Canals in South Florida:

A Technical Support Document

(April 28, 2010)

Prepared by
South Florida Water Management District
West Palm Beach, Florida

Canals in South Florida Acknowledgements

ACKNOWLEDGEMENTS

This report was prepared by the Canal Science Inventory Workgroup led by Kevin Carter. Garth Redfield provided overall science direction. Scott Huebner compiled and summarized the water quality data with support from Lucia Baldwin, Steve Hill, and Nenad Iricanin. Lawrence Glenn, Scot Hagerthey, Brad Jones, Mac Kobza, and Sue Newman compiled information on fish and wildlife including fish, alligators, and birds. John Maxted compiled data on macroinvertebrate communities in canals and prepared summaries and a reanalysis of key data. Matahel Ansar, Lucine Dadrian, Sally Kennedy, Adnan Mirza, and Cled Weldon provided information on the operation, management design, and construction of canals. Christopher Pettit provided legal guidance. Joel VanArman compiled historic information on canals and provided technical support in the preparation of this report under contract with the SFWMD.

EXECUTIVE SUMMARY SOUTH FLORIDA CANALS IN A NUTSHELL

Background

This report was prepared to support a variety of activities related to the management of South Florida Water Management District (SFWMD or District) canals. Canals are engineered waterways designed to convey water to meet water supply and flood control objectives. Water delivered by canals also supports aquatic habitat for fish and wildlife. The report compiles and summarizes available information on the history, physical characteristics, biology, and water quality of District canals. The information included comes from published literature, reports, and original data derived from searches of resources from the District, cities, counties, municipalities, and universities. No new data were collected for this report; however, additional analyses of existing macroinvertebrate data were conducted to address our specific questions related to conditions in canals. The information is presented at three levels of detail to promote communications to a wide audience of managers, scientists, and the public: executive summary, summary report, and appendices.

Canals of the South Florida Water Management System

Developed over the past hundred years, the canal-based water management system in South Florida is one of the world's largest and most complex civil works projects. Over 1300 water control structures, 64 pump stations, and 2600 miles of canals are used by the SFWMD to provide flood control, water supply, navigation, water quality improvements, and environmental management over its 16-county, 17,000-square mile region.¹

Canals were built to meet human needs by controlling the water levels and the movement of water from one place to another for water supply, flood control, drainage, and navigation, as well as to provide water needed to sustain natural communities in lakes, rivers, wetlands and estuaries. Ecological functions in canals can be valuable for recreation and aesthetics, but are secondary and largely incidental to their use for conveyance.

A primary function of a canal is to control water levels in order to maintain groundwater control in dry conditions. This can be particularly important for water supply needs such as preventing salt water intrusion. Canals also provide the conduit to remove excess water from drainage basins in wet periods to prevent flooding.

District canals differ greatly in their design, construction, and operation, depending primarily on their geography, intended function, adjacent land use, and development within the basin. Canals exist in the full range of land uses in South Florida including areas that are completely surrounded by natural wetlands, such as those within the Water Conservation Areas or the Kissimmee River Floodplain; areas that are surrounded by intensive urban development, such as coastal canals in Miami-Dade and Broward counties; and areas that are completely surrounded by agriculture, such as the Everglades Agricultural Area.

¹ Data from http://www.sfwmd.gov/portal/page/portal/pg grp sfwmd whatwedo/pg sfwmd whatwedo canalstruc tureops.

Canals in South Florida Executive Summary

Canal diversity is reflected in many observations:

 Water quality in canals is affected by tributary sources, surrounding soil types, topography, groundwater interaction, and adjacent land uses. In some areas, notably eastern Miami-Dade and Broward counties, water quality in the canals is strongly influenced by groundwater seepage.

- Soil types surrounding canals range from sandy upland soils of the Atlantic Coastal Ridge to hydric sands, marls, and peats of the Everglades.
- Topography differs across the SFWMD, resulting in differences in canal depths, water levels, and flow rates. Water level elevations in canals range from 20 to 60 feet above sea level in the Kissimmee and Istokpoga basins to less than 10 feet above sea level throughout most of Miami-Dade, Broward, and Monroe counties.

Water Quality and System Ecology in South Florida Canals

A survey of existing data for the primary canal system indicates that water quality varies greatly among regions of the SFWMD, individual canals within regions, and sections of the same canal. Some canals convey water that has been treated in one of the Stormwater Treatment Areas, the goal of which is to reduce total phosphorus concentrations to levels necessary to achieve compliance with the phosphorus criterion in the Everglades. A net increase in nutrient concentrations tends to occur in canals adjacent to urban and agricultural land uses and a net decrease occurs in canals surrounded by wetlands or areas where canal water interacts strongly with groundwater. Little is known about the natural chemical and biological assimilation processes that occur in canals and more information is necessary.

Some preliminary findings on canal water quality include the following:

- Canal phosphorus concentrations span an order of magnitude and appear to demonstrate a
 clear spatial pattern that follows the intensity of land use and the inflow sources (such as
 Stormwater Treatment Area discharges). The variability of phosphorus concentrations
 tends to be much higher than that for nitrogen and the two constituents do not correspond
 closely.
- Within canals, phosphorus concentrations tend to change more than nitrogen as water moves downstream. Nutrient levels tend to be higher at inland and upstream sites, but there also is considerable variation in nutrient concentrations over space and time.
- Primary production, as measured by chlorophyll *a*, is higher in canals compared to natural streams but not particularly elevated compared to other open bodies of water such as ponds and lakes. A frequent concentration for chlorophyll *a* in canals is about 10 mg/m³ (equivalent to 10 µg/L), which is well below the State of Florida's nutrient impairment threshold of 20 mg/m³ for lakes. Based only upon chlorophyll *a* measurements, canal primary production does not appear to be sensitive to nutrient concentrations.
- Despite large uncertainty and lack of information, many District canals are currently listed as impaired and are included in the Florida Department of Environmental Protection's Total Maximum Daily Loads and Basin Management Action Plan process.

Canals in South Florida Executive Summary

Natural systems are periodically disturbed through natural processes (i.e., droughts, fires, floods, hurricanes) and biological communities in a particular ecosystem reflect such disturbances over time. By contrast, canals are disturbed almost continually by human interventions for maintenance including herbicide application, mowing, dredging, removing obstructions, and mechanical harvesting. As artificial conveyances with large variations in flow, stage, and water turnover, canals provide less stable and predictable environments than other flowing waters. South Florida canals are part of a large water management system and must convey large volumes of water during storm events. (They do not have the floodplains that natural streams have to reduce the velocity of high flow events, and instead have levees that keep flows in the channel.) While water is retained in the drainage basins during major storms, canals are designed to move high flows accompanied with relatively high velocities. They are more susceptible to channel erosion and the delivery of larger volumes of water and contaminant loads downstream than natural streams and wetlands. At the other extreme, during droughts and dry season operations, canals may be stagnant for long periods and a small number may have little or no water.

Scientific studies (especially in ecology) of canals are a tiny fraction of those found for other South Florida ecosystems. The Everglades marsh numeric criterion for phosphorus was based on literally hundreds of scientific articles spanning more than a decade. Similarly, the Total Maximum Daily Load for Lake Okeechobee was supported by dozens of research publications quantifying algal dynamics in relation to nutrient levels. The limited information available on canal ecology provides some general concepts:

- Canals provide marginal/stressed habitat for many aquatic species in South Florida.
 Canals tend to have lower species diversity and richness than streams and those species that are present tend to be indicative of stressed or structurally unstable conditions, including many exotic and nuisance species such as hydrilla, cattails, and cichlid fishes.
- Canals contain a diverse community of macroinvertebrates (e.g., larval stages of insects), and the quality of macroinvertebrate assemblages is associated primarily with canal physical features including habitat quality (particularly channel banks and aquatic vegetation), adjacent land uses, and connectivity to wetlands. However, evidence suggests that canals would fail the Stream Condition Index used by the Florida Department of Environmental Protection for assessing impairment. The highly variable nutrients levels in canals show no apparent relationship to macroinvertebrates.
- Fish communities in canals are dominated by large predatory and exotic species. Canals provide a pathway for the spread of exotic species, provide refugia for many species during dry periods and thermal refugia for exotic species during cold events, and are a source for recolonizing wetlands when wet conditions return.
- Large alligators tend to live in canals, although survival of young alligators is greater in marshes. Also, alligators in canals tend to be isolated from marsh alligators.

CONTENTS

Canals in South Florida:	i
A Technical Support Document	i
Prepared by	i
South Florida Water Management District	i
West Palm Beach, Florida	i
Acknowledgements	ii
Executive Summary	iii
South Florida Canals in a Nutshell	iii
Background	iii
Canals of the South Florida Water Management System	iii
Water Quality and System Ecology in South Florida Canals	iv
Figures	ix
Tables	X
Appendices	X
Introduction	1
1. The South Florida Canal System	3
Background on the Canal Report	3
Classification and Designated Uses	4
Change of Classification or Designated Use	4
Historical Overview of the SFWMD Canal System	5
Origins	5
Environmental Resource Management	6
Features and Functions of South Florida Canals	7
Canals in South Florida: A Practical Definition	7
SFWMD Canals as Water Bodies	7
Types and Uses of Canals	8
Design and Construction of Canals	10
Operation of Canals	
Maintenance Requirements	14
Description of Primary Water Management Features by Region	
Upper Kissimmee River Watershed	15

Lower Kissimmee – Kissimmee River and Lake Istokpoga	16
Everglades Agricultural Area	19
Water Conservation Areas and Everglades National Park	23
Upper East Coast - Martin and St. Lucie Counties	26
Lower East Coast - Palm Beach, Broward and Miami-Dade Counties	28
Lower West Coast Watersheds	32
2. Analysis of Biological Data from SFWMD Canals	37
Introduction	37
Macroinvertebrate Communities	37
Studies of Canals using FDEP methods	37
Other Macroinvertebrate Studies in South Florida Canals	43
Macroinvertebrate Studies in Canals in Other States	44
Fish	44
Canals Located in Undeveloped or Natural Areas of South Florida	44
Kissimmee River/C-38 Canal Studies	46
Canals in Developed Areas	46
Fish Studies in Canals in Other Areas	47
Birds	47
Alligators	47
Reproduction and Development	47
Diet	47
Hydrology	48
Migration and Distribution	48
Crocodiles	48
3. Survey of SFWMD Canal Water Quality and Sediments	49
Introduction	49
Methods	49
Identification of Canal Water Quality Monitoring Stations	49
Identification of Key Water Quality Constituents	51
Period of Analysis	51
Data Management and QA/QC	51
Summary Statistics	52

Results and Discussion	52
Regional Comparisons and Spatial Patterns	52
Temporal Variability and Wet Season Effects	52
Regional Canals	59
Canal Stations	59
Summary	68
Sediments	69
4. Summary, Conclusions and Synthesis	71
The South Florida Canal System: History, Function and Diversity	71
History	71
Design and Function	71
Diversity of Canals in the South Florida Water Management System	72
Upper and Lower Kissimmee Basins	73
Everglades Agricultural Area	73
Water Conservation Areas and Everglades National Park	73
Upper East Coast	74
Lower East Coast	74
Caloosahatchee River Basin and Collier County	75
Analysis of Biological Data from South Florida Canals	75
Macroinvertebrate Communities in Canals	76
Fish Assemblages in Canals	77
Alligators and Crocodiles in Canals	78
Regional Trends in Canal Water Quality	78
Phosphorus	79
Nitrogen	79
Chlorophyll a	79
Conductance	79
Local Variability	79
Canal Sediments	80
A Context for Water Quality Management in South Florida Canals	80
Pafarancas	82

FIGURES

Figure 1. Primary SFWMD canals, structures, and major features of the hydrologic system	2
Figure 2. Cross-sections of representative canals	. 12
Figure 3. Sub-basins and general features of the Lower Kissimmee River and Lake Istokpoga.	17
Figure 4. Everglades Agricultural Area drainage basins.	. 21
Figure 5. WCA and Everglades National Park Drainage Basins.	. 25
Figure 6. Sub-basins and District facilities in Martin and St. Lucie counties.	. 27
Figure 7. SFWMD canals and structures in coastal sub-basins of Miami-Dade, Broward, and Palm Beach counties.	. 31
Figure 8. Major features of the Caloosahatchee River watershed.	. 33
Figure 9. Major drainage basins and water management features within the Big Cypress basin.	. 36
Figure 10. Macroinvertebrate sites within the District boundary sampled using FDEP methods.	. 39
Figure 11. SFWMD monitoring locations used in this survey of water quality and the eight regional groups of stations.	. 50
Figure 12. Total phosphorus concentration summary statistics by region.	. 54
Figure 13. Total nitrogen concentration summary statistics by region.	. 54
Figure 14. Corrected chlorophyll a concentration summary statistics by region.	. 55
Figure 15. Specific conductance summary statistics by region.	. 55
Figure 16. Total phosphorus median values.	. 56
Figure 17. Total nitrogen median values.	. 57
Figure 18. Total phosphorus concentration by region – wet season and annual.	. 58
Figure 19. Total phosphorus concentrations over time at S8	. 58
Figure 20. Upper East Coast canals surveyed in this report.	. 60
Figure 21. Total phosphorus concentration summary statistics for canals in the Upper East Coast region.	. 61
Figure 22. Total nitrogen concentration summary statistics for canals in the Upper East Coast region.	. 61
Figure 23. Lower East Coast canals surveyed in this report	. 62
Figure 24. Total phosphorus concentration summary statistics for canals in the Lower East Coast region.	. 63
Figure 25. Total nitrogen concentration summary statistics for canals in the Lower East Coast region.	. 63
Figure 26. West Palm Beach canal stations.	. 64

Figure 27. Total phosphorus concentration summary statistics for stations in the West Palm Beach Canal
Figure 28. Total nitrogen concentration summary statistics for stations in the West Palm Beach Canal
Figure 29. Miami Canal stations. 66
Figure 30. Total phosphorus concentration summary statistics for stations in the Miami Canal
Figure 31. Total nitrogen concentration summary statistics for stations in the Miami Canal
TABLES
Table 1. Number of sites and metrics where macroinvertebrate, habitat, and water quality data have been collected by FDEP in canals in South Florida
Table 2. Key canal water quality constituents
APPENDICES
Appendix A - Basic Concepts, Glossary of Terms and Abbreviations
Appendix B - Timelines of Canal Construction in the Kissimmee Watershed and South of Lake Okeechobee
Appendix C - Additional Data and Description of SFWMD Canals and Water Control Structures
Appendix D - Summaries of Macroinvertebrate and Sediment Studies
Appendix E - Summaries of Fish Studies and Supplemental Data
Appendix F - Water Quality Summary Statistics by Region, by Canal and by Station
Appendix G - Sediment Studies

Canals in South Florida Introduction

INTRODUCTION

This document provides a review, summary, and analysis of historical and scientific information related to the development, physical structure, uses, water quality, and ecology of primary canals within the South Florida Water Management District's (District or SFWMD) borders. The main report is written for a broad audience with extensive technical supporting documentation provided as appendices.

The primary water conveyance system in South Florida consists of the network of canals and associated features that are managed by the District and U.S. Army Corps of Engineers (shown in **Figure 1**) for regional flood protection, water supply, navigation, drainage, and environmental benefits.

The SFWMD has particular interest in the methods used to define how canals are designated and how the development and application of numeric water quality criteria, especially nutrient concentrations, will be developed and applied to the diversity of freshwater canal systems within its jurisdiction. The District has compiled and summarized information on its canal system to support these efforts. Emphasis has been placed on providing information concerning biological communities, physical parameters, water quality conditions, and nutrient concentrations that may be useful for setting criteria and designating appropriate use classifications.

Canals in South Florida Introduction

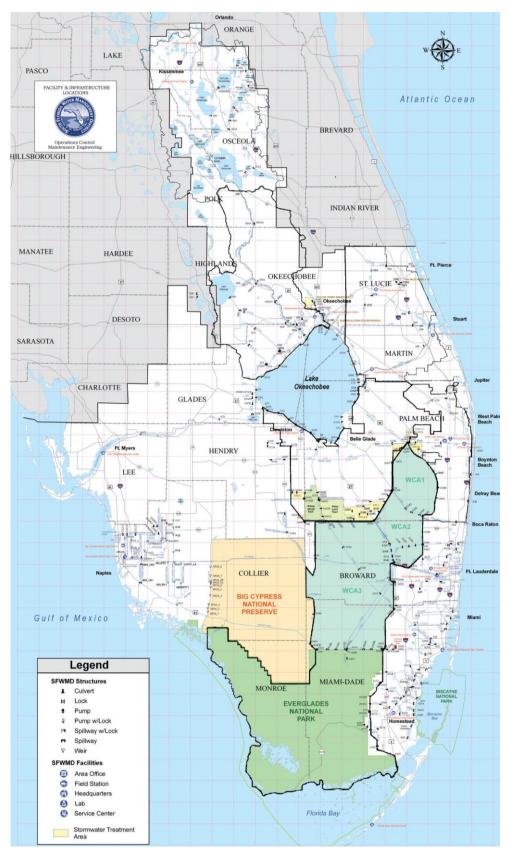


Figure 1. Primary SFWMD canals, structures, and major features of the hydrologic system.

1. THE SOUTH FLORIDA CANAL SYSTEM

The SFWMD region is divided into seven study areas for the purposes of this report:

- Upper Kissimmee
- Lower Kissimmee River/Lake Istokpoga
- Everglades Agricultural Area
- Water Conservation Areas and Everglades National Park
- Lower East Coast Eastern Palm Beach, Broward, and Miami-Dade counties
- Upper East Coast Martin, St. Lucie, and part of Okeechobee Counties
- Lower West Coast Caloosahatchee River basin (Glades, Hendry, and Lee counties) and Big Cypress basin in Collier County

These areas are based on pragmatic divisions of canals by basin, water supply and water management. They may not be suitable for future water quality investigations to support rulemaking. Information about the canals within each of these areas is summarized and analyzed to characterize the canals' physical features, watersheds, water quality, and biological condition. The analysis focuses on information, especially biological communities and water quality criteria, that may be useful to develop general and specific descriptions of SFWMD canals, to support "Designated Use" classification of canals, and to support any associated rule development. In some cases, effects of these canals on adjacent or downstream water management areas, detention/retention areas, treatment areas, lakes, tributary creeks, rivers and streams, and estuaries are discussed. This study also identifies significant gaps in our understanding of canals that may require additional studies.

Some technical terms and concepts related to hydrology, ecology, and water quality are used, as well as abbreviations and designations for water management features (e.g., canals, levees, pumps, structures). A glossary of terms and a list of abbreviations are included in **Appendix A**.

Background on the Canal Report

The need to develop water quality criteria is based on requirements of the Clean Water Act, 33 U.S.C. § 1251, which provides the regulatory foundation for numerous water quality management activities in the United States. The SFWMD and a diverse group of stakeholders are participating in a rulemaking process initiated by the U.S. Environmental Protection Agency (USEPA) and the Florida Department of Environmental Protection (FDEP) to designate uses of water bodies and establish nutrient criteria for Florida waters, including canals.

The SFWMD will be directly affected by any actions that change designated uses or criteria in the water quality standards because the District has jurisdiction over, and management responsibilities for a wide variety and large number of water bodies in South Florida. These water bodies range from natural lakes, rivers, and wetlands to artificially managed reservoirs, retention and detention systems, treatment areas, and canals.

The FDEP plays a primary role in the rulemaking process through developing, monitoring, and enforcing surface water quality standards at the state level. The standards specify the designated

and potential uses of water bodies and set scientifically established physical, chemical, and biological thresholds (criteria) to protect those uses. The standards also contain policies to protect high quality waters. Taken together these standards ensure that a water body is suitable for both human and aquatic life uses.

Classification and Designated Uses

Florida's surface water quality standards include a classification system to describe the uses of a water body including drinking water supply, shellfish harvesting, swimming and recreation, aquatic habitat for fish and wildlife, and agricultural uses. FDEP is presently considering a plan to update this 30-year-old classification system based on new information. FDEP also plans to improve surface water quality standards and develop more effective programs to protect and restore Florida's water resources. The new system will be more specific and based on scientific advances concerning water quality, hydrology, habitat availability, and the needs of people and biological resources. The expanded classification system will allow FDEP to better protect existing uses and enhance and restore uses currently not attained (FDEP 2009).

The primary designated uses for the SFWMD canal system, as described by the U.S. Army Corps of Engineers (USACE) and authorized by the U.S. Congress, were to provide water supply and flood protection for the people of South Florida (USACE and SFWMD 2010). However, within the current classification system, canals are considered Class III water bodies, which was the class assigned to surface waters in Florida that were not specifically placed in another class. Fla. Admin. Code R. 62-302.400.. A Class III water body is designated for recreation (i.e., swimmable, fishable) and the propagation and maintenance of a healthy, well-balanced population of fish and wildlife. The daily operation of the canal system by the USACE and SFWMD attempts to balance the original intended function of the canals with the functions associated with their classification.

Change of Classification or Designated Use

Proposals are being reviewed that would refine the use classification system. All waters will retain their current designated use, and any future change of use for an individual water body will require separate rulemaking and additional approval from the state's Environmental Regulatory Commission and USEPA. If the designated use of a water body is not being attained, the cause of the impairment must be identified and corrected. The primary programs established to identify problems and restore water quality are Total Maximum Daily Loads and Basin Management Action Plans. Changes to the classification system will better align water quality requirements with appropriate ecological and human uses.

Designated use changes occur as a result of informative and compelling demonstrations provided by a Use Attainability Analysis. Such analyses may range from a scientific investigation to a more cursory review of physical characteristics of a water body, such as through the use of photographs (USEPA 2009). This document compiles and summarizes existing data and information on South Florida canals that could be used to support proposed changes to their designated use.

A number of factors or conditions may exist within a canal or surrounding areas that will prevent it from ever achieving a higher or better designated use than currently exists (USEPA 2009). These may include:

- Naturally occurring pollutant concentrations
- Natural, ephemeral, intermittent, or low flow conditions or water levels, unless these conditions may be compensated for by the discharge of sufficient volume of effluent without violating state water conservation requirements
- Human-caused conditions or sources of pollution cannot be remedied or would cause more environmental damage to correct than to leave in place
- Dams, diversions, or other types of hydrologic modifications, and it is not feasible to restore the water body to its original condition or to operate such modification in a way that would result in the attainment of the use
- Physical conditions related to natural features of the water body, such as lack of a proper substrate, shade and cover, flow, depth, and the like, unrelated to water quality
- Controls more stringent than those required by sections 301(b) and 306 of the Clean Water Act would result in substantial and widespread economic and social impact
- Canals intercept the water table, which is naturally low in dissolved oxygen and high in iron and sulfates

Historical Overview of the SFWMD Canal System

From its inception until about the 1970s, the South Florida canal system served four primary functions: drainage, navigation, flood control, and water supply. Ecological functions and recreational uses have developed as incidental benefits.

Origins

Construction of what is today the primary canal system in South Florida began about 1880 in the Kissimmee River Valley. In 1881, Hamilton Disston purchased four million acres of swampland from the state and initiated efforts to drain this land. He channelized the Kissimmee River during 1881 and 1882 to connect Lake Kissimmee with Lake Okeechobee and then proceeded to connect Lake Okeechobee westward to the Caloosahatchee River with the intent to create a navigable route to Fort Myers. Disston continued channelization of the upper Kissimmee lakes and constructed a number of the canals that connected the lakes together in what is today known as the Kissimmee Chain of Lakes.

