAV presence and distribution to salinity.

He believes that the current degraded ecological condition should not be the baseline for preventing significant harm, and that there is the need to establish a healthy estuarine system that includes seasonal variations as the target, and which recognize that the MFLs might have seasonal disparity.

Florida International University (Continued)

Interviewee: Dr. James Fourqueran. Interviewer: R. Lewis. Interview date: October 29, 2003.

Dr. Fourqueran indicated that he is "More or less familiar with the MFL process". Based on discussions with G. Braun, I was aware that Danielle Mir-Gonzalez was working on detailed seagrass maps of the distribution by species of seagrasses in relationship to groundwater discharges into Biscayne Bay as submerged discharges (boils, springs in the Bay). Although some detailed maps have been prepared, she is not yet finished with her degree work and her committee including Fourqueran, Boyer and Meeder (chair and most directly responsible for data distribution) is reluctant to release the information until her degree work is finished, however it was suggested that the FIU website (www.fiu.org/~seagrass) might have some seagrass data may be helpful.

Dr. Fourqueran suggested that correspondence be directed to Dr. Meeder inquiring about the release any of the maps. Attempts to reach Dr. Meeder recently have been unsuccessful. When asked about indicator species or VEC's, Dr. Fourqueran recommended shoal grass (*Halodule wrightii*). This is due to previous work in Florida Bay (Roblee and Thayer work over the last 10 years) that has shown greater habitat value for juvenile pink shrimp in shoal grass as compared to turtle grass. He acknowledged his opinion that historically there was probably more shoal grass in Biscayne Bay than now due to historical freshwater discharges, and that managing existing discharges to prevent "pulses" and encouraging more long-term modulated inputs of freshwater might convert existing turtle grass meadows to shoal grass meadows – a good thing in his opinion.

We briefly discussed the ecology of the large manatee grass meadow in north Biscayne Bay. He believes it persists due to its tolerance of lower light levels not any salinity related phenomenon. He suggested getting a copy of a ten year study of seagrass beds and water quality (produced by DERM 10 years ago).

We also discussed the distribution of *Halophila johnsonii* in Biscayne Bay. He confirmed he is not aware of any reports of it south of Rickenbacker Causeway. He described the species as having an optimum window for occurrence in "fine grained sediments in protected areas." He did not think the southern limit was related to temperature, but had no other explanation.

Florida International University (Continued)

Interviewee: John F. Meeder, Ph.D., Restoration Scientist, Florida International University. Interviewer: R.R. Lewis. Interview date: Sep. 25, 2003.

Dr. Meeder indicated that he is very familiar with the MFL process and had attended many meetings on the subject. He described his work for both the SFWMD and BNP, and provided a number of papers as hard copies and on CDs. He indicated that there are two active combined MFL/habitat restoration projects underway that he has worked on; Historic Creek and Black Point, both of which are on the west side of Central Bay. He also mentioned the "L31E Surface Water Rediversion Pilot Project" as notable.

When asked about VECs he said "I don't like single species management." He supports the concept of introducing water into a restored system that includes all the parts (freshwater to estuarine to marine), monitoring, and adapting the system as needed. He doesn't think that there are any good reference sites existing today, but there is ample evidence that freshwater flows were much greater prior to channelization of the transverse glades and reduction in the head of water in the Everglades.

Discussion ensued regarding how wide a mesohaline zone could be established on the west side of Central Bay. Has had a number of discussions with Joan Browder and has looked at the available water to reduce salinities up to 1000 m offshore and he indicated that Rick Alleman (SFWMD) has the numbers. He noted a lack of historic salinity measurements in the nearshore zone on the west side of Central Bay.

Florida International University (Continued)

Interviewee: Danielle Mir-Gonzalez. Interviewee: G. Braun. Interview date: October 8, 2003.

Ms. Mir-Gonzalez is a graduate student who is working on a Master's thesis project that is focused on the relationship between submerged aquatic vegetation and water quality in westerly portions of southern Biscayne Bay. During the period from March-May, 2002, she documented the presence/absence and estimates of cover all species of seagrasses and macroalgae within 230 sample sites that are located from 50 m to 600 m from the western shore of Biscayne Bay in the area from Black Point to Turkey Point. She has also installed 20 seepage meters which will be monitored bi-monthly for two years. Although her work is still under way, (projected MS thesis completion/publication date is by mid-2004) preliminary results suggest that in areas of reduced salinity *Ruppia maritima* appears to be more abundant than other seagrasses. She has also documented the presence of the freshwater alga *Chara*, which is rooted in nearshore areas.

When published, the results of Ms. Mir-Gonzalez' work should be acquired and analyzed, as it may be helpful in understanding freshwater seepages and the presence and distribution of SAV in areas of Biscayne Bay that are affected by freshwater flows.

Florida International University (Continued)

Interviewee: Michael Ross. Interviewer: G. Braun. Interview date: October 22, 2003.

Mr. Ross has been involved with monitoring in coastal wetlands along the western shore of Biscavne Bay for nearly a decade. His study focuses on the 'white zone' including a transect located east of the L31 Canal near Card Sound Rd., which follows a salinity gradient from Juncus marsh through mangroves and includes nearshore seagrass beds, good descriptions of which are contained in a chapter in Porter and Porter. Although some individual species of plants could potentially be good indicators of varying salinities, the majority of the discussion centered on diatoms, as Mr. Ross' work in collaboration with Evelyn Gaiser has revealed that there are specific assemblages of diatoms that are present in specific salinity regime areas. He suggests that both she and WMD's Scott Hagerty, who is heavily involved with diatom work related to Everglades restoration, would be good sources for additional details regarding diatoms. His knowledge of them indicates that if we could identify a salinity regime that would maintain the existing assemblage of diatoms, maintaining that salinity regime would likely prevent significant harm to other biota. He further suggests that diatoms would be better indicators than macrophytes and/or soils because of; a) their comparatively instantaneous response to severe conditions, and b) their greater richness would allow more specific conditions to be monitored.

The Ph.D. dissertation by Marguerite Koch, which dealt with salinity tolerances of various macrophytes could also be a resource to us, if we decide to explore plants as indicators.

Southern Illinois State University

Interviewee: Scott Ishman. Interviewee: G. Braun. Interview date: October 9, 2003.

Mr. Ishman was the lead scientist in a mid-1990's paleo-ecological investigation of sediments in a single core sample taken in the Manatee Bay area of Biscayne Bay. The study used the presence/absence of foraminferans, ostracodes, mollusks and pollen to reconstruct ecological changes in the Bay that resulted from modifications to salinity regimes and

changes in the water delivery system from the mid 1800's through the present. Mr. Ishman, whose primary area of expertise is forams, suggested that of the 24 species of foraminiferans that were present in the core sample, there are two taxa (*Ammonia parkinsoniana tepida* and *Elphidium galvestonense mexicanum*) that would potentially serve as indicators of conditions of ecosystem health. Both of these species have fairly narrow salinity tolerances and prefer oligohaline to mesohaline conditions. They are epi-benthic, are relatively easy to sample and count and have life cycles of \pm one year. He offered to forward some reference papers that will describe salinity tolerances and life cycle info regarding these species.

He has done a little other foram work in Biscayne Bay, but thinks that the presence or absence of these and/or other foram species would be excellent indicators in the different areas of the Bay, particularly because they are benthic and respond quickly to changes. A potential downside is that these species could be affected by non-salinity water quality parameters (primarily D.O. and temp), which could make it challenging to know for sure that a die-off was exclusively the result of changes in salinity.

He is currently involved in other research in Biscayne Bay that will result in a greater understanding of the life cycles of forams.

Two of his co-authors of the "Record of Ecosystem Change..." paper could provide insight as to the extent to which ostracodes and mollusks could also be good indicators. The ostracode contact is Tom Cronin (USGS) 703-648-6366. The mollusk contact is Lynn Wingard 703-648-5352.

University of Miami - Rosensteil School of Marine and Atmospheric Science (RSMAS) Interviewee: Craig Faunce. Interviewer: G. Braun. Interview date: October 21, 2003.

Mr. Faunce is a Ph.D. candidate at RSMAS doing work on Biscayne Bay fisheries, with the seasonal and spatial distribution of gray snapper as his specific area of focus. He has worked on Biscayne Bay fisheries for the last \pm five years, but his work has all been south of the Rickenbacker Causeway. He has two major sampling areas: 1) offshore islands where the salinity regime is generally 28-35 ppt and 2) western shoreline areas where salinity is typically 7-28 ppt. We discussed various fish species that are more abundant in the shoreline areas and their potential usefulness as indicators. Although the presence of many of the species that are more abundant in the nearshore areas is more likely linked to non-salinity factors (e.g., increased nutrients which result in increased plankton populations) he does suggest the goldspotted killifish (*Floridichthys carpio*) as a species whose presence/absence *may* be related to appropriate salinity regimes and/or suitable water levels. Although this species may be somewhat too euryhaline to be an ideal indicator, he does think there is a linkage between its presence in oligohaline regimes and its replacement by sheepshead minnows in higher salinity areas. He speculates that there may also be a species of mud crab that could be a good indicator.

Mr. Faunce doesn't think that the southern bay is in all that degraded a condition, and thinks that it is reasonable to use existing conditions as what needs to be protected from adverse impacts. When his research project is completed during 2004, he expects the resulting data could be very useful in developing the MFL for Biscayne Bay. He does feel strongly that the variable of 'duration' of low flows is as important as the minimum flow itself, and that seasonality must be taken into account, because a specific low flow rate would have highly varying effects if it were to occur during the dry or wet season.

University of Miami (Continued) Interviewee: Dr. Diego Lirman. Interviewer: G. Braun. Interview date: October 9, 2003.

Dr. Lirman was the primary researcher and author of a paper entitled "The Influence of Salinity on Seagrass growth, Survivorship, and Distribution within Biscayne Bay, Florida: Field, Experimental, and Modeling Studies. The paper includes separate figures showing the results of seagrass blade densities of *Thalassia testudinum*, *Syringodium filiforme* and *Halodule wrightii* in Biscayne Bay. Dr. Lirman suggested *H. wrightii* would be an appropriate SAV indicator of estuarine health, as his research documented that its spatial distribution in the Bay is primarily restricted to nearshore areas that are currently subject to freshwater inflows. He is aware that oysters are present in northern portion of Biscayne Bay, and suggests that they may be a good non-floral indicator species of estuarine health in those areas where they currently exist.

Contrary to the perspectives provided by others (e.g., BNP staff), he contends Biscayne Bay is in very good ecological condition, and that while the structure of the benthic community may not be the same as it was decades ago, the presence of thriving hard coral, soft coral and sponge communities are indicators of its current state of good health. These organisms are extremely susceptible to reductions in salinity, and he has concerns that modifying the delivery of freshwater into the Bay would likely result in die-offs of these species. He has encountered *Ruppia maritima* only very rarely and has not ever observed *Chara* in the Bay. The modeling work he has done in collaboration with others (e.g., Wang) indicates that freshwater flows current ly only affect a relatively narrow shoreline fringe of the Bay.

He suggests several other reference materials that may be of assistance to us, including: 1) a dissertation by UM/RSMAS' Patrick Biber regarding descriptions of the macroalgae communities in Biscayne Bay, 2) a paper on the corals of Biscayne Bay, 3) a paper on the sponges of Biscayne Bay, and 4) a dissertation regarding the presence, abundance and distribution of hydroids in Biscayne Bay.

Together with the National Geodetic Survey, Dr. Lirman is currently finishing an intensive one-year seagrass mapping effort in Biscayne Bay through which an extensive digital photographic file for existing seagrass and benthic conditions is being developed. By integrating a dGPS system into a high-resolution shallow-water video camera, the project will produce a comprehensive photographic catalog of existing conditions.

OTHER NON-GOVERNMENTAL ORGANIZATIONS

Audubon of Florida

Interviewee: Jerry Lorenz, Ph.D., Research Director, Audubon of Florida, Tavernier Science Center. Interviewer: R.R. Lewis. Interview date: Sep. 24, 2003.

Dr. Lorenz was only generally familiar with MFL process. He has only recently begun work east of US 1, and is now working in the "white zone" landward of Barnes Sound, having needed permission from FPL to access the site, which has taken a while. He has noted historical use of the area by Roseate spoonbills, which are about 10% of mixed flocks of feeding wading birds; but their visibility from the air makes them a good VEC. Feeding areas appear to be similar in cover and salinity regime to those used by juvenile (0-1 year) American crocodiles. Food items also appear to be similar ("prey based or forage fishes"). He and Frank Mazzotti have discussed this, and his recollection is that "growth of juvenile crocodiles is directly related to salinity and that if during the first year of growth they do not reach a given biomass, they are subject to death from low temperatures." Lower salinities appear to produce greater benthic primary production with leads to more food for the prey based fishes which in turn are the food base for both juvenile crocodiles and the wading bird guild in the while zone, which includes the Roseate spoonbill. He has a recent report on up to 150 spoonbills using the white zone near the Turkey Point Power Plant radiator canal system, has not been able to confirm this report in person, but is beginning work there.

