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The purpose of this paper is to evaluate three different water resources operational scenarios
Jor the Comprehensive Everglades Restoration Project (CERP) Aquifer, Storage and Recov-
ery (ASR) scheme. The ASR scheme for the CERP proposes to utilize 333 wells to store up to
6,300,000 cubic meters of freshwater per day into a brackish water carbonate aquifer located
in southern Florida, USA. The three different schemes analyzed represent a range of realistic
operational plans that could be utilized for the restoration project. The various ASR
operational schemes were developed based upon existing research and new numerical
modeling efforts. The numerical model developed is capable of simulating the mixing of
Jreshwater and ambient groundwater within the Floridan Aquifer System. The modeling effort
determined that each of the three operational schemes tested could represent the optimal plan
depending upon the site-specific geology and hydrodynamics. Therefore, care must be taken
in matching the best operational scheme to the given geological environment. In addition, the

modeling effort demonstrated that the long-term cumulative recovery efficiency assumed for
the CERP ASR plan should be feasible and obtainable.
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INTRODUCTION

The Everglades Ecosystem, located in southern Florida, is a myriad of wetlands, tidal marshes,
cypress domes, estuaries and coral reefs. The Everglades is like no other ecosystem in the world.
It is a broad, flat expanse of wetlands inhabited by a plethora of plants and animals. Dubbed the
“River of Grass” by Marjorie Stoneman Douglas, the Everglades is in trouble (Douglas, 1947).
Water quantity, water quality, water distribution and timing of water deliveries have all been
disrupted over time and have all been radically changed over the last 100 years (Davis, 1994).

The Central and Southern Florida Project Comprehensive Review Study (USACE and SFWMD,
1999), developed jointly by the U.S. Army Corps of Engineers (USACE) and the South Florida
Water Management District (SFWMD), presents a framework for Everglades restoration. Now
known as the Comprehensive Everglades Restoration Project (CERP), this plan contains 68
components, including structural and operational changes to the Central and Southern Florida
(C&SF) Project. The overarching purpose of CERP is to restore the Everglades by improving the
quantity, quality, timing and delivery of water for the natural ecosystems of south Florida. It has
been theorized that improvements to native flora and fauna, including threatened and endangered
species, will occur as a result of the restoration of the hydrologic conditions. One of the
technologies being evaluated in support of CERP is the use of Aquifer, Storage and Recovery
(ASR) wells. The use of ASR is increasing in the United States and abroad. The CERP relies
heavily upon ASR technology to provide additional system storage. Six ASR components
currently form the proposed CERP ASR System, which includes a total of 333 ASR wells and
related surface facilities in the vicinity of Lake Okeechobee, Florida as well as within Palm Beach
County, Florida. All 333 proposed ASR wells have a target capacity of 19,000 cubic meters per
day. The scale of the proposed CERP ASR program is unprecedented; therefore, a series of pilot
projects and a regional feasibility study are being completed to determine the ultimate potential
of the plan. Additional information on these proposed projects is presented in the Final Pilot
Project Design Report (USACE and SFWMD, 2004). Figure 1 depicts the proposed location of
the 333 ASR wells in south Florida.

ASRFUNDAMENTALS

Recharge to groundwater aquifers is ultimately derived from rainfall that falls on the land.
Much of the rainfall that occurs on the land runs off to nearby surface water bodies, evaporates,
or is abstracted for various water supply uses. Only a fraction of the total rainfall reaches
subsurface aquifers via percolation into the ground. Recharge to a surficial water-table (unconfined)
aquifer is generally higher than comparable recharge amounts to deeper, confined, aquifers due
to proximity to the land surface. According to the American Society of Civil Engineers (ASCE),
recharge is

“the replenishment of ground water by downward infiltration of water from rainfall, streams,
surface depressions, and other sources, or by introduction of water directly into an aquifer through
wells, galleries, or other means. Recharge can be either natural or artificial.” (ASCE, 2001, p. 3)

Modern artificial recharge (AR) is the process of augmenting natural recharge of groundwater
aquifers. According to the National Research Council (NRC), AR is:

“a process by which excess surface water is directed into the ground — either by spreading on
the surface, by using recharge wells, or by altering natural conditions to increase infiltration — to
replenish an aquifer. “(NRC, 1994, p. 1)

Journal of Environmental Hydrology 2 Volume 14 Paper 17 October 2006



Everglades Aquifer Storage - Operational Considerations Brown

Generalized CERP ASR
Project Locations and
Capacities

Site Capacity (m*/day)

’ Central Palim
Beach County

[Lake Okeechobee 3.785.000
Hillshoro z ?