The first canals were dug to drain swamps and marshes to promote cultivation and provide navigable links between agricultural communities in the interior of the state and markets in the coastal cities. These canals drained the land but the effects often did not extend far from the waterway and the initial system was overwhelmed by normal wet season rainfall. To be effective over a larger area, the central canals were eventually enlarged and extensive networks of smaller secondary and tertiary drainage systems were built. A timeline for these activities north of Lake Okeechobee is provided in **Appendix B**.

The second phase of early canal construction was conducted south of Lake Okeechobee in the Everglades. Although Hamilton Disston constructed a partial canal in the 1880s, serious dredging did not begin until the early 1900s and continued until 1949. A timeline of activities south of Lake Okeechobee is presented in **Appendix B**.

The inability to handle water effectively during wet periods led to a number of changes designed to provide flood control. They included redesign and enlargement of the canals, construction of additional canals to the south of the lake, and construction of the St. Lucie Canal to provide an outlet to the Atlantic Ocean. Completion of the St. Lucie Canal also provided a major navigational benefit. Many of these changes improved drainage, but did not prevent major damage and loss of life due to flooding during the 1926 and 1928 hurricanes. Following the hurricanes, the major focus of construction was to rebuild and enlarge the Lake Okeechobee dike.

By the 1930s, drainage through the canal system was having recognizable negative effects on the Everglades. Lower water tables allowed soils to oxidize and subside. The highly organic muck and peat soils dried out and caught fire, due either to human carelessness or lightning strikes. The muck burned both above and below ground, accelerating subsidence and destroying wildlife and plant communities. Accelerated drainage and increased water use resulted in a precipitous decline in groundwater levels near the coast and rapid and extensive intrusion of saltwater into the aquifer.

The final events that forced redesign and reconstruction of the South Florida canal system were the hurricanes of 1948. These storms resulted in massive flooding from the Kissimmee Valley to Miami. The following year, the Central and Southern Florida Flood Control Project (C&SF Project)(U.S. House of Representatives 1949) was created. The USACE was assigned the task of redesigning the water management system. The Central and Southern Florida Flood Control District was created by the State of Florida to act as local sponsor of the federal project.

The USACE reevaluated all aspects of the water management system and developed a comprehensive plan to upgrade existing facilities and add new features. Major emphasis was placed on improving navigation and flood control capacity in the Upper Kissimmee and Kissimmee River, enhancing navigation flood control and water supply capabilities of Lake Okeechobee, and improving flood control and water supply for the Everglades Agricultural Area and coastal cities of southeast Florida. A major feature of the 1949 plan was the creation of three Water Conservation Areas (WCAs) to provide storage capacity for flood waters, reservoirs to provide water during dry periods, and areas where natural wetlands and wildlife would be protected from development.

Environmental Resource Management

By the 1970s, criticism was building against the USACE and the Central and Southern Florida Flood Control District concerning adverse environmental effects of the C&SF Project. It was thought that these effects occurred because the C&SF Project goals had focused primarily on addressing flood control and water supply problems while environmental consequences were downplayed. Up until then, management of the system for environmental protection or enhancement was an afterthought. The following issues were major concerns:

- Destruction of the natural Kissimmee River channel and floodplain
- Water quality degradation, massive algal blooms, and destruction of the littoral zone in Lake Okeechobee
- Extreme salinity changes, sedimentation, and poor water quality in the Caloosahatchee and St. Lucie estuaries due to regulatory discharges

- Eutrophication and poor water quality in Lake Okeechobee due to channelization in the basin and backpumping from the Everglades Agricultural Area
- Damage to fish populations and deer herds in the WCAs
- Loss of tree islands and degradation of the ridge and slough landscape in the Everglades
- Inappropriate distribution of flows (i.e., too little during dry periods, too much during wet periods) and poor water quality delivered to Everglades National Park
- Seagrass die-offs and algal blooms in Florida Bay

The Florida legislature responded with the 1972 Water Resources Act, which renamed the Central and Southern Florida Flood Control District to the South Florida Water Management District, spelled out environmental management responsibilities for the agency, and formally established the Florida Department of Environmental Regulation (now the FDEP) as the agency with authority to oversee SFWMD management of environmental aspects of the C&SF Project. Chapter 373, Fla. Stat. (2009).

Features and Functions of South Florida Canals

Canals in South Florida: A Practical Definition

In Florida state statutes, a canal is defined as "a man-made trench, the bottom of which is normally covered by water with the upper edges of its sides normally above water." 403.803(2), Fla. Stat. However, this definition is not functionally descriptive for the diverse system of canals in South Florida. The following definition of canals in South Florida is consistent with other common definitions2 and is more complete and useful for the purposes of this technical support document:

A canal within the South Florida Water Management District is a man-made waterway dug as an open trapezoidal channel for navigation or conveyance of water. Canals in South Florida are designed to provide flood control, drainage, navigation, and water supply for agriculture, human consumption, or the environment; canals can provide coincidental ecological, aesthetic, and recreational values. Some regional canals have been created where no water course existed before, while many others have been created by channelizing and connecting natural streams, rivers or wetlands.

SFWMD Canals as Water Bodies

More than 1800 miles of such canals currently exist as part of the SFWMD primary water management system. Canals serve an especially important role because they provide the primary means by which water is moved in southern Florida. Without the canals, and their associated pumps and control structures, water could not be effectively managed in the region and the modern landscape of agricultural and urban development would not exist.

_

² See the definitions of "canal" at Your Dictionary.com (http://www.yourdictionary.com/canal) and Merriam-Webster.com (http://www.merriam-webster.com/dictionary/canal).

Much of the South Florida canal system originated as a legacy of channels constructed between 1880 and 1950 by various interests and for various purposes. As a result, there were not uniform specifications. Beginning with the initiation of the C&SF Project in the 1950s, responsibility for this network was adopted by USACE and the predecessor of the SFWMD. The design, flow capacity, and associated structures and pumps of these canals have been extensively modified or redesigned to meet modern engineering standards. These changes were based on a qualitative and quantitative assessment of the present and anticipated future needs for water supply and flood control within their drainage basins.

Canals are substantially different from most natural water bodies. Various features of their design, construction, operation, and maintenance make them marginal habitats for most aquatic life. Water levels and flow rates are subject to extreme fluctuations; depending on operational needs, water may flow through a canal as if in a stream or sit as if in a reservoir. The sides of canals are generally very steep and do not feature shallow areas that would support fish or aquatic plant communities. Unlike natural river or stream systems, canals typically lack mature vegetation communities (e.g., trees and shrubs) that stabilize channel banks, provide a diversity of aquatic habitats, and shade the channel to reduce primary production and minimize swings in dissolved oxygen, temperature, and pH. In general, the lack of suitable water depths, areas, flow regimes, or substrate in canals prevents development of stable littoral, shoreline, and benthic communities.

The surface water that enters canals often consists of runoff from urban and agricultural lands. It may contain chemical fertilizers, pesticides, and other pollutants. The runoff also may carry large amounts of suspended solids and is often highly colored from the presence of organic materials. For this reason, light penetration is very low, which further inhibits growth of aquatic plants and contributes to low oxygen concentrations.

Many of the canals are deep enough to penetrate the surficial aquifer, which contributes to elevated nutrient and dissolved ion concentrations and low concentrations of dissolved oxygen in the canal. Groundwater can also introduce contaminants from septic tanks and landfills. Many of the aquifers in South Florida contain extremely high natural iron concentrations and surface water bodies are often listed as impaired for iron. As iron oxidizes in the surface water body, physical (increased color and turbidity) and chemical (decreased dissolved oxygen) processes can further degrade water quality (Alleman et al. 1995, Brown 2003).

Despite the physical drawbacks, canals can provide incidental habitat for a wide variety of plants and animals. Many organisms migrate into canals and become established over time. Canals are often conducive to exotic species that may be better suited for such a habitat if it is more like their natural environment or lacks predators.

Types and Uses of Canals

The primary canal system in South Florida consists of channels and associated features that are managed by the SFWMD and USACE. Secondary systems consist of canals and features that are managed by designated drainage districts or private entities, which may discharge to the coast or receiving lakes, or into the primary system. Such secondary systems operate under permits issued by the SFWMD. Tertiary systems consist of canals and features generally located on private lands that provide localized drainage, such as for farms or residential developments, and

discharge into retention/detention areas or into secondary systems. Such systems generally operate and are regulated under a permit issued by the SFWMD.

The South Florida canal system is now managed for a much wider array of objectives than what was originally intended. Uses of canals are summarized as follows:

- Provide routes for waterborne transportation
- Provide conveyance
 - Drain surface water and groundwater over time to transform wetlands into dry land suitable for human use
 - Remove surface runoff rapidly from critical areas to minimize or avoid loss of life or damage to crops or human structures
 - Move excess water to tide
 - Move water for human consumption or irrigation
 - Move water to maintain appropriate flows in rivers and streams and maintain salinity conditions in estuaries

Regulate water levels

- Move water seasonally or prior to a storm event to lower surface and groundwater levels and enhance local basin storage
- Move water to maintain water levels below ground to enhance seepage and crop production
- Move water to maintain groundwater levels that recharge wellfields and protect aquifers from saltwater intrusion
- Move water to maintain appropriate water levels in lakes or wetlands

Storage

- Provide means to enhance local storage in groundwater or surface reservoirs
- Provide means to move water into and out of regional storage areas

Control seepage

- Enhance storage capabilities in reservoirs and conservation areas
- Protect adjacent areas from flooding

Support ecological systems

- Maintain appropriate water levels to minimize excessive drying or flooding
- Provide deep water habitat as refuge during droughts
- Limit the amount of exchange between contaminated or polluted water being conveyed and less contaminated or uncontaminated water in the adjacent wetlands

Besides being built for their obvious benefits and primary uses, canals have also been created as artifacts of the construction of levees or roadways. Such "borrow canals" represent the area where dirt and rock were removed to construct the levee or roadway. These channels may subsequently become major conduits within a basin for drainage, flood control, water supply, or conveyance.

Canals themselves also provide some limited environmental benefits. In some instances, canals within shallow wetlands provide areas where larger fish and alligators prefer to live, and where fish and wildlife can congregate during droughts. Without the canals, these animals may not move into these areas. The associated levees and roadways provide upland areas where wildlife can find dry land during floods. Levees and canals also facilitate public access to remote areas for fishing, hunting, wildlife viewing, and other forms of recreation. Canals throughout the District are also used extensively for recreational fishing (Florida Fish and Wildlife Conservation Commission 2009).

In addition to their beneficial uses, canals may have harmful consequences. Canals receive runoff from adjacent lands and roadways that may create water quality problems in the canals themselves, adjacent wetlands, or the underlying aquifer system. They may also intercept or divert overland flow, affecting hydrologic conditions and vegetation patterns. Canals also provide conduits for transport of nutrients and pollutants over long distances and facilitate the dispersal of exotic aquatic plants and animals. Over long periods, canals can result in chronic overdrainage and soil subsidence, especially in areas such as the Everglades Agricultural Area and the Everglades that have muck soils with high concentrations of organic material that become oxidized.

Design and Construction of Canals

Canals throughout the SFWMD vary greatly. The overall width and depth of the canal is determined by the amount of water that needs to be conveyed, the change in topography over the length of the canal, the size and nature of water control structures, and local recreational needs. The design of the side slopes considers local substrate, water velocities, and operational discharges to prevent failure of the canal banks. In very solid substrate materials, where water velocities are relatively low and there is little wave action, the sides may be quite steep. In sandy soils or areas with higher water velocities and/or wave action from boats, the banks of the canal may have a shallower slope. **Figure 2a** shows some examples of the design characteristics of typical SFWMD canals. As shown in **Figure 2b**, the design may differ within a canal, depending on the needs and circumstances in different sections.

In some instances, the sides of canals may be specially designed. Large reaches of the perimeter canals in WCA-1 and bisecting canals in WCA-2 and WCA-3 directly interact with the adjacent marsh. This interaction can influence wildlife and recreational usage among other things.

The canal construction process depends on local conditions. Typically a drag line is used to dig the basic structure of the canal. This method is suitable for sandy or rocky soils. In soft soil or muck, a floating dredge may be used to pump sand or mud to a confined disposal area for dewatering. In cases where the underlying material is hard rock, blasting may be required to create small enough pieces to remove with a dragline.

The removed substrate (spoil) is typically placed on the canal banks with a dragline and then bulldozers shape, level, and compact the material to provide a stable surface to allow vehicle

traffic on top or along the side for maintenance or public access. If there is a need for the spoil elsewhere, it may be removed. If creation of an embankment may cause drainage or other problems, the spoil may be spread over adjacent land.

Canals in South Florida Canal System

Figure 2. Cross-sections of representative canals within **(a)** Miami-Dade (C-100), Broward (C-12) and Palm Beach (C-18) counties and Kissimmee River Channel (C-38) and **(b)** selected locations within the West Palm Beach Canal (C-51).

12 March 16, 2010

Operation of Canals

The primary water management system operated by the SFWMD (not including the Naples/Big Cypress area, which is managed separately from the rest of the District) consists of more than 140 named canals or canal segments. These canals and canal segments are used for flood control, water supply, irrigation, environmental restoration, navigation, or a combination of these. All canal segments either contain a water control structure within them or are directly influenced by the operation of an upstream or downstream control structure. As such, water levels in all canal segments are effectively controlled through the operation of water control structures. Most control structures, along with the upstream and downstream water levels, are monitored electronically on a continuous basis.

Each control structure is operated according to normal operational criteria or based on a normal lake or water conservation area regulation schedule. During unusual meteorological conditions such as droughts or water shortages, it may not be possible to maintain water levels in the canals as stated in the operational criteria or lake regulation schedules. In anticipation of large storm events, water levels may be lowered preemptively to increase storage and reduce the risk to human health and property from flooding.

The continuous monitoring and operation of the water management system is complicated by the various competing interests for the water, and is further complicated by the physical limitations of the canals and water control structures. Some of these include, but are not limited to, the following:

- Agricultural water demands
- Recharge of groundwater
- Prevention of saltwater intrusion
- Water supply for utilities
- Water supply for environmental purposes
- Maintaining water level regulation schedules for various lakes
- Maintaining water levels for navigation
- Legal obligations (e.g., Everglades water quality requirements)
- Water reservations
- Local and regional flood control
- Drought and water shortage operations
- Maintenance of the canals and water control structures
- Design and/or operational limitations of the canals and water control structures
- Instrumentation and/or mechanical failures at water control structures

Maintenance Requirements

The South Florida primary canal network, being an entirely engineered system, requires considerable effort to maintain its function. Structures have to be opened, closed, and maintained. Pumps have to be placed in operation, fueled, maintained, shut off when not needed, and replaced when they become obsolete or worn out. Canals have to be cleaned of plants, debris, and sediments, and erosion needs to be controlled or repaired. These activities are performed routinely throughout the year and often continuously during peak performance periods or emergencies. Canal right-of-ways need to be maintained to ensure access, protect stability of the banks, and allow maximum flow of water through canals during storm events.

Canal maintenance activities are summarized as follows:

- Herbicide applications using ground, water, or aerial applications for the treatment of
 exotic vegetation within its boundaries. Targeted vegetation includes aquatic, terrestrial,
 and wetland species.
- Aquatic mechanical harvesting removes excessive and obstructive aquatic vegetation from District water bodies. Similar equipment is often used to remove floating debris from urban canals.
- Tree management and removal from canals, levees, and right-of-ways is essential to ensure water conveyance and equipment access to District canals. Types of trees targeted for removal include dead, dying, leaning, unhealthy, invasive/exotic species, or those that fall within the District canals' right-of-way.
- **Weed barrier cleaning** is necessary on a regular basis to remove trash, weeds, and debris so the canal can convey design water flows.
- **Grading levee berms and roads** to maintain a reasonably smooth and drivable surface.
- **Boat ramp installation and maintenance** is necessary to provide access for District boats and water-based equipment launched into canals.
- **Erosion repairs** are needed due to wave action, pump station or structure discharges, secondary discharges, surface water flows, and animal burrows.
- **Berm culverts** are installed on canal right-of-ways, access roads, and maintenance berms to divert water from swales and to prevent canal bank erosion.
- **Flat mowing** helps to delineate the District right-of-way and to keep the area free from undesirable vegetation.
- **Side slope mowing** keeps canal banks free from unwanted vegetation and provides staff with the ability to perform visual inspections of side slopes to find undermining and erosion.
- **Shoal removal** is performed when sediment accumulates within the canal and reduces the ability to convey design water flows.

Description of Primary Water Management Features by Region

The following sections provide an overview of the primary water management system within the SFWMD. For the purposes of this document, the District is divided into seven study regions, based primarily on hydrology. Each region has a distinct history, operational constraints, soil, land use, and topographic conditions that affect canals. Information about the canals within each area has been compiled, summarized, and analyzed in an attempt to characterize the unique features of each of these water regions. Water quality and biological conditions in canals within each region are presented and summarized in subsequent parts of this report. More detailed consideration of individual canals, basins, sub-basins, and water control features is provided in **Appendix C**.

Upper Kissimmee River Watershed

Introduction

The Upper Kissimmee River watershed covers an area of 1596 square miles in Osceola, Polk, Orange, and Lake counties. The SFWMD and USACE have authority over the primary water management system. Several local drainage districts have local water management responsibilities within this area. The watershed includes 18 major sub-basins, 15 SFWMD primary canals, and 9 structures. Of the sub-basins, six (Boggy Creek, Shingle Creek, Reedy Creek, Horse Creek, Lake Pierce, and Lake Weohyakapka) do not have any SFWMD canals or structures.

Much of this watershed consists of open water (lakes, rivers, and canals) and wetlands. The remaining uplands are primarily used for agricultural crops and pasture. Urban areas include Kissimmee and St. Cloud. Kissimmee in the Lake Tohopekaliga basin is the hub of the cattle industry in Central Florida. St. Cloud is in the East Lake Tohopekaliga basin, just south of East Lake Tohopekaliga.

Many of the lakes in this region are connected by depressional features and wetlands. Historical records confirm that before canals were dug, much of this area flooded frequently and was not suitable for habitation or agricultural use. The original canals connecting the lakes in this region were constructed through low-lying depressions, wetlands, and hydric soils. Canal construction in the Upper Kissimmee River watershed lowered water levels considerably and made the adjacent lands suitable for development.

Lakes are important features of the Upper Kissimmee River watershed. The major lakes have been linked by canals to form a chain. Depending on local conditions, water may flow south from one lake to another following a storm event or during periods of high water use. During other periods, water may flow from south to north as conditions change. Thus water may flow either north from Alligator Lake to Lake Mary Jane or south from Alligator Lake to Lake Gentry. The western chain begins with Lake Hart, continues through Ajay Lake, East Lake Tohopekaliga and Lake Tohopekaliga, and discharges into Cypress Lake. From Cypress Lake the chain continues with Lake Hatchineha and finally, Lake Kissimmee. All major lakes in this basin are shallow; mean depths vary from 6 to 13 feet. Lake water surface elevations vary with topography of the area, ranging from 65 feet in Alligator Lake to 52 feet in Lake Kissimmee (see **Appendix C**).

The primary canals and water control structures allow management and diversion of water within this network to support navigation and to enhance irrigation, water supply, and flood control capabilities in response to local conditions. Since 1971, extreme drawdowns have been used in Lake Tohopekaliga, East Lake Tohopekaliga, and Lake Kissimmee to improve aquatic habitat, water quality, and biological resources. Such reductions in water levels can only occur because of the canal system that allows diversion of surface water flows.

The surface water management basins of the Upper Kissimmee River watershed were first delineated in the mid-1950s by the USACE in their General Design Memoranda for the C&SF Project. The canals and control structures were further modified based on a series of Detailed Design Memoranda, primarily for flood control. Most of the hydraulic works constructed under the C&SF Project are now managed by the SFWMD. Their use has since evolved to meet demands caused by population growth, land use development, and increased water use.

The Primary Water Management System – Canals, Structures and Operations

The primary canal system in the Upper Kissimmee River Watershed consists of a network of 15 canals that range from 0.2 to 4.5 miles in length with a total length of 31.1 miles (see **Appendix C**). The canals generally link one lake to another. The drainage area for each canal ranges from 21 to 60 square miles. Water levels, flows, or both in eight of these canals are controlled by water management structures. Two of the structures (S-61 and S-65) include navigational locks.

Water levels in seven of the eight canals with water control structures are also constrained by regulation schedules in one or both of the connected lakes. Operation of the canals and structures are based both on local and regional water levels and weather conditions. When water levels are above prescribed elevations, flood operation protocols and criteria are followed; low-water or drought management operations are followed if water levels fall below prescribed depths. Operations also depend on hydraulic and physical limitations of the structures. Additional details concerning the canals, structures, and operational procedures are provided in **Appendix C**.

Lower Kissimmee – Kissimmee River and Lake Istokpoga

Introduction

The Lower Kissimmee River basin covers 727 square miles from Lake Kissimmee to Lake Okeechobee, and includes 20 basins in parts of Osceola, Polk, Highlands, Okeechobee, and Glades counties. These basins were first delineated in the 1950s by the USACE in their General Design Memorandum for the C&SF Project. Discharge from all of these basins eventually reaches Lake Okeechobee. The basin boundaries of the Lower Kissimmee River and Lake Istokpoga areas, canals, levees, and control structures relative to roads, local landmarks, and county lines are shown in **Figure 3**.

Nutrient concentrations in the Kissimmee River increase downstream due, in part, to increased agricultural activity in the lower basins. Best Management Practices are being implemented to various degrees to reduce nutrient loads from agriculture.

The vegetation in the Lower Kissimmee River basins changes with surface water depth, elevation, type of soil, and extent of agricultural activity. The terrestrial forested areas are covered with oak, cabbage palm, wax myrtle, and woody shrub. The wetland forests contain

willows, hardwood, and cypress. The marshy areas are covered with maidencane, aquatic grasses, buttonbush, switchgrass, sawgrass, and various other plants.

The Lower Kissimmee-Lake Istokpoga area is not significantly developed. Land use patterns reflect large areas of open land, rangeland, and agricultural use. The agricultural land consists of intensively managed beef pasture, semi-improved beef pasture, improved dairy pasture, and citrus groves. Winter truck crops and ornamental plant production are also important to the area.

Soils generally consist of high permeability sands. Along the floodplain of the Kissimmee River, the soil type is sand and shell overlain by a variable layer of muck, peat, and unrecompensed organic matter. The general soil classifications within the watershed indicate the relative extent of hydric and poorly drained soils. Much of the area is prone to flooding and most of the canals were constructed in these types of soils, which contributes to their construction and management characteristics.

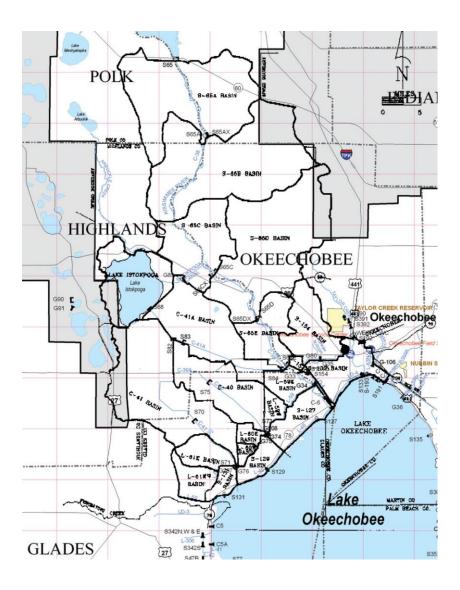


Figure 3. Sub-basins and general features of the Lower Kissimmee River and Lake Istokpoga.

The Primary Water Management System

Canals, Structures and Operations

The primary water management system in the Lower Kissimmee River/Lake Istokpoga Basin consists of 11 canals and 40 water control structures. District canals and structures play an important role in distributing water as needed to protect adjacent land uses, natural areas, and biological communities in the river and lake. Additional details concerning the canals and their operations are provided in **Appendix C**.