He suggested reviewing all the L31E experimental work as indicating what could be done, and suggested closing the C-111 and ensuring moderated sheet flows of freshwater as opposed to pulsed freshwater, which is a major problem. He described Manatee Bay as "dead" due to these continued pulsed flows.

Dynamac Corporation

Interviewee: Grant Gilmore, Ph.D., Senior Aquatic Ecologist, Dynamac Corporation, Vero Beach. Interviewer: R.R. Lewis. Interview date: October 27, 2003.

Dr. Gilmore is an ichthyologist who has some familiarity with the Biscayne Bay and its fish fauna. He indicated that was not familiar with any of the state MFL programs. After an explanation was provided about the state MFL law, and what BFA was hired to do, when asked about what fish species might be good indicators of the salinity regime, he mentioned the five species of snook in Florida, spotted sea trout and six species of "tropical peripherals" that he is working up life history descriptions for NMFS for their designation as "species of concern." One of these is the opossum pipefish (*Microphis brachyurus lineatus*). This is a species likely to occur along the western shore of Biscayne Bay if permanent freshwater is available for access from the sea. This species, like the others has some dependency on the existence of freshwater connected to the sea. Structures may impede migrations and prevent its existence.

His familiarity with spotted seatrout indicates that it is not a good indicator for lower salinities. Adult tarpon snook and fat snook might be as they are dependent on fresh water connected to the ocean.

Mote Marine Laboratory

Interviewee: Ernie Estevez, Senior Scientist. Interviewer: R. Lewis. Interview date: September 29, 2003.

Dr. Estevez has published several seminal pieces on the process of establishing MFLs, including a major summary paper in the same issue of *Estuaries* referenced by others. As with several other interviewees, he is not very familiar with Biscayne Bay, although he remembered the issue of groundwater flows and springs in the bay had been discussed in the past. He suggested that it might be helpful to obtain and review a paper about a circular spring in Biscayne Bay, around which circular zonation of seagrasses of various species was reported.

To save time, since it was a phone interview, I indicated that I was very familiar with his work (he and I co-authored the estuarine profile for Tampa Bay in 1987 for the U.S. Fish and Wildlife Service), and his recent publications on MFLs, and asked him if there was anything new to add subsequent to the publication of those papers. He indicated that his recent field work in several riverine estuaries in Charlotte Harbor and Tampa Bay had raised interest in oysters as VECs. During discussion concerning the potential use of VECs based on salinity, he noted that one needs to be careful about other factors that can influence the distribution and abundance of VECs besides salinity alone. He described his findings that oysters, if present, are often found in a bimodal distribution of small forms with the larger oysters found in the optimum salinity zone. Upstream of that zone, oysters are stressed or killed by freshwater, and downstream of that zone, oysters are frequently diseased, or have heavy predation, and are also very small compared to those in the optimum zone.

M.A. Roessler & Associates, Inc.

Interviewee: Martin A. Roessler. Interviewer: G. Braun. Interview date: October 20, 2003.

Mr. Roessler has been conducting research in Biscayne Bay for many decades in a variety of capacities, including as a researcher at RSMAS and as a consultant for BNP. We discussed the status of our search for suitable indicator organisms of ecosystem health and/or significant harm, and the potential benefits and drawbacks of several species, as follows. He does think that pink shrimp may be suitable indicators, as even though they are replenished on an annual basis from an external population (i.e. Tortugas); there may be a size class whose absence could be an indicator of significant harm. He suspects that there may be salinity-specific issues regarding the life cycles and/or presence of juvenile blue crabs, and thinks that the population of spotted seatrout is too low to be a good indicator, at least for the lower bay. He concurs that mullet may be a potential indicator, but that the relative absence of this species in the southern bay may be due to a variety of factors far outside the scope of salinity regimes.

He suggests that we investigate the salinity requirements for sustainable populations of land crabs (*Cardisoma guanhumi*) as successful reproduction in this species may be tied to lower-than-marine salinity regimes. He also suggests that there may be some species of barnacles that would be of assistance, although he could not identify any individual species.

Regarding potential use of seagrasses as indicators, he suggests that changing sediment conditions could be equally as important as salinity in determining their spatial distribution and health.

FINDINGS

- 1. Regarding the establishment of MFLs, it appears that Biscayne Bay (BB) should be separated into six sub-regions, based on varying levels of exchange between freshwater and marine conditions. Varying salinity regimes and the presence/absence and abundance of varying flora and/or fauna will likely result in different indicators being established for each sub-region.
- 2. The majority of the research and scientific data available for Biscayne Bay are focused on southern portions of the Bay, particularly those waters within Biscayne National Park (BNP). With an apparent lack of information on northern areas of BB, the team refocused on searching for, obtaining and reviewing additional information about this portion of the study area (e.g., Management Plan for Oleta River State Park and the current draft of the Management Plan for Biscayne Bay Aquatic Preserve). Because

detailed information regarding the presence, absence and/or abundance of freshwaterdependant species in this area of the Bay remains in short supply, it is possible that Task 5 will include suggestions that additional information is needed in this area.

- 3. For the Central Bay (most of BNP), many of the interviewees indicated that the species that would be the best indicators of healthy estuarine conditions are currently no longer present or are present in such limited numbers or distribution that they would not serve as good indicators. In large part, the absence of these species seems to be the result of past modifications of the delivery of freshwater into the Bay, including highly variable fluctuations in freshwater flow and development, including canal construction and construction of features that have re-directed surface and/or subsurface flow. These interviewees suggested that even the existing minimum flows are sub-optimal, and that, because the ecosystem is currently in a state of significant harm, the MFL process should identify target estuarine systems, such as Historic Creek and Black Point (completed preliminary restoration design projects by SFWMD), which should be developed as "full range" estuarine systems with the target of reestablishing a continuum of freshwater marsh, brackish marsh, mangrove, and inshore estuarine (mesohaline) conditions along a gradient from upland to bay. The interviewers suggested that these projects should be monitored in advance of construction (5 years minimum) for baseline conditions (physical and biological), restored, monitored and water flows adjusted through adaptive management to achieve the full range of salinities targeted as performance standards.
- 4. For the South Bay, there are expansive wetlands (white zone and mangrove fringe) that lend themselves to monitoring of the VEC's of numbers of feeding Roseate spoonbills and survival of juvenile American crocodiles. The optimum salinity regime necessary for both of these species appears to be similar. Further review of information available for these species may reveal the exact target range, but this range has not yet been identified.
- 5. For central and southern areas of the Bay, several of the experts identified that, in their opinion, maintaining minimum flows is currently thought to be less of a problem than the large pulse discharges of freshwater that cause wide and rapid swings in salinity (i.e. 25 ppt in 24 hours or less). They indicated that, although it may be outside the specific scope of the MFL process, there needs to be consideration given to the fact that the existing floral and faunal assemblages near canal discharges are largely restricted to those organisms that can survive these un-natural changes in salinity, and that ideally, salinity changes should be moderated to reduce the wide swings to something less than 6 ppt per 24 hours period, and some range "not to exceed" to reduce the stresses to fish and wildlife using both areas. When asked, the BNP staff agreed that this approach may result in a conversion of turtle grass meadows to shoal grass or mixed shoal grass and widgeon grass meadows, and that was an acceptable change.
- 6. For the Central Bay, no further reduction in freshwater inputs should be allowed due to reservations of water currently available due to the potential for this portion of BB to become over time a hypersaline lagoon, similar to documented problems in Florida Bay and portions of northern Cuba.
- 7. In addition to the previously identified potential indicator species listed by Alleman (2003) (i.e., pink shrimp, blue crab, American oyster, stone crab, American crocodile,

mullet, Spanish mackerel, spotted seatrout, crevalle jack, gray snapper, common snook, and tarpon) as species that are present in the Bay and which some economic and/or ecological importance, interviewees have suggested the need for the MFL rule development process to consider the following species:

- Roseate spoonbill (*Ajaia ajaja*)
- West Indian Manatee, crocodiles and other species that are present within the project area and which are protected under federal and/or state protected species regulations
- Johnson's Seagrass (Halophila johnsonii)
- Shoal grass (*Halodule wrightii*)
- ➢ Grass Shrimp (Caridean shrimp, several species)
- Goldspotted killifish (*Floridichthys carpio*)
- Opossum pipefish (*Microphis brachyurus lineatus*)

Several interviewees suggested that it would be advantageous if indicator species for each region of the Bay could be identified and selected to include both sessile and mobile organisms. The project team concurs with this recommendation and will likely use the presence/absence of such a combination as a tool in evaluating alternative approaches for MFL development.

The project team acknowledges that the scope of work for the "Freshwater Flow and Ecological Relationships in Biscayne Bay" project identifies that the western boundary of the project is the western shoreline of Biscayne Bay. Based upon the results of the team's review of applicable literature and interviews with experts, it is the opinion of the project team that the District should consider modifying this boundary to include areas where floral and faunal assemblages of environmental significance are located to the west of the shoreline (i.e., the vegetation zone located between the western shoreline and the L-31 Canal, including the area referred to the "white zone"). The rationale for this addition is that the natural resources within this area could be adversely affected by reductions in freshwater flows. If areas west of the shoreline are to be included within the project area, several additional floral and faunal species should be considered as potential indicators of estuarine health and/or indicators of significant harm. These include:

- black needlerush (Juncus roemarianus) and spike rush (Eleocharis spp.)
- Sawgrass (*Cladium jamaicensis*)
- Land crabs (*Cardisoma guanhumi*)
- Forage fish species assemblages
- 8. Several interviewees have expressed their concerns that, in their opinion, it would be erroneous to attempt to establish an MFL rule for Biscayne Bay that is based solely on the water quality parameter of salinity. Previously-conducted water quality studies (e.g., Meeder & Boyer, 2001) have suggested that non-salinity water quality parameters (i.e., ammonia) have caused adverse ecological impacts on benthic communities in the Bay, and, in some specific areas, these discharges may be as much responsible for degradations as the extreme fluctuations in salinity. The project team acknowledges that addressing water quality parameters other than salinity is outside the team's scope of work, and it is our understanding that the District will address water quality issues in the MFL Plan.

- 9. FWS personnel suggest the need to give thoughtful consideration to the individual life histories of each species that inhabits Biscayne Bay and which is designated as 'endangered' or 'threatened' (e.g., west Indian manatee, American crocodile, Johnson's seagrass, Smalltooth sawfish). FWS is currently developing biological opinions regarding the impacts to each of the federally-listed species that may result from construction and operation of CERP projects. The project team agrees that potential impacts to listed species should be identified as a criterion during the evaluation of alternative approaches for MFL development.
- 10. The adopted Manatee Protection Plan (MPP) developed by Miami-Dade DERM documents the use of the mouths of canals as refugia by manatees during the winter months. Although water temperature data are lacking at these sites, it is likely that the combination of lower salinity water and temperatures that are thought to be several degrees warmer than bay waters makes these areas attractive to manatees during the winter. DERM recommends that development of the MFL rule consider that reductions in flow volumes at this time of year could have a negative affect on this listed species, but acknowledge that it may be difficult to identify the specific thresholds at which significant harm to manatees would be reached. The project team acknowledges that the water temperature element of this impact may be outside the scope of the team's work, but that it must be considered and addressed as part of the MFL rule.
- 11. SJRWM has relied heavily on soil conditions as the key indicator in their development of MFL criteria for the many lakes and ponds in their region where MFL rules have now been developed.
- 12. Several interviewees acknowledged that Chapter 373 FS gives WMDs the authority to consider situations in which the receiving waters are currently in a degraded state as a result of alterations in surface water flow. It has been urged that, in establishing the MFL rule for BB, the current ecological conditions should *not* be considered as baseline, and that there is the opportunity to adopt an MFL strategy that simultaneously identifies minimum flows to maintain existing systems, and uses the CERP, RECOVER and the Biscayne Bay Coastal Wetlands Program as the long-term recovery plan for Biscayne Bay. It was noted that various WMDs (including SFWMD in the Loxahatchee River) have identified restoration/recovery plans within the MFL rule adopted for some individual water bodies. It was suggested that the Ishman et. al. study of the presence of for a miniferant and ostracodes in benthic samples could be helpful in identifying target conditions. Also, the SWFWMD has developed a plan to test various MFLs for the Lower Hillsborough River (LHR) in a situation similar to many of the canals to BB. The LHR has a dam on it for a drinking water reservoir for the City of Tampa, and in recent years has had approximately 200 days a year of "no-flow" conditions, interspersed with flood flow discharges necessary to relieve stress on the dam.
- 13. In consideration of the various studies and research that are currently underway and the CERP projects that are being designed to improve water quality conditions in Biscayne Bay, several interviewees recommended that the rule specifically include processes for re-evaluating the MFL on a more frequent than usual basis.