Caloosahatchee River 832,700
[,-8 Basin 189,250
C-51 Basin 643,450
Central PBC 283,875
Hillsboro 567,750

Figure 1. Proposed location of CERP ASR Wells

AR provides a means to store water underground in times of water surplus to meet demand in
times of shortage. Water recovered from AR projects can be utilized for a variety of potable and
non-potable uses. AR can also be used to control seawater intrusion in coastal aquifers, control
land subsidence caused by declining ground water levels, maintain base flow in some streams, and
raise water levels to reduce the cost of groundwater pumping (NRC, 1994).

Recharge can be introduced through various surface infiltration methods or through wells.
Recharge can be introduced into the saturated or unsaturated portions of an aquifer. Both
unconfined and confined aquifers have been used for AR (ASCE, 2001). Surface spreading
methods are mainly amenable in unconfined aquifers (Asano, 1985), while wells are utilized to
recharge confined aquifers (NRC, 1994).

ASR is a simple concept in which water is stored in subsurface permeable aquifers when water
is plentiful and extracted during times of peak demand. According to the British Geological Survey
(Jones et al. 1999, p. 3), ASR is a sub-set of AR and is defined as:

“storage of treated, potable water in the aquifer local to the borehole(s) that is (are) used for both
injection and abstraction. A high percentage of the water injected is abstracted at a later date and
the scheme may utilize an aquifer containing poor quality or brackish water, although this does not
exclude the use of aquifers containing potable water. ASR schemes enable maximum use to be
made of existing licensed resources.”
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ASR projects are utilized in three broad areas to augment water supplies. The largest and most
common use of ASR projects is in support of potable water supply projects. The second most
common use of ASR projects is in support of agriculture in the form of irrigation water supply.
The newest alternative use for ASR is in support of environmental water supply to support in-
stream uses, as is the case with the CERP. Each of these categories presents great opportunities
to exploit ASR technology, however, each option is subject to many constraints. The primary
constraints can be grouped into four general categories including:

e Regulatory

*  Recharge and recovered water quality

e Water availability and demand

*  Availability of a suitable storage aquifer

Regulatory thresholds usually dictate limitations on the use of the source water and the
recovered water based upon its quality. In addition to the required regulatory thresholds, the end
use of the water is of particular importance. Although water may meet all regulatory requirements,
recovered water use may be constrained by one or more constituents contained within the water.
For instance, recovered water containing moderate amounts of sodium or boron may preclude the
use of the water for irrigating certain crops (Rhoades et al. 1992). Environmental use of the water
could be questionable where recovered water contains low concentrations of heavy metals such
as selenium or copper. Potable use may be constrained in cases where disinfection by-products
form in-situ due to the presence of residual chlorine in the source water.

Operational schemes used by most ASR practitioners worldwide include storage of excess
water during times of abundance and recovery of stored water during periods of water shortage or
during peak demand times. For ASR projects that support potable water supply and irrigation,
annual recharge, storage, and recovery cycles are common. For ASR projects that support
environmental restoration projects, the recharge, storage, and recovery cycle can be quite variable.
For some larger projects, the availability of source water and environmental demand can be
sporadic with storage durations over several years possible. For smaller restoration projects, an
annual cycle may be appropriate. The CERP requirements represent a hybridized system with both
annual and semi-annual availability and demand cycles. CERP ASR wells located along the lower
cast coast of Florida (e.g., in Palm Beach County) will need to recharge, store, and recover water
within the same given year, similar to standard potable projects in their operational scheme. CERP
ASR wells located along Lake Okeechobee will need to recharge, store, and recover water over
longer periods of time. For instance, previous modeling simulations of the restored Everglades
ecosystem (USACE and SFWMD, 1999) revealed that the Lake Okeechobee ASR wells may
recharge, store, or recover for periods longer than one year in several instances. In addition, these
wells would store vastly more freshwater than comparable ASR wells proposed for Palm Beach
County, Florida.