The C-38 Canal is the channel that was constructed by the USACE through the Kissimmee River floodplain. This canal ranges from 90 to 340 feet wide and from 18 to 24 feet deep. Water levels and flows in portions of the C-38 Canal are currently managed as part of the Kissimmee River restoration. Sections of the canal have been filled, the S-65B locks and associated water control structures were removed, and flow restored to oxbows. The primary canals (C-40, C-41, and C-41A) and structures south of Lake Istokpoga provide drainage and flood control to adjacent lands, convey excess flood waters from the Lake Istokpoga into regional storage in Lake Okeechobee, and distribute water from the lakes to agricultural lands during drought. These four primary canals and eight additional smaller canals and levee borrow canals (C-39A, L-48, L-49, L-59, L-60, L-61, L-62, and L-63) comprise the primary water conveyance channels in the Lower Kissimmee River basin. Most of these canals were designed for water conveyance purposes. The various borrow canals were built in conjunction with construction of basin divide levees and to help remove runoff and floodwaters from basin lands

The C-38 Canal extends 69 miles from Lake Kissimmee to Lake Okeechobee and consists of five sub-basins. Four other basins (C-41A, L-59E, S-154, and S-154C) discharge into the section of the C-38 Canal located between S-65E and Lake Okeechobee. Two of the primary canals south of Lake Istokpoga (C-40 and C-41) ultimately discharge to Lake Okeechobee. Four basins (L-59W, L-60E, L-60W, and L-61E) discharge into these canals. The remaining sub-basins in this area discharge directly to Lake Okeechobee.

Kissimmee River Restoration Efforts

The Kissimmee River once meandered for 103 miles through Central Florida. Its floodplain, reaching up to 3 miles wide, was inundated for long periods by heavy seasonal rains. Wetland plants, wading birds, and fish thrived there. Prolonged flooding affected the local population, which led to engineering changes to deepen, straighten, and widen the waterway. In the 1960s, the Kissimmee River was cut and dredged to create the C-38 Canal. Before channelization was complete, biologists suspected the project would have devastating ecological consequences. While the project provided flood protection, it also destroyed a floodplain-dependent ecosystem that nurtured threatened and endangered species, as well as hundreds of other animals.

Channelization of the Kissimmee River dramatically altered the system's hydrology and resulted in drainage or obliteration of almost 35,000 acres of floodplain wetlands, elimination of instream and overbank flow, and isolation of the river from its floodplain (Koebel 1995). These hydrologic alterations propagated changes in physical, chemical, and biological aspects of the ecosystem, reduced diversity, and diminished biotic integrity (Dahm et al. 1995). Reduced dissolved oxygen levels, increased biological oxygen demand, and subsequent restructuring of

the food web contributed to these declines. These changes led to decreased fish density within the river channel and restricted use of floodplain habitats by small-bodied forage fishes.

The effort to return flow to 43 miles of the Kissimmee River's historic channel and restore about 40 square miles of river/floodplain ecosystem began in 1999. After extensive planning, restoration began with backfilling 7.5 miles of the C-38 Canal and removal of the S-65B structure. Three construction phases are now complete and continuous water flow was reestablished to 27 miles of the meandering Kissimmee River. Seasonal rains and flows now inundate the floodplain in the restored area.

Since restoration began, the river and its floodplain have improved in remarkable ways, surpassing at times the anticipated environmental response. Comprehensive monitoring for the past 10 years has documented the following improvements relative to pre-restoration conditions:

- The aquatic wading bird population in the restored river and floodplain region is more than five times greater. The number of aquatic wading birds, including white ibis, great egret, snowy egret, and little blue heron, has increased significantly; in some years they are more than double the restoration target.
- Duck species including fulvous whistling duck, northern pintail, northern shoveler, American wigeon, and ring-necked duck have returned to the floodplain.
- Several shorebird species including American avocet, black-necked stilt, dowitcher, greater yellowlegs, semipalmated plover, least sandpiper, spotted sandpiper, and western sandpiper have returned to the river and floodplain.
- Organic deposits on the river bottom decreased by 71 percent, reestablishing sand bars and providing new habitat for shorebirds and invertebrates, including native clams.
- Dissolved oxygen levels have increased to a range normally observed in minimally impacted Florida streams.
- Largemouth bass and sunfishes now comprise 64 percent of the fish community, up from 38 percent.

Everglades Agricultural Area

Introduction

The Everglades Agricultural Area comprises those lands south and southeast of Lake Okeechobee in Palm Beach, Martin, Hendry, and Glades counties. These lands were originally part of the natural Everglades system, but were deemed well-suited for agricultural use. The area was drained and used for agricultural production beginning in the early 1900s.

The primary water management system in the Everglades Agricultural Area consists of a network of levees, canals, and water control structures. The canals were originally constructed to provide drainage and to transport agricultural products to urban markets. Later, they were enlarged and pumps and structures added to enhance water supply deliveries to agricultural and urban areas during dry periods and provide additional drainage and flood protection during wet periods. Coastal structures were added and water levels were raised to control soil subsidence and saltwater intrusion. Most recently, canals in the area are used to convey stormwater flows into and out of the Stormwater Treatment Areas for treatment prior to delivery to the WCAs.

Nine water management basins within the Everglades Agricultural Area have a combined area of 1181 square miles and are served by 15 primary canals and 25 water control structures (**Figure 4**). The L-8, S-4, and S-236 basins are not strictly part of the Everglades Agricultural Area legal boundary, but are presently included because they are closely tied to the agricultural area, Lake Okeechobee, or the WCAs by hydrology and water management. In general they are used to discharge excess water from the basins during flooding and to maintain minimum water levels in the canals during periods of low natural flow.

Extensive networks of secondary and tertiary canal systems are operated by landowners within the Everglades Agricultural Area that periodically remove water from, and discharge to, the primary water canals. Although these systems operate under permits from the SFWMD, they are largely managed to meet the needs of individual farms and crops. These activities by private interests can have significant impacts on the overall timing and volume of flow through and water levels within the canal system at any given time.

Soils

Most soils in the Everglades Agricultural Area are muck or peat with a high content of organic material. Flatwoods soils are used for sugarcane and citrus production and cattle ranching. The L-8 basin contains depressional muck, sand, and peat intermixed with sandy soils. The watershed largely consists of public lands that are protected in preserves and wildlife management areas.

The bedrock underlying the area has very low permeability and transmissivity, so there is less exchange with the surficial aquifer than occurs in other parts of the District. The shallow aquifer is not used as a significant source of irrigation water due to generally low yields and the presence of connate (trapped) seawater in many areas. Crops are irrigated with water taken directly from the canals and excess water from the fields flows or is pumped back into the canals. Water in the Everglades Agricultural Area canals is dark due to the presence of tannins from the organic soils, has high levels of organic materials, and occasionally has low concentrations of dissolved oxygen. Nitrogen concentrations in the canals can be elevated due to decomposition of organic material in soil. Phosphorus concentrations, as well as those of pesticides and metals, may become elevated due to discharge from Lake Okeechobee and runoff from agricultural activities in the watershed (Bottcher and Izuno 1992).

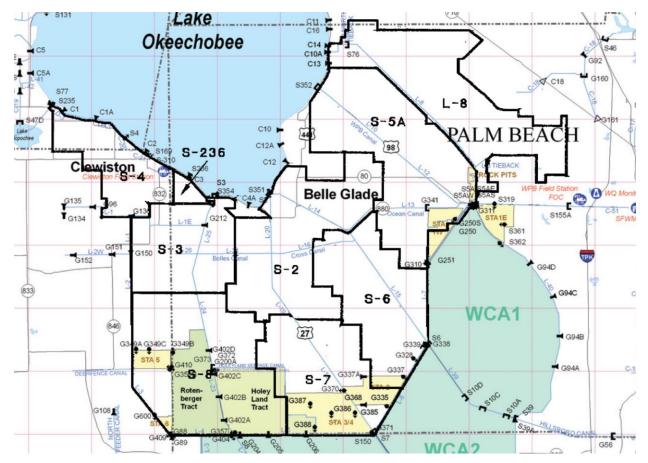


Figure 4. Everglades Agricultural Area drainage basins.

Canal Design

The original canals and water control structures in the basins were designed for flood control and water supply. Water supply in the region was intended for irrigation and to maintain water levels in the basin as high as possible to minimize soil subsidence and oxidation.

Lake Okeechobee Regulatory Releases

Although lake water level regulation was not a factor in the original design, it was anticipated that regulatory releases could be as large as the capacity of the downstream receiving canals in the Everglades Agricultural Area. The levees and discharge structures for Lake Okeechobee were designed assuming releases would be made by way of the St. Lucie Canal, Caloosahatchee River, and the four primary canal outlets through the agricultural area during a major storm event, in accordance with the Lake Okeechobee regulation schedule. Although the St. Lucie Canal and the Caloosahatchee River can pass the largest discharges by the USACE, they are not the preferred outlets since these releases are lost to the ocean and can damage downstream estuaries. To the maximum extent possible, regulatory releases are made south to the agricultural canals and stored in the WCAs. This affords additional opportunity for using the water and reduces the amount of fresh water that enters the estuaries of the Caloosahatchee and St. Lucie rivers. When large quantities of water must be discharged, however, the Caloosahatchee and St. Lucie rivers must be utilized.

S-2, S-3, S-5A, S-6, S-7 and S-8 Basin Boundaries

The primary canals and water control structures in the Everglades Agricultural Area have four functions: (1) remove excess water from the basin to storage in Lake Okeechobee or the WCAs, (2) prevent overdrainage of their respective basins, (3) supply water from Lake Okeechobee to downstream basins as needed for irrigation, and (4) provide conveyance for regulatory releases from Lake Okeechobee to the WCAs or to eastern Palm Beach, Broward and Miami-Dade counties and Everglades National Park.

Holey Land Wetland Restoration

A wetlands restoration project is currently under way in the Holey Land area in the southeastern quarter of the S-8 basin (see **Figure 4**). The Holey Land is a 35,336-acre impoundment that was used was used as a bombing range during World War II and the Korean War, hence the name "Holey." While no physical evidence remains of this disturbance, the area was degraded by decades (1940s to 1980s) of overdrainage and invasion by upland plant species, oxidation and the resulting subsidence of organic peat soils, and muck fires that caused localized areas of even lower elevation.

The Florida Fish and Wildlife Conservation Commission is primarily responsible for managing the flora and fauna of the area and works closely with the District, whose responsibilities include overall hydrological operations, and construction and maintenance of inflow and outflow structures. The goal for management of the Holey Land is to promote historical vegetation communities. Important components of this goal are to create conditions that support the functional integrity of tree islands, maintain or reduce extent of cattail coverage, increase potential for wading bird, snail kite and alligator usage, and maintain the terrestrial wildlife populations near or at high-water carrying capacity.

Levees were constructed around the northern perimeter of the Holey Land to isolate the area hydrologically from the surrounding basins. Water from the Miami Canal can be pumped into the Holey Land at its northwestern corner and distributed along the north perimeter by a spreader canal. Water moves south by sheet flow and is discharged to WCA-3A by way of three gaps cut in L-5.

Primary Canals

The primary canals that convey water from Lake Okeechobee south and east to coastal basins are the L-8, West Palm Beach, Hillsboro, North New River, and Miami canals (**Figure 4**, **Appendix C**). Water enters these canals from Lake Okeechobee at the north end. In the EAA basin these canals are primarily bordered by agricultural lands. When the water leaves the EAA, it is first treated in the Stormwater Treatment Areas to reduce phosphorus levels, and then passes into the WCAs where the canals are bordered by and interact with adjacent natural wetlands.

Other major canals in the Everglades Agricultural Area provide cross-connections between the primary canals or consist of borrow canals associated with the levees that surround the WCAs and Lake Okeechobee. Additional information concerning canals and structures of the water management system within the Everglades Agricultural Area is provided in **Appendix C**.

Water Conservation Areas and Everglades National Park

Introduction

The Everglades includes six basins: five Water Conservation Areas (WCA-1, WCA-2A, WCA-2B, WCA-3A, and WCA-3B) and Everglades National Park (**Figure 5**). The basins have a combined area of 3060 square miles and are served by 18 levees, 5 primary canals, and 60 water control structures. The canals and water control structures in each basin are described and are discussed with regard to their operation and management in **Appendix C**.

The land use consists mostly of natural landscapes including a predominance of wetlands with a few isolated upland areas of hammocks, tree islands, and pine flatwoods. Although the soils of these areas have not been surveyed, they consist primarily of hydric peats, mucks, marls, and sands with occasional rock outcroppings.

The WCAs were designed to provide viable wetland habitat, to receive excess water from the Everglades Agricultural Area, to receive regulatory releases from Lake Okeechobee, to prevent water accumulating in the Everglades from flooding urban and agricultural lands in eastern coastal areas, to recharge regional groundwater, and to store water for dry season deliveries to eastern Miami-Dade, Broward and Palm Beach counties. The WCAs are impounded by levees, with inflows and outflows regulated by control structures. The Everglades National Park basin is a natural basin set aside to preserve portions of the original Everglades. Surface water flows into the park are through District canals and structures.

Canals and structures in the Everglades provide the means by which water is conveyed from one place to another for purposes of flood control, drainage, agricultural and municipal water supply, and regulatory releases from Lake Okeechobee. In general, the canals and structures are used to discharge excess water from the WCAs during flooding and to maintain minimum water levels during dry periods. Some structures are used to supply water from one WCA to another, or to neighboring basins in Palm Beach, Broward, and Miami-Dade counties.

Lake Okeechobee Regulatory Discharges

The WCAs are the preferred receiving bodies for regulatory releases from Lake Okeechobee by way of the primary canals that pass through the Everglades Agricultural Area – the Miami Canal and North New River Canal, after first passing through Stormwater Treatment Area 3/4 for treatment. However, during a major storm event, the USACE discharges water through structures they operate, primarily to the Caloosahatchee River (C-43) and the St. Lucie Canal (C-44). This is a result of localized drainage entering the Everglades Agricultural Area canals and reducing their ability to receive regulatory discharges from the lake. These factors can combine to make regulatory releases by way of the North New River and Miami canals rare events.

Everglades Agricultural Area Discharges

The original drainage design for the Everglades Agricultural Area called for moving excess water to both Lake Okeechobee and the WCAs. Because of environmental problems in the lake resulting from inflows of nutrient-rich water, the current SFWMD water management plan for the agricultural area discourages discharge of water to Lake Okeechobee. Consequently, almost all water pumped from the Everglades Agricultural Area passes through a Stormwater Treatment Area for phosphorus removal before discharge to the WCAs.

Canals

The primary water management system in the Everglades National Park and WCA area includes four primary canals that deliver water from Lake Okeechobee south and east toward the coast – West Palm Beach, Hillsboro, North New River, and Miami canals - and numerous smaller canals (see **Appendix C**). Primary canals provide outlets for excess water from Lake Okeechobee when the lake is above its regulation schedule. They also deliver water from the lake during dry periods to maintain water levels in the WCAs and to meet water supply needs in the Everglades Agricultural Area and coastal basins. The remaining primary canals are peripheral to the WCAs and the park and provide the means to manage the distribution of flows into the basin.

South Miami-Dade Conveyance System

Water deliveries to the southeastern section of Everglades National Park are provided by the South Miami-Dade Conveyance System, which is described in the section of this report dealing with canals in eastern Palm Beach, Broward, and Miami-Dade counties.

Figure 5. WCA and Everglades National Park Drainage Basins.

Upper East Coast - Martin and St. Lucie Counties

Introduction

Nine basins make up the Upper East Coast area: C-23, C-59, S-153, S-135, C-44, Tidal St. Lucie River, North Fork St. Lucie River, C-25, and C-24. These basins cover 853 square miles of Martin and St. Lucie counties (**Figure 6**) and are served by 12 canals and 15 water control structures with the principal function of providing flood protection. Secondary uses include land drainage for agriculture and urban or residential development and regulation of groundwater levels to prevent saltwater intrusion. Most canals supply water for irrigation during periods of low natural flow. The coastal structures have the additional function of preventing salt water from a tidal or storm surge from entering those canals that discharge to tide.

Land use in this area is primarily agricultural – citrus, crops, and cattle. Some urban development is present in areas surrounding Stuart, Port St. Lucie, Fort Pierce, Indiantown, and Okeechobee. Large areas remain undeveloped with natural pine forested uplands, oak hammocks, swamps and marshes, rangeland, and unimproved pasture. Soils are generally sandy flatwoods with occasional hydric depressional features

North Fork St. Lucie Basin Flood Protection and Water Supply

With District approval, two areas in the North Fork St. Lucie basin can be pumped to the C-25 Canal to mitigate flooding in the basin: (1) an 18-square mile parcel in the northwest corner of the basin that normally drains to Ten Mile Creek by gravity flow, and (2) a 3-square mile parcel in the northeast corner of the North Fork St. Lucie basin that normally drains to Five Mile Creek by gravity flow. Water can be diverted from C-25 to the Fort Pierce Farms Drainage District for irrigation during the dry season. Fort Pierce Farms Drainage District drains by gravity flow to C-25 below S-50 (i.e., to tidewater).

A large number of citrus growers are in the Upper East Coast basin and the demand for water is high. Currently, the only source of water is local rainfall and artesian well water from the Floridan Aquifer. This well water has a high mineral content and is generally mixed with surface water before it is used for irrigation. To distribute the available surface water supply equitably, the inverts of irrigation supply culverts and irrigation pump intakes have been limited to a minimum elevation of 14.0 ft NGVD.

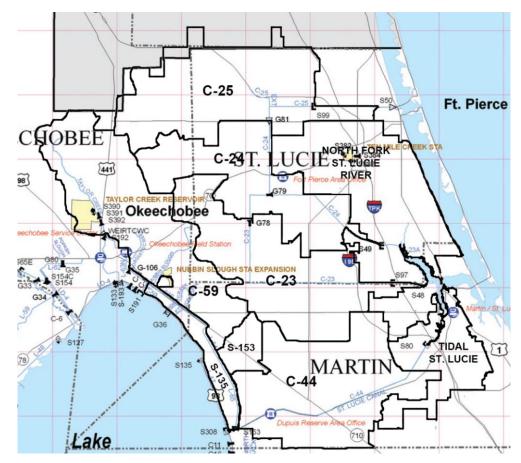


Figure 6. Sub-basins and District facilities in Martin and St. Lucie counties.

History of the St. Lucie Canal

It was realized early in the settlement of South Florida that Lake Okeechobee's water level would have to be substantially lowered to drain and control flooding in the Everglades. The easiest way to control water levels in the lake was by way of canals connecting the lake to the St. Lucie and the Caloosahatchee rivers.

Work on the St. Lucie Canal began in 1915. The primary purpose of the canal was to divert the entire flow from Lake Okeechobee to the ocean. Secondarily, it was expected to provide a navigable waterway from Lake Okeechobee to the ocean and to provide hydroelectric power at the eastern end of the canal. Because of difficulties in financing, the canal was not completed until 1917 and was only half as large as the original design (i.e., 200 feet wide and 12 feet deep). Flow regulation was provided by a dam and lock at the eastern end (at the present site of S-80). A hydroelectric plant was installed at the control structure, but later proved to be impractical.

Lack of money prevented further work on the St. Lucie Canal until the 1930s when the USACE built the Hoover Dike. As part of the legislation authorizing the dike, money was also authorized for deepening the canal and constructing a new lock structure. In 1948, the St. Lucie Canal was deepened again. When the C&SF Project was authorized in 1949, the canal was placed under its management. As part of the project, a spillway and lock (S-308) were completed in 1977 at the outlet from Lake Okeechobee to the St Lucie Canal.

Florida Power and Light Company Reservoir

An area of 6600 acres between the S-153 basin and C-44 that originally drained to the L-65 borrow canal and to S-153 is now the cooling reservoir for a Florida Power and Light power plant. Since the reservoir is hydraulically connected to C-44, the land it occupies is now considered part of the C-44 basin. Excess water in the S-153 basin is discharged to C-44 by way of the L-65 borrow canal and S-153.

Primary Canals that Discharge to Coastal Waters

Four primary canals (C-23, C-44, C-25, and C-24) discharge directly to coastal waters. The C-23 Canal basin measures approximately 167.7 square miles and is located in southwest St. Lucie County, eastern Okeechobee County, and northern Martin County (**Figure 6**). The C-44 basin is approximately 189.8 square miles. The C-44 Canal is a component of the Lake Okeechobee waterway and provides a navigable link from Lake Okeechobee to the Intracoastal Waterway near Stuart. It runs parallel to state road 76 from S-308 at Port Mayaca on Lake Okeechobee to S-80. The C-25 Canal basin is approximately 164.8 square miles and the canal discharges to the Intracoastal Waterway (Indian River) west of the Fort Pierce Inlet. The C-24 basin is approximately 166.6 square miles in area. In general, the only water supply to the C-24 basin is from local rainfall and pumping of groundwater from the Floridan Aquifer; however, water can be supplied from the C-23 basin when necessary.

Basins that Discharge to Lake Okeechobee

The S-135 basin is approximately 28.3 square miles in area. The basin is impounded by levees: on the west by L-47, on the north by L-63S, on the south by L-65, and on the east by L-63S, L-64, and L-65. The C-59 drainage basin is approximately 187.9 square miles in area and is located in portions of Okeechobee, St. Lucie, and Martin counties.

Lower East Coast – Palm Beach, Broward and Miami-Dade Counties

Introduction

The coastal areas of Palm Beach, Broward, and Miami-Dade counties have a number of features in common. The canals and structures were designed primarily to provide flood protection, deliver water needed for urban and agricultural use, and prevent saltwater intrusion.

Most of the land surface in the eastern sections of Miami-Dade and Broward counties, as well as Southern portion of Palm Beach County is underlain by the Biscayne Aquifer, which is directly linked to surface water. The Biscayne Aquifer is highly permeable, transmissive, and extensively used as a source of drinking water by utilities and homeowners. Wells developed in this aquifer yield extremely large amounts of water. Because the aquifer is closely connected to surface water bodies, such as lakes, rock pits, and canals, any contamination derived from these sources spreads rapidly.

The canals are cut through the surface soils and into the rock of the underlying aquifer, providing for a direct exchange of surface and groundwater. Canal water quality is thus continually influenced by exchange with groundwater, which typically contains elevated concentrations of dissolved nutrients and low concentrations of dissolved oxygen. Canals can also transfer contaminants from surface sources to groundwater, including treated or untreated wastewater,

urban and agricultural runoff, seepage from septic tanks and landfills, and salt water from canals that connect to tide (Alleman et al. 1995, Brown 2003).

Figure 7 shows the distribution of canals and water control structures in the drainage basins of eastern Palm Beach, Broward, and Miami-Dade counties. In addition to providing water supply and flood control, the primary canals are also an outlet for excess water from the Everglades and Lake Okeechobee during wet periods. During dry periods, stored water can be delivered to eastern Palm Beach, Broward, and Miami-Dade counties to help meet local urban and agricultural needs and prevent saltwater intrusion.

The topography of these counties is very flat. The elevation of most the sub-basins is less than 20 feet above sea level, and many areas have an elevation of 5 feet or less. Historically, much of the area was under water or had fully saturated soils for most of the year.

