Everglades Agricultural Area Regional Feasibility Study

Deliverable 3.2b — Optimum Allocation of Loads to the STAs for the Period 2010-2014

Alternative No. 3 (Final Report)

(Contract No. CN040912-WO04 Phase 2)

Prepared for:

South Florida Water Management District (SFWMD)

3301 Gun Club Road West Palm Beach, FL 33406 (561) 686-8800

Prepared by:

Burns & McDonnell Engineering Co., Inc.

9400 Ward Parkway Kansas City, Missouri 64114 (816) 822-3099 Under Subcontract to:

11401 S.W. 40th Street, Suite 470 Miami, Florida 33165 (305) 551-4608

October 2005

October 3, 2005

Mr. Alex Vazquez, P.E. Project Manager ADA Engineering, Inc. 1800 Old Okeechobee Road Suite 102 West Palm Beach, FL 33409

South Florida Water Management District EAA Regional Feasibility Study ADA Contract No. CN040912-WO04 Phase 2 Optimum Allocation of Loads to the STAs, 2010-2014 Alternative No. 3 B&McD Project No. 38318

Dear Mr. Vazquez:

Burns & McDonnell is pleased to submit this Final report on "Optimum Allocation of Loads to the STAs for the Period 2010-2014, Alternative No. 3". This document is intended for attachment to ADA's overall report on Task 3, and was prepared under ADA Engineering, Inc. Task Order No. BM-05WO04-02 dated April 27, 2005.

We gratefully acknowledge the valuable contributions of both your staff and that of the South Florida Water Management District in the development of the information presented herein.

Certification

I hereby certify, as a professional engineer in the State of Florida, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse without specific verification or adaptation by the Engineer. This certification is provided in accordance with the provisions of the Laws and Rules of the Florida Board of Professional Engineers under Chapter 61G15-29, Florida Administrative Code.

Galen E. Miller, P.E., Florida P.E. #40624

Date:_____

(Reproductions are not valid unless signed, dated and embossed with Engineer's seal)

9400 Ward Parkway Kansas City, Missouri 64114-3319 Tel: 816 333-9400 Fax: 816 333-3690 www.burnsmcd.com Florida Professional Certificates: Architecture – AAC000567 Engineering – EB0000253

Table of Contents

1. INTRODUCTION
1.1. Background
1.2. Scope of Work
1.3. ANALYTICAL METHODS FOR ESTIMATING TP REDUCTION IN STAS
1.4. Reference Information
1.4.1. Inflow Volumes, TP Concentrations and TP Loads
1.4.2. Basic Designs of Proposed STA Expansions
1.4.3. Rainfall and Evapotranspiration
1.4.4. Previous Studies and Reports
1.4.5. DMSTA2 Parameters for STAs
2. DESCRIPTION OF ALTERNATIVE NO. 3
3. STA-3/4
3.1. SUMMARY OF DMSTA2 RESULTS
4. STA-5
4.1. CASES CONSIDERED IN DMSTA2 ANALYSIS OF STA-5
4.2. SUMMARY OF DMSTA2 RESULTS
Appendix A DMSTA2 Output Data

List of Tables

Table 3.1 Potential Inflows to STA-3/4	12
Table 3.2 Summary of DMSTA2 Analysis, STA-3/4, WY 1966-2000	14
Table 4.1 Estimated Inflows to STA-5, W.Y. 1995-2000	17
Table 4.2 Summary of DMSTA2 Analyses, STA-5, W.Y. 1995-2000	18

List of Figures

1. INTRODUCTION

This document and the analyses it summarizes were prepared by Burns & McDonnell Engineering Co., Inc. under contract to ADA Engineering, Inc (ADA). The conduct of these analyses and preparation of this document were authorized by the South Florida Water Management District (SFWMD or District) through its March 27, 2005 issuance of Work Order No. CN040912-WO04 to ADA, and subsequently authorized by ADA through its April 27, 2005 issuance of Task Order BM-05WO04-02 to Burns & McDonnell.