- 14. Some interviewees suggested that it would be erroneous to attempt to develop the MFL for Biscayne Bay without considering subsurface inflows, which may have significant effects in the nearshore areas in some regions of the Bay. Research is currently under way in this regard by graduate students at Florida International University. The results of the monitoring of seepage wells in westerly areas of the Bay are expected to be available prior to the development of the MFL rule for Biscayne Bay, and the team anticipates recommending to the District that these results be obtained and reviewed and changes be considered to the MFL rule, if warranted.
- 15. FDEP's Office of Water Quality is involved in an on-going study/monitoring effort focusing on benthic macro-invertebrates and SAV along several fixed transects that extend from the western shore of the Bay eastward to the edge of impact at locations near C-103 and Snapper Creek Canal (Control). The project has just begun during 2003. The project team was represented when the project results were presented at the Sanibel "Ecological Indicators" workshop on October 30, 2003. As previously outlined above, the results confirm the premise that benthic faunal assemblages are not likely to be a good ecological indicator for salinity changes alone for Biscayne Bay due to multiparameter impacts of water quality and salinity.
- 16. Discussions with several experts who are involved with research in Biscayne Bay suggest that it may be prudent to use several individual species of foraminiferans and/or diatoms as indicators of estuarine health and/or measurements of significant harm. Being lower in the trophic hierarchy, these organisms would be better indicators than fish, macrophytes and/or soils because of; a) their comparatively instantaneous response to severe conditions, b) their greater richness would allow more specific conditions to be monitored; c) their comparative lack of mobility would reduce the potential for misinterpreting absence (as could happen in more mobile species such as fishes); and d) the relative ease and low-cost for sampling and analysis. Two individual taxa (Ammonia *parkinsoniana tepida* and *Elphidium galvestonense mexicanum*) that would potentially serve as indicators of conditions of ecosystem health were identified. Both of these species have fairly narrow salinity tolerances and prefer oligohaline to mesohaline conditions. They are epi-benthic, are relatively easy to sample and count and have life cycles of + one year. Potential downsides include that these species could be affected by non-salinity water quality parameters (primarily D.O. and temp), which could make it challenging to know for sure that a die-off was exclusively the result of changes in salinity, and selling them as a "Valued Ecosystem Component" to non-specialists.
- 17. Regardless of the extent to which other species of forams and diatoms could be identified as indicators for habitat restoration, if the MFL identifies a salinity regime that would maintain the existing assemblage of these organisms, maintaining that salinity regime would likely prevent significant harm to other biota.
- 18. R. Lewis attended the Ecological Indicators Workshop in Sanibel, 29-31 OCT 2003, and briefly interviewed Louis Toth after his presentation on the selection process for ecological indicators for success in the restoration of the Kissimmee River. Mr. Lewis requested that Mr. Toth send him the manuscript, which he is doing. Since the method has been used by the SFWMD already, it may have application to the MFL process for BB. Dr. Willian Dunson, Emeritus Professor of Biology, Penn. State Univ., made a

similar presentation on selection of ecological indicators for low salinity environments and his information may also have application.

ATTACHMENT A INTERVIEW PROCESS

Initial SFWMD List of Recommended Contacts/Interviewees

- Mr. Daniel Apt, Florida Department of Environmental Protection
- Dr. Jerry Ault, University of Miami Rosenstiel School of Marine and Atmospheric Science
- Ms. Sarah Bellmund, Biscayne National Park
- Mr. Steven Blair, Miami-Dade Department of Environmental Resources Management
- Dr. Joseph Boyer, Florida International University
- Dr. Joan Browder, National Oceanographic and Atmospheric Administration
- Mr. Rick Clark, Biscayne National Park
- Mr. Richard Curry, Biscayne National Park
- Mr. Sid Flannery, Southwest Florida Water Management District
- Dr. Ernie Estevez, Mote Marine Laboratory
- Ms. Stacey Feken, Florida Department of Environmental Protection
- Dr. James Fourqurean, Florida International University
- Mr. Craig Grossenbacher, Miami-Dade Dept. of Environmental Resources Management
- Dr. Jerome Lorenz, Audubon of Florida
- Dr. Susan Markley, Miami-Dade Department of Environmental Resources Management
- Dr. Frank Mazzotti, University of Florida, IFAS
- Dr. John Meeder, Florida International University

Mr. William Nuttle

- Dr. Peter Ortner, National Oceanographic and Atmospheric Administration
- Dr. William Perry, Everglades National Park
- Mr. Patrick Pitts, U.S. Fish and Wildlife Service
- Dr. Mike Robblee, U.S. Geological Survey
- Dr. Martin Roessler, M.A. Roessler Associates, Inc.
- Dr. Joseph Serafy, National Oceanographic and Atmospheric Administration
- Ms. Susan Teel, U.S. Environmental Protection Agency
- Mr. Herbert Zebuth, Florida Department of Environmental Protection
- Dr. Jay Zeiman, University of Virginia

During the course of the interviews, each interviewee was asked to review the list of people identified by SFWMD with whom interviews are to be conducted and to make suggestions of any other individuals who they believe could provide additional information and/or insight into the project. Suggestions received, and the results of discussions with WMD staff, shown in parentheses, regarding the merits of conducting interviews with these individuals in consideration of budgetary and schedule constraints include:

- Larry Brand, UM; working on a phytoplankton study in BB. (Budgetary and schedule constraints suggest that an interview should not be conducted).
- Gwen Burzecki, DERM –studying white mangrove community along w. shore of BB. (Budgetary and schedule constraints suggest that an interview should not be conducted).
- Joe Contillo; oversees a long-term study of bottlenose dolphins in BB. (Budgetary and schedule constraints suggest that an interview should not be conducted).
- Guillermo Diaz, UM; Ph.D. dissertation re population dynamics of Pink Shrimp in BB. (Yes, the team is directed to pursue an interview).
- Cindy Dwyer, Planner, Miami-Dade Planning and Zoning Dept.; (Project manager overseeing public land acquisition projects along BB for env. Enhancements). (Budgetary and schedule constraints suggest that an interview should not be conducted).
- Craig Faunce, UM; Ph. D. work re fishes in mangrove shorelines of BB. (Yes, the team is directed to pursue an interview).
- Janice Fleischer, J.D.; Program Manager for the SFRPC Institute for Community Collaboration. (Budgetary and schedule constraints suggest that an interview should not be conducted).
- Greg Graves, FDEP Port St. Lucie; Oversees an FDEP bay-wide water quality monitoring program. (Yes, the team is directed to pursue an interview).
- Scott Ishman, principal investigator and lead author of a paleo-ecological analysis of BB sediments. (Yes, the team is directed to pursue an interview).
- Diego Lirman, UM; Abundances, Diversity and Distribution of Benthic Organisms in relation to Salinity Gradients in BB. (Yes, the team is directed to pursue an interview).
- Danielle Mir-Gonzalez, FIU; grad student working on seagrass distribution along W. shoreline of BB. (Yes, the team is directed to pursue an interview).
- Rene Price, FIU; using chemical tracers to evaluate changes in freshwater inputs into BB. (Budgetary and schedule constraints suggest that an interview should not be conducted).
- Mike Ross, FIU; working on a pilot project to re-introduce fresh water into cells E. of L-3. (Yes, the team is directed to pursue an interview).
- Gene Shinn, USGS, St. Petersburg. (Budgetary and schedule constraints suggest that an interview should not be conducted).

Approximately half-way through this interview period, the project team met with SFWMD to provide a status report as to the degree of progress in conducting the interviews. Prior to this team meeting, the project team developed and provided to SFWMD a summary of the interview component of the project. The summary, which included highlights of the individual interviews that had been completed by that time, also included a list of 14 potential additional interviewees and a list of 10 of the recommended interviewees with whom attempts to complete interviews had been unsuccessful. The merits of conducting interviews with these individuals were discussed, and a decision was made whether or not to pursue interviews in consideration of the area and/or level of pertinent knowledge of that expert within the budgetary and/or schedule constraints of the project. Results of this project status meeting were compiled into a "Task 3 – Interim Report for Contacts and Experts Interviews" which was provided to SFWMD on October 7, 2003.

Additionally, telephone conversations, messages and email correspondences and/or the lack of responses indicated that interviews are not likely to take place with several of the individuals with whom interviews were initially desired. The merits of continuing to pursue interviews with these individuals were discussed at the project team meeting with SFWMD on October 1, 2003. The results of these discussions are identified in parentheses, below.

Dr. Jerry Ault	(OK to not pursue).
Dr. James Forqurean	(Continue to pursue).
Craig Grossenbacher	(OK to not pursue)(But interviewed after a return phone call after the
meeting from	Mr. Grossenbacher indicating his interest in the project)
Frank Mazzoti	(Continue to pursue).
William Nuttle	(OK to not pursue).
Peter Ortner	(OK to not pursue).
Dr. William Perry	(OK to not pursue).
Dr. Mike Robblee	(Continue to pursue).
Susan Teel	(OK to not pursue).
Dr. Jay Zieman	(OK to not pursue).

ATTACHMENT B INTERVIEW FORM

INTERVIEW FORM

BISCAYNE BAY MFL SFWMD CONTRACT/WO No. C-15967-WO04-06

Date: _____

Location: _____

Contact's Name, position and contact information (or attach business card)

QUESTIONS:

1. Are you familiar with the MFL process?

2. Are you aware of the MFL process now beginning for Biscayne Bay?

3. Did you receive a notification explaining the purpose of this interview?

4. What are your thoughts on which Biscayne Bay organisms or communities have a freshwater requirement for some or all of their life history?

Contact/date: _____, P 2

5. What literature sources would you recommend be reviewed concerning these organisms or communities?

6. How could these freshwater requirements relate to development of MFLs for the bay?

7. Can you recommend any recent or on-going relevant research and data sources that would discuss the salinity tolerance/freshwater requirements/habitat specificity for these organisms or communities, or that would be otherwise helpful in meeting the project goals?

8. Any other comments or suggestions?

APPENDIX C

LIFE HISTORY FIGURES OF SELECTED SPECIES

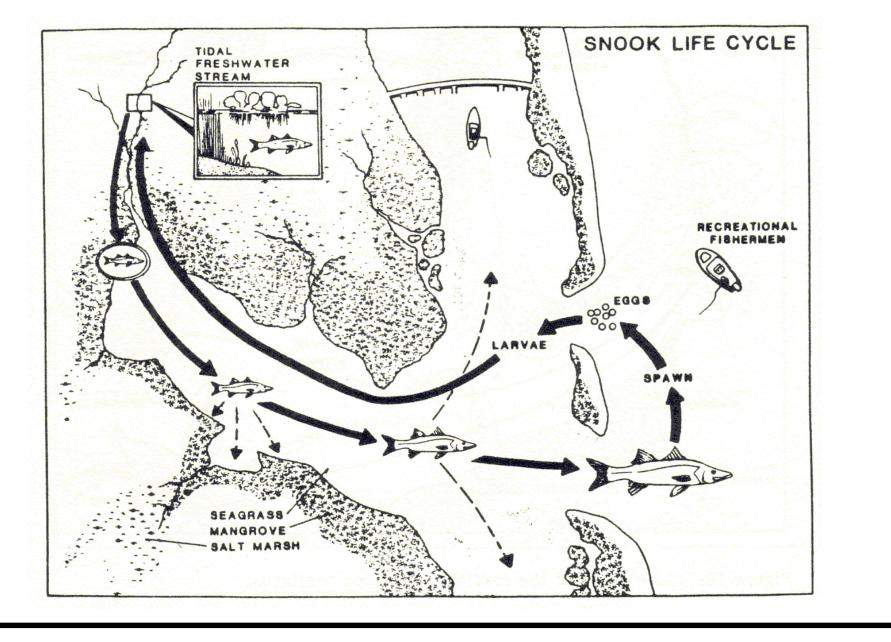


Figure C-1 Life cycle of the snook, <u>Centropomus undecimalis</u>, (from Lewis at al. 1985).