Most of the area is covered with hydric (wetland) soils, except for areas near the coast that are underlain by an extensive limestone rock ridge (see **Appendix C**). Historically, this ridge had rocky to sandy soils and was covered with upland vegetation consisting of pine flatwoods and oak hammocks. Today, soil patterns show the predominance of urban and man-made lands in eastern Miami-Dade, Broward, and Palm Beach counties. In northern Miami-Dade and southern Broward counties, urban lands extend westward into areas that were historically Everglades peat, muck, sand, and marl wetland soils. Western areas of Miami-Dade and Broward counties east of the WCAs still have Everglades sand, marl, or peat soils in undeveloped areas. In Palm Beach County, lands west of the coastal ridge have higher elevations and contained pine flatwoods vegetation (sandy soils) with intermittent depressional features. This area was largely used for farming in the early to mid-twentieth century but is increasingly transitioning to urban and residential community development. In northern Palm Beach County, large areas east of Lake Okeechobee that have hydric peat and depressional soils are protected from development within various local, state and regional parks, preserves, and management areas.

Structures in the area regulate the flow and level of water in the canals. In general, they are used to discharge excess water from the basins during flooding and maintain minimum water levels in the canals during dry periods. The coastal structures also prevent salt water from a tidal or storm surge from entering canals that discharge to tide. Tables summarizing features of these structures are provided in **Appendix C**. Water levels in the coastal and regional canals are carefully managed to be: (1) high enough, especially during the dry season, to prevent saltwater intrusion and recharge the aquifer; and (2) low enough during the wet season and agricultural growing season to provide drainage and flood control.

Primary Regional Canals

The primary canals in Miami-Dade, Broward, and Palm Beach counties are the coastal extensions of the West Palm Beach Canal, Hillsboro Canal, North New River Canal, and Miami Canal, which originate in at Lake Okeechobee, pass through the Everglades Agricultural Area Everglades and Water Conservation Areas, and end at the estuaries. These primary canals provide region-wide management capabilities. They are used as outlets for regulatory releases from Lake Okeechobee and the WCAs, excess floodwaters from the Everglades Agricultural Area lands, and runoff from the coastal basins. They also convey water releases from Lake Okeechobee or the WCAs to recharge local wellfields and protect the surficial aquifer against saltwater intrusion. Details of canal features and operations are provided in **Appendix C**.

The section of the West Palm Canal located east of WCA-1 is in the C-51 basin. This basin has an area of 164.3 square miles in eastern Palm Beach County. The canal runs parallel to and south of State Road 80, from L-40 to Congress Avenue. East of Congress Avenue, the canal extends to the south and then to the east, connecting to the Intracoastal Waterway at S-155 east of Lake Clarke.

The Hillsboro Canal connects Lake Okeechobee to the Intracoastal Waterway. The canal basin in eastern Palm Beach and Broward counties has an area of 102.5 square miles. Excess water in WCA-1 is discharged to the Hillsboro Canal by way of S-39 at the western edge of the basin.

The North New River Canal basin measures approximately 30 square miles in eastern Broward County. The basin is divided into an eastern basin (7 square miles) and a western basin (23 square miles). The North New River was excavated and extended to drain the Everglades, and to serve as a transportation route between Lake Okeechobee and the coast.

The section of the Miami Canal East of the WCAs is also known as C-6. The C-6 basin has an area of approximately 69 square miles in eastern Miami-Dade County (**Figure 7**). Flow in the C-6 Canal is to the southeast with discharge via S-26 into Biscayne Bay.

Figure 7. SFWMD canals and structures in coastal sub-basins of Miami-Dade, Broward, and Palm Beach counties.

Coastal Basin Canals

Coastal basin canals originate at or east of the Everglades and discharge to the Intracoastal Waterway or an estuary. These canals were designed primarily to provide flood protection and drainage for coastal development. Some of the canals are linked directly or indirectly to other canals and provide a means to regulate surface and groundwater levels and to recharge the surficial aquifer. Most of these canals have a downstream coastal outfall water control structure to prevent upstream migration of salt water and contamination of groundwater. Some of the coastal canal basins have an eastern and western sub-basin. The western basins tend to be more flood-prone, and hence have more stringent construction criteria, lower densities of development, and more agricultural use.

South Miami-Dade Conveyance System

The South Miami-Dade Conveyance System interconnects several of the basins in southern Miami-Dade County. The system was developed during the 1970s was after a Congressional mandate with the primary purpose of supplying water to Everglades National Park and to canals in southern Miami-Dade County for irrigation, wellfield recharge, and control of saltwater intrusion. The system was also built largely around existing structures. For example, S-151 was enlarged and S-335 was changed to a gated spillway. Three new structures (S-336, S-337, and S-338) were built for the system.

Lower West Coast Watersheds

Caloosahatchee River

Features of the Current System

Three structures and 41 miles of the C-43 Canal provide the primary water management system within the Caloosahatchee basin. The canal was dug to connect Lake Okeechobee to the Gulf of Mexico through the Caloosahatchee River. The resulting channel is 160 to 430 feet wide and 20 to 30 feet deep. The three structures are S-77 at Moore Haven, S-78 at Ortona (15 miles west of S-77), and S-79 (also known as the W.P. Franklin Lock and Dam) near Ft. Myers (40 miles west of S-77). Each of these structures includes water control facilities and navigational locks (**Figure 8**). The structures and canal improvements were authorized not only for navigation and flood protection, but also to manipulate water flow for eliminating undesirable salinity in the lower Caloosahatchee River, raise dry-weather water table levels, and provide water for agricultural irrigation.

The freshwater portion of the Caloosahatchee River watershed includes two primary basins. The upstream section of the river between S-78 and S-77 drains approximately 338 square miles. The water level in this part of the river is maintained at approximately 11 feet above mean sea level. Downstream, between S-78 and S-79, the water level in the river is maintained at 3 feet above mean sea level. The drainage basin for this lower pool is 497 square miles. Land use in the Caloosahatchee basins is mostly agriculture, with some low density residential communities and a small urban area near Labelle. The river, throughout its length, is used as a source of water for agricultural irrigation, including citrus, pasture, vegetables, and flowers.

In the lower section of the Caloosahatchee River, especially areas west of Labelle, many oxbows of the original meandering river remain as shallow diversions from the main canal. Areas where

the canal has been channelized are deep, have steep sides, and provide rather limited habitat for most fishes, benthic invertebrates, and shoreline vegetation. By contrast, the remaining oxbows provide sheltered areas and a diversity of littoral habitats.

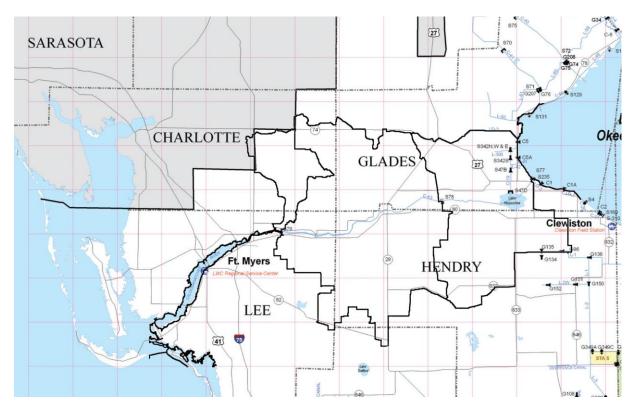


Figure 8. Major features of the Caloosahatchee River watershed.

Water Management Issues

The Caloosahatchee River (C-43) basin represents a complex management situation for the SFWMD. The District is responsibile for water allocations and withdrawals from the river and from Lake Okeechobee, while the USACE is responsibile for operation, maintenance, navigation, and flood control. With this division of responsibilities, there is need for coordination and cooperation, not only between the SFWMD and USACE, but also with the U.S. Geological Survey, U.S. Weather Bureau, various state, county and local authorities, and local landowners.

Need for Additional Water Storage

The Comprehensive Everglades Restoration Plan (CERP), a framework to restore the water resources of central and southern Florida to update the C&SF Project, determined that this area could greatly benefit from construction of additional water storage facilities. The original design of the water management system recognized that the watershed could not meet all of the existing and future water demands within its boundaries and that additional water releases from Lake Okeechobee would be required during the dry season (Mierau et al. 1974). Studies conducted as part of CERP indicated that the inability to meet irrigation needs during dry periods could be largely offset by capturing basin runoff during the wet season, placing this water in storage, and

later releasing the water back to the river. The CERP proposed construction of a large reservoir in the watershed to address this need and it is currently being designed.

Regulatory Releases from Lake Okeechobee

One of the primary issues with management of the Caloosahatchee River is the need to periodically regulate water stages in Lake Okeechobee. When the lake is above its regulated water stage, the USACE discharges excess water through structures they operate, primarily through the Caloosahatchee and St. Lucie rivers. During such discharges, river flow rates can exceed 10,000 cubic feet per second. These discharges have significant adverse effects on plants and animals in the estuary and adjacent coastal waters due to rapid changes in salinity and water quality.

Controlling Saltwater Intrusion and Algal Blooms

A major problem with operation of the Caloosahatchee River is the control of saltwater intrusion into the basin during dry periods. Before construction of the S-79 structure, tidal fluctuations and varying amounts of runoff from the basin occasionally resulted in transfer of salt water as far upstream as LaBelle, which contaminated shallow wells adjacent to the river. With the construction of S-79, less salt water is getting upstream, but there continue to be occasional exceedances of the Class I water designation standards that apply to that section of the river.

In conjunction with recurring salinity problems, periods of low river flow are often associated with algal blooms, especially cyanobacteria (blue-green algae) that affect water taste and color. These problems affect the Lee County water supply facility and the Ft. Myers wellfield. Therefore, additional water is discharged from Lake Okeechobee to "flush" the system during periods of high salinity or algal blooms (Boggess 1972, Mierau 1974).

Minimum Flows and Levels

A further issue of concern is the need to prevent significant harm from occurring to the water resources in the Caloosahatchee Estuary. The SFWMD established minimum flow criteria for the Caloosahatchee River based on maintenance of suitable salinity conditions in the downstream estuary (SFWMD 2000, SFWMD 2003). These criteria recommend that additional water be provided from the Caloosahatchee River (and hence from Lake Okeechobee) as needed to protect submerged aquatic vegetation in the section of the estuary adjacent to Fort Myers.

Collier County

Collier County may be roughly divided into the Big Cypress Region, the Western Flatlands, and the Ten Thousand Islands. The area along the coast, west and north of the Big Cypress, and as far south as Gordon's Pass, is part of the western flatlands. The flatlands are characterized by marshes, swamps, and open water depressions, including Lake Trafford, the Corkscrew Marsh, and the Okaloacoochee Slough.

The first canals in Collier County were dug to provide fill for the roads used to promote harvesting of cypress timber. The combined canals and roads greatly altered the historical surface water movements. In 1928, the Atlantic Coastline Railroad extended their service into the Everglades. This railroad extension prepared a roadbed for a new highway and created sizeable drainage canals that effectively divided the Big Cypress wetlands into east and west portions.

South Florida Water Management District - Big Cypress Basin

The Big Cypress Basin (BCB) was established as a subdivision of the SFWMD by the Florida legislature in 1976. One of the first actions of the BCB Governing Board was to begin efforts to define and take management responsibility for the primary water management system in Collier County. The "primary canals" in this system are the canals that are maintained by BCB; "secondary canals" are all other types of canals not maintained by BCB. The SFWMD through the BCB presently operates and maintains a network of 162 miles of primary canals and 46 water control structures (**Figure 9**) in western Collier County. These facilities provide flood control during the wet season and prevent over-drainage during the dry season to protect the vulnerable water supplies and environmental resources of a rapidly urbanizing region.

Surface Hydrology and Hydraulic Systems

The surface hydrology of the Big Cypress basin is dictated by an extensive system of drainage canals and structures. This system of canals separates the contributory drainage areas of the primary outfalls into the following eight major basins: Golden Gate Canal, Corkscrew-Cocohatchee, District VI, Henderson Creek, Collier-Seminole, Faka Union Canal, Fakahatchee Strand, and Okaloacoochee Slough-Barron River.

With the evolution of urban and agricultural development, the traditional surface water flow patterns in the Big Cypress region have undergone drastic changes. As land areas were developed, "ditch and drain" construction practices resulted in a series of canals and numerous roads that tended to overdrain the water table and drastically altered flow patterns of natural drainage basins. Such combinations of development events greatly reduced the extent of functional wetlands, lowered groundwater levels, reduced aquifer recharge, and contributed to concentrating runoff flow rather than preserving sheet flow across the land. The change in flow characteristics resulted in a significant shift in watershed boundaries.

Of the eight basins, three (Collier-Seminole, Fakahatchee Strand, and District VI) do not contain primary water management canals or control structures. The surface hydrology and primary drainage works of the remaining basins are described in **Appendix C**.

Figure 9. Major drainage basins and water management features within the Big Cypress basin.

2. ANALYSIS OF BIOLOGICAL DATA FROM SFWMD CANALS

Introduction

A review of available literature was conducted by SFWMD staff to identify scientific studies of animals that live in South Florida canals. Relatively few studies have been conducted in recent years, and almost none of these have included synoptic water quality data that met the District staff's evaluation criteria with respect to sampling period, methods, or proximity of water quality sampling to biological sampling times or locations. Primary emphasis was placed on studies of macroinvertebrates (e.g., larval stages of insects) because there is an extensive database of Florida invertebrates available. These communities are widely accepted as indicators of biological conditions by FDEP and the USEPA, and standardized procedures for collecting and processing macroinvertebrate samples have been used in Florida since about 1992. These procedures have been applied to canals by FDEP and private consultants. These macroinvertebrate studies are summarized below and additional details, and in some cases reanalyses of the data by SFWMD staff, are included in **Appendix D**.

A number of studies of other organisms, notably fish and alligators, in and adjacent to District canals are also summarized, with additional information provided in **Appendix E**. While research concerning ecological relationships among these higher organisms is highly developed within some South Florida ecosystems, especially the Everglades and estuaries, canals have not been systematically studied. Furthermore, when compared to macroinvertebrates, methods for collecting and interpreting vertebrate data are more variable and less quantitatively linked to other variables such as habitat quality, surrounding land uses, and water quality.

Macroinvertebrate Communities

Studies of Canals using FDEP methods

The Florida Department of Environmental Protection established the Bioassessment Program for stream macroinvertebrates in 1992 (FDEP 2010). This program provides standard protocols for sample collection, processing, and reporting macroinvertebrate data. The data have been used to develop the Stream Condition Index (SCI), which is a numeric index of biological condition using 10 macroinvertebrate metrics. The database includes a total of 2313 unique sites sampled since 1992, with some sites sampled annually for trends. There are 53 minimally disturbed reference stream sites covering most of the state north of Lake Okeechobee, and these sites were used by FDEP to set quality thresholds (e.g., good, fair, poor) for the SCI. The data were also used to divide Florida into bioregions, two of which include parts of the District. The peninsula bioregion includes most of the Florida peninsula south to Lake Okeechobee; lands south of the lake are in the Everglades bioregion. While SCI scoring has changed over the years, the methods and metrics have not been substantially altered, providing a consistent and semi-quantitative long-term database on Florida streams and canals.

From the Bioassessment Program, FDEP provided data on 156 canal sites south of Orlando and 14 stream reference sites in the southern portion of the peninsula bioregion that includes the District north of Lake Okeechobee (**Figure 10a**). While not all of these canals are under the jurisdiction of the SFWMD, they are all within District boundaries and meet the physical requirement of canals. There are no reference stream sites south of the lake. The 14 reference

sites selected for analyses have been sampled annually for 14 or more years and provided information on interannual variability. They were also analyzed to assess the application of the SCI thresholds to South Florida canals. Four consultant reports were found that used FDEP methods to assess the macroinvertebrate communities in canals within the District. More detailed summaries and analyses of these five studies are provided in **Appendix D**.

FDEP Methods – State Bioassessment Database

Of the 156 canal sites sampled in the southern part of the state by FDEP since 1992, 140 were in the southern portion of the peninsula bioregion (including about 60 stations within the SFWMD) and 16 were in the Everglades bioregion (**Figure 10a** and **Table 1**). Although there are no SCI thresholds for the Everglades bioregion, the data are useful for quantifying living resource conditions in canals within this area.

Macroinvertebrate metrics included 10 used to calculate the Stream Condition Index, 3 additional metrics, and the name of the dominant taxon. Habitat and water quality measures were also taken at a subset of these 156 sites (**Table 1**). Water quality parameters included physicochemical, nutrients, and primary production measures at most sites; other measures (e.g., metals, coliforms, sulfate, turbidity, color, TSS, salinity, hardness) were taken at a small number of sites. The data on canals were analyzed in two ways. First comparisons were between canals in the peninsula and Everglades bioregions using mean values (± 1 standard deviation) for three taxonomic richness metrics (total, chironomidae, and EPT richness³). The results were used to identify differences in species richness across bioregions. Second, SCI scores and richness measures were regressed against habitat quality scores to assess whether habitat quality was a likely stressor in canals.

³ EPT richness refers to the total number of mayfly (Ephemeroptera), stonefly (Plecoptera) and caddisfly (Trichoptera) taxa in a sample.

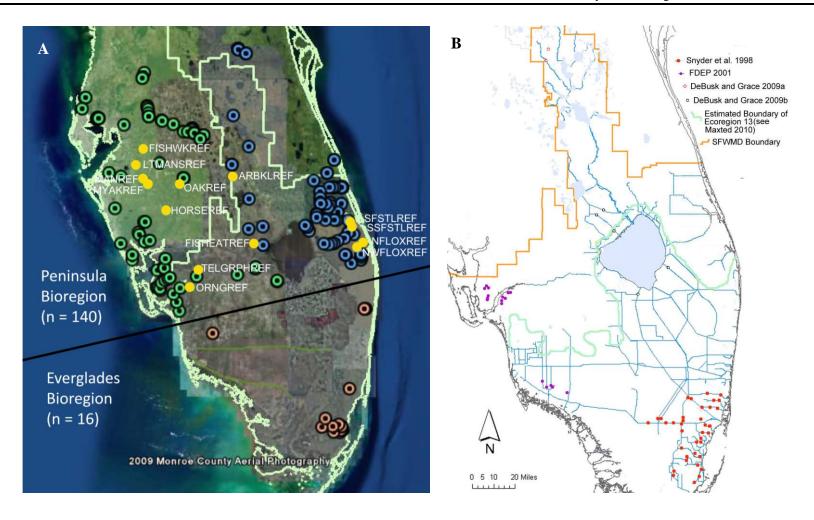


Figure 10. Macroinvertebrate sites within the District boundary sampled using FDEP methods. A) Locations of 156 canal sites sampled in two bioregions for macroinvertebrates by FDEP. Blue sites represent Zone 1 (east) and green sites represent zone 2 (west) of the peninsula bioregion (see text). Brown sites represent the Everglades bioregion. Labeled gold sites are reference stream sites (see Maxted 2010 in Appendix D).

B) Locations of sites sampled by consultants using FDEP methods discussed in this report. The light blue line is the FDEP bioregion boundary.

Measure	# of Metrics	# of Canal Sites by Bioregion	
		Peninsula	Everglades
Macroinvertebrate	14	140	16
Habitat	14	95	2
Macroinvertebrate + Habitat	28	93	2
Water Quality*	60	40	2

Table 1. Number of sites and metrics where macroinvertebrate, habitat, and water quality data have been collected by FDEP in canals in South Florida (**Figure 10a**).

The 14 reference stream sites in the southern portion of the peninsula bioregion were also evaluated to understand differences in the invertebrate communities in minimally disturbed streams. The results provide insights into the spatial and temporal variability inherent in natural streams in central Florida and the variability that might also affect more disturbed systems such as canals. Comparisons were made in mean richness (total and EPT richness \pm 1 standard deviation) between sites in the eastern and western zones of the bioregion to assess differences that might be due to broad geographic variables such as geology and climate. The data were also plotted over time to understand temporal variations over a 14-year or longer period of record. The following conclusions were drawn from the data (details appear in **Appendix D**):

- Canals had a diverse community of macroinvertebrates based upon three richness metrics total richness. Chironomidae richness, and EPT richness.
- The macroinvertebrate community in canals was typical of lotic (flowing water) systems with lower topographic gradients, deeper channels, and lower velocities compared to natural streams.
- For canal sites, there were no differences in mean richness metrics between the Everglades and peninsula bioregions, indicating that canal biota were similar across this large geographic area and the two bioregions.
- Habitat quality appeared to be an important stressor in canals although high variability caused weak statistical relationships.
- There were inadequate data to assess effects of water quality, including nutrients, on macroinvertebrate communities in canals because only grab water samples were taken on the day of macroinvertebrate sampling. Macroinvertebrate communities reflect water quality conditions over long periods and water quality parameters, particularly nutrients, are highly variable due to changes in rainfall and flow. Therefore, single water quality values do not accurately reflect water quality conditions needed to assess relationships between water quality (i.e., nutrients) and biology (i.e., invertebrates).
- For reference stream sites, there were no differences in total richness between sites in the eastern and western zones of the peninsula bioregion. There were substantial differences

^{*} not all WQ parameters reported at all sites

in EPT richness between the two zones, and this should be investigated further before applying the SCI metrics and thresholds to canals. The differences may be due to differences in gradient, depth, and velocity.

- There was a downward trend in metric values at most reference stream sites over a 14-year period (1992-2006), indicating that changes in macroinvertebrate communities may be due to events that exerted effects over a large geographic area. The variability in macroinvertebrate metric values at reference sites helps to explain the variability observed at all stream and canal sites in southern Florida.
- Metric and SCI scores were lower in canal sites compared to reference stream sites indicating that canals do not achieve the same level of biological quality compared to natural streams. Of the 52 canal sites, 44 (85%) with recent SCI scores (2004 to present) were classified in the lowest ("impaired") assessment category (SCI score < 35 points), and only one site (SCI score = 59) was classified in the middle category (SCI score 35-70 points). No canal sites were classified in the highest category (SCI score > 70 points). This may be due to physical differences related to channelization including riparian habitat quality, depth, and velocity. These SCI results should be viewed with caution because the SCI is not directly applicable to canals and streams in South Florida. Additional research is needed to select sensitive metrics and a quality threshold applicable to low gradient streams and canals within the peninsula and Everglades bioregions.

FDEP Methods - Miami-Dade County

Snyder et al. (1998) collected macroinvertebrate and habitat quality data at 32 sites in Miami-Dade County during February (winter, dry season) 1996 (see **Figure 10b** and **Appendix D**). The sites were selected in four land use categories (wetlands, agriculture, suburban, and urban/industrial) to provide a disturbance gradient for these engineered waterways. Twenty sites were resampled in July (summer, wet season) 1996 to determine seasonal differences. Snyder et al. (1998) concluded that surrounding land use and habitat quality were key drivers of invertebrate community condition.

Several invertebrate metrics (total richness, Florida index, % dominant taxon, % midge) and the SCI followed a pattern of increasing disturbance from wetlands \rightarrow agricultural \rightarrow suburban \rightarrow urban/industrial. This pattern was also identified from analysis of the raw taxonomic data. The highest quality sites were those with wetlands as the predominant surrounding land use, but had lower metric and SCI scores than FDEP reference stream sites in peninsular Florida. Biological condition as measured by the SCI was weakly correlated with habitat quality ($r^2 = 0.35$). Highest quality canal sites were dominated by long-lived taxa, indicating that impacts were related to periodic stressors. These results suggest that canals (1) have lower quality conditions than natural streams and (2) are affected by land use and habitat quality.

<u>FDEP Methods – Ft. Myers, Cape Coral, Golden Gate, Picayune Strand, Fakahatchee Strand</u>

A study by FDEP (2001) provides an assessment of the biological conditions in urban canals across a range of development intensity and habitat conditions. In the fall of 1999 and spring of 2000, habitat, invertebrate, physico-chemical (temperature, DO, pH, conductivity, turbidity), and

water quality (NH₃, NO₃/NO₂, TKN, TP, algal growth potential) data were collected at 13 sites in residential canals in and around Ft. Myers and Cape Coral, 3 sites in Southern Golden Gate Estates in an area that had canals and roads but no houses, and 2 sites in natural sloughs (moving water channels) within Picayune Strand and Fakahatchee Strand State Preserve (**Figure 10b**). The sites were selected to represent a disturbance gradient based upon the degree of local development, water quality, and habitat quality. The data were insufficient to assess water quality conditions in canals or to statistically correlate biology to water and habitat quality.