ASRPERFORMANCE FACTORS IN BRACKISH WATER AQUIFERS

The performance of an ASR system is controlled by a complex interaction among many
variables. It has been explored through examination of existing site data, development of physical
models, through development of simple analytical models, and through development of numerical
models. ASR performance factors can be sub-divided into several categories. First, many ASR
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performance factors are dependent upon the intrinsic physical properties of the aquifer storage
zone selected including hydraulic conductivity, porosity, thickness, heterogeneity, strength of
aquifer materials, character of aquifer zone, dispersivity, and tortuosity. Another category of ASR
performance factors is linked to boundary conditions present at the well site including pre-existing
aquifer gradient and density of water in the storage zone. A third category of ASR performance
factors is dependent upon site operational considerations including injection rate and volume,
quality of the source water, type of source water pre-treatment, storage duration, and well design.

The character and structure of an aquifer may lead to heterogeneity of the intrinsic properties.
Many aquifers are not true “ideal” porous media and are subject to nonidealities (Alpay, 1972).
Examples of nonidealities given by Alpay include pore size distribution, non-uniform permeability,
geologic stratification, and geologic structure (e.g., faults, dip). Brown et al. (2004) discuss
pressure induced changes of non-ideal confining units as a result of ASR pumping.

These various factors can also lead to complicated diffusion pathways or enhanced mechanical
dispersion (Domenico and Schwartz, 1998). Mechanical dispersion is mixing caused by local
variations in velocity. Mechanical dispersion is an “advective” process and is discussed by
Anderson (1984) and Sudicky (1986). At field scale, it appears that dispersivities increase with
scale up to an asymptotic limit (Gelhar et al. 1992). At any given scale, dispersivities in the
longitudinal direction (primary flow direction) can range over two to three orders of magnitude
depending on the variability in hydraulic conductivity (Gelhar et al. 1992). Schulze-Makuch
(2005) updated Gelhar’s work by compiling a larger dispersivity database from various reports and
literature. Schulze-Makuch also proposed a relationship between the geologic medium and
hydrodynamic dispersion.

Performance at ASR sites is often expressed as a percentage of the water injected versus what
is recovered. The most common performance metric for these sites is “recovery efficiency,” a
concept first presented in the 1970s (Kimbler et al. 1975) and refined in the 1990s (Pyne, 1995).
ASR practitioners have utilized the term “recovery efficiency” as the metric of choice to evaluate
the feasibility and cost effectiveness of prospective ASR projects. The definition of recovery
efficiency utilized by most researchers is the total volume of water recovered (V7) up until the
applicable regulatory limit, expressed as a percentage of the volume injected (V7), in a given
operational cycle. Equation (1) provides a mathematical representation of this concept:

Recovery Efficiency (RE) = Vr/Vi x 100% (1)

For instance, an ASR project that injects 1,000,000 cubic meters of water and then subsequently
recovers only 100,000 cubic meters before regulatory discharge limits have been exceeded has
aRE of 10%. In most instances, chloride or total dissolved solids (TDS) is the limiting parameter
in potable ASR projects. The cumulative recovery efficiency (CRE) is a useful metric in evaluating
long-term ASR site performance since it tracks the cumulative water volume recovered (CVr)
versus the cumulative volume injected (C¥7). The cumulative recovery efficiency as developed by
Kimbler et al. (1975) is defined in Equation (2):

Cumulative RE (CRE) = CVr/CVi x 100% ©)

In the case of the CERP ASR sites, freshwater derived from excess storm water will be injected
into aquifers with brackish groundwater. According to Drever (1997), brackish waters have a TDS
of between 1,000 to 20,000 mg/l. During aquifer recharge operations, the injected freshwater
mixes with the poorer-quality ambient groundwater. Mixing is due to advection, hydrodynamic
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dispersion, and buoyancy (density) stratification. During recovery periods, the recovered water
is a mix of the injected and ambient water. Typically, the recovery of the water is halted once the
water quality surpasses a regulated value. The effect of the various performance factors on RE or
CRE has been discussed by Brown (2005). Brown (2005) concluded that the most important ASR
performance factors affecting RE or CRE were:

¢ Hydrodynamic dispersion (as measured by aquifer dispersivity)
*  Recharge volume and resulting bubble size