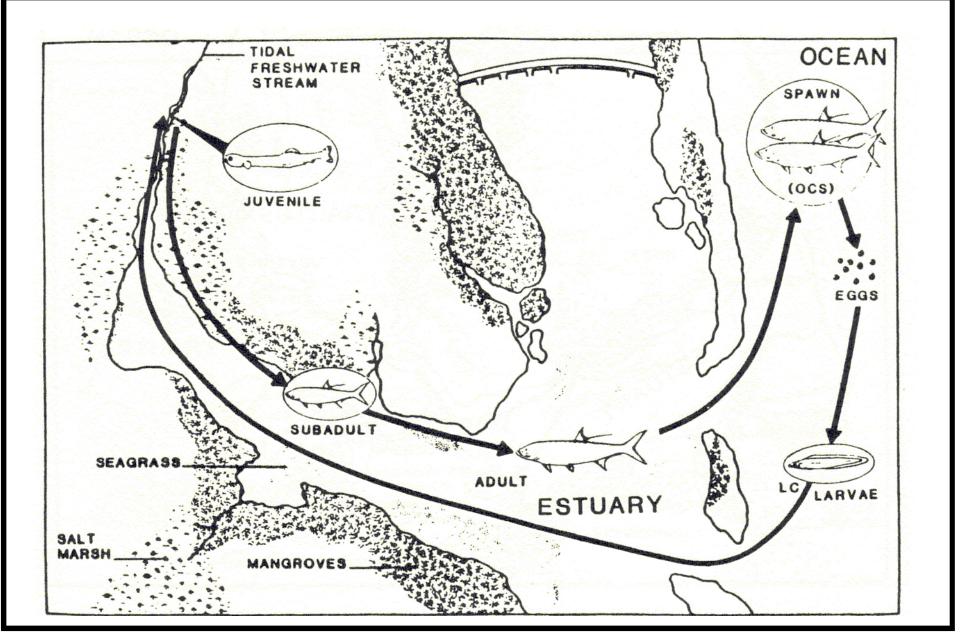


Figure C-2 Life cycle of the tarpon, <u>Megalops atlanticus</u>, (from Lewis at al. 1985).

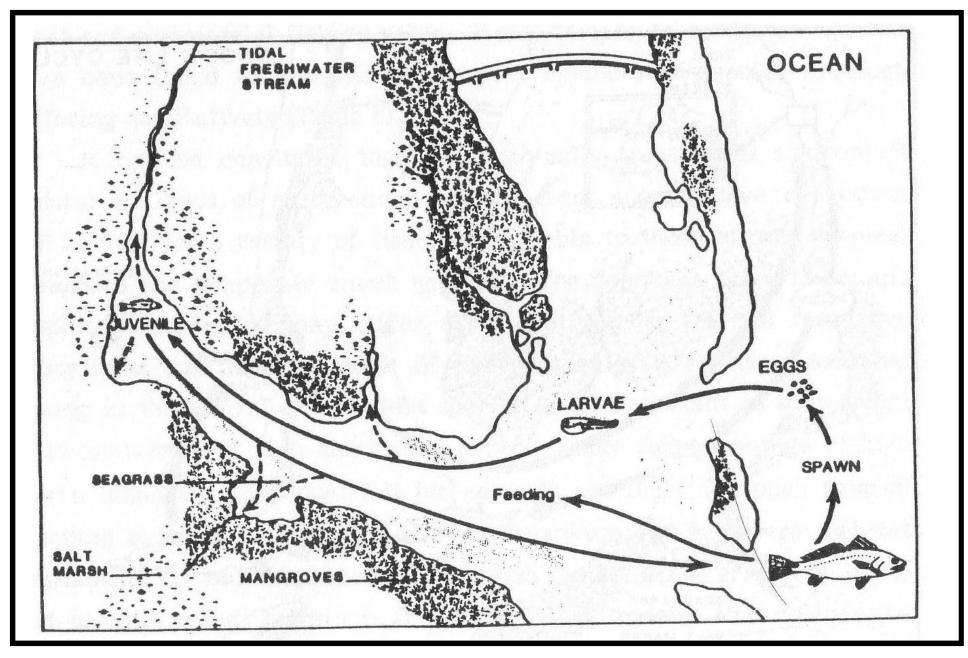
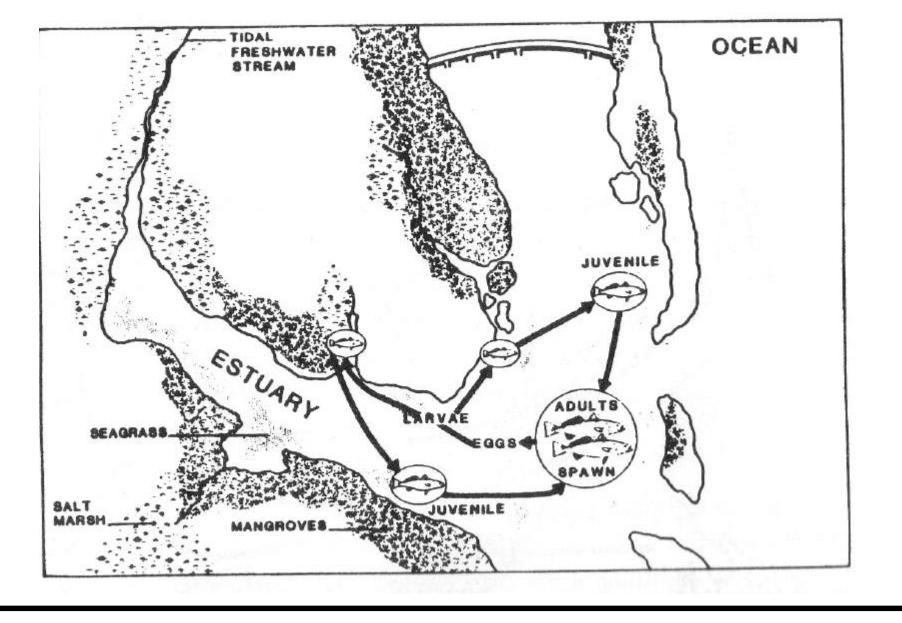



Figure C-3 Life cycle of the redfish, <u>Scianops ocellatus</u>, (from Lewis et al. 1985).

Figure C-4 Life cycle of the spotted seatrout, <u>Cynoscion nebulosus</u>, (from Lewis at al. 1985).

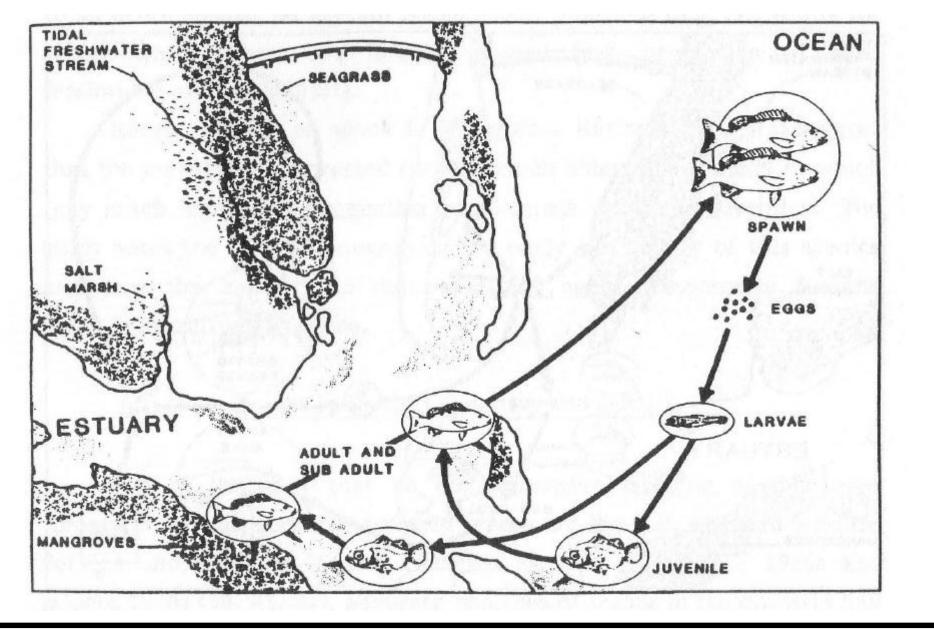
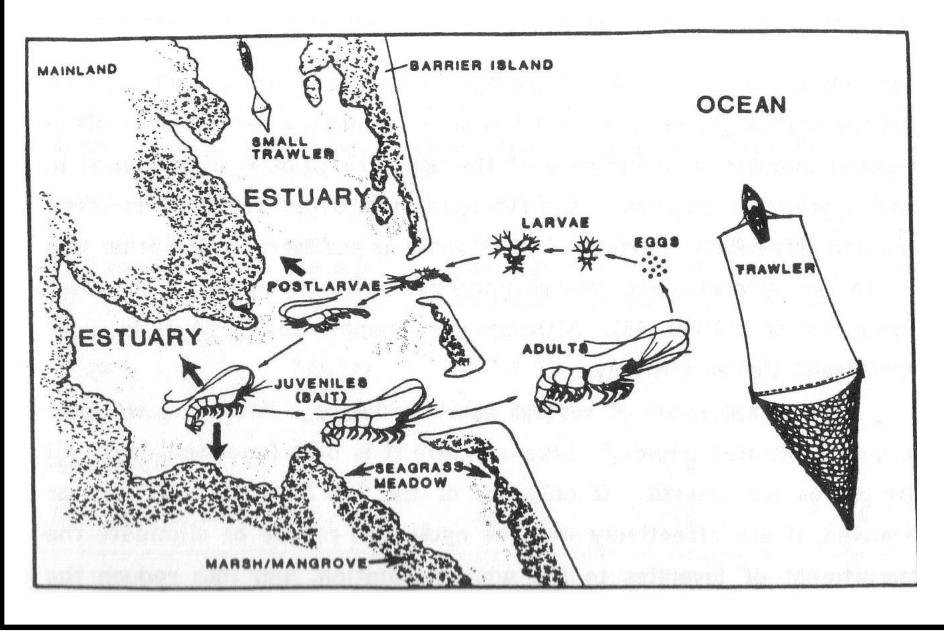
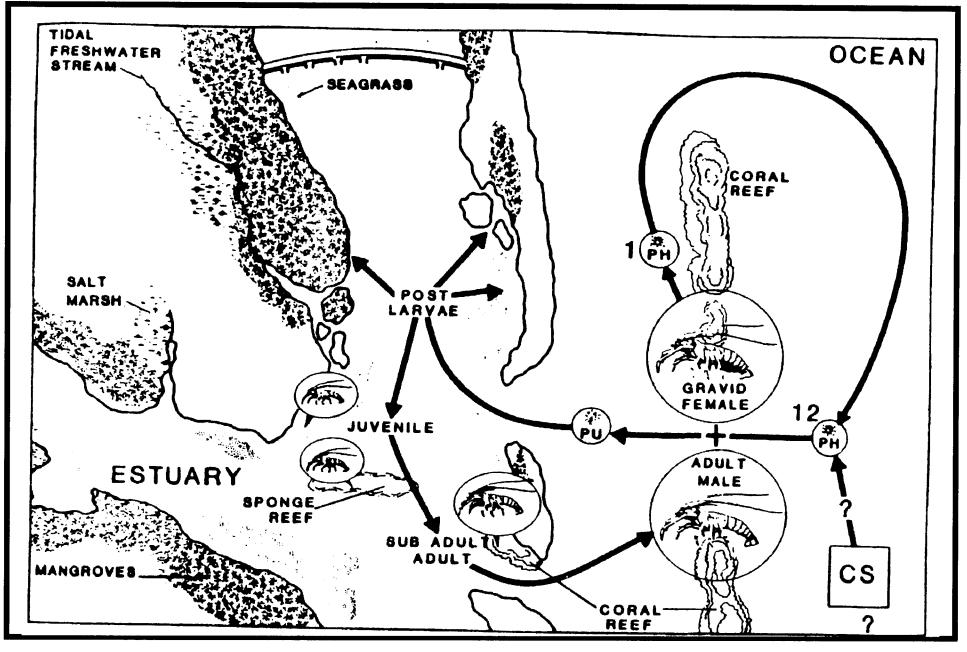




Figure C-5 Life cycle of the gray snapper, <u>Lutjanus griseus</u>, (from Lewis at al. 1985).

Figure C-6 Life cycle of the pink shrimp, <u>Farfantepenaeus duorarum,</u> (from Lewis et al. 1985).