Results indicated that invertebrate communities were quite resilient to this type of physical alteration. Variability was high within each site category – the canals with the highest degree of water quality and habitat disturbances had both high and low invertebrate metric values. Biological quality was generally related to habitat quality but variability was high making for poor correlations. Three major conclusions of the study (FDEP 2001) were as follows:

- "Based on their artificial construction, canals cannot be expected to span the full range of scores found in the stream habitat assessment procedures, even in expected 'reference canal' habitat conditions."
- "... our a priori approach to classifying least disturbed canals (which are all artificially created systems) was not successful. Until additional 20 dip net sweep data is collected from an assortment of canals subject to varying degrees of human disturbance (habitat removal, water quality problems), we cannot fully establish reasonable expectations for these artificial systems."
- "If additional canals sampling is done (sufficient to bring the total number of sites up to approximately 50) it is possible that a Canal Condition Index (CCI) could be formulated for future use. This CCI would need to consider supplementary factors, such as ecoregion and flow conditions (flowing vs. stagnant) during the calibration process."

FDEP Methods – Reedy Creek

DeBusk and Grace (2009a) examined the effects of improved water quality on the macroinvertebrate community at a single site (RC-14) on Reedy Creek in the upper Kissimmee Lakes region, south of Orlando (**Figure 10b**). Water quality, habitat, and macroinvertebrate data collected over a 26-year period (1980-2006) were used to assess the effects of sewage treatment plant improvements in 1990. The mean annual TP concentration before 1990 was 266 μ g/L compared to 75 μ g/L after the improvements; mean annual TN concentrations were 1.92 μ g/L and 1.41 μ g/L, respectively. The macroinvertebrate community showed little or no response to improved water quality: five macroinvertebrate metrics did not change, two showed some improved response, and six, including the Florida Biotic Index, declined in biological condition with improved water quality. The site maintained "optimal" habitat conditions over the study period, including a natural meandering channel, diverse in-stream habitat, and good riparian vegetation.

Samples also were also collected in a tributary of Reedy Creek (Bonnet Creek) upstream of site RC-14. This site (C-12) was a channelized stream with poor habitat quality, providing a framework for looking at the effects of habitat quality on the macroinvertebrate community. The macroinvertebrate communities were compared between these two sites for the years that had comparable water quality conditions.

Most metrics showed significant reductions in biological condition at site C-12 compared to site RC-14, indicating that habitat quality was a key stressor. The finding of this study should be viewed with caution due to the limited number of sites and the lack of replication. However, the findings are similar to those of the FDEP (2001) and Snyder et al. (1998), which showed that biological communities in channelized South Florida streams and wetlands are influenced by surrounding land use and physical alterations of the channel and riparian habitat.

FDEP Methods - Canals near Lake Okeechobee

DeBusk and Grace (2009b) examined the water quality, physical habitat, and macroinvertebrate communities in five canals near Lake Okeechobee; three sites were north of the lake (and south of Lake Istokpoga) and two sites were in the Everglades Agricultural Area (**Figure 10b**). All sites were engineered canals with poor habitat quality. The investigators compared their results to macroinvertebrate data collected by FDEP as part of their SCI network that included 12 canals and 53 reference streams throughout Florida.

Comparison of scores for total richness, EPT richness, and SCI scores for the five canal sites indicated: (1) lower quality conditions in canals compared to natural streams, and (2) high variability in all metrics. SCI scores were similar to FDEP canal sites and lower than all but one of the FDEP reference stream sites. The metric and SCI values were also similar to other studies of canals in South Florida (Snyder et al. 1998, FDEP 2001, DeBusk and Grace 2009a). The metric and SCI data indicate that canals provide a diverse community of macroinvertebrates (20 to 30 taxa) typical of lotic environments with low velocities, high primary production, and depositional substrata.

Other Macroinvertebrate Studies in South Florida Canals

Ross and Jones (1979) provide one of the earliest investigations of macroinvertebrate communities in South Florida canals. This report included 32 stations throughout the region, including 12 in freshwater canals of the SFWMD.

Rudolph (1985) examined the macroinvertebrate community structure at three canal sites west of the urban areas and four canal sites impacted by urban development in eastern Miami-Dade County. This study was conducted in conjunction with a chemical water quality assessment as a part of the then Florida Department of Environmental Regulation's (now FDEP) statewide basin assessment survey. The author concluded that all of the sites showed some degree of stress, most likely due to effects of nutrient and organic input from the Everglades Water Conservation Areas, the Everglades Agricultural Area, and runoff from urban canal systems. The natural flora and fauna were also impacted by competitive interactions with exotic aquatic plants, invertebrates, and fish. Results of this study are not directly comparable to more recent studies because different methods for collection and processing of samples were used.

Rutchey (1992) monitored littoral shelf communities for three years in the West Palm Beach Canal (C-51) to test whether shallow water habitat could be created and maintained in a canal environment. Both bermed and unbermed littoral shelves quickly became dominated by exotic species of floating vegetation, which limited plant community structure and caused reductions in the number and diversity of benthic macroinvertebrates. The effects of the artificial structure and management of canals were apparent both in the colonization by floating exotic species and by a significant problem with floating debris that collected in the littoral area. Without continuous

control of invasive species, debris removal, and stabilization of bank areas, it was concluded that canals were not a suitable setting for creating littoral shelves.

Macroinvertebrate Studies in Canals in Other States

Maxted et al. (2000) conducted a collaborative study among six states along the mid-Atlantic seaboard of the United States to develop a consistent approach for collecting and interpreting macroinvertebrate data for low gradient streams of the coastal plain. Macroinvertebrate, habitat quality, physico-chemical (DO, conductivity, TSS, pH), and water nutrient (TP, NO₃/NO₂) samples were collected in the fall of 1995 for three types of sites: (1) reference sites consisting of natural streams, (2) habitat impaired sites (canals located primarily in agricultural areas), and (3) water quality impaired sites (streams with flow dominated by a municipal wastewater discharge and good habitat quality). Data were reanalyzed to compare macroinvertebrate metrics among reference sites, habitat impaired sites, and water quality impaired sites separately (**Appendix D**).

Results indicated that separation from reference sites was greater for habitat impaired sites than for water quality impaired stream sites, indicating that habitat quality was a primary driver of biological conditions in low gradient streams. Although the results are not directly applicable to the aquatic fauna in Florida streams and canals, three conclusions can be drawn from the data that may also apply to canals in South Florida:

- The removal of riparian vegetation from canal banks makes it difficult for canals to achieve a high degree of biological quality in canals
- A high degree of biological quality can be achieved, despite poor water quality, if natural channels and riparian vegetation are maintained
- Reference sites were similar to each other from one state to the next, despite large differences in land use and percentages of forested lands in their respective catchments

Assuming that water quality is proportional to the degree of development in the catchment, the high degree of urban and agricultural land uses at many reference sites did not affect the biology of streams with natural channels and good riparian vegetation. Taken together, these results provide further indication that water quality is less important than habitat quality in determining the biological condition of canals.

Fish

SFWMD staff conducted a literature review of fish studies from South Florida canals. Results of this review are summarized here and in **Appendix E** along with information provided on the use of fish in aquatic weed maintenance.

Canals Located in Undeveloped or Natural Areas of South Florida

Trexler et al. (2000) concluded, based on results from studies conducted over several years at eight sites in the Florida Everglades, that canals held the largest introduced fish populations in the study area. Exotic species were more abundant in canals within disturbed or developed areas, whereas canals in natural areas and natural habitats distant from canals held fewer introduced fishes. Canals are a permanent aquatic refuge unlike any native Everglades habitat and are sites

where introduced species of fish often become established. Canals provide refuge from drought for fish, which move into the marsh during the wet season. Urban and Everglades canals differ in composition and proportion of native to exotic species – principally due to marsh-requirements of native fishes (Trexler et al. 2000).

Jordan (1996) concluded that apparent changes in the occurrence and density of shrimp and crayfish associated with proximity to canals may be due to top-down consumption by fishes and lack of nutritive value of cyanobacteria to crayfish and shrimp in enriched zones. Fish had much higher abundance within enriched areas bordering canals and this region may serve as a littoral zone for fish production. Similarly, Turner et al. (1999) found that sharp nutrient gradients in Everglades marshes along canals resulted in greater fish biomass at enriched sites than reference sites. No such differences were apparent for invertebrates, suggesting that fish are consuming the invertebrate production. Results of the study indicated standing stocks in the Everglades are unusual, and are possibly similar to seasonal-tropical wetlands with limited deep-water refugia for large-sized fish; in other words canals create excessive and artificial refugia for fish.

Rehage and Trexler (2006) found that density of fish and macroinvertebrates changed within 16 feet of canals with little change in community species composition, but showing a pattern, most pronounced in the dry season, suggesting that canals act as refugia. The most apparent effect of canals was that they act as conduits for nutrients that stimulated local productivity in adjacent marshes. There was no evidence that canals were sources of predators into the marsh, but more study is needed, particularly on how fish disperse from canals.

Within the Big Cypress National Preserve, canals supported the greatest diversity of fish species. Most of these were saltwater-adapted or large freshwater predator species. As in other parts of Florida, canals in the preserve also provide aquatic refuge during the dry season. Some species of exotic fish captured on the marsh were exclusively taken at sites adjacent to canals (Ellis et al. 2004).

While canals clearly can act as refugia, the importance of this function depends on the size of the fish (Howard et al. 1995). In the Arthur R. Marshall Loxahatchee National Wildlife Refuge, large fish are uncommon in the marsh, but accumulate in large populations in canals and may affect marsh fish densities within 1.5 miles of the canals (Trexler et al. 2004). Similarly, preliminary results of studies conducted in coastal areas of Miami-Dade and Broward counties indicated that small-bodied fishes were most common in shallow marsh habitats and larger-bodied fishes were more common in canals (Nico et al. 2001).

In non-urbanized canals, particularly those through marshes, exotic fish are less numerous than native fish (Hogg 1976). Many exotic species are less tolerant of low temperature conditions than native species. During cold periods, water temperatures in the marshes tend to be significantly lower than in the canals. This may explain why exotic species are less abundant in the marshes. Canals and deep solution holes provide warm water refugia for exotic fish species during cold weather conditions (Schofield et al. 2009). Other exotic species, such as the brown hoplo, tolerate low temperature exposure and have expanded rapidly across many Everglades habitats and into northern Florida following its introduction (Schofield and Huge 2009).

Langston and Schofield (2009) examined the spawning interaction between exotic Mayan cichlid and native Everglades spotted sunfish to determine how an exotic fish can influence the reproductive success and behavior of a native species. Mayans did not breed when native spotted sunfish were present and did not appear to interfere with the native sunfish breeding success.

Kissimmee River/C-38 Canal Studies

In the Kissimmee River system, Perrin et al. (1982) found Florida gar was the dominant species by weight in trawl samples of the C-38 Canal and the remnant river channels. Florida gar also dominated gill net samples of C-38, while gizzard shad dominated samples from remnant river runs (Perrin et al. 1982). Three species, the blackbanded darter, coastal shiner, and tidewater silverside, have not been collected since channelization and may have been extirpated from the system.

Furse et al. (1996) documented the presence and distribution of largemouth bass in the C-38 Canal and adjacent oxbows and marshes and concluded that large bass preferred to live in the canals but tended to migrate toward shallower water in response to oxygen stress.

A creel survey conducted between September 1978 and August 1980 indicated that the percentage of total fishing effort directed toward largemouth bass declined to 45 percent (Perrin et al. 1982), a decrease of more than 30 percent since channelization. This indicates fishermen began targeting other species, perhaps because fishing success for largemouth bass had diminished. Mean catch rate for largemouth bass during the survey period was 0.25 fish/hour, which was similar to the catch rate during historic conditions. Angler catch rates for bream have increased by 32 percent (1.04 fish/hour), whereas catch rates for black crappie have declined by 29 percent (0.67 fish/hour).

Canals in Developed Areas

Canals in developed areas differ substantially with respect to their fish populations. Some support healthy populations of native species, while others are dominated by exotics. Many exotic fish historically existed only in canals after their initial introduction, and subsequently became widespread and variably established in some Everglades marshes and peripheral habitats. Some exotic species tolerate estuarine salinity conditions and low oxygen concentrations that enhance their ability to survive in coastal canals and rock pits (Schofield et al. 2007). Poor water quality and steep sides may make urban canals less than optimal for native fishes. These adverse conditions allow invaders to more easily establish. Highly urban canals also receive little predation pressure by wading birds or native fish due to low visitation or occurrence and may allow exotics to flourish (Loftus and Kushlan 1987).

Studies by Loftus and Kushlan (1987) indicated that some canals remained free of exotics. Their collections suggested that exotic species were not abundant in canals with healthy native fish populations. Characteristics of canal size and shape, marginal and submerged vegetation, and water quality permit native fishes to maintain their populations and perhaps prevent or delay a large-scale takeover by exotics (Loftus and Kushlan 1987).

The presence of exotic species does not necessarily have adverse effect on native species. Shafland et al. (1985) observed that an excellent largemouth bass fishery existed in Black Creek Canal (C-1) despite the presence of large number of tilapia. Most native canal fishes are primarily carnivorous, whereas most exotic fishes are herbivorous or detritivorous (Courtenay and Hensley 1979), thus exotics can consume the large quantities of algae, macrophytes, and detritus in canal system that are not exploited by native fishes (unpublished data, Loftus and Kushlan 1987). Native and exotic species may therefore be able to coexist over long periods since they are not necessarily competing for the same resources (see also Langston and Schofield 2009).

Fish Studies in Canals in Other Areas

Similar effects of channelization on fish assemblages have been documented in other systems. Tarplee et al. (1971) found channelized Coastal Plain streams in North Carolina had reduced biomass, diversity, carrying capacity, and number of harvestable sized game fishes. They also noted channelization adversely affected game fish to a greater degree than nongame fish. Hortle and Lake (1983) attributed decreased abundance and species richness of fishes in Australian streams after channelization to loss of suitable habitat (i.e., area of snags, area of slack water, length of bank fringed with vegetation). Other studies attribute reduced standing crop, density, and diversity of stream fish to decreased habitat, as well as decreased cover and shelter, food, and available spawning areas (Guillory 1979, Welcomme 1985, Sheaffer and Nickum 1986, Copp 1989, Junk et al. 1989). Karr and Schlosser (1978) suggested that as much as 98 percent of the standing crop of fishes in a river may be lost when the flood regime is altered by channelization. Jurajda (1995) concluded that reduced reproduction and recruitment of age-0+fish following channelization was primarily due to the isolation of inundated floodplain from the main channel, resulting in loss of spawning habitat and refugia.

Birds

Dalrymple and Dalrymple (1996) found that canals served as focal point for some species, especially wading birds and other wildlife. For other bird species, such as least bitterns, they provide unfavorable habitat (Frederick et al. 1990).

Alligators

Reproduction and Development

Chopp et al. (2000) determined that hatching success and young survivorship is lower in canals. Further studies by Chopp et al. (2001, 2002a) concluded that canals were harsh environments for alligator reproduction compared to interior sites due to flooding and predation of canal nests. However, Chopp et al. (2000) suggest that canal alligators benefit from warmer canal water and better digestion rates and are therefore larger and healthier than marsh alligators. Chopp et al. (2002b) determined that alligators in the Loxahatchee National Wildlife refuge produce relatively small egg clutches compared to North Florida and Louisiana and therefore have comparatively lower annual reproduction rates. Egg position in the clutch significantly affects the probability of eggs being flooded and surviving and even small changes of nest elevation affect survivorship along canals (Chopp, unpublished data). During 2000, all canal nests flooded, while no interior marsh nests flooded.

Diet

Fogarty and Albury (1967) studied juvenile alligators from the L-38 Canal and observed that apple snails and crayfish made up the vast majority of the diet. In contrast, Barr (1997) conducted studies of alligator diets within the Everglades, primarily within Shark River Slough, and found that snakes were dominant prey of adult alligators, snails for sub-adults, and insects for juveniles. Fish were consumed far less than snakes and birds were rare in stomachs. The author suggested that canals have a different prey base and thermal gradient than sawgrass

marshes. Urban canals and their alligators have a very different ecology than those associated with the Everglades.

Hydrology

Studies by Fujisaki et al. (2009) suggest that alligators are very sensitive to hydrologic conditions, even on short time scales (days). In areas that have become overdrained, alligators only occur in permanent water bodies such as canals or ponds, or during periods of extremely high water. Alligators, initially displaced by development or drainage, have ended up in canals (Meshaka and Babbitt 2005).

Migration and Distribution

Kushlan (1974) concluded that canals are the primary refugia for alligators in many areas and that many large alligators reside in canals. Studies by Mazzotti and Brandt (1994) and Chopp et al. (2000) indicated that adult alligator density was high in canals due to immigration and high adult survival rates. Canals influence alligator populations 0.6 miles into adjacent Everglades marshes. Chopp et al. (2000) suggest that canal alligators move over larger distances and have larger home ranges than alligators that reside primarily in the marshes. By contrast, Morea et al. (2000) determined that alligators in the Water Conservation Areas and Everglades National Park do not differ in home range; males moved longer distances and had wider home ranges than females and canal alligators had linearly shaped home ranges as opposed to marsh alligator home range size. Large alligators moved less and their movements increased as water levels increased. Adult alligator density is higher in canals than in the marsh and alligators living in canals preferred to stay there. Barr (personal communication) feels that alligators use canals as refugia and conduits for long-distance movements, but often forage in the adjacent marsh.

More recently, Phillips et al. (2003) monitored alligator movements with telemetry. They observed that canal alligators strongly selected canals over all other cover types. Canal alligators spend most of their time in canals and move greater distances (i.e., have larger, more linear home ranges) than alligators in the WCA or Everglades National Park marshes.

Crocodiles

Saltwater crocodiles generally prefer saline or brackish water and only occasionally occur in the freshwater canals of South Florida. Populations in Biscayne Bay and Florida Bay have been studied to some extent. Reported canal-dependant crocodiles range as far north as southern Biscayne Bay/Turkey Point. The easternmost observations of crocodiles are on northern Key Largo in old canals. The only permanent northern population is located in the warm canals in a Fort Lauderdale power plant. Crocodiles have been reported to move 6 miles inland using canals (Kushlan and Mazzotti 1989).

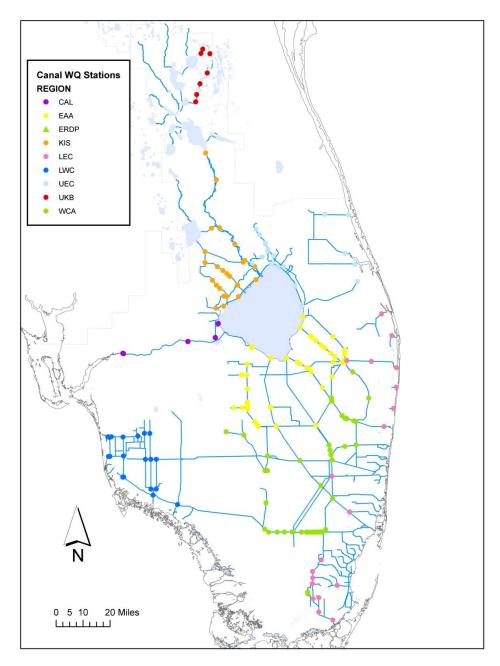
3. SURVEY OF SFWMD CANAL WATER QUALITY AND SEDIMENTS

Introduction

A survey of canal water quality was undertaken to accurately characterize conditions in District canals (primary canals) with respect to key water quality constituents. Water quality monitoring locations were grouped by canal into one of eight regions:

- Caloosahatchee River Basin (CAL)
- Everglades Agricultural Area (EAA)
- Lower East Coast (LEC)
- Lower Kissimmee River Basin (KIS)
- Lower West Coast (LWC)
- Upper East Coast (UEC)
- Upper Kissimmee Basin, Chain of Lakes (UKB)
- Water Conservation Areas (WCA)

These groups allowed a comparison of basic water quality within and between regions, and to illustrate variability within and between canals.


Methods

Identification of Canal Water Quality Monitoring Stations

In all, 208 canal water quality monitoring stations were identified using Google Earth EC and the ArcHydro layers identifying the SFWMD's primary canal system and active water quality monitoring stations (**Figure 11**). At these locations, samples were collected using grab samples, an autosampler, or both. The station had to meet the following criteria:

- Currently active sampling location
- Have at least one sample during the period of analysis (1999 to 2009)
- Be located directly in a primary canal

After the initial screening using Google Earth EC, a list of selected stations and associated maps were circulated among the SFWMD's Water Quality Monitoring staff, who are responsible for all District water quality compliance-related monitoring, to ensure that (1) the stations selected met the first and third conditions above and (2) that no stations that would meet the selection criteria had been omitted. The list was modified based on this review. Eight research canal stations used by the SFWMD's Everglades Division were also added to the list. It should also be noted that the District's primary canal system does not include canals in the urban areas of the Lower East Coast that are part of those areas' secondary and tertiary canal systems.

Figure 11. SFWMD monitoring locations used in this survey of water quality and the eight regional groups of stations.

Identification of Key Water Quality Constituents

SFWMD scientists and engineers participating in the Canal Science Team proposed four key water quality constituents for this analysis (**Table 2**).

Parameter	Units	Abbreviation
Total Phosphorus	mg/L	TPO4
Total Nitrogen	mg/L	TOTN
Specific Conductance	μS/cm	COND
Chlorophyll a (corrected)	mg/m³	CHLA

Table 2. Key canal water quality constituents.

Period of Analysis

The period of analysis was January 1, 1999, to April 30, 2009. This period was selected to emphasize more recent water quality conditions in canals based on consistent sampling and quality assurance protocols, as opposed to examining the entire period of record for the identified stations.

Data Management and QA/QC

Water quality data for the identified canal stations and parameters were extracted from the DBHYDRO database. Concentrations that were below detection limits were assigned a value of half of the detection limit. The data were placed in an MS Access 2007 database for further review and QA/QC. The database contained 359,369 records prior to QA/QC. The database was then screened using the following QA/QC processes:

- Data that were qualified as having failed laboratory or field QA/QC tests were removed
- Data with comments indicating that the data should not be used for analysis were deleted
- Duplicate results were removed
- The minimum and maximum values of each parameter were examined for outliers to be further investigated using the SFWMD's established QA/QC procedures
- Data that showed reversals in nutrient concentration (e.g., where dissolved PO4 was greater than total TPO4) were removed

Following screening and review, 337,915 records remained. Some of those records were multiple readings on the same day at the same location. These were collapsed into a mean daily value at the location. Ultimately 331,733 records were used in this survey of canal water quality.

Summary Statistics

SYSTAT 12⁴ software was used to produce summary statics to analyze the water quality data and the resulting figures follow. Corresponding tables of all summary statistics produced are provided in **Appendix F**, shown by region, canal, and station.

Water quality data can be highly variable and often skewed (non-normal distribution). Therefore, the median and geometric mean values are probably more reliable indicators of long-typical water quality conditions within the canals. The 25th and 75th percentile values are provided to indicate variability about the median and the range within which 50 percent of the observed values fell.

Results and Discussion

Regional Comparisons and Spatial Patterns

Figures 12 through **15** show the variation in the summary statistics for the key water quality parameters (**Table 2**) among the eight regions (**Figure 11**). The canal monitoring locations in the Upper Kissimmee Basin only had total TPO4 analyses, so subsequent parameter graphs only show the other seven regions.