*  Recharge water quality

*  Ambient water quality

*  Density differential between recharge and ambient water

The five key performance variables are listed in order of importance with the last one being least
important in cases of slightly brackish aquifer storage zones. Brown (2005) determined that the
overall density differential has a less substantial effect upon RE or CRE in brackish water aquifers
with ambient TDS of less than 5,000 mg/l and in cases where storage durations were minimized
to less than 90 days. Inaddition, in anisotropic aquifers where the horizontal hydraulic conductivity
is much greater than the vertical hydraulic conductivity, density stratification is minimized further
(Missimer et al. 2002). Since all proposed CERP aquifer storage zones can be characterized as
highly anisotropic and only contain slightly brackish groundwater (less than 4,000 mg/I TDS),
density differentials will only be of minor importance to the overall recovery of the stored
freshwater. Density differentials will be more important in cases where storage of freshwater is
anticipated to be longer than one year. For this paper, density differentials were neglected and
numerical model simulations conducted assumed a constant density in the aquifer storage zone.
To ensure validity of this assumption during modeling, storage durations were all kept to zero and
the aquifer was assumed to have an isotropy ratio of 0.10.

HYDROGEOLOGIC CONCEPTUAL MODELS

The hydrogeology in most of South Florida consists of a layer cake of aquifers and confining
units. The three primary aquifers in the study area include the Surficial Aquifer System (SAS)
ranging from 30 to 100 meters thick; the Intermediate Aquifer System (IAS) located within the
Hawthorn Group sporadically; and the massive Floridan Aquifer System (FAS) that can be as thick
as 500 meters. Generally, the SAS is separated from the FAS by an extensive confining unit
consisting of interbedded sands, clays and carbonate units. The Intermediate Confining Unit (ICU)
occurs between 50 and 300 meters below land surface in the study area and is usually synonymous
with the Hawthorn Group. The FAS can generally be subdivided into several permeable zones,
separated by low-permeability limestones. It is composed of sandstone, sandy limestone,
limestone and dolostone units generally dipping to the east and south, and contains brackish to
saline water. The permeable zones within the FAS are regionally grouped into upper and lower
units, separated by a middle confining unit. These units are informally designated «Upper Floridan
Aquifer», «Middle Floridan permeable zone”, and «Lower Floridan Aquifer” (Miller, 1997). The
CERP ASR project proposes to utilize the permeable units within the FAS as storage zones for
excess freshwater from Lake Okeechobee and other surface water bodies located in the study area.

Due to the large regional nature of the CERP, the hydrogeology across the study area may vary
considerably. Itis likely that the geologic character of the proposed CERP ASR storage zones will
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vary from sandy limestone or sandstone characterized by low to moderate hydrodynamic dispersion
and mixing to karst limestone or dolostone zones characterized by conduit flow with high
hydrodynamic dispersion and major mixing. Obviously, the geologic character probably frames
a continuum from a sandier, low dispersion storage zone to a cavernous, high dispersion storage
zone. Within this geologic character continuum, ASR performance will be governed by the four
primary performance factors listed above. Depending upon the overall geologic character
encountered, different ASR operational models may be warranted. In this paper, numerical model
simulations were completed to evaluate three different operational scenarios versus three
different geologic conceptual models that may be encountered in the CERP study area.

MODEL SIMULATIONS

A number of investigators have undertaken modeling of ASR systems in order to explore
assorted controls on system performance. Khanal (1980), Merritt (1986), Huntley and Bottcher
(1997), Wright and Barker (2001), Missimer et al. (2002), and Pavelic et al. (2002), have all
developed models of brackish-water ASR projects. Khanal and Pavelic et al. utilized conventional
two-dimensional models to explore the expected performance. Streetly (1998) and Anderson &
Lowry (2004) have investigated ASR performance in near-potable aquifers using numerical
models.

Consistent with previous research efforts, an ASR simulator model was developed to confirm
and evaluate ASR performance variables and operational schemes. The models were all originally
constructed utilizing the United States Geological Survey (USGS) groundwater flow model code
MODFLOW (McDonald and Harbaugh, 1988) and the contaminant transport code MT3DMS
(Zheng and Wang, 1999). The model domain was 64 kilometers by 64 kilometers and included 1.5-
meter resolution at the well head and within 100 meters of the well head, gradually increasing to
1,000 meters at the model boundary. The model was one layer thick and included only the aquifer
storage zone. The thickness of the storage zone was fixed at 61 meters and a horizontal hydraulic
conductivity of 15.2 meters/day. The model simulated the confined Upper FAS with an assigned
storage coefficient of 1 x 10"%. A west to east pre-existing gradient was assigned across the model
0f 0.0001, similar to that which exists in the FAS beneath Palm Beach County, Florida. The TDS
of the aquifer storage zone was assigned a value of 4,000 mg/l similar to the FAS beneath Palm
Beach County. The TDS of the recharge water was assumed to be 150 mg/l, that is a reasonable
approximation for freshwater in the study area. The simulator model was then utilized as a testing
laboratory to review various hydrogeologic conceptual models in conjunction with differing
operational schemes.