Figure C-7 Life cycle of the spiny lobster, <u>Panulirus argus</u>, (from Lewis at al. 1985).

APPENDIX D

TABLES OF BIO-INDICATOR RANKING MATRIX BY SUB-REGIONS

Table D-1 Bio-indicator Ranking Matrix Oleta River - Snake Creek Sub-Region

		nt in alequation	inteni inteni to paratece Paratece Relia	he	Inse se		etul Feedback	to Inoint
SPECIES		tin adequation	ribt Application	is of Restri	of Response	Conomy of	sulfeedbane	nt ceoffman
Si Leilis	Prese	ntin adequation	R. Pat Relia	ne 1 ⁵ nili ^{13, of Restr Ratifi}	of Response	Conomy of Nonitoring	St. Nat. Impo	eo nt rearce of Fullpoint Total Score
Plants	Í	Í	Í	Í	Í	Í	Í	
Diatoms	Yes	4	4	5	3	3	1	20
Avicennia germinans	Yes	0	0	0	3	3	0	6
Cladium jamaicense	No							
Conocarpus erecta	Yes	0	0	0	3	3	0	6
Distichlis spicata	No							
Eleocharis cellulosa	No							
Halophila decipiens	No							
Halophila englemanii	No							
Halophila johnsonii	Yes	0	0	0	3	3	0	6
Halodule wrightii	Yes	5	3	3	3	3	4	21
Juncus roemerianus	No							
Laguncularia racemosa	Yes	0	0	0	3	3	0	6
Rhizophora mangle	Yes	0	0	0	3	3	0	6
Ruppia maritima	No							
Spartina spartinae	No							
Syringodium filiforme	Yes	3	3	1	3	3	3	16
Thalassia testudinum	No							
ANIMALS								
Foraminiferans	Yes	4	4	5	3	3	1	20
Invertebrates								
Callinectes sapidus	Yes	5	3	3	1	3	1	16
Crassostrea virginica	Yes	5	5	3	5	5	5	28
Farfantepenaeus duorarum	Yes	5	3	3	3	3	0	17
Limulus polyphemus	Yes	0	0	0	3	0	0	3
Menippe mercenaria	Yes	0	0	0	3	0	0	3
Vertebrates								
Mammals								
Trichechus manatus	Yes	3	0	3	3	3	0	12
Turciops truncatus	Yes	0	0	0	3	0	0	3

Table D-1 Bio-indicator Ranking Matrix Oleta River - Snake Creek Sub-Region

		ntin alequation ntin alequation ntines or distri-	innion? innion? inno Anteres Parameter Retra	se to solity of Pestre Rapidity	nse se		tu Feedback	to the search of
		hin alequate	inu Applica	Respe	nse of Response Vare &	Conomy of Nonitoring	Stul Feedback	nt st Endly
SPECIES	- et	nt in or b	ty parant	aility of airy	oft	Conomy or	ful Vanaos	tanceb
	Pres	mbe Sensiti	Relit	b Rapidi	Eased	MARCATIL	Impo	Total Score
Reptiles	Í	<u> </u>	Í	Í	Í		Í	Í
Crocodylus acutus	No							
Birds								
Ajaia ajaja	Yes	0	0	0	5	3	0	8
Egretta caerulea	Yes	0	0	0	5	3	0	8
Egretta rufescens	Yes	0	0	0	5	3	0	8
Egretta thula	Yes	0	0	0	5	3	0	8
Egretta tricolor	Yes	0	0	0	5	3	0	8
Eudocimus alba	Yes	0	0	0	5	3	0	8
Mycteria americana	No							
Pelicanus occidentalis	Yes	0	0	0	5	3	0	8
Fish								
Bairdiella chrysoura	Yes	0	0	0	0	3	0	3
Centropomus undecimalis	No							
Cynoscion nebulosus	Yes	3	0	0	0	0	0	3
Cypinodon variegatus	No							
Eucinostomus gula	Yes	0	0	0	0	3	0	3
Floridichthys carpio	Yes	0	0	0	0	0	0	0
Fundulus confluentus	Yes	0	0	0	0	0	0	0
F. grandis	Yes	0	0	0	0	0	0	0
Haemulon sciurus	Yes	0	0	0	0	3	0	3
H. plumieri	Yes	0	0	0	0	3	0	3
H. parra	Yes	0	0	0	0	3	0	3
Lagodon rhomboides	Yes	0	0	0	0	0	0	0
Lucania parva	Yes	0	0	0	0	3	0	3
Lutjanus griseus	Yes	3	0	0	3	3	3	12
Myteroperca microlepis	No							
Megalops atlanticus	No							
Mugil spp	Yes	3	0	0	0	3	0	6
Opsanus beta	Yes	0	0	0	0	0	0	0
Sphyraena barracuda	Yes	0	0	0	0	0	0	0

Scoring System: 0 (Poor), Medium (3), Excellent (5)

Table D-2 Bio-indicator Ranking Matrix Northern Biscayne Bay Sub-Region

		191	thion?	JIE /	Inse se		net	to tooint
SPECIES		tin adequation	to Applicate	rs of Respi	a Respons	Conomy or of the second	stul Feedback	nt coffindt
Si Leilis	Prese	nt in a sequences	inninni rasinger inninni rasinger to paranger Rete	ne 1 [°] ni ^{lity} of Restriction Radiation	one of Response	Conomy of Nonitoring	et i Feedback	to nt Total Score
Plants								Í
Diatoms	Yes	4	4	5	3	3	1	20
Avicennia germinans	Yes	0	0	0	3	3	0	6
Cladium jamaicense	No							
Conocarpus erecta	No							
Distichlis spicata	No							
Eleocharis cellulosa	No							
Halophila decipiens	No							
Halophila englemanii	No							
Halophila johnsonii	Yes	0	0	0	3	3	0	6
Halodule wrightii	Yes	5	3	3	3	3	4	21
Juncus roemerianus	No							
Laguncularia racemosa	No							
Rhizophora mangle	Yes	0	0	0	3	3	0	6
Ruppia maritima	No							
Spartina spartinae	No							
Syringodium filiforme	Yes	3	3	2	3	5	5	21
Thalassia testudinum	Yes	3	0	0	3	3	3	12
ANIMALS								
Foraminiferans	Yes	4	4	5	3	3	1	20
Invertebrates								
Callinectes sapidus	Yes	5	3	3	1	3	1	16
Crassostrea virginica	No						1	
Farfantepenaeus duorarum	Yes	5	3	3	3	3	0	17
Limulus polyphemus	Yes	0	0	0	3	0	0	3
Menippe mercenaria	Yes	0	0	0	3	0	0	3
Vertebrates								
Mammals								
Trichechus manatus	Yes	3	0	3	3	3	0	12
Turciops truncatus	Yes	0	0	0	3	0	0	3

Table D-2 Bio-indicator Ranking Matrix Northern Biscayne Bay Sub-Region

		ntin alequate	intenii intenii ty to Antieter ty to Antieter Retto	se spillt ^{y of Respired} Rappillt ^y	ne ^e / e		tu Feedback	eo nt ntance of Endpoint Total Score
		it in a lean at a start	ibit Applicate	Respe	nse of Response Vare &	Conomy of Nonitoring	Stul Feedback	nt standp
SPECIES	_et	hinsor of	ty parame	ility of ity	ofte	Conomy or	ful hanae	A SHEED
	Pres	mbe Sensiti	Relia	D' Rapidi	Ease C	Meant	Imp	real Score
Reptiles								Í
Crocodylus acutus	Yes	3	3	3	0	3	3	15
Birds								
Ajaia ajaja	Yes	0	0	0	5	3	0	8
Egretta caerulea	Yes	0	0	0	5	3	0	8
Egretta rufescens	Yes	0	0	0	5	3	0	8
Egretta thula	Yes	0	0	0	5	3	0	8
Egretta tricolor	Yes	0	0	0	5	3	0	8
Eudocimus alba	Yes	0	0	0	5	3	0	8
Mycteria americana	No							
Pelicanus occidentalis	Yes	0	0	0	5	3	0	8
Fish								
Bairdiella chrysoura	Yes	0	0	0	0	3	3	6
Centropomus undecimalis	No							
Cynoscion nebulosus	Yes	5	3	3	3	5	5	24
Cypinodon variegatus	No							
Eucinostomus gula	No							
Floridichthys carpio	No							
Fundulus confluentus	No							
F. grandis	No							
Haemulon sciurus	Yes	0	0	0	0	3	3	6
H. plumieri	Yes	0	0	0	0	3	3	6
H. parra	Yes	0	0	0	0	3	3	6
Lagodon rhomboides	Yes	3	0	0	0	3	3	9
Lucania parva	Yes	0	0	0	0	3	0	3
Lutjanus griseus	Yes	0	0	0	0	3	3	6
Myteroperca microlepis	No							
Megalops atlanticus	No							
Mugil spp	Yes	3	0	0	0	3	3	9
Opsanus beta	Yes	0	0	0	0	0	0	0
Sphyraena barracuda	No							

Scoring System: 0 (Poor), Medium (3), Excellent (5)

Table D-3 Bio-indicator Ranking Matrix Miami River - Government Cut Sub-Region

		n in alcount n in a sequence n prosession	indian'i cali	je	11 ³⁰ se		atul Feedback	on the second se
		ntin alequation	int Applie	e Bality of Respired Rapidity Rapidity	of Hesponse	Conomy of Nonitoring Nearing	1 Feedbarne	nt of Endly
SPECIES	oreset	nt is of	the parat	oility sidity	on es	ecor itor	Sur Nanate 20	tance sal are
		iti şens	Rell	Rah	1.ast	Mein	1mp	Total Score
Plants								
Diatoms	Yes	4	4	5	3	3	1	20
Avicennia germinans	Yes	0	0	0	3	3	0	6
Cladium jamaicense	No							
Conocarpus erecta	No							
Distichlis spicata	No							
Eleocharis cellulosa	No							
Halophila decipiens	No							
Halophila englemanii	No							
Halophila johnsonii	Yes	0	0	0	3	3	3	9
Halodule wrightii	Yes	5	3	3	3	3	0	17
Juncus roemerianus	No							
Laguncularia racemosa	No							
Rhizophora mangle	Yes	0	0	0	3	3	0	6
Ruppia maritima	No							
Spartina spartinae	No							
Syringodium filiforme	Yes	3	3	0	3	3	0	12
Thalassia testudinum	Yes	3	3	0	3	3	0	12
ANIMALS			_		_		_	
Foraminiferans	Yes	4	4	5	3	3	1	20
Invertebrates								
Callinectes sapidus	Yes	5	3	3	1	3	1	16
Crassostrea virginica	No		-		-		-	- •
Farfantepenaeus duorarum	Yes	3	3	3	0	3	3	15
Limulus polyphemus	Yes	0	0	0	3	0	0	3
Menippe mercenaria	Yes	0	0	0	0	0	0	0
Vertebrates		Ŭ	Ť	Ŭ	Ť	Ť	Ŭ	<u> </u>
Mammals		1		1				
Trichechus manatus	Yes	3	0	3	3	3	0	12
Turciops truncatus	Yes	0	0	0	3	0	0	3

Table D-3 Bio-indicator Ranking Matrix Miami River - Government Cut Sub-Region

		n in alcount n in a sequence n prosession	indiani indiani indiani indiani Parates Relie	he	e /	/	tu Feedback	io int
		adequat	ibutt Applicate	Respi	ns esponse	myor	ceedbacht	nt strutpo
SPECIES	é	htin sordi	ty parame	itity of t	ofRe	Conomy of	stul te naget	-ance of
	Prest	ntin alequation	Relie	ne 1 [°] pilit ^y of Respir	of Response	Conomy of Nonitorine Nonitorine	Tube	eo nt rearce of Endpoint rearce of Endpoint
Reptiles	Í							
Crocodylus acutus	No							
Birds								
Ajaia ajaja	No							
Egretta caerulea	No							
Egretta rufescens	No							
Egretta thula	No							
Egretta tricolor	No							
Eudocimus alba	No							
Mycteria americana	No							
Pelicanus occidentalis	Yes	0	0	0	5	3	0	8
Fish								
Bairdiella chrysoura	Yes	0	0	0	0	3	3	6
Centropomus undecimalis	No							
Cynoscion nebulosus	Yes	0	0	0	3	0	0	3
Cypinodon variegatus	No							
Eucinostomus gula	No							
Floridichthys carpio	No							
Fundulus confluentus	No							
F. grandis	No							
Haemulon sciurus	Yes	0	0	0	0	3	0	3
H. plumieri	Yes	0	0	0	0	3	0	3
H. parra	Yes	0	0	0	0	3	0	3
Lagodon rhomboides	Yes	0	0	0	0	0	0	0
Lucania parva	Yes	0	0	0	0	0	0	0
Lutjanus griseus	Yes	3	0	0	3	3	3	12
Myteroperca microlepis	No							
Megalops atlanticus	No							
Mugil spp	Yes	3	0	0	3	3	3	12
Opsanus beta	Yes	0	0	0	0	0	0	0
Sphyraena barracuda	Yes	0	0	0	0	0	0	0