These figures illustrate the large variation by region and unique patterns between parameters. Results for median TPO4 vary by an order of magnitude among sites and appear to related to the intensity of agricultural land use for the central and northern portions of the District (**Figure 12**). Median values of TOTN and conductivity show less variation. Most water conveyed through the canals has a specific conductance of 500 µS/cm or more (**Figure 15**), which is not surprising in part because many canals were cut through surficial soils high in limestone content. Chlorophyll a values are not particularly elevated in canals; all median values are about 10 mg/m³ or less (**Figure 14**), well below the state's nutrient impairment threshold of 20 mg/m³. In the context of high nutrient levels in the Caloosahatchee River Basin, Everglades Agricultural Area, Lower Kissimmee River Basin, and the Upper East Coast, it appears that canals are not very sensitive to nutrient concentrations.

The data show a distinct spatial pattern for both TPO4 (**Figure 16**) and TOTN (**Figure 17**). The highest values are near Lake Okeechobee and the Everglades Agricultural Area and lowest values furthest away from this central area.

Temporal Variability and Wet Season Effects

The data provide a relative comparison of data variability across the eight regions and between stations within each region. Temporal variability was high for many stations and several parameters. The interquartile ranges (size of the probability boxes) often exceeded median values indicating high variability. Variations in TPO4 were highest in the Everglades Agricultural Area and lowest in the Lower East Coast, Lower West Coast, Upper Kissimmee Basin, and Water Conservation Areas. Variations in TOTN were highest in the Everglades Agricultural Area and lowest in the Caloosahatchee River Basin. Variation associated with wet seasons was also

-

⁴ SYSTAT Software, Inc., Chicago, IL

examined for TPO4. **Figure 18** shows the impact by region of season by comparing the wet season (June to October) TPO4 concentration summary statistics and annual summary statistics (also shown in **Figure 12**). Wet season (June to October) summary statistics for TPO4 are higher in each region and the range is higher and greater (**Figure 18**). The most obvious example of this is the wet season and annual statistics for the Upper East Coast region.

There also is considerable variation in concentration over time at each station. For example, **Figure 19** shows that variation at S8, a major pump station on the Miami Canal in the Everglades Agricultural Area. The variation and average values of TPO4 have been decreasing at this station in association with the implementation of agricultural best management practices in the mid-1990s and the completion of Stormwater Treatment Area 3/4 in 2005.

Figure 12. Total phosphorus concentration summary statistics by region.

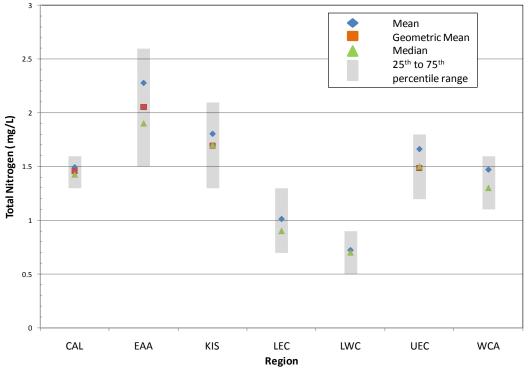


Figure 13. Total nitrogen concentration summary statistics by region.

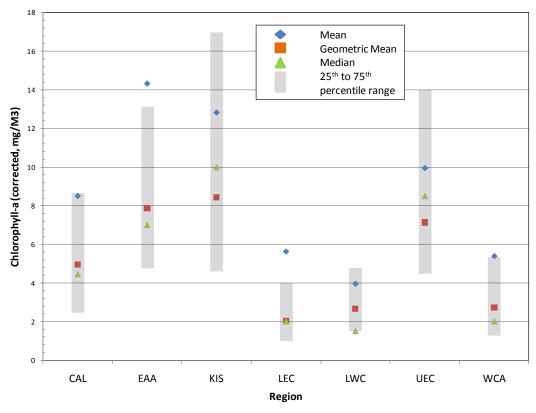


Figure 14. Corrected chlorophyll a concentration summary statistics by region.

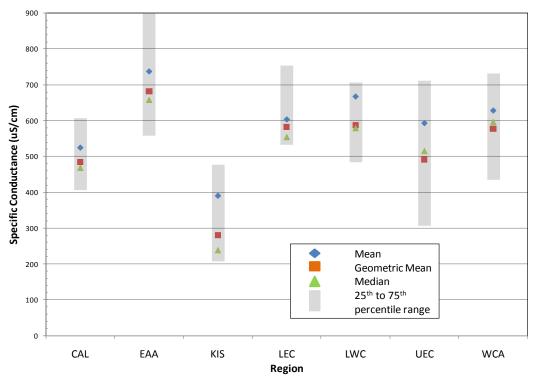


Figure 15. Specific conductance summary statistics by region.

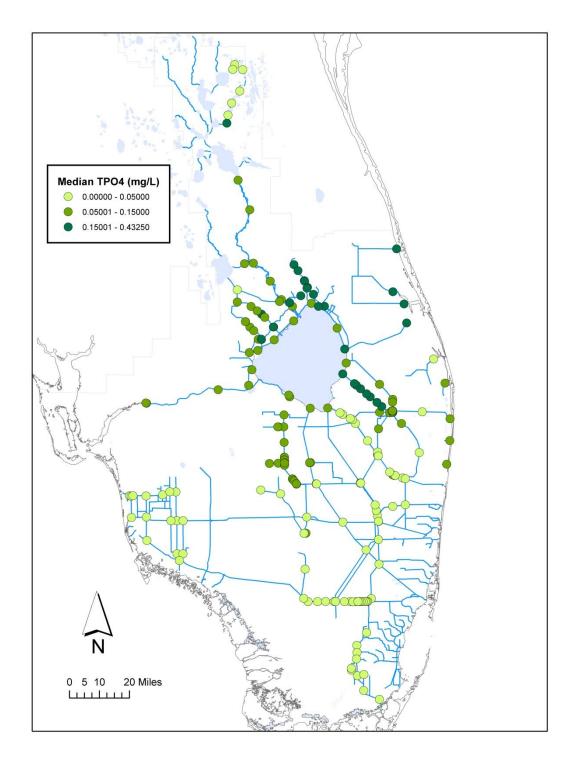


Figure 16. Total phosphorus median values.

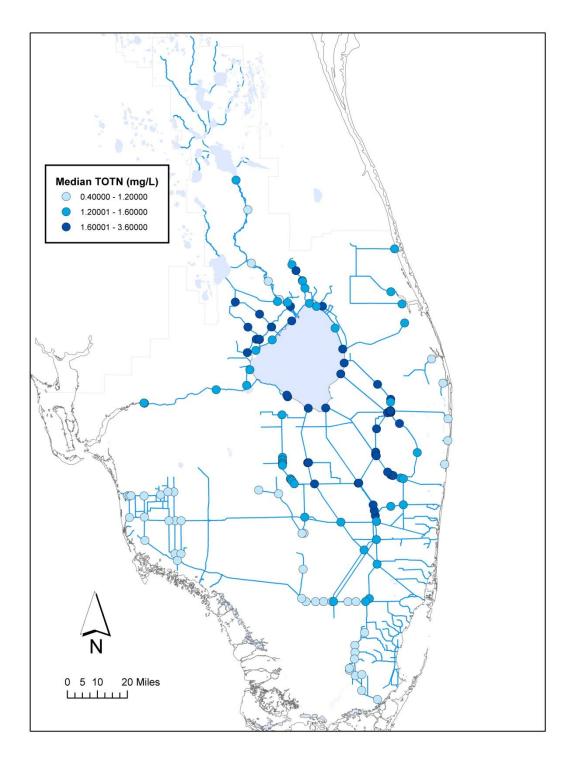


Figure 17. Total nitrogen median values.

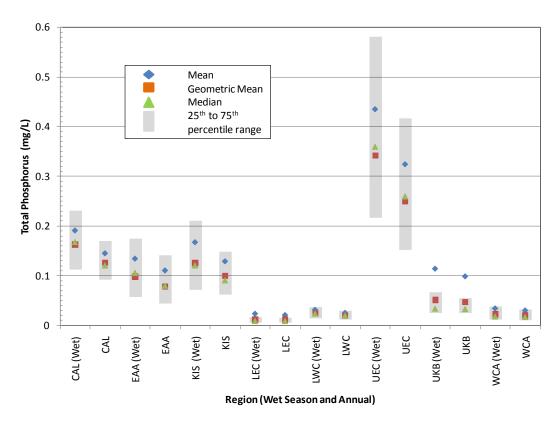


Figure 18. Total phosphorus concentration by region – wet season and annual.

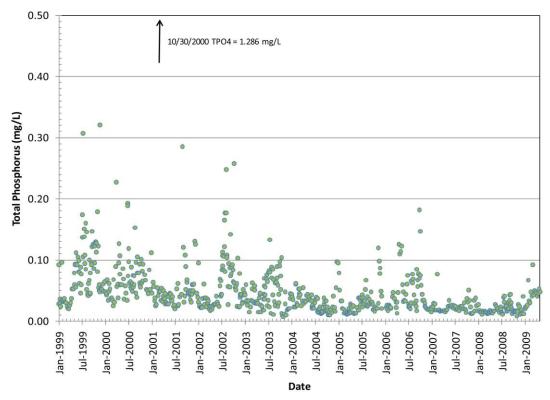


Figure 19. Total phosphorus concentrations over time at S8.

Regional Canals

Variation in summary statistics among canals within a region was also examined. Statistics for TPO4 and TOTN for canals in the Upper East Coast (**Figure 20**) and the Lower East Coast (**Figure 23**) were compared (**Figures 12 to 13** and **24 to 25**). In general, canal locations are ordered from north to south (left to right) on the plot. As noted earlier in regional comparisons, the variation of TPO4 in these regional canals (**Figures 21 and 24**) tends to be much higher than that for TOTN (**Figures 22 and 25**) and the two constituents do not correspond closely.

Canal Stations

The West Palm Beach Canal (**Figure 26**) and the Miami Canal (**Figure 29**) were used to show variation in summary statistics for nutrient (TPO4 and TOTN) concentrations at stations within each canal. These are shown in **Figures 27** to **28** and **30** to **31**. Stations are ordered from upstream to downstream (left to right). Within these canals, TPO4 (**Figures 27 and 30**) tends to change more than TN (**Figures 28 and 31**) as water moves downstream and nutrient levels tend to be higher at the more inland, upstream sites.

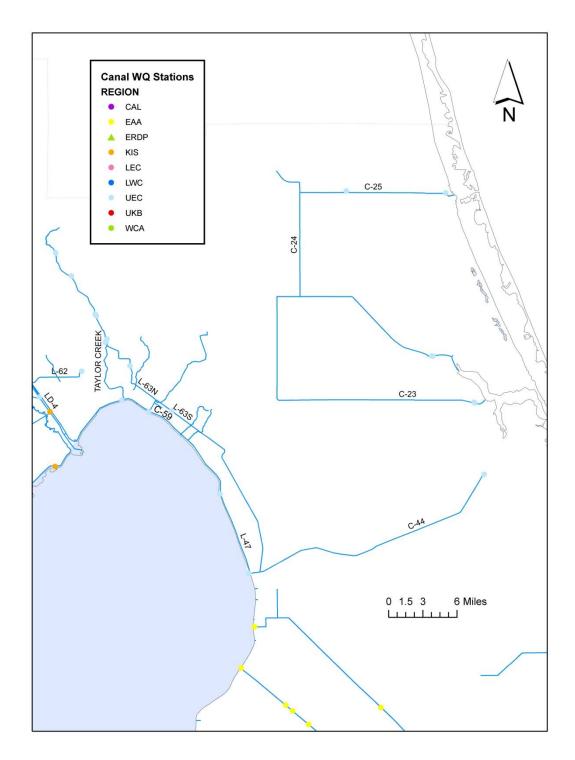


Figure 20. Upper East Coast canals surveyed in this report.

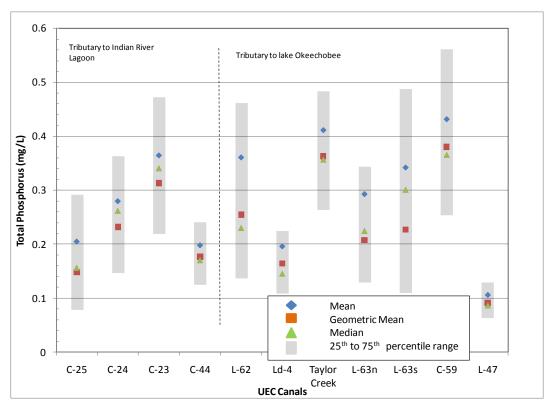


Figure 21. Total phosphorus concentration summary statistics for canals in the Upper East Coast region.

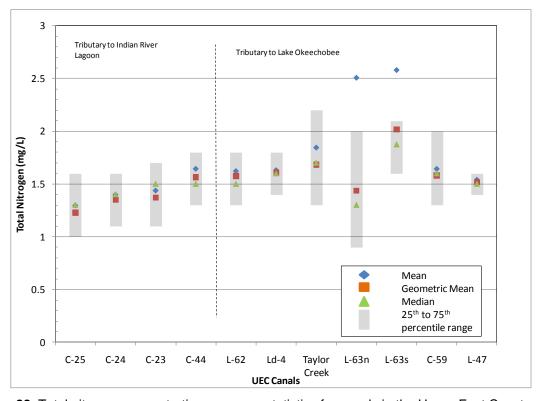


Figure 22. Total nitrogen concentration summary statistics for canals in the Upper East Coast region.

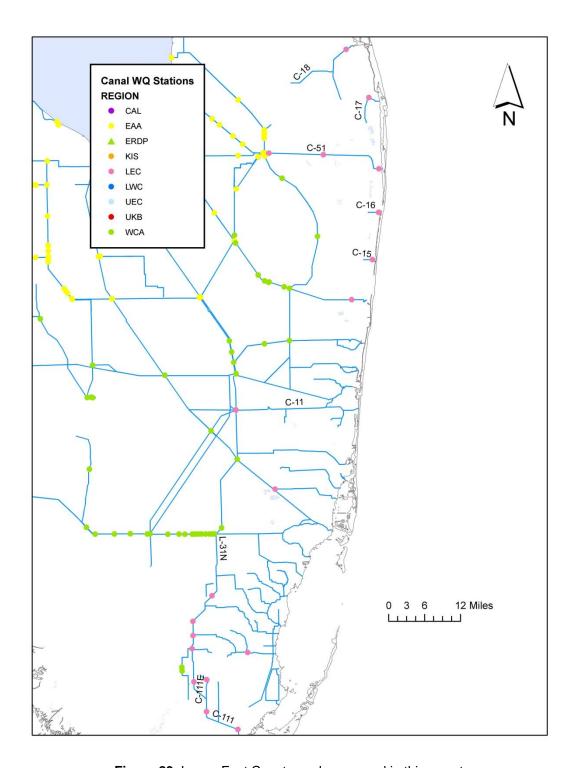


Figure 23. Lower East Coast canals surveyed in this report

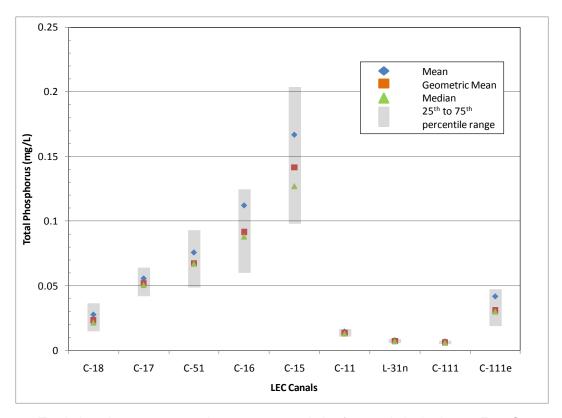


Figure 24. Total phosphorus concentration summary statistics for canals in the Lower East Coast region.

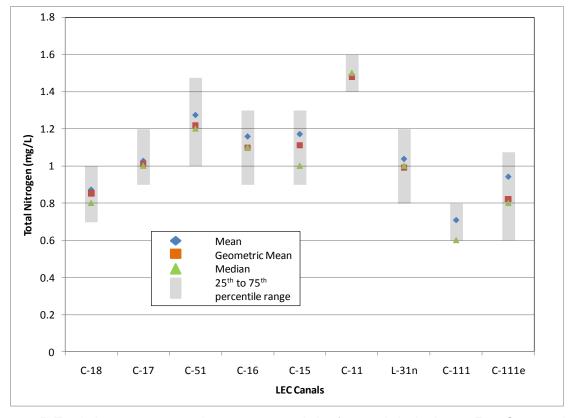


Figure 25. Total nitrogen concentration summary statistics for canals in the Lower East Coast region.

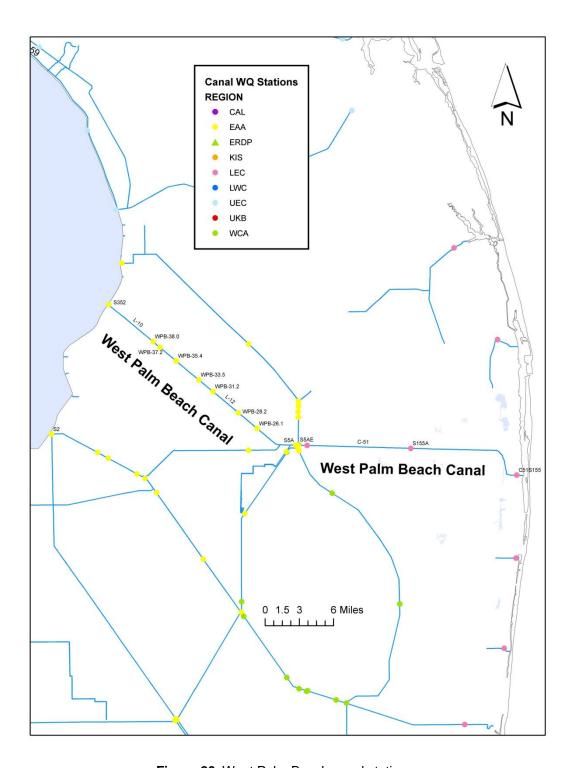


Figure 26. West Palm Beach canal stations.

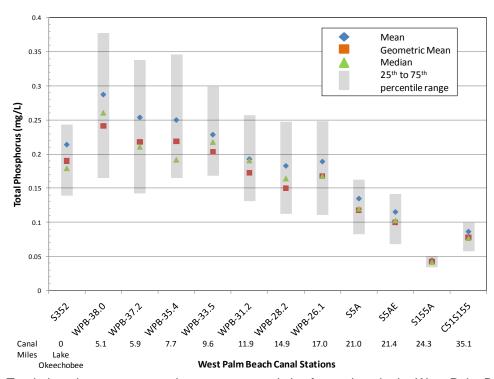


Figure 27. Total phosphorus concentration summary statistics for stations in the West Palm Beach Canal.

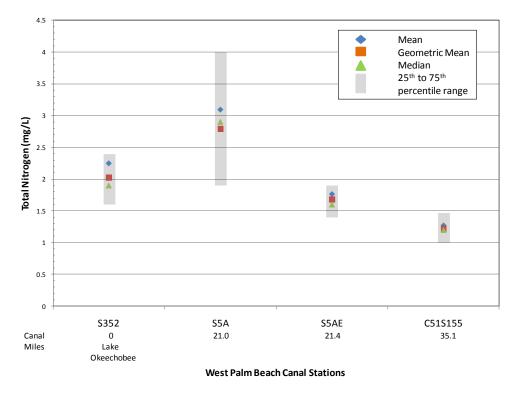


Figure 28. Total nitrogen concentration summary statistics for stations in the West Palm Beach Canal.

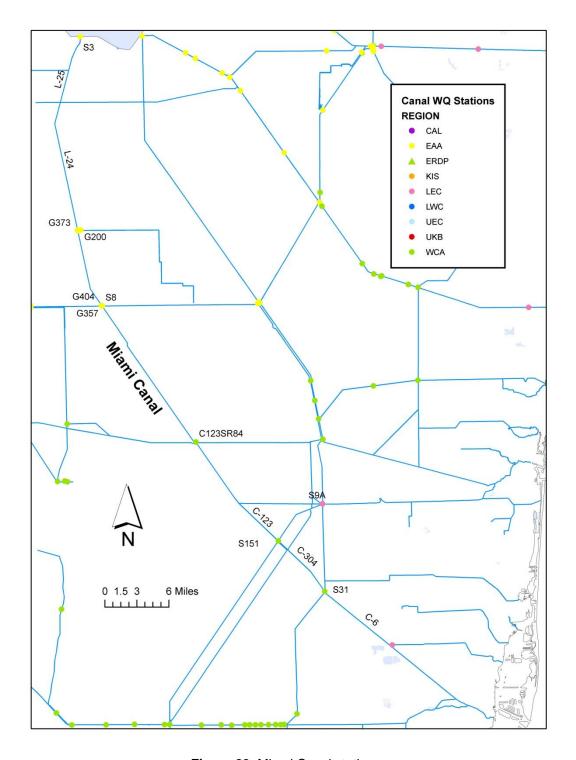


Figure 29. Miami Canal stations.

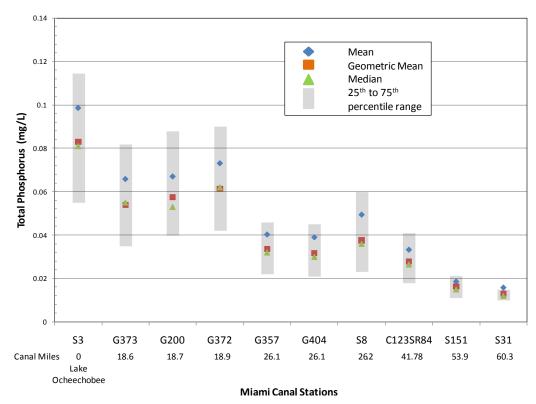


Figure 30. Total phosphorus concentration summary statistics for stations in the Miami Canal.

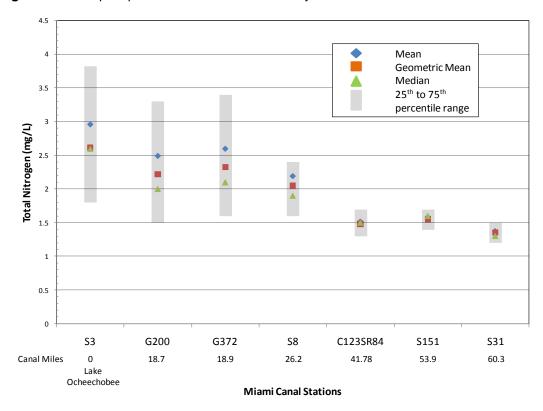


Figure 31. Total nitrogen concentration summary statistics for stations in the Miami Canal.

Summary

Water quality summary statistics for 208 stations in the District's primary canal system were generated to examine regional, seasonal and intra-regional differences for several key water quality constituents, including TPO4, TOTN, and CHLA. Stations in secondary and tertiary canal systems were not examined since those canals are owned and operated by other entities.