Three different hydrogeologic conceptual models were simulated, including a low dispersion
case thought to represent sandy portions of the FAS; a moderate dispersion case thought to
represent limestone portions of the FAS; and scale-dependent moderate dispersion case.

The low dispersion case was assigned a constant dispersivity (¢) of 0.30 meters across the
entire model domain. For this conceptual model, freshwater transport is dominated by advection
through the sand to sandy limestone porous media.

*  The moderate dispersion case utilized a constant o of 7.6 meters across the entire model
domain. For this conceptual model, freshwater transport is a combination of advection and
hydrodynamic dispersion through slightly vuggy limestone porous media. It is important to note
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that most numerical models completed to date evaluating ASR performance have all assumed
constant 0.

The last hydrogeologic conceptual model introduces scale effects into the model through
assignment of radially increasing o.

Schulze-Makuch (2005) extended research on scale dependent hydrodynamic dispersion
originally completed by Gelhar et al. (1992) by correlating geologic character and project scale.
Brown (2005) further extended this concept by adapting dispersion correlation equations to ASR
projects. Brown also proposed further sub-divisions of the carbonate geological character
category introduced by Schulze-Makuch. Schulze-Makuch’s research determined a power law
relationship relating geologic character and project scale to dispersivity. Equation 3 provides the
general relationship determined by the research:

o= cLm 3)

where ¢ is a characteristic parameter of a geologic medium; L is the flow distance or problem scale;
and m is a scaling exponent related to the geologic medium. In order to account for ASR scale
effects, Brown (2005) substituted the radius of a theoretical ASR bubble, Rm, for L to form
Equation (4):

o= c(Rm)" )

This equation provided a means to estimate and assign a realistic radially-increasing o to the
model domain. However, based upon cautionary words from Gelhar et al. (1992), the ¢ probably
approaches an asymptote at values greater than 35 meters. Therefore, the maximum o assigned
to the model domain was 35 meters. Based upon the characteristics of a vuggy limestone as
presented in Brown (2005, Table 3-31), ¢ was assigned a value of 0.405 while the exponent m was
assigned a value of 0.81. Therefore, the assigned model a ranged from 2.6 meters at 10 meter scale
to 9.6 meters at 50 meter scale to 23.4 meters at 150 meter scale. At radial distances greater than
250 meters, the o value was assumed to be constant at 35 meters.

A review of the ASR case studies indicates that two general operational strategies have been
employed to maximize RE. First, the traditional approach is to develop the ASR storage zone
through multiple recharge and recovery cycles. Optimally, a similar size recharge volume is used
every cycle to continually buffer the ambient water quality with freshwater recharge. Thisis a “pore
volume” approach consistent with experiments performed by Haggerty et al. (1998). The second
approach is establishing a “target storage volume” (TSV) by recharging large quantities of
freshwater for the first few cycles to ensure that a target recovery volume can be achieved as soon
as possible by reconditioning of the aquifer water quality. The TSV approach has been discussed
previously by Pyne (1995). Various size TSVs have been experimented with but the optimum size
has not yet been determined. For this paper, three separate operational scenarios or schemes were
tested with the ASR simulator model. First, a typical pore volume approach was simulated using
six separate 30-day recharge and recovery cycles. Second, a TSV approach was simulated using
amoderate size TSV prior to starting a typical pore volume approach with six 30-day recharge and
recovery cycles. Last, an aquifer “flushing” approach utilizing a massive single cycle volume was
tested with 180 days of recharge followed by 180 days of recovery. All three schemes utilized the
same cumulative total of freshwater recharge over a 360-day period (e.g., almost one full year of
testing). The amount of recovery during each period was constrained by the applicable water
quality limit of 500 mg/1 TDS. Once this value was exceeded during recovery, the next subsequent
recharge cycle was started.
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Each operational approach included cumulative recharge of 3,420,000 m? of freshwater over
the 360-day simulation period with the exception of the TSV cases where the cumulative recharge
volume included an additional 383,000 m* of freshwater to build the initial target storage volume.
Each operational approach was tested using all of the three hydrogeologic conceptual models
discussed earlier in this paper. Table 1 presents the simulation matrix for the study.