Scoring System: 0 (Poor), Medium (3), Excellent (5)

Table D-4 Bio-indicator Ranking Matrix Central Biscayne Bay Sub-Region

		nate	Intion?	he	hse se		act	io inoint
SPECIES		n in alcountry n in a section n in section	ibution? ibu	is pility of Responses Rapidry	nse of Response Vare &	Conomy of Nonitoring	tu Feedback	eo nt ntance of Endroint Total Score
	Prese	inbers sensitiv	te. Pa. Relia	oile. Rapidity	É ASE OF	Nonveanin	S Ma Impo	rtait Total Score
Plants								
Diatoms	Yes	4	4	5	3	3	1	20
Avicennia germinans	Yes	0	0	0	3	3	0	6
Cladium jamaicense	Yes	3	0	0	3	0	0	6
Conocarpus erecta	Yes	0	0	0	0	0	0	0
Distichlis spicata	No							
Eleocharis cellulosa	Yes	5	5	5	3	3	5	26
Halophila decipiens	No							
Halophila englemanii	No							
Halophila johnsonii	No							
Halodule wrightii	Yes	5	5	5	3	5	5	28
Juncus roemerianus	No							
Laguncularia racemosa	Yes	0	0	0	3	3	0	6
Rhizophora mangle	Yes	0	0	0	3	3	0	6
Ruppia maritima	Yes	5	5	5	3	3	3	24
Spartina spartinae	No							
Syringodium filiforme	Yes	3	3	0	3	3	3	15
Thalassia testudinum	Yes	3	3	0	3	3	0	12
ANIMALS								
Foraminiferans	Yes	4	4	5	3	3	1	20
Invertebrates								
Callinectes sapidus	Yes	5	3	3	0	3	1	15
Crassostrea virginica	Yes	5	0	3	5	5	5	23
Farfantepenaeus duorarum	Yes	5	4	3	5	5	5	27
Limulus polyphemus	Yes	0	0	0	3	0	0	3
Menippe mercenaria	Yes	0	0	0	3	0	0	3
Vertebrates								
Mammals								
Trichechus manatus	Yes	3	0	3	3	3	0	12
Turciops truncatus	Yes	0	0	0	3	0	0	3

Table D-4 Bio-indicator Ranking Matrix Central Biscayne Bay Sub-Region

		nin alequate	ibution. ibution. ibution. ibution. Parameter Relia	se spilit ^{y of Respirit} Rapidit	N ^{SE} .e		Full Feedback	eo nt name of Endroint Total Score
		hin alequate	ing Applicates	Respe	nse of Response	Conomy of	Feedbachenne	nt st Endly
SPECIES		ht in or b	th parame	aility of airs	oft	Conomy or the start	ful Vanase	tanceb
	Pres	Inpe Sensite	Relia	b Rapin	Ease C	Meant	Impo	real Score
Reptiles	Í							
Crocodylus acutus	Yes	5	5	3	3	4	4	24
Birds								
Ajaia ajaja	Yes	0	0	0	5	3	2	10
Egretta caerulea	Yes	0	0	0	5	3	0	8
Egretta rufescens	No	0	0	0	5	3	0	8
Egretta thula	No	0	0	0	5	3	0	8
Egretta tricolor	No	0	0	0	5	3	0	8
Eudocimus alba	No	0	0	0	5	3	0	8
Mycteria americana	No							
Pelicanus occidentalis	Yes	0	0	0	5	3	0	8
Fish								
Bairdiella chrysoura	Yes	3	3	0	0	3	3	12
Centropomus undecimalis	Yes	5	5	3	0	5	3	21
Cynoscion nebulosus	Yes	3	3	0	0	3	3	12
Cypinodon variegatus	Yes	3	3	3	0	3	3	15
Eucinostomus gula	Yes	0	0	0	0	3	0	3
Floridichthys carpio	Yes	3	3	3	0	3	3	15
Fundulus confluentus	Yes	3	3	3	0	3	3	15
F. grandis	Yes	3	3	3	0	3	3	15
Haemulon sciurus	Yes	0	0	0	0	3	3	6
H. plumieri	Yes	0	0	0	0	3	3	6
H. parra	Yes	0	0	0	0	3	3	6
Lagodon rhomboides	Yes	0	0	0	0	3	3	6
Lucania parva	Yes	3	3	3	0	3	3	15
Lutjanus griseus	Yes	3	0	0	3	3	3	12
Myteroperca microlepis	Yes	3	0	3	0	3	3	12
Megalops atlanticus	Yes	5	5	3	0	3	3	19
Mugil spp	Yes	0	0	0	0	0	0	0
Opsanus beta	Yes	0	0	0	0	0	0	0
Sphyraena barracuda	Yes	0	0	0	0	0	0	0

Scoring System: 0 (Poor), Medium (3), Excellent (5)

Table D-5Bio-indicator Ranking MatrixSouth Central Biscayne Bay Sub-Region

		n in alcountry n in a second	Button's tests	he	nse le		Full Feedback	o ht touce of Endpoint Total Score
		ntin steenate	ibu Application	ne 1 ⁵ nili ^{13, of Restr Ratifi}	of Response	Conomy of Nonitoring	Sul Feedback	nt of Endly
SPECIES	ese	ntities of the	th Parate	oility 0. dity	of y	econ tor	Stul Nanas	tance 1 c
	Pru	III Senst	Reliv	Rapit	Rase -	Mean	Impo	Total Score
Plants								
Diatoms	Yes	4	4	5	3	3	1	20
Avicennia germinans	Yes	0	0	0	3	3	0	6
Cladium jamaicense	Yes	3	0	0	3	0	0	6
Conocarpus erecta	Yes	0	0	0	0	0	0	0
Distichlis spicata	Yes	3	0	0	3	0	0	6
Eleocharis cellulosa	Yes	5	5	5	3	3	5	26
Halophila decipiens	Yes	0	0	0	0	0	0	0
Halophila englemanii	No							
Halophila johnsonii	No							
Halodule wrightii	Yes	5	5	5	3	5	5	28
Juncus roemerianus	Yes	5	3	3	3	5	5	24
Laguncularia racemosa	Yes	0	0	0	3	3	0	6
Rhizophora mangle	Yes	0	0	0	5	3	0	8
Ruppia maritima	Yes	5	5	5	3	3	3	24
Spartina spartinae	Yes	3	3	3	3	3	3	18
Syringodium filiforme	Yes	3	3	0	3	3	3	15
Thalassia testudinum	Yes	3	3	0	3	3	0	12
ANIMALS								
Foraminiferans	Yes	4	4	5	3	3	1	20
Invertebrates								
Callinectes sapidus	Yes	5	3	3	0	3	1	15
Crassostrea virginica	Yes	5	0	3	5	5	5	23
Farfantepenaeus duorarum	Yes	5	4	3	5	5	5	27
Limulus polyphemus	Yes	0	0	0	3	0	0	3
Menippe mercenaria	Yes	0	0	0	3	0	0	3
Vertebrates								
Mammals	1							
Trichechus manatus	Yes	3	0	3	3	3	0	12
Turciops truncatus	Yes	0	0	0	3	0	0	3

Table D-5Bio-indicator Ranking MatrixSouth Central Biscayne Bay Sub-Region

		nt in adequate	ibution. ibution. ibution. ibution. Parameter Relia	se solit ^y of Pestre Ration	n ^{se} .e		tu Feedback	to the server to a serve
		hin alequate	inter Application	Respe	nse of Response Vare &	Conomy of Nonitoring	Stul Feedback	nt stinde
SPECIES	- et	nt in or the	H, Parant	aility of airy	oft	Conomy or the start	ful Vanaos	tanceb
	Pres	mbe Sensiti	Relia	b Rapius	Eased	NI Neam	Impo	rte Total Score
Reptiles	Í	<u> </u>	Í		Í		Í	
Crocodylus acutus	Yes	5	5	3	3	4	4	24
Birds								
Ajaia ajaja	Yes	5	5	3	3	3	3	22
Egretta caerulea	Yes	2	5	3	0	3	3	16
Egretta rufescens	Yes	2	5	3	0	3	3	16
Egretta thula	Yes	2	5	3	0	3	3	16
Egretta tricolor	Yes	2	5	3	0	3	3	16
Eudocimus alba	Yes	2	3	3	0	3	3	14
Mycteria americana	Yes	2	4	3	3	3	3	18
Pelicanus occidentalis	Yes	0	0	0	3	3	0	6
Fish								
Bairdiella chrysoura	Yes	3	3	0	0	3	3	12
Centropomus undecimalis	Yes	5	5	3	0	5	3	21
Cynoscion nebulosus	Yes	3	3	0	0	3	3	12
Cypinodon variegatus	Yes	3	3	3	0	3	3	15
Eucinostomus gula	Yes	0	0	0	0	3	3	6
Floridichthys carpio	Yes	3	3	3	0	3	3	15
Fundulus confluentus	Yes	3	3	3	0	3	3	15
F. grandis	Yes	3	3	3	0	3	3	15
Haemulon sciurus	Yes	0	0	0	0	3	3	6
H. plumieri	Yes	0	0	0	0	3	3	6
H. parra	Yes	0	0	0	0	3	3	6
Lagodon rhomboides	Yes	0	0	0	0	3	3	6
Lucania parva	Yes	3	3	3	0	3	3	15
Lutjanus griseus	Yes	3	0	0	3	3	3	12
Myteroperca microlepis	Yes	3	0	0	3	3	3	12
Megalops atlanticus	Yes	5	5	3	0	3	3	19
Mugil spp	Yes	0	0	0	0	0	0	0
Opsanus beta	Yes	0	0	0	0	0	0	0
Sphyraena barracuda	Yes	0	0	0	0	0	0	0

Scoring System: 0 (Poor), Medium (3), Excellent (5)

Table D-6 Bio-indicator Ranking Matrix Southern Sub-Region

		nin steamste	Buiton ² Buiton ² Buiton ² Parameter Relia	e 5 bill ^{y of Respire} Raphity	nse ponse	Nat	Full Feedback	eo ht rearce of Endpoint rearce of Endpoint
SPECIES	arese	ntin adequate	ty to At amete	oility of Rec	nse of Response Fase &	Nonitoring	Sul Feet Sent	rtance of L sal are
	× 11	ili Sella	Relli	Rap.	£35t	Mein	Imp	Total Score
Plants								
Diatoms	Yes	4	4	5	3	3	1	20
Avicennia germinans	Yes	0	0	0	3	3	0	6
Cladium jamaicense	Yes	3	3	3	3	3	3	18
Conocarpus erecta	Yes	0	0	0	0	0	0	0
Distichlis spicata	Yes	3	3	3	0	0	0	9
Eleocharis cellulosa	Yes	5	5	3	3	5	3	24
Halophila decipiens	Yes	0	0	0	0	0	0	0
Halophila englemanii	No							
Halophila johnsonii	No							
Halodule wrightii	Yes	5	5	5	0	3	0	18
Juncus roemerianus	Yes	5	5	3	3	5	3	24
Laguncularia racemosa	Yes	0	0	0	3	3	0	6
Rhizophora mangle	Yes	0	0	0	3	3	0	6
Ruppia maritima	Yes	3	3	3	3	3	3	18
Spartina spartinae	Yes	5	5	3	3	5	3	24
Syringodium filiforme	Yes	3	3	0	3	3	3	15
Thalassia testudinum	Yes	3	3	0	3	3	0	12
ANIMALS								
Foraminiferans	Yes	4	4	5	3	3	1	20
Invertebrates								
Callinectes sapidus	Yes	3	3	3	0	3	1	13
Crassostrea virginica	No		-					
Farfantepenaeus duorarum	Yes	3	3	0	0	0	0	6
Limulus polyphemus	Yes	3	3	0	0	0	0	6
Menippe mercenaria	Yes	3	3	0	0	0	0	6
Vertebrates								
Mammals								
Trichechus manatus	Yes	3	0	3	3	3	0	12
Turciops truncatus	Yes	0	0	0	3	0	0	3