Figures 12 to **15** demonstrate variation of water quality summary statistics among regions. The differences in the statistics for TPO4 (**Figure 12**) are the most obvious and fell into three broad categories determined by values of the geometric mean and median:

TPO4 < 0.05 mg/L LEC, LWC, UKB, WCA
$$0.05 \text{ mg/L} \leq \text{TPO4} \leq 0.15 \text{ mg/L} \quad \text{CAL, EAA, KIS}$$

$$0.15 \text{ mg/L} < \text{TPO4} \qquad \text{UEC}$$

The differences among TOTN concentration summary statistics for the seven regions (**Figure 22**) were less discernable than for TPO4. They also may not be indicative of any practical differences but can be grouped as follows:

TOTN
$$< 1.2 \text{ mg/L}$$
 LEC, LWC
$$1.2 \text{ mg/L} \leq \text{TOTN} \leq 1.6 \text{ mg/L}$$
 CAL, UEC, WCA
$$1.6 \text{ mg/L} < \text{TOTN}$$
 EAA, KIS

The affect of nutrients and other environmental variables can be seen in the chlorophyll *a* concentration summary statistics shown in **Figure 14**. These statistics were grouped as follows:

CHLA
$$< 4 \text{ mg/m}^3$$
 LEC, LWC, WCA
$$4 \text{ mg/m}^3 < \text{CHLA}$$
 CAL, EAA, KIS, UEC

The values of all regional geometric means for chlorophyll a were less than 10 mg/m^3 .

There appeared to be no clear grouping of summary statistics for specific conductance by region (**Figure 15**). The Lower Kissimmee River Basin had the lowest geometric mean and median values; the Everglades Agricultural Area had the highest.

Variation in the range of TPO4 values between the 25th and 75th percentile values increased when only wet season observations were considered in all regions (**Figure 18**). The groupings remained as described above for **Figure 12**. The mean, geometric mean, and median values for each region increased as a result of selecting only wet season values in the analysis of summary statistics.

Differences among canals within the Upper East Coast and Lower East Coast are apparent for TPO4 but less so for TOTN, although differences can be observed in the corresponding summary statistics (**Figures 21** to **22** and **24** to **25**).

Along canal reaches, there is a downward trend in the summary statistics for TPO4 and TOTN as water moved downstream in the Miami and West Palm Beach canals (**Figures 24 to 25** and **27 to 28**). Although not examined in this analysis, nutrient summary statistics are tied to land use. This is most obvious in **Figures 24 to 25** and **27 to 28**. These figures show the change in statistics from agricultural or urban areas through Stormwater Treatment Areas and WCAs to coastal ridge land uses (primarily urban and agricultural) and ultimately to tide.

Sediments

The SFWMD recognizes that sediment characteristics in canals, lakes, and wetlands are an important factor in determining the chemistry of overlying water. Numerous studies of sediments have been conducted in lakes and wetlands of South Florida. Although fewer such studies have been conducted in canals, information is available. Due to time and manpower constraints, investigations on canal sediments were not extensively searched or reviewed for this report. Two studies are included as representative of the types of additional data that are likely available. Further information concerning these studies is provided in **Appendix G**.

Trefry et al. (2009) provide one of the only detailed studies of the chemistry of canal sediments in South Florida. Bottom sediments in the West Palm Beach (C-51) Canal were analyzed in 33 locations. The average depth of sediments was about 20 inches with 5 of 33 samples in the canal having sediment depths greater than 3 feet. Water depths at these locations averaged 14 feet with shallower depths being seen upstream. No upstream/downstream pattern was evident in sediment depth. Using a suite of chemical ratios for sediments from the C-51 Canal and from Lake Worth Lagoon, Trefry et al. (2009) provided substantial evidence that downstream sediments in the lagoon within 1.2 miles of the canal terminus are derived largely from canal sediments and that canal sediments in turn, are sourced primarily from the western, agricultural portion of the canal. Terrestrial inputs upstream are an important source of organic matter in the canal and downstream in the lagoon. This observation is important as it suggests that the canal is subsidized heavily from external particulate inputs, as opposed to generating organic matter primarily within the canal food web.

A survey of canal sediments, characterizing approximately 122 miles of canals in the Water Conservation Areas was conducted by the University of Florida Institute of Food and Agricultural Sciences in 2001 (Daroub et al. 2003, Diaz et al. 2006). Canals were grouped by location into eastern (L7, L39, and L40), central (L5, L6, and L38), and western (Miami Canal North and Miami Canal South areas. Sediment samples and sediment depths were collected along transects every 1 mile down the length of the canal. Average TPO4 concentrations from surface sediments ranged from 258 mg/kg in sediment samples from the L6 Canal to 1700 mg/kg in samples from the Miami Canal South. The results of this study indicated the following:

• Sediment depths were highly variable, both across a given transect and longitudinally down any given canal. Canal average sediment depth ranged from 1.8 feet in the L6 Canal to 8 feet in the L7N Canal with a volume totaling almost 2 million cubic yards.

- Low sediment accumulation in some canals was suggested to be a result of higher flow velocities due to the canals' small cross-sectional areas, increasing the likelihood of sediment resuspension and transport during strong drainage events.
- The total sediment volume calculated for the entire 122 miles of canal reaches was almost 9 million cubic yards, with 71 percent stored in the canals from the eastern side (L7, L39, and L40) of the WCAs.
- The total phosphorus mass calculated for the entire sediment profile of all canal reaches in the WCAs was estimated to be approximately 2000 tons.
- Phosphorus fractionation results indicated that more than 80 percent of the TPO4 mass in the surface 4-inch sediment layer of all canals in the WCAs is fairly stable and may be a long-term sink for phosphorus.
- Canal sediments from the eastern side of the WCAs were low in bulk density, highly organic, and more susceptible to resuspension and transport during strong drainage events. These sediments showed higher iron- and aluminum-bound phosphorus and organic-bound phosphorus fractions, making them more susceptible to changes in redox potential of the sediments that could result in long-term release of iron-bound phosphorus to the overlying water column.

4. SUMMARY, CONCLUSIONS AND SYNTHESIS

This technical support document is intended to convey existing information on the nature and ecology of canals in South Florida. This information can facilitate prudent management of these unique resources while it supports FDEP's and USEPA's efforts to develop water quality criteria for canals and FDEP's efforts to revise the existing designated use classifications of Florida waters. The document summarizes a preliminary survey of information available on the water quality and ecology of the primary water canal system in southern Florida. The compilation encompasses published literature, agency reports and original data derived from searches of information from cities, counties, municipalities, and universities. The document was assembled and edited by a team of scientists and engineers at South Florida Water Management District, West Palm Beach and this team intends to continue adding information on canals for future versions of the report.

The South Florida Canal System: History, Function and Diversity

History

- The primary water management system in South Florida consists of the canals and management features operated by the SFWMD and the USACE, as opposed to secondary and tertiary systems that are managed by local governments, special districts, or private landowners.
- Initial canal construction focused on needs for navigation, drainage, and flood control.
 Construction of canals in South Florida began in the Kissimmee River watershed in the
 late 1800s with the digging of channels to connect lakes in the upper Kissimmee basin,
 channelization of the Kissimmee River from Lake Kissimmee to Lake Okeechobee, and
 construction of a channel to connect Lake Okeechobee to the headwaters of the
 Caloosahatchee River.
- Construction of canals south of Lake Okeechobee began in the early twentieth century. Initial efforts focused on drainage of lands for agricultural development. The key primary canals were complete by 1917.
- Improvements were added from the 1920s to the 1950s to provide services to urban areas along the coast, increase flood protection, and reduce the potential for damage from hurricanes. Water supply became a major issue in the mid-twentieth century.
- Beginning in the 1970s and continuing through the end of the twentieth century, additional emphasis was placed on improved management of environmental resources and ecosystem restoration across the region.

Design and Function

Canals are designed and managed to meet human and natural system needs. Canals
primarily maintain appropriate water levels and convey water from areas that have too
much water and toward areas that have too little and move water for discharge to tide or
into areas where it can be conserved.

- Most canals provide limited habitat for aquatic plants and animals. In some locations, canals serve an important ecological function by providing deepwater refugia during dry periods and some canals provide highly productive recreational fisheries.
- Primary canals in South Florida were constructed to collect water from secondary systems, convey water over long distances, provide interconnections among storage areas, and in the process, provide regional drainage, flood control, and water delivery.
- Storage areas and flood prone lands are often surrounded by protective levees. "Borrow" canals are constructed adjacent to the levees to provide the necessary fill and often serve as components of the primary water management system.
- Canals that were constructed for one purpose have been subsequently modified and
 improved to meet other needs. For example, the original regional canals extending south
 of Lake Okeechobee were intended to provide drainage for adjacent lands and for
 transport of agricultural products to the coast. Later they were enlarged to improve flood
 protection and subsequently further modified with the placement of control structures to
 enhance water supply capabilities for man and the environment.
- Efforts to restore degraded environmental resources, notably in the Kissimmee River, Lake Okeechobee, and the Everglades, are underway and will result in further refinements to the primary canal system.

Diversity of Canals in the South Florida Water Management System

Developed over the past hundred years, the canal-based water management system in South Florida is one of the world's largest and most complex civil works projects. Over 1300 water control structures, 64 pump stations, and 2600 miles of canals have allowed the South Florida Water Management District to provide flood control, water supply, navigation, and environmental management over its 16 county, 17,000 square mile watershed.

Canals of the SFWMD differ greatly in their design and operation, depending primarily on the land use and development within the basin. Land uses range from areas that are completely surrounded by natural wetlands, such as those within the Water Conservation Areas or the Kissimmee River Floodplain, to areas that are surrounded by intensive urban development, such as coastal canals in Miami-Dade and Broward counties.

The diversity of our canals is reflected in many observations documented in this report:

- Water quality conditions in canals are affected by surrounding soil conditions, topography, groundwater interaction, and land uses. In some areas, notably eastern Miami-Dade and Broward counties, water quality in the canals is strongly influenced by direct interactions with groundwater.
- Soil types surrounding canals range from sandy upland soils of the Atlantic Coastal Ridge to hydric sands, marls, and peats of the Everglades.
- Topography differs across the District, resulting in differences in canal depths, water levels and flow rates. Water level elevations in canals range from 20 to 60 feet above sea level in the Kissimmee and Istokpoga basins to less than 10 feet above sea level throughout most of Miami-Dade, Broward, and Monroe counties.

Upper and Lower Kissimmee Basins

- Canals in the Kissimmee Basin were initially constructed to provide drainage and navigational access between lakes in the region and the Kissimmee River. They also lowered water levels, drained wetlands, and made the adjacent lands suitable for agriculture and development.
- Today, the primary water management system in the Upper Kissimmee River Watershed consists of a network of 15 canals that range from 0.2 to 4.5 miles in length for a total length of over 30 miles. Water levels and flows in some of these canals are controlled by nine primary water control structures that allow for the transfer of water in response to local needs and regulation schedules.
- The Lower Kissimmee and Lake Istokpoga Watershed includes 20 basins that reflect large areas of open land, rangeland, citrus groves, and cropland. These basins eventually discharge to Lake Okeechobee, either directly or via the primary canal system.
- The C-38 Canal was constructed by the USACE through the Kissimmee River floodplain to alleviate flood conditions and improve navigation. In recent years, sections of the C-38 Canal have been filled, structures removed, and water levels and flows managed as part of the Kissimmee River Restoration Project. Restoration has resulted in significant improvements to biological resources throughout the region.
- Three major canals and structures south of Lake Istokpoga provide drainage and flood control, convey excess water to Lake Okeechobee, and distribute water to agricultural lands during drought.

Everglades Agricultural Area

- The area within the Everglades Agricultural Area, directly south of Lake Okeechobee has been drained, developed, and managed mainly for agricultural and urban use since the early 1900s.
- Nine water management basins within the area have a total area of 1181 square miles and are served by 15 primary canals and 25 water control structures. This infrastructure provides drainage, flood control, and water supply for croplands, local communities, and Stormwater Treatment Areas, as well as conveys water supply and regulatory releases to the south.

Water Conservation Areas and Everglades National Park

- The WCAs and Everglades National Park basin is predominately wetlands with peat or marl soils and isolated upland areas. The 3060 square mile area is served by 18 levees, 5 primary canals, and 60 water control structures.
- The major regional canals that originate in Lake Okeechobee and pass through the WCAs distribute water to balance the water management needs of the WCA marshes, Everglades National Park, Lake Okeechobee, and adjacent watersheds.
- Peripheral canals in this broad area are often associated with levees that define the edges
 of storage areas. Delivery of water to the WCAs and Everglades National Park is

constrained by multiple management considerations in the upstream watersheds and subject to balancing demand and supply.

Upper East Coast

- The Upper East Coast includes seven canal drainage basins, the Tidal St. Lucie River, and the North Fork of the St. Lucie River. The primary water management system consists of 12 canals and 15 structures that control water distribution, level, and flows for 853 square miles of Martin, St. Lucie, and Okeechobee counties.
- Land use in this area is primarily agricultural, consisting of citrus, crops, and cattle. Urban development includes the cities and areas surrounding Stuart, Fort Pierce, Indiantown, and Okeechobee. Large areas remain undeveloped natural pine forested uplands, oak hammocks, wetlands, rangeland, or unimproved pasture.
- The primary canals in this basin (C-44, C-23, C-24, and C-25) have a total length of about 104 miles. They also provide drainage for agriculture, urban or residential development, and regulation of groundwater levels. Most of the canals supply water for irrigation during periods of low natural flow.
- The C-44 Canal connects to the St. Lucie River and serves as an outlet for excess water from Lake Okeechobee and is the eastern leg of the Okeechobee Waterway. Excess flows from the enlarged watershed as well as periodic releases from Lake Okeechobee have resulted in extensive erosion of the canal banks and significant stress to the St. Lucie Estuary.

Lower East Coast

- Canals in the coastal areas of Palm Beach, Broward, and Miami-Dade counties were designed to provide flood protection, deliver water needed for urban and agricultural use, and prevent saltwater intrusion.
- Most of the area is covered with hydric soils, except for areas near the coast that are underlain by a limestone rock ridge. These counties are very flat and most of the subbasins are less than 20 feet above sea level and many areas are five feet or less.
- The eastern sections of these counties are underlain by the important Biscayne Aquifer, which is closely linked to surface water and is extensively used as a source of drinking water by utilities and homeowners. Many of the canals are cut into the rock of the underlying aquifer, providing for a direct and continuous exchange of surface and groundwater.
- The four primary regional canals that transect this basin are connected to the Everglades and Lake Okeechobee and provide an outlet to remove excess water from the Everglades and the lake during wet periods.
- The South Dade Conveyance System is a sub-regional network of canals and control structures that connects several basins in southern Miami-Dade County and is used to provide flood protection and supply water for urban and agricultural use and for delivery to Biscayne Bay and Everglades National Park.

Caloosahatchee River Basin and Collier County

- The original, natural Caloosahatchee River system has been significantly modified by channelization, connection to Lake Okeechobee, and construction of navigational locks. Three structures and 41 miles of the C-43 Canal now provide the primary water management for the basin.
- A number of water quality, water quantity and environmental issues within the river and its watershed influence how water releases from Lake Okeechobee are managed and downstream structures are operated.
- Outside of the City of Naples and Golden Gate Estates, most of western Collier County is developed for agricultural use. Most of eastern Collier County is undeveloped and large areas are preserved under jurisdictions of state and federal government agencies.
- The primary canals are managed by the SFWMD/Big Cypress Basin Board. The primary water management system consists of 20 canals spanning 162 miles with 46 water control structures.

Analysis of Biological Data from South Florida Canals

The Ecology of South Florida Canals Is Complex and Dominated by Physical Processes

Natural systems are periodically disturbed through natural processes (i.e., droughts, fires, floods, hurricanes, etc.) and biological communities in a particular ecosystem reflect such disturbances. By contrast, canals are disturbed almost continually by human interventions for maintenance including herbicide application, mowing, dredging, removing obstructions, and mechanical harvesting. As a result, plant and animal communities in canals are often dominated by stress tolerant and pioneer species, although such information is very limited compared to natural streams.

As artificial conveyances with large variations in flow and water turnover, canals provide a less stable and predictable environment than other flowing waters. Canals are part of a large water management system, and must convey large quantities of water during storm events. They do not have the floodplains that natural streams have to reduce the energy (e.g., flow and velocity) of high flow events, and instead have levees that keep flows in the channel. They are susceptible to channel erosion and the delivery of larger volumes of water and contaminant loads downstream than natural streams and wetlands. At the other extreme, during droughts and dry season operations, canals may have little or no water movement for long periods, acting somewhat like reservoirs or slow moving rivers. Taken together, these observations paint a picture of complex dynamics and constant change for canals. Plants and animals in canals must cope with the characteristics of rivers at times, those more akin to reservoirs at other times, and occasionally, those associated with fast, deep lowland rivers during runoff events.

An initial review of key studies of animals that live in South Florida canals was conducted. Primary emphasis was placed on studies of macroinvertebrates, primarily insects that used standardized FDEP methods developed in the 1990s. A number of studies of other organisms, notably fish and alligators, in and adjacent to District canals were also summarized.

Macroinvertebrate Communities in Canals

Information was gathered from FDEP data on 156 canal sites south of Orlando, collected as part of a bioassessment program established in 1992. Of the 156 sites, 60 were located in the southern portion of the peninsula bioregion within the SFWMD, and 16 were in the Everglades bioregion. Fourteen stream reference sites are within the southern peninsula bioregion, but there are none south of the lake. A summary of data on these South Florida sites reveals:

- Canals have diverse communities of macroinvertebrates that were typical of flowing water systems with lower topographic gradients, deeper channels, and lower velocities compared to natural streams. For canal sites, there were no obvious differences between the Everglades and peninsula bioregions.
- There is inadequate data available to assess effects of water quality, including nutrients, on macroinvertebrate communities in canals. Habitat quality appeared to be an important factor that influences the quality of macroinvertebrate communities in canals.
- Among the 14 stream reference sites in South Florida, there were differences in some condition metrics but not in others. Differences between sites in the eastern and western zones were seen and may be due to zonal differences in gradient, depth, and velocity.
- Canals do not achieve the same level of biological quality as natural streams, due perhaps to channelization effects on habitat quality, depth, and temporal dynamics in velocity.
- Additional information will be needed if we are to define sensitive measurements and a
 quality threshold applicable to low gradient streams and canals in the peninsula and
 Everglades bioregions.

Other studies conducted in South Florida – in Miami-Dade County, Lee and Collier counties, Reedy and Bonnet creeks near Orlando, and agricultural canals surrounding lake Okeechobee – tend to confirm these findings:

- Invertebrate communities in canals were of lower quality than natural streams, but had similar species composition.
- Surrounding land use and habitat quality were key drivers of invertebrate community condition. Sites followed a pattern of increasing disturbance from wetlands → agricultural → suburban → urban/industrial.
- By their physical nature, canal systems are significantly different from streams. Canals cannot be expected to span the full range of scores found in streams, even in expected 'reference canal' habitat conditions.
- There are insufficient data to establish ecological expectations for canal systems. Additional sampling may eventually provide a basis to formulate a Canal Condition Index, and consider factors such as ecoregion and unique flow conditions.
- Improvements in water quality (decreases in phosphorus and nitrogen concentrations over time) do not necessarily affect the quality of macroinvertebrate communities. Habitat quality is more important than water quality.

 Macroinvertebrate communities in canals were diverse and were typical of communities found in lotic (flowing-water) environments with low velocities, high primary production, and depositional substrata.

A collaborative study among six states along the mid-Atlantic seaboard of the United States determined that reference sites from all states were similar despite large differences in land use and percentages of forested lands in their respective catchments. A high degree of biological quality can be achieved in canals despite poor water quality if natural channels and riparian vegetation are maintained. Water quality is therefore considered less important than habitat quality in determining the biological condition of canals.

Fish Assemblages in Canals

- Canals provide unique habitat for aquatic life since they have characteristics of both streams and lakes. Because they are man-made water bodies and often highly managed, they tend to provide marginally suitable habitat. Some fish survive quite well and may thrive under these conditions including both native and exotic species.
- Many exotic fishes are less tolerant of low temperature conditions than native species.
 During cold periods, water temperatures in the marshes tend to be significantly lower than in the canals. Some exotic species, such as the brown hoplo, tolerate low temperature exposure and have expanded rapidly across many natural habitats.
- Canals in natural areas provide refuge from drought for fish. Larger predatory fish are generally the dominant species. Canals in natural areas tend to have more native and fewer exotic fishes, principally due to lack of adequate marsh habitat.
- Canals act as conduits for nutrients, creating sharp local gradients that stimulate
 productivity in adjacent marshes. Fish are larger and more abundant in these enriched
 areas, indicating the canals may serve as a littoral zone for fish production.
- Macroinvertebrate (especially shrimp and crayfish) abundance near canals may be reduced due to predation by fishes and poor quality food sources (an abundance of cyanobacteria) in highly enriched zones.
- Within the Big Cypress National Preserve, canals supported the greatest diversity of fish species. Most of these were saltwater-adapted or large freshwater predator species.
- Channelization of the Kissimmee River resulted in significant changes to fish populations. After channelization, Florida gar and gizzard shad were the dominant species captured in trawls and gill-nets. Three species, the blackbanded darter, coastal shiner, and tidewater silverside, may have been extirpated from the system.
- In areas where lands adjacent to canals have been developed for agricultural or urban uses, larger bodied fishes were more common. Such canals may also receive less predation pressure by wading birds. Exotic species tend to be more abundant than native species, probably due to poor water quality and lack of shoreline habitat.
- Some exotic species tolerate estuarine salinity conditions and low oxygen concentrations and thus survive well in coastal canals and rock pits. Exotic fish historically existed only in canals after their initial introduction, and subsequently spread into marshes and peripheral habitats.

- Despite the pressure from exotic species, some canals in disturbed areas support healthy
 populations of native species. Characteristics of canal size and shape, shoreline and
 submerged vegetation, and water quality may allow native fishes to maintain their
 populations.
- The presence of exotic species does not necessarily inhibit reproduction, growth, or health of native fish populations. Native and exotic species may coexist over long periods because most native canal fishes are primarily carnivorous, whereas the exotic fishes are herbivorous or detritivorous and hence are not necessarily competing for the same resources.
- Similar effects of channelization on fish assemblages have been documented in other systems in the United States and other parts of the world, and are attributed to loss of suitable habitat for feeding, shelter, and spawning, as well as altered hydrologic patterns of seasonal floodplain inundation.

Alligators and Crocodiles in Canals

- Alligators seem to be very sensitive to hydrologic conditions, even on short time scales (days). In areas that have become overdrained, alligators only occur in permanent water bodies such as canals or ponds, although they may move to other areas during periods of extremely high water.
- Larger alligators prefer to live in canals, where they probably benefit from warmer canal
 water and better digestion rates and are therefore larger and healthier than marsh
 alligators. Alligators in urban canals have a very different ecology than those associated
 with the Everglades.
- Hatching success and young survivorship of alligators is lower in canals. Canals were harsh environments for alligator reproduction and early development compared to interior sites due to flooding and predation of canal nests.
- Saltwater crocodiles generally prefer saline or brackish water and only occasionally occur
 in the freshwater canals Crocodiles have been reported to move 6 miles inland using
 canals.

Regional Trends in Canal Water Quality

A survey of existing SFWMD water quality data for the primary canal system indicates that there are large variations in water quality conditions between regions of the District, between individual canals within regions, and even between sections of the same canal. A net increase in canal nutrient concentrations tends to occur in areas that have adjacent urban and agricultural land uses and a net decrease in concentration occurs in canals that are surrounded by wetlands or areas where water in the canals interacts strongly with groundwater. Little is known about the natural chemical and biological assimilation processes that occur in canals and, in addition to providing support for the current USEPA water quality criteria, more information on assimilation is important to the Total Maximum Daily Load modeling process.

Water quality summary statistics for more than 200 stations in the District's primary canal system were examined to identify regional, seasonal, and intra-regional differences for key water

quality constituents, including total phosphorus, total nitrogen, and chlorophyll a. Results were analyzed independently for the seven basins or subregions.