Table 1. Simulation matrix with simulation name assigned.

Hydrogeologic Conceptual Model

constant o)

constant )

Low Moderate Moderate Dispersion

Dispersion Dispersion (geology and scale

(geology (geology dependent o)
Operational Scheme | dependent dependent

Pore Volume A D G

Moderate TSV B E H

Aquifer Flushing C F I
RESULTS AND DISCUSSION

Table 2 displays the results of the model simulations over the one-year period. The table lists
the individual first and last cycle recovery efficiency, the first and last cumulative recovery
efficiency, the first and last cycle recovery volume, and the cumulative recovery volume for the
entire simulation. Table 3 displays a theoretical “benefit to cost ratio” (B/C ratio) assuming that
the value of the water recovered is the same as the cost of the water recharged. The B/C ratio is
calculated after one year of model simulations.

Table2. Modelsimulation results with key performance metrics.

Simulation RE Cl1 RE C6 CRE C1 CRE C6 Vol C1 Vol C6 Cum
% % % % (m?3) (m3) Volume

Recovered
(m?)

A 78.30 97.50 78.33 92.78 446,500 555,750 3,173,019

B 100.0 100.0 60.00 90.00 570,000 570,000 3,420,000

@ 90.00 NA 90.00 NA 3,103,448 NA 3,103,448

D 32.50 80.83 32.50 66.25 185,250 460,750 2,265,750

E 61.67 81.00 37.00 65.57 351,500 461,700 2,491,698

F 92:7 NA 72.77 NA 2,489,000 NA 2,489,000

Note: C1 refers to Cycle 1; Vol refers to volume; Cum refers to cumulative; NA refers to not applicable

Table 3. Model simulation B/C Ratios.

B/C Ratio
A 0.93
B 0.90
(€ 0.90
D
E
F

Simulation

0.66
0.66
0.73
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Tables 2 and 3 provide a wealth of information regarding the various combinations of
operational scheme and hydrogeologic conceptual model. First, a comparison of the three
operational schemes tested in a constant low hydrodynamic dispersion environment (Simulations
A, B, and C) reveals that the TSV approach results in the highest RE values cycle to cycle but the
lowest CRE values, while the aquifer flushing approach assures the largest volume of water
available after one cycle. The TSV approach ensures that the initial recovery volume would be at
least 570,000 m>. If a benefit to cost ratio is compared as in Table 3, the pore volume approach
appears to be the most cost effective. Technically, it is reasoned this occurs due to the translation
of the freshwater bubble due to pre-existing aquifer gradient. With low hydrodynamic dispersion,
advection is the dominant mixing and transport process. Scenarios B and C involve recharge of
larger volumes of water during the initial cycle, some of which becomes unrecoverable due to the
bubble translation. Since the pore volume approach involves lower recharge volumes, less water
becomes unrecoverable. Therefore, depending upon the goals and objectives of the project, under
low hydrodynamic dispersion conditions the pore volume approach is recommended. In regards
to the CERP, low hydrodynamic dispersion conditions are not expected for a majority of potential
locations, however, if one is discovered within Palm Beach County, the pore volume approach
would be recommended to the extent practical since the approach would also be consistent with
the expected availability of freshwater in the study area. In a practical sense, however, the
difference in performance among the three operational schemes is minor and after many years of
repetitive ASR cycles, any of the three schemes should result in superior performance.