Table D-6 Bio-indicator Ranking Matrix Southern Sub-Region

		n in alcountry n in a section n in the section	Button's testing to National States	se solit ^y of Respired	n ^{ge} e		tu Feedback	to the second second second
		adequist	init Applice	Respe	no esponse	ony of	Seedball one	nt strutt
SPECIES	- et	htin or or or	th parame	ility of ity	ofte	Conomy or	ful Vanae	tance 0
	Pres	nin alequate	Relia	D' Rapidia	of Response	Noniorine Noniorine	Imp	Total Score
Reptiles			Í				Í	
Crocodylus acutus	Yes	5	5	4	4	5	5	28
Birds								
Ajaia ajaja	Yes	5	5	4	4	5	5	28
Egretta caerulea	Yes	2	4	3	0	3	3	15
Egretta rufescens	Yes	2	4	3	0	3	3	15
Egretta thula	Yes	2	4	3	0	3	3	15
Egretta tricolor	Yes	2	4	3	0	3	3	15
Eudocimus alba	Yes	2	4	3	0	3	3	15
Mycteria americana	Yes	2	4	3	3	3	3	18
Pelicanus occidentalis	Yes	0	0	0	3	3	0	6
Fish								
Bairdiella chrysoura	Yes	3	3	0	0	0	0	6
Centropomus undecimalis	No							
Cynoscion nebulosus	Yes	3	3	0	0	0	0	6
Cypinodon variegatus	Yes	5	5	3	3	5	4	25
Eucinostomus gula	Yes	0	0	0	0	3	3	6
Floridichthys carpio	Yes	5	3	3	3	5	4	23
Fundulus confluentus	Yes	5	3	3	3	5	4	23
F. grandis	Yes	5	3	3	3	5	4	23
Haemulon sciurus	Yes	0	0	0	0	3	3	6
H. plumieri	Yes	0	0	0	0	3	3	6
H. parra	Yes	0	0	0	0	3	3	6
Lagodon rhomboides	Yes	3	0	0	0	3	3	9
Lucania parva	Yes	5	5	3	3	5	4	25
Lutjanus griseus	Yes	3	0	0	3	3	3	12
Myteroperca microlepis	Yes	3	0	0	3	3	3	12
Megalops atlanticus	No							
Mugil spp	Yes	0	0	0	0	0	0	0
Opsanus beta	Yes	0	0	0	0	0	0	0
Sphyraena barracuda	Yes	0	0	0	0	0	0	0

Scoring System: 0 (Poor), Medium (3), Excellent (5)

APPENDIX E

TABLES OF ADVANTAGES & DISADVANTAGES OF DIFFERENT MFL APPROACHES BY SUB-REGIONS

Table E-1 Advantages and Disadvantages of Different MFL Approaches for Biscayne Bay Oleta River / Snake Creek Sub-region

POTENTIAL APPROACHES	STRENGTHS & Score (0 - no strengths, 5 = strong)		WEAKNESSES & Score (0 = Very weak, 5 = few weaknesses)	1	OPPORTUNITIES & Score (0 = creates numerous problem 5 = creates few problems)	s;	THREATS & Score (0 = large # of threats, 5= few)		SPEED OF ADAPTIVE MGMT (Slow (0), Medium (3), Fast	(5))	FEASIBILITY OF COST-EFFEC PERFORMANCE STANDAR (Very costly (0), Comparatively inexp	DS	APPROACH SCORE (Cumulative Total)
Valued Ecosystem Component (Oysters, Manatees and Johnson's seagrass)	Oyster resources are easily quantifiable High public visitation at State Park Designated critical habitat for manatees and Johnson's seagrass	3	Potential difficulties in relating population declines to reductions of fresh water flow Little public interest in <i>H. johnsonii</i>	2	Develop enhanced understanding of distribution of H. johnsonii Enhanced knowledge of H. johnsonii could cause permitting problems	3	Population declines may be unrelated to reductions in freshwater flow	2	Medium	3	Yes - Data already being compiled	5	18
Indicator Species (Oysters, Manatees & Johnson's seagrass)	Relatively easy to ID Significant Harm A lot of scientific work already done Designated critical habitat for manatees and Johnson's seagrass	5	Potential difficulties in relating population declines to reductions of fresh water flow Oysters not currently abundant Difficulty in monitoring minimal changes	3	Critical habitat already designated Would require add'l mapping and/or monitoring of oysters	3	Future reductions in Manatee presence may not be related to diminishing fresh water flows	3	Medium	3	Yes - Data already being compiled	5	22
Presence/Absence/Vitality of Preferred Habitats	If salinities are correct for oysters and sea grasses, conditions will be suitable for numerous other species	4	Existing oyster habitat is presently limited to riverine portions of waterways Little suitable habitat for Johnson's seagrass Mangrove community tolerant of varying S%	2	Public acceptance fairly high for manatees and oysters	3	Difficult to quantify "vitality" of Johnson's seagrass	4	Medium	3	Yes - Data already being compiled	1	17
Ecological Preservation	Would prevent continued degradation	3	Existing condition is severely degraded, but Significant Harm not yet reached Would maintain existing degraded condition	3	Add'l restrictions to maintain current status would not likely receive public acceptance	2	Additional restrictions to protect manatees are often highly controversial General ineffectiveness of existing regulatory programs	2	Medium	3	Yes - Data already being compiled	1	14
Pre-development Scenario	Historic mangrove shorelines would be recreated	1	Likely significant public opposition	1	Closing of Haulover Inlet and replacement of seawalls with mangroves not feasible	1	Likley significant public opposition	1	Slow	1	Restoration to pre-development conditions would be too expensive and not likely politically viable	1	6
Requirement for preferred fish communities	Would recreate viable fishery where none presently exists	5	Recreational fishing is popular, but most fishers do not understand fish life cycles Would involve restoration of mangrove and seagrass habitats	1	Public acceptance	1	Lack of scientific base to work from	2	Medium	3	Expensive and long term	2	14
Community Index	Common scientific tool	2	Not developed for Biscayne Bay	1	May be useful with much further study	3	Not understandable as real	1	Medium	3	Expensive and long term	2	12
Food Web Support	Common scientific tool	1	Not developed for Biscayne Bay	1	May be useful with much further study	2	Impacts from acts of nature (e.g., hurricanes)	4	Medium	3	Very expensive and long term	1	12
Soil Characteristics	Relatively easy to monitor	3	Not connected to salinity changes alone Only applicable upstream in riverine areas	1	Would require add'l approach for open-water areas	1	Adverse impacts from non-salinity water quality parameters	3	Slow	1	Inexpensive, but difficult to inter- pret	3	12

Table E-2 Advantages and Disadvantages of Different MFL Approaches for Biscayne Bay Northern Biscayne Bay Sub-region

POTENTIAL APPROACHES	STRENGTHS & Score (0 - no strengths, 5 = strong)		WEAKNESSES & Score (0 = Very weak, 5 = few weaknesses)		OPPORTUNITIES & Score (0 = creates numerous problem 5 = creates few problems)	s;	THREATS & Score (0 = large # of threats, 5= few)		SPEED OF ADAPTIVE MGMT (Slow (0), Medium (3) , Fas	t (5))	FEASIBILITY OF COST-EFFEC PERFORMANCE STANDARI (Very costly (0), Comparatively inexp	DS	APPROACH SCORE (Cumulative Total)
Valued Ecosystem Component (Seatrout, Manatees and Johnson's Seagrass and Manatee grass)	Seatrout & manatees have public appeal Reasonably good existing database Designated critical habitat for manatees	5	Potential difficulties in relating population declines to reductions of fresh water flow Little public interest in Johnson's Seagrass	2	Enhanced knowledge of H. johnsonii could cause permitting problems	3	Population declines may be unrelated to reductions in freshwater flow Reductions in indicator species may not	2	Medium	3	Yes - Some data already being compiled	3	18
Indicator Species (Seatrout & manatee grass)	and Johnson's seagrass Relatively easy to ID Significant Harm A lot of scientific work already done	5	Potential difficulties in relating population declines to reductions of fresh water flow Seatout not currently abundant Difficulty in monitoring minimal changes	3	Critical habitat already designated Would require more intensive monitoring of fish catches and seagrass mapping	3	be related to diminishing fresh water flows Future reductions in seatorut and manatee gras presence may not be related to diminishing fresh water flows	3	Medium	3	Yes - Data already being compiled	5	22
Presence/Absence/Vitality of Preferred Habitats	If salinities are correct for seatrout and manatee grass, conditions will be suitable for numerous other species	4	Existing conditions are highly variable Few shoreline mangroves	2	Public acceptance fairly high for seatrout and seagrasses	3	Difficult to quantify "vitality" of seagrasses Pubic opposition to more detailed fishery monitoring	4	Medium	3	Yes - Data already being compiled	1	17
Ecological Preservation	Would prevent continued degradation	3	Existing condition is somewhat degraded, but Significant Harm not yet reached Would maintain existing depauperate fishery	3	Add'I restrictions to maintain current status would not likely receive public acceptance	2	Additional restrictions to protect seagrasses are often highly controversial General ineffectiveness of existing regulatory programs	2	Medium	3	Yes - Data already being compiled	1	14
Pre-development Scenario	Historic mangrove shorelines would be recreated	1	Likely significant public opposition	1	Replacement of seawalls with mangroves not feasible	1	Likley significant public opposition	1	Slow	1	Restoration to pre-development conditions would be too expensive and not likely politically viable	1	6
Requirement for preferred fish communities	Would maintain a viable fishery	5	Recreational fishing is popular, but most fishers do not understand fish life cycles Would involve restoration of mangrove shorelines and seagrass habitats	1	Public acceptance	2	Lack of scientific base to work from	2	Medium	3	Expensive and long term	2	15
Community Index	Common scientific tool	2	Not developed for Biscayne Bay	1	May be useful with much further study	3	Not understandable as real	1	Medium	3	Expensive and long term	2	12
Food Web Support	Common scientific tool	1	Not developed for Biscayne Bay Would require additional shorline vegetation	1	May be useful with much further study	2	Impacts from acts of nature (e.g., hurricanes)	4	Medium	3	Very expensive and long term	1	12
Soil Characteristics	Relatively easy to monitor	3	No soils present Nearly entire shoreline bulkheaded	1	Would require add'l approach for open-water areas	1	Adverse impacts from non-salinity water quality parameters	3	Slow	1	Inexpensive, but difficult to inter-	3	12

Table E-3 Advantages and Disadvantages of Different MFL Approaches for Biscayne Bay Miami River - Government Cut Sub-region

POTENTIAL APPROACHES	AL APPROACHES STRENGTHS & Score (0 - no strengths, 5 = strong)		WEAKNESSES & Score (0 = Very weak, 5 = few weaknesses)		OPPORTUNITIES & Score (0 = creates numerous problems; 5 = creates few problems)		THREATS & Score (0 = large # of threats, 5= few)	SPEED OF ADAPTIVE MGMT (Slow (0), Medium (3) , Fast	t (5))	FEASIBILITY OF COST-EFFEC PERFORMANCE STANDAR (Very costly (0), Comparatively inexp	DS	APPROACH SCORE (Cumulative Total) 5)	
Valued Ecosystem Component	Manatees have high public appeal Reasonably good existing database		Potential difficulties in relating population declines to reductions of fresh water flow	2	Enhanced awareness of H. johnsonii could cause permitting problems	2	Population declines may be unrelated to reductions in freshwater flow	2	Medium	2	Yes - Some data already being compiled	3	16
(Manatees and Johnson's Seagrass)	Designated critical habitat for manatees and Johnson's seagrass	4	Healthy environment in this area is less important than sustaining the economy	2	Removal & disposal of sediments from River is problematic	2	Reductions in indicator species may not be related to diminishing fresh water flows	2	Medium	3		3	10
Indicator Species (Manatees and Johnson's Seagrass)	Somewhat easy to ID Significant Harm A lot of scientific work already done	3	Potential difficulties in relating population declines to reductions of fresh water flow Target population exceedingly small	2	Critical habitat already designated Would require more intensive seagrass mapping and monitoring	2	Future reductions in Johnson's seagrass presence may not be related to diminishing fresh water flows	3	Somewhat Slow	2	Some data already being compiled	3	15
Presence/Absence/Vitality of Preferred Habitats	If salinities are correct for seagrasses, conditions will be suitable for numerous other species	4	Difficulty in monitoring minimal changes Existing conditions are highly variable due to unnaturally high tidal exchange	2	Public acceptance fairly high for fisheries habitat Creating estuarine conditions would	3	Little public support likely	4	Medium	3	Yes - Data already being compiled	1	17
Ecological Preservation	High levels of biodiversity Would prevent continued degradation	2	Existing condition is in Significant Harm Estuarine conditions currently absent Would maintain existing degraded condition	1	require substantive infrastructure changes Add'I restrictions to maintain current status would not likely receive public acceptance	1	Additional restrictions to protect seagrasses are often highly controversial General ineffectiveness of existing regulatory programs	2	Slow	1	Yes - Data already being compiled	1	8
Pre-development Scenario	Historic mangrove shorelines would be recreated	1	Likely significant public opposition Economy viewed as more important than ecological conditions in this sub-region	1	Replacement of seawalls with mangroves not feasible	1	Significant public opposition likely	0	Slow	1	Restoration to pre-development conditions would be too expensive and not likely politically viable	1	5
Requirement for preferred fish communities	Would increase biodiversity by est- ablishing an estuarine condition	3	Recreational fishing is not important in Miami River Would require restoration of mangrove shorelines and seagrass habitats	1	Public acceptance would likely be low for replacing seawalls with shoreline vegetation	2	No public support - Area is the only major seaport in region	2	Slow	2	Very expensive and long term Likely politically unpopular	1	11
Community Index	Common scientific tool	2	Not developed for Biscayne Bay, but biodiversit	3	May be useful with further study	3	Biodiversity is a generally accepted "good thing"	3	Existing data base allows fast response	5	On going sampling programs could be a	4	20
Food Web Support	Common scientific tool	1	Not developed for Biscayne Bay Would require changing shoreline from bulkhead to vegetation	1	Would cause adverse impacts on existing industry	1	Toxins and heavy metals known to be pres- ent in sediments Impacts from acts of nature (e.g., hurricanes)	1	Slow	1	Very expensive and long term Likely politically unpopular	0	5
Soil Characteristics	Relatively easy to monitor	3	No soils present Entire shoreline bulkheaded	0	Would require add'l approach for open-water areas	1	Adverse impacts from non-salinity water quality parameters May reveal additional contaminated soils	1	Slow	1	Inexpensive, but difficult to inter- pret	0	6