Phosphorus

Analysis of total phosphorus data indicated three broad categories of stations as determined by values of the geometric mean and median: 1) Stations that showed phosphorus concentrations less than 50 ppb, which primarily represented the Lower East Coast, Lower West Coast, Upper Kissimmee Basin, and the Everglades Water Conservation Areas; 2) Stations that had phosphorus concentrations from 50 to 150 ppb are located primarily in the Caloosahatchee, Everglades Agricultural Area, and Kissimmee River basins; and 3) Stations with the highest concentrations, above 150 ppb, are located in the Upper East Coast Basin. These differences tend to be associated with the degree of agricultural development within the watershed and proximity to Lake Okeechobee.

Nitrogen

Analysis of data for total nitrogen for the seven regions indicated a somewhat different distribution than was seen for phosphorus, and the pattern was not clearly related to geography or land use. The lowest concentrations of total nitrogen, less than 1.2 ppm, occurred in the Lower West and Lower East Coast watersheds. Concentrations from 1.2 to 1.6 ppb occurred in the Caloosahatchee and Upper East Coast watersheds and the Water Conservation Areas. The highest concentrations (above 1.6 ppm) occurred in the Everglades Agricultural Area and Kissimmee River watersheds.

Chlorophyll a

The USEPA has suggested that nutrients (in conjunction with other environmental variables) can impair the designated use of canals by causing an increase in the concentration of chlorophyll a. Paradoxically, no chlorophyll criterion was proposed for streams by USEPA. Grouping of chlorophyll a concentrations indicated that the lowest concentrations (less than 4 mg/m³) occurred in the Lower East Coast and Lower West Coast basins and the Water Conservation Areas. Chlorophyll a concentrations greater than 4 mg/m³ occurred in the Caloosahatchee, Everglades Agricultural Area, Kissimmee River, and Upper East Coast basins. The values of all regional geometric means for chlorophyll a were less than 10 mg/m³, about one-half of the 20 mg/m³ threshold of impairment for the statewide Total Maximum Daily Load process.

Conductance

There appeared to be no clear grouping of summary statistics for specific conductance by region. The Lower Kissimmee River Basin had the lowest geometric mean and median values and the Everglades Agricultural Area had the highest.

Local Variability

• Total phosphorus concentrations were more variable and somewhat higher during the wet season. Variation in the range of total phosphorus values between the 25th and 75th percentile values increased when only wet season observations were considered in all regions.

- Differences among canals within the Upper East Coast and Lower East Coast are apparent for total phosphorus, but less so for total nitrogen, although differences can be observed in the corresponding summary statistics.
- Along canal reaches, there is a downward trend in the summary statistics for total phosphorus and total nitrogen as water moved downstream in the Miami and West Palm Beach canals.
- Although not examined in this analysis, nutrient summary statistics are tied to land use, as reflected in the change in concentrations of nutrients that occur as water moves from south of Lake Okeechobee (agricultural or urban land uses) through Stormwater Treatment Areas and WCAs (wetland marshes and tree islands) to the coastal ridge (primarily urban and agricultural land uses) and ultimately to tide.

Canal Sediments

- Examination of a very limited amount of sediment data, based on studies conducted in regional canals of the Water Conservation Areas, indicated sediment depths were highly variable, both across a given transect and longitudinally down any given canal. Canal average sediment depth ranged from 1.8 feet to 8 feet with a volume totaling almost 2 million cubic yards.
- Low sediment accumulation in some canals was suggested to be a result of higher flow velocities due to the canals' small cross-sectional areas, increasing the likelihood of sediment resuspension and transport during strong drainage events.
- The total sediment volume calculated for the entire 122 miles of canal reaches was almost 9 million cubic yards, with a total phosphorus mass of 2000 tons.
- More than 80 percent of the total phosphorus mass in the surface 4-inch sediment layer of all canals in the WCAs is fairly stable and may be a long-term sink for phosphorus.
- Canal sediments from the eastern side of the WCAs appear to be more susceptible to resuspension and transport during strong drainage events and, due to their chemical composition, they may be more susceptible to long-term release of iron-bound phosphorus to the overlying water column.

A Context for Water Quality Management in South Florida Canals

The information compiled in this technical support document, albeit limited, provides an initial conceptual framework for the ecology of these artificial systems and for the constraints to applying Clear Water Act standards across the diverse South Florida landscape. No quantified linkage between nutrients and impaired biology in South Florida canals was found during this investigation, nor was evidence found that most canal ecosystems are even sensitive to total nitrogen or total phosphorus. As a result of this limited information, there is no scientific basis to conclude that instream nutrients adversely affect the designated uses of canals in South Florida.

To function as conveyance systems, canals must be maintained by removing or limiting vegetation, creating immediate imbalances in canal flora and potentially fauna. The information compiled in this document on the history and purposes of the complex South Florida canal system demonstrates universally that the canal system is primarily used for flood control and

water supply. The designated uses derived under the Clean Water Act for maintenance of healthy, well-balanced flora and fauna are not juxtaposed easily into this context. With the available information reflected in this document, there is not a valid means of determining biological 'normalcy' in canals, and therefore, no rational basis upon which to demonstrate impairment under the Clean Water Act.

Even describing water quality in canals is a challenge. They are highly modified physical systems that behave in unnatural patterns, sometimes acting like reservoirs, other times flowing more like streams, and other times flowing more like slow moving rivers. Compilations of data in this report are only a starting point in describing such complexity. More refined ways of evaluating data in canals must be developed in light of their runoff driven and seasonal complexity. Analysis within years or across years should be done separately for flowing and not flowing regimes. Flow-weighted means rather than annual geometric mean chlorophyll *a*, total nitrogen, and total phosphorus concentrations might be more appropriate for analysis. Furthermore, some primary canals in South Florida can cut across different geologic or ecological regions. Pooling data over the entire water body masks regional differences and provides statistics reflecting none of the actual environments being considered.

Natural systems are periodically disturbed through natural processes (i.e., droughts, fires, floods, hurricanes) and biological communities in a particular ecosystem reflect such disturbances. By contrast, canals are disturbed almost continually by human interventions for maintenance, including herbicide application, mowing, dredging, removing obstructions, and mechanical harvesting. As artificial conveyances with large variations in stage, flow and water turnover, canals provide a less stable and predictable environment than other flowing waters. They do not have the floodplains that natural streams have to reduce the energy of high flow events, and instead have levees that keep flows in the channel. At the other extreme, during droughts and dry season operations, canals may have little or no water movement for long periods. Taken together, these observations paint a picture of complex dynamics and constant change for canals. Based on the limited information summarized in this report on canal biology, the biological communities in canals are strongly influenced by the physical aspects of canals and the availability of quality habitat.

Scientific studies (especially in ecology) of canals are a tiny fraction of those found for other South Florida ecosystems. The Everglades marsh numeric criterion for phosphorus was based on literally hundreds of scientific articles spanning more than a decade. Similarly, the Total Maximum Daily Load for Lake Okeechobee was supported by dozens of research publications quantifying algal dynamics in relation to nutrient levels. Many more examples of technical information available for potential use in nutrient criteria can be seen in the pages of the *South Florida Environmental Report*. Selecting a protective numeric nutrient criteria is premature since there is little information on what comprises the ecological communities which are being protected. This technical support document has clearly shown the lack of canal ecological studies as compared to other systems in Florida (e.g., the Everglades, Chapter 6, *2010 South Florida Environmental Report*). Even FDEP's own Technical Advisory Committee consistently struggled with the lack of available information on the ecological components of canals and how nutrients may or may not have an impact.

The application of Clear Water Act water quality standards directly to such a massive canal system must be done with sound information applied rationally to these artificial water bodies and interpreted in light of their nature and actual uses. Canals were built to meet human needs by

controlling the movement of water from one place to another for water supply, flood control, drainage, and navigation, as well as to provide water needed to sustain natural communities in lakes, rivers, wetlands, and estuaries. Ecological functions in canals themselves can be valuable for recreation and aesthetics, but are secondary and largely incidental compared to their uses for conveyance.

REFERENCES

- Alleman, R.W., S.A. Bellmund, D.W. Black, S.E. Formati, C.A. Gove and L.K. Gulick. 1995. Biscayne Bay Surface Water Improvement and Management Technical Supporting Document. South Florida Water Management District, West Palm Beach, FL. 189 pp.
- Barr, B. 1997. Food habits of the American alligator, *Alligator mississippiensis*, in the southern Everglades. Ph.D Dissertation. University of Miami, Miami, FL.
- Boggess, D.H. 1972. Controlled discharge from the W.P. Franklin Dam as a means of flushing saline water from the fresh-water reach of the Callosahatchee River, Lee County, Florida. U.S. Geological Survey Open File Report FL-72028. 45 pp.
- Bottcher, A.B., and F.T. Izuno. 1992. Everglades Agricultural Area: Water, Soil, Crop and Environmental Management. University Presses of Florida, Gainesville, FL. 479 pp.
- Brown, R.B. 2003. Soils and Septic Systems. University of Florida IFAS Extension. SL-118. 8 pp. http://edis.ifas.ufl.edu/pdffiles/SS/SS11400.pdf.
- Chopp, M.D., K.G. Rice, F. Mazzotti, and H.F. Percival. 2000. The Effects of Canals on Alligators in the Everglades. Poster presented at the Greater Everglades Ecosystem Restoration Conference, December 2000.
- Chopp, M.D., H.F. Percival, and K.G. Rice. 2002a Everglades alligator (*Alligator mississippiensis*) production and natural history in interior and canal habitats at A.R.M. Loxahatchee National Wildlife Refuge. The 16th Working Meeting of the Crocodile Specialist Group, Gainesville, FL.
- Chopp, M.D., H.F. Percival, and K.G. Rice. 2002b. Everglades Alligator Production Differences between Marsh Interior and Marsh Canal habitats at ARM Loxahatchee National Wildlife Refuge. Pp. 41-59 in: Crocodiles. Proceedings of the 16th Working Meeting of the Crocodile Specialist Group, IUCN - The World Conservation Union, Gland, Switzerland.
- Copp, G.H. 1989. The habitat diversity and fish reproductive function of floodplain ecosystems. Environmental Biology of Fishes. 26:1-27.
- Courtenay Jr., W.R. and D.A. Hensley. 1979. Range expansion in southern Florida of the introduced spotted tilapia with comments on its environmental impress. Environmental Conservation 6:149-151.
- Dahm, C.N., K.W. Cummins, H.M. Valett, and R.L. Coleman. 1995. An ecosystem view of the restoration of the Kissimmee River. Restoration Ecology 3:225-238.
- Dalrymple, N.K. and G.H. Dalrymple, 1996. Dade County lake belt plan, wildlife study-8th quarterly report exotic fish exotic species disturbance. Submitted to Dade County Department of Environmental Resources Management, Miami, FL. 76 pp.
- Daroub, S.H., J.D. Stuck, T.A. Lang, O.A. Diaz, and M. Chen. 2003. Implementation and verification of BMPs for reducing P loading in the EAA. Final Project Report submitted to the Everglades

- Agricultural Area Environmental Protection District and the Florida Department of Environmental Protection, Tallahassee FL.
- DeBusk, T. and K. Grace. 2009a. Relationships between water column nutrients and macroinvertebrate assemblages in the Reedy Creek Drainage Basin, Central Florida. DB Environmental, Inc. and Azurea, Inc., Rockledge FL. July 21, 2009. 49 pp.
- DeBusk, T. and K. Grace. 2009b. Characteristics of Macroinvertebrate Populations in South Florida Canals. Prepared by DB Environmental, Inc., Rockledge, FL, December 15, 2009, 39 pp.
- Diaz, O.A., S.H. Daroub, J.D. Stuck, M.W. Clark, T.A. Lang, and K.R. Reddy. 2006. Sediment inventory and phosphorus fractions for Water Conservation Area canals in the Everglades. Soil Sci. Soc. Am. J. 70:863-871.
- Ellis, G., M. Zokan, W.F. Loftus, and J. Lorenz. 2004. Inventory of Freshwater Fishes of the Big Cypress National Preserve. Final Project Report to the USGS Greater Everglades Priority Ecosystems Science Program. USGS FISC-WRS, Everglades National Park Field Station, Homestead, FL 117 pp.
- Florida Department of Environmental Protection. 2001. An Investigation of canals in southwest Florida: relationships between biological health, water quality, and habitat. Division of Resource Assessment and Management, Bureau of Laboratories, FDEP, Tallahassee, FL. 22 pages.
- Florida Department of Environmental Protection. 2009. http://www.dep.state.fl.us/secretary/designateduse.htm#faq. Accessed 10/29/09.
- Florida Department of Environmental Protection. 2010. Current Bioassessment Projects. http://www.dep.state.fl.us/water/bioassess/currproj.htm#Streams.
- Florida Fish and Wildlife Conservation Commission. 2009. Website at http://www.myfwc.com/NEWSROOM/Freshwater_FishBusters_index.htm. Accessed 10/29/09.
- Fogarty, M.J. and J.D. Albury. 1967. Late summer foods of young alligators in Florida. Proceedings 21st Annual Conference of Southeastern Association of Game and Fish Commissioners. 3pp.
- Frederick, P.C., N. Dwyer, S. Fitzgerald and R.E. Bennetts 1990. Relative abundance and habitat preferences of least bitterns (*Ixobrychus exilis*) in the Everglades. Florida Field Naturalist 18(1):1-8.
- Fujisaki, I., K.G. Rice, L.G. Pearlstine, and F.J. Mazzotti, 2009. Relationship between body condition of American alligators and water depth in the Everglades, Florida. Hydrobiologia 635:329–338.
- Furse, J.B., L.J. Davis and L.A. Bull. 1996. Habitat use and movements of largemouth bass associated with changes in dissolved oxygen and hydrology in Kissimmee River, Florida. Proceedings of the Annual Conference, Southeastern Association of Fish and Wildlife Agencies 50:12-25.
- Guillory, V. 1979. Utilization of an inundated floodplain by Mississippi River fishes. Florida Scientist. 42(4): 222-228.
- Hogg, R.G. 1976. Established exotic cichlid fishes in Dade County, Florida. Florida Scientist 39(2):97–103.
- Hortle, K. G. and P. S. Lake. 1983. Fishes of the channelized and unchannelized sections of the Bunyip River, Victoria. Aust. J. Mar. Freshw. Res. 34:441-450.
- Howard, K.S., W.F. Loftus and J.C. Trexler, 1995. Seasonal Dynamics of Fishes in Artificial Culvert Pools in the C-111 Basin, Dade County, Florida. Final Report to the United States Army Corps of Engineers under Everglades National Park Cooperative Agreement CA5280-2-9024, Everglades National Park, Homestead, Florida.
- Jordan, F. 1996. Spatial ecology of decapods and fishes in a northern Everglades wetland mosaic. Doctoral Dissertation. University of Florida, Gainesville, FL. 155 pp.

- Junk, W.J., P.B. Bayley and R.E. Sparks. 1989. The floodpulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences. 106:110-127.
- Jurajda, P. 1995. Effect of channelization and regulation on fish recruitment in a floodplain river. Regulated Rivers: Research and Management. 10:207-215.
- Karr, J.R. and I.J. Schlosser. 1978. Water resources and the land-water interface. Sciences. 210:229-234.
- Koebel, J.W. 1995. An historical perspective on the Kissimmee River Restoration Project. Restoration Ecology 3:149-159.
- Kushlan, J.A. 1974. Observations of the role of the American alligator in the southern Florida wetlands. Copeia 993-996.
- Kushlan, J.A. and F. Mazzotti, 1989. Historic and present distribution of the American crocodile in Florida. Journal of Herpetology 23(1), 1–7.
- Langston, J.N. and P.J. Schofield. 2009. The effect of the Mayan cichlid (*Cichlasoma urophthalmus*) on growth and behavior of the spotted sunfish (*Lepomis punctatus*) under laboratory conditions. Final Report, SFWMD.
- Loftus, W.F. and J.A. Kushlan, 1987. Freshwater Fishes of Southern Florida. Bulletin of the Florida State Museum Biological Sciences 31(4). University of Florida, Gainesville, FL
- Maxted, J.R., M.T. Barbour, J. Gerritsen, V. Poretti, N Primrose, A. Silvia, D. Penrose and R. Renfrow. 2000. Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. Journal of the North American Benthological Society, Vol. 19(1): 128-144.
- Maxted, J. 2010. Canal Science Inventory Overview and Preliminary Analysis. FDEP Bioassessment Program Stream Macroinvertebrate Data. (see Appendix D of this report).
- Mazzotti, F. and L. Brandt, 1994. Ecology of the American alligator in a seasonally fluctuating environment. In: Everglades: The Ecosystem and its Restoration. S. Davis and J. Ogden (eds). St. Lucie Press, FL.
- Meshaaka, Jr., W.E. and K.J. Babbitt. 2005. Amphibians and Reptiles: Status and Conservation in Florida. Krieger Publishing Company. Melbourne, FL. 317 pp.
- Mierau, R. 1974. Supplemental Water Use in the Everglades Agricultural Area. SFWMD, West Palm Beach, FL. Tech. Publication 74-4. 46 pp.
- Mierau, R., D. Irons and W. Storch. 1974. Memorandum Report on Surface Water Availability in the Caloosahatchee River Basin. Resource Planning Department, SFWMD, West Palm Beach FL. Technical Publication No. DRE-38 September, 1974. 71 pp.
- Morea, C.R. 1999. Home Range, Movement, and Habitat Use of the American Alligator In The Everglades M.S. Thesis, University Of Florida, Gainesville, FL.
- Morea, C.R., K.G. Rice, H.F. Percival and S.R. Howarter, 2000. Home Range and Movement of Alligators in the Everglades. Poster presented December 2000, at the Greater Everglades Ecosystem Restoration Conference
- Nico, L.G., J.J. Herod and W.F. Loftus, 2001. Life History Parameters and Population Dynamics of Freshwater Fishes of South Florida Canal. American Society of Ichthyologists and Herpetologists 81st annual meeting, Pennsylvania State University, 5-10 July 2001. Abstract Only.
- Perrin, L.S., M.J. Allen, L.A. Rowse, F. Montalbano, K.J. Foote and M.W. Olinde. 1982. A report on fish and wildlife studies in the Kissimmee River Basin and recommendations for restoration. Florida Game and Fresh Water Fish Commission, Okeechobee, FL, USA.

- Phillips, M.L., K.G. Rice, C.R. Morea, H.F. Percival and S.R. Howarter. 2003. Habitat Selection and Home Range of American Alligators in the Greater Everglades. Greater Everglades Ecosystem Restoration (GEER) USGS Open File Report 03-54.
- Rehage, J.S. and J.C. Trexler, 2006. Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands community structure relative to distance from canals. Hydrobiologia (2006) 569:359–373
- Ross, L.T. and D.A. Jones. 1979. Biological Aspects of Water Quality in Florida, Part IV: Lower Florida Drainage Basin. Department of Environmental Regulation, Technical Series. 4(3). Tallahassee FL.
- Rudolph, H.D. 1985. A biological basin assessment survey: a study of the macroinvertebrates collected in north Dade County canals during February and July 1995. Florida Department of Environmental Protection, Port St. Lucie, FL.
- Rutchey, K. 1992. The response of vegetation and benthic macroinvertebrates to constructed littoral habitat in Canal 51. DRE Technical Memorandum #306, January 1992, SFWMD, West Palm Beach. 37 pp. http://www.sfwmd.gov/portal/page/portal/pg_grp_tech_pubs/portlet_tech_pubs/dre-306.pdf.
- Schofield, P.J. and D.H. Huge. 2009. Low temperature tolerance of brown hoplo (*Hoplosternum littorale*) and black acara (*Cichlasoma bimaculatum*). Final Report, SFWMD.
- Schofield, P.J., W.F. Loftus and J.A. Fontaine. 2007. Salinity effects on hypoxia tolerance of an introduced cichlid (*Cichlasoma urophthalmus*) from karstic Everglades wetlands, southern Florida, U.S.A. SFWMD, West Palm Beach, FL.
- Schofield, P.J., W.F. Loftus, R.M. Kobza and M.I. Cook. 2009. Tolerance of nonindigenous cichlid fishes (*Cichlasoma urophthalmus*, *Hemichromis letourneuxi*) to low temperature: laboratory and field experiments in south Florida. Biological Invasions.
- Shafland, P.L., B.D. Hilton and R.J. Metzger. 1985. Fishes of Black Creek Canal—Completion report for Study XII (1981-1985). Florida Game and Fresh Water Fish Commission, Tallahassee, FL. 108 pp.
- Sheaffer, W.A. and J.G. Nickum. 1986. Backwater areas as nursery habitats for fishes in pool 13 of the Upper Mississippi River. Hydrobiologia 136: 131-140.
- Snyder, B.D., M.T. Barbour and E.W. Leppo. 1998. Development of a watershed-based approach for biomonitoring of fresh surface waters in coastal Florida canal systems. Prepared by Tetra Tech, Inc., Owings Mills, MD under contract with Metro-Dade Environmental Resources Management, 201 pp.
- South Florida Water Management District. 2000. Caloosahatchee Water Management Plan. Support Document. South Florida Water Management District, West Palm Beach, FL, 84 pp.
- South Florida Water Management District. 2003. Minimum Flows and Levels for the Caloosahatchee Estuary. Status Update report. South Florida Water Management District, West Palm Beach, FL. February 2002 Draft. 67 pp.
- Tarplee, W.H., Jr., D.E. Louder and A.J. Weber. 1971. Evaluation of the effects of channelization on fish populations in North Carolina's coastal plain streams. North Carolina Wildlife Resources Commission. Raleigh. Pp. 22.
- Trefry, J.H., R.P. Trocine and H. Bennett. 2009. Sediment sourcing study of Lake Worth Lagoon and C-51 Basin, Palm Beach County. Draft Final Report to Palm Beach County and the South Florida Water Management District, Contract R2008-0985. October 2009. 80 pp.
- Trexler, J.C., W.F. Loftus, F. Jordan, J. Lorenz, J. Chick and R.M. Kobza. 2000. Empirical assessment of fish introductions in a subtropical wetland: an evaluation of contrasting views. Biological Invasions 2:265-277

- Trexler, J.C., W.F. Loftus and K.C. Tarboton, 2004. Chapter 6 Fish Habitat Suitability Index. Pp 85-91 In: Tarboton, K.C. M.M. Irizarry-Ortiz, D.P. Loucks, S.M. Davis and J.T. Obeysekera (eds.) Habitat Suitability Indices for Evaluating Water Management Alternatives. SFWMD, West Palm Beach, FL. 170 pp.
- Turner, A.M., J.C. Trexler, C.F. Jordan, S.J. Slack, P. Geddes, J.H. Chick and W.F. Loftus. 1999. Targeting ecosystem features for conservation: Standing crops in the Florida Everglades. Conservation Biology, 13(4 Aug. 1999):898-911.
- U.S. Army Corps of Engineers and South Florida Water Management District. 2010. Development of the Central & South Florida (C&SF) Project. http://www.evergladesplan.org/about/restudy_csf_devel.aspx. Accessed 3/31/10.
- U.S. Environmental Protection Agency. 2009. http://www.epa.gov/waterscience/standards/about/. Accessed 10/29/09
- U.S. House of Representatives. 1949. Comprehensive report on central and southern Florida for flood control and other purposes. House Document 643. U.S. Government Printing Office, Washington, D. C. pp 60. May.
- Wegener, W. and V. Williams, 1974. Lake Tohopekaliga Drawdown Study Completion Report. July 1. 1970-June 30, 1974. Florida Game and Freshwater Fish Commission.
- Welcomme, R.L. 1985. River Fisheries. FAO Fish. Tech. Pap. 262. Pp. 300.