Second, a comparison of the three operational schemes tested in a constant moderate
hydrodynamic dispersion environment (Simulations D, E, and F) reveals that the aquifer flushing
approach results in the highest RE values cycle to cycle and the highest CRE values, while it also
assures the largest volume of water available after one cycle. Ifa benefit to cost ratio is compared
asin Table 3, the aquifer flushing approach appears to be the most cost effective. The TSV approach
succeeds in recovering the largest cumulative volume of freshwater but at an investment 10%
higher than the other two options. It also appears that the initial effectiveness of the TSV dissipates
by the sixth recharge and recovery cycle since the CRE value is approximately the same as the
corresponding pore volume approach. Technically, it is reasoned this occurs because the
cumulative unrecovered freshwater buffer eventually equals out after six cycles. Similar reasoning
explains the success of the aquifer flushing approach where the overall buffer volume approaches
an asymptote. Therefore, depending upon the goals and objectives of the project, under moderate
hydrodynamic dispersion conditions the aquifer flushing approach is recommended. In regards to
the CERP, the operation of the ASR system north of Lake Okeechobee is heavily dependent upon
the availability of excess freshwater not currently allocated to an existing water demand. The
freshwater availability is expected to be discontinuous with massive volumes available for some
periods of time and moderate volumes for others. In addition, constant moderate dispersion
conditions are not expected for a majority of the potential Lake Okeechobee locations, however,
if some are discovered in the area north of Lake Okeechobee, the aquifer flushing approach would
be recommended to the extent practical since the approach would also be consistent with the
expected availability of freshwater in the study area. In essence, a larger volume of freshwater
available would lend itself to the aquifer flushing approach.

Third, a comparison of the three operational schemes tested in a scale dependent moderate
hydrodynamic dispersion environment (Simulations G, H, and I) reveals that the TSV approach
results in the highest RE values cycle to cycle and the second highest CRE values, while it also
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ensures the availability of at least 250,000 m® of freshwater can be utilized immediately. If a
benefit to cost ratio is compared as in Table 3, the TSV or the Pore Volume approach appear to be
cost effective. The TSV approach also succeeds in recovering the largest cumulative volume of
freshwater but at an investment 10% higher than the other two options. It also appears that the initial
effectiveness of the TSV dissipates by the sixth recharge and recovery cycle since the CRE value
is approximately the same as the corresponding pore volume approach. Technically, it is reasoned
this occurs because the cumulative unrecovered freshwater buffer eventually equals out after six
cycles. Therefore, depending upon the goals and objectives of the project, under scale dependent
moderate hydrodynamic dispersion conditions the TSV approach is recommended. In regards to
the CERP ASR program, these last three cases represent the most likely hydrogeologic conceptual
model. The model simulations suggest that for ASR projects in Palm Beach County where more
frequent, moderately-sized ASR cycles are expected, the TSV approach would be the best
operational scheme. For the ASR wells north of Lake Okeechobee, massive volumes of freshwater
are likely to be available sporadically, pointing to the aquifer flushing approach, even though the
performance may not be as good as the TSV approach. It may be possible to develop a hybrid
operational scheme north of Lake Okeechobee also. When moderate freshwater volumes present
themselves, the TSV approach should be considered instead of the pure aquifer flushing scheme.
Unfortunately, the model simulations indicate that the flushing approach may result in dampened
system performance.

The model simulations conducted for this paper assumed an ambient groundwater TDS value of
4,000 mg/l along with various hydrogeologic conceptual models. The TDS value across the CERP
study area is variable with values increasing in a general north to south direction. The TDS values
expected north of Lake Okeechobee should be less than half those simulated for this study;
therefore, performance of the ultimate system should be better than presented in this study.
However, even under “worse-case” water quality conditions, the CRE values after one year ranged
from 31 to 93%. These values would be expected to improve considerably in subsequent
operational years so that a long-term average CRE of 70% should be feasible. In areas north of
Lake Okeechobee, lower TDS ambient groundwater should permit CRE values in excess of 70%.
Meeting or exceeding the 70% value is important since the overall ASR performance assumed for
the CERP is 70%.

In conclusion, operational schemes selected for ASR projects should give due consideration
to the hydrogeologic environment present at the site. Depending upon the hydrogeologic
conceptual model for a given site and the objectives of the project, alternate operational schemes
may be optimal. This paper has evaluated nine combinations of hydrogeology and operational
schemes to determine optimum performance. The paper also discusses these findings relative to
the expected operations required for the CERP ASR project. Lastly, the conclusions from this
paper could be bolstered through additional model simulations using different initial values of
ambient groundwater TDS and possibly the inclusion of density-dependency. A density dependent
model would be especially useful in cases of ambient TDS greater than 5,000 mg/I and where ASR
storage durations are exceedingly long.
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