Table E-4 Advantages and Disadvantages of Different MFL Approaches for Biscayne Bay Central Sub-region

POTENTIAL APPROACHES	STRENGTHS & Score (0 - no strengths, 5 = strong)		WEAKNESSES & Score (0 = Very weak, 5 = few weaknesses))	OPPORTUNITIES & Score (0 = creates numerous problem 5 = creates few problems)		THREATS & Score (0 = large # of threats, 5= few)		SPEED OF ADAPTIVE MGMT (Slow (0), Medium (3), Fas	t (5))	FEASIBILITY OF COST-EFFEC PERFORMANCE STANDAR (Very costly (0), Comparatively inexp	DS	APPROACH SCORE (Cumulative Total)
Valued Ecosystem Components (Sustainable shrimp fishery, some shoalgrass, Manatees & Johnsons Seagrass N. of 27 ⁰ 45' N Latitude)	Easily quantifiable Public can relate	5	Difficulty in relating pop. declines to flow Confounding impacts re commercial harvest Would require monitoring 3 different comp- onents	3	Popular commercially harvested species used by recreational fishermen	4	Population declines may be unrelated to reductions in freshwater flow Increase in awareness of Johnson's seagrass could result in permitting problems	2	Medium	3	Yes - Data already being compiled	5	22
Indicator Species (Pink Shrimp and Shoal grass)	Relatively easy to ID Significant Harm A lot of scientific work already done	4	Pink shrimp annual recruitment Difficulty in monitoring minimal changes Impacts of commercial harvest unknown	3	Previously id'd in conceptual model	4	Suitability of unvegetated sediments for colonization by shoal grass unknown May require controls on commercial harvest of sh	3	Medium	3	Yes - Data already being compiled	5	22
Presence/Absence/Vitality of Preferred Habitats	Sounds good to the public	4	Preferred habitats is a 'tuzzy' concept - to many people, estuarine species may be less desirable than marine species in this part of the bay Heterogeneous habitats	2	Public acceptance	3	Difficult to quantify "vitality"	1	Fairly Slow	1	Expensive and long term	1	12
Ecological Preservation	Portions of Sub-region are presently in a condition of Significant Harm	2	Conceptually, "preserving the Bay" would be popular with the public, but preservation would likely involve maintaining degraded habitats	3	Public acceptance	3	The situation would only get worse with time	1	Fast	5	Inexpensive but not legal	1	15
Pre-development Scenario	CERP & other restoration projects have already been identified	1	There is general agreement that returning to anything close to predevelopment water flows is not likely	1	Few	1	Reduction in current legal uses of water	1	Slow	0	Restoration to pre-development conditions would be too expensive and not likely politically viable	1	5
Requirement for preferred fish communities	The preferred fish community based up- on harvests is reefs, not generally sensitive to freshwater flows in this area	1	Recreationally fishing is popular, but most fisherman do not understand fish life histories	1	Public acceptance	1	Lack of scientific base to work from	2	Medium	3	Expensive and long term	2	10
Community Index	Common scientific tool	2	Not developed for Biscayne Bay	1	May be useful with much further study	3	Not understandable as real	1	Medium	3	Expensive and long term	2	12
Food Web Support	Common scientific tool	1	Not developed for Biscayne Bay	1	May be useful with much further study	2	Impacts from acts of nature (e.g., hurricanes)	4	Medium	3	Very expensive and long term	1	12
Soil Characteristics	Easy to monitor	3	Not connected to salinity changes alone Only applicable west of shoreline	1	Would require add'l approach for open-water areas	1	Adverse impacts from non-salinity water quality parameters	3	Slow	1	Inexpensive, but difficult to inter- pret	3	12

Table E-5 Advantages and Disadvantages of Different MFL Approaches for Biscayne Bay South-Central Sub-region

POTENTIAL APPROACHES	S STRENGTHS & Score (0 - no strengths, 5 = strong)		WEAKNESSES & Score (0 = Very weak, 5 = few weaknesses)	WEAKNESSES & Score (0 = Very weak, 5 = few weaknesses)		15;	THREATS & Score (0 = large # of threats, 5= few)		SPEED OF ADAPTIVE MGMT (Slow (0), Medium (3) , Fast (5))		FEASIBILITY OF COST-EFFECTIVE PERFORMANCE STANDARDS (Very costly (0), Comparatively inexpensive (5		APPROACH SCORE (Cumulative Total)
Valued Ecosystem Component (Sustainable shrimp fishery)	Easily quantifiable Public can relate	5	Difficulty in relating pop. declines to flow Confounding impacts re commercial harvest	3	Popular commercially harvested species used by recreational fishermen	4	Population declines may be unrelated to reductions in freshwater flow	2	Medium	3	Yes - Data already being compiled	5	22
Indicator Species (Pink Shrimp & Shoal grass)	Relatively easy to ID Significant Harm A lot of scientific work already done	4	Pink shrimp annual recruitment Difficulty in monitoring minimal changes Impacts of commercial harvest unknown	2	Previously id'd in conceptual model	4	Suitability of unvegetated sediments for colonization by shoal grass unknown May require controls on commercial harvest of sh	3	Medium	3	Yes - Data already being compiled	5	21
Presence/Absence/Vitality of Preferred Habitats	Sounds good to the public	4	Preferred habitats is a fuzzy concept -for what sp Heterogeneous habitats	2	Public acceptance	3	Difficult to quantify "vitality"	1	Fairly Slow	1	Expensive and long term	1	12
Ecological Preservation	Existing condition is in Significant Harm	1	Conceptually, "preserving the Bay" would be popular with the public	4	Public acceptance	3	The situation would only get worse with time	1	Fast	5	Inexpensive but not legal	1	15
Pre-development Scenario	CERP & other restoration projects have already been identified	1	There is general agreement that returning to anything close to predevelopment water flows is not likely	1	Few	1	Reduction in current legal uses of water	1	Slow	0	Restoration to pre-development conditions would be too expensive and not likely politically viable	1	5
Requirement for preferred fish communities	The preferred fish community based up- on harvests is reefs, not generally sensitive to freshwater flows in this area	1	Recreationally fishing is popular, but most fisherman do not understand fish life histories	1	Public acceptance	1	Lack of scientific base to work from	2	Medium	3	Expensive and long term	2	10
Community Index	Common scientific tool	2	Not developed for Biscayne Bay	1	May be useful with much further study	3	Not understandable as real	1	Medium	3	Expensive and long term	2	12
Food Web Support	Common scientific tool	1	Not developed for Biscayne Bay	1	May be useful with much further study	2	Impacts from acts of nature (e.g., hurricanes)	4	Medium	3	Very expensive and long term	1	12
Soil Characteristics	Easy to monitor	3	Not connected to salinity changes alone Only applicable west of shoreline	1	Would require add'l approach for open-water areas	1	Adverse impacts from non-salinity water quality parameters	3	Slow	1	Inexpensive, but difficult to inter- pret	3	12

Table E-6 Advantages and Disadvantages of Different MFL Approaches for Biscayne Bay Southern Sub-region

POTENTIAL APPROACHES	STRENGTHS & Score (0 - no strengths, 5 = strong)		WEAKNESSES & Score (0 = Very weak, 5 = few weaknesses)	1	OPPORTUNITIES & Score (0 = creates numerous problem 5 = creates few problems)	s;	THREATS & Score (0 = large # of threats, 5 = few)		SPEED OF ADAPTIVE MGMT (Slow (0), Medium (3) , Fas	st (5))	FEASIBILITY OF COST-EFFEC PERFORMANCE STANDAR (Very costly (0), Comparatively inexp	DS	APPROACH SCORE (Cumulative Total)
Valued Ecosystem Component (Crocodiles and Roseate Spoonbills)	Easily quantifiable In general, the public can relate	4	Possible difficulty in relating pop. Declines to reductions in freshwater flow Would require monitoring 3 different comp- onents	2	Would largely disregard conditions in open-water areas CERP may also address	3	Population declines may be unrelated to reductions in freshwater flow Impacts from acts of nature (e.g., hurricanes)	2	Slow	1	Some data already being compiled	4	16
Indicator Species (Crocodiles and Roseate Spoonbills)	Comparatively easy to monitor and to ID Significant Harm In general, the public can relate A lot of scientific work already done	4	Nesting success not necessarily tied to changes in salinity Impacts of commercial harvest unknown	2	Previously id'd in conceptual model CERP may also address	3	Suitability of unvegetated sediments for colonization by shoal grass unknown Impacts from acts of nature (e.g., hurricanes)	2	Slow	1	Some data already being compiled	4	16
Presence/Absence/Vitality of Preferred Habitats	Sounds good to the public Improvements west of shoreline may have positive effects on open-water areas	4	Preferred habitats is a 'fuzzy' concept - to many people, estuarine species may be less desirable than marine species Heterogeneous habitats	2	Public acceptance	4	Difficult to quantify "vitality" Impacts from acts of nature (e.g., hurricanes)	1	Fairly Slow	1	Expensive and long term	1	13
Ecological Preservation	Portions of Sub-region are presently in a condition of Significant Harm	2	Conceptually, "preserving the Bay" would be popular with the public, but preservation would likely involve maintaining degraded habitats	3	Public acceptance	3	The situation would only get worse with time	1	Fast	5	Inexpensive but not legal	1	15
Pre-development Scenario	CERP & other restoration projects have already been identified to address existing deteriorated condition	1	There is general agreement that returning to anything close to predevelopment water flows is not likely	1	Few	1	Reduction in current legal uses of water	1	Slow	0	Restoration to pre-development conditions would be too expensive and not likely politically viable	1	5
Requirement for preferred fish communities	The preferred fish community based up- on harvests is reefs, not generally sensitive to freshwater flows in this area	1	Recreationally fishing is popular, but most fisherman do not understand fish life histories	1	Public acceptance	1	Lack of scientific base to work from	2	Medium	3	Expensive and long term	2	10
Community Index	Common scientific tool	2	Not developed for Biscayne Bay	1	May be useful with much further study	3	Not understandable as real	1	Medium	3	Expensive and long term	2	12
Food Web Support	Common scientific tool salinity and productivity of	5	Not developed for Biscayne Bay Indirect linkages largely unknown	3	further study, L-31E restoration and eareful monitoring should provide data	5	Impacts from acts of nature (e.g., hurricanes)	4	Fast	5	Comparatively low cost on a per acre o	4	26
Soil Characteristics	Comparatively easy to monitor	3	Not connected to salinity changes alone Only applicable west of shoreline	1	Would require add'l approach for open-water areas	1	Adverse impacts from non-salinity water guality parameters	3	Slow	1	Inexpensive, but difficult to inter- pret	3	12