1.1. Background

Under the Everglades Construction Project (ECP), the South Florida Water Management District has constructed several STAs and the U.S. Army Corps of Engineers has constructed STA-1E to help improve the quality of waters released to the Everglades Protection Area (EPA). In addition to the existing STAs, the District is planning certain STA expansions and enhancements, Everglades Agricultural Area (EAA) canal improvements, construction of the EAA Storage Reservoir Project, and other EAA improvements. With recognition of these planned improvements, the EAA Regional Feasibility Study (RFS) will evaluate alternatives for redistributing inflow volumes and phosphorus loads to the various STAs to optimize phosphorus removal performance. This study is not intended to define the final arrangement, location or character of these proposed projects but is a fact-finding exercise to develop the information necessary for the subsequent planning, design and construction of these future projects.

1.2. Scope of Work

This document was prepared in support of Task 3 "Optimum Allocation of Phosphorus and Hydraulic Loading to the Existing STAs and A-1 Reservoir, and Optimum Canal Improvements Associated with Optimum Allocation" and Task 4 "Detailed Alternative Analysis" of the SFWMD Work Order No. CN040912-WO04. The overall objective of the analyses reported herein is to evaluate the redistribution of hydraulic and total phosphorus loads to the STAs (both existing and the currently planned STA-6, Section 2, full conversion of Compartments B and C of the Talisman Land Exchange to use in stormwater treatment areas) to optimize phosphorus reduction, given the presence of the Everglades Agricultural Area Storage Reservoir (EAASR) Compartment A-1. This analysis is specific to the period

2010-2014 (following completion of the above identified projects, but prior to the completion of the planned EAASR Compartment A-2), and addresses Alternative No. 3 (described more fully in Part 2 of this document).

Estimates of the overall inflow volumes and TP loads to be accommodated in the various STAs were developed under Task 1 of Contract CN040912-WO04. Basins considered include the following:

- C-51 West Canal
- S-5A (West Palm Beach Canal)
- Ch. 298 Districts:
 - East Beach Water Control District
 - East Shore Water Control District
 - 715 Farms (State Lease No. 3420)
 - South Shore Drainage District
 - South Florida Conservancy District, Unit 5 (S-236 Basin)
- S2/S-6/S-7 (Hillsboro and North New River Canals)
- ➢ S-3/S-8 (Miami Canal)
- ➢ C-139 and C-139 Annex
- ► L-8 Canal
- > Lake Okeechobee deliveries south to the STAs and Everglades

1.3. Analytical Methods for Estimating TP Reduction in STAs

The estimated performance of the various STAs in reducing total phosphorus concentrations presented in this document were developed employing the July 1, 2005 issue of the Dynamic Model for Stormwater Treatment Areas, Version 2 (DMSTA2), developed for the U.S. Department of the Interior and the U.S. Army Corps of Engineers by W. Walker and R. Kadlec. Additional information on DMSTA2 can be found on the Internet at:

www.wwalker.net/dmsta

1.4. Reference Information

This section summarizes previous studies, reports and data employed in the conduct of the analyses presented herein.

1.4.1. Inflow Volumes, TP Concentrations and TP Loads

Inflow volumes, TP concentrations and TP loads employed in this analysis are based on information presented in the following reports, all prepared for the South Florida Water Management District by Burns & McDonnell Engineering Co., Inc. under subcontract to ADA Engineering, Inc. as elements of Task 1 of the scope of work under District Contract CN040912-WO04:

- Deliverable 1.1.2: Evaluation of 2006 Hydrologic Simulation Results, Final Report dated June 27, 2005;
- Deliverable 1.2A: Inflow Data Sets for the Period 2010-2014, Final Report dated September 29, 2005;
- Deliverable 1.3.2: Historic Inflow Volumes and Total Phosphorus Concentrations by Source, Final Report dated June 27, 2005;
- Deliverable 1.4.2: Methodology for Development of Daily Total Phosphorus Concentrations, Final Report dated June 30, 2005;
- Deliverable 1.5.2: Inflow Data Sets for the Period 2006-2009, Final Report dated August 9, 2005;

1.4.2. Basic Designs of Proposed STA Expansions

Information on the presently planned configuration and basic layout and design of STA-6, Section 2; Cell 4 of STA-2; and the third flow-way of STA-5 was taken from the following documents:

- Basis of Design Report (BODR) Stormwater Treatment Area 6 Section 2 and Modifications to Section 1; prepared for the South Florida Water Management District by URS Corporation under Contract CN040936-WO02; June 1, 2005;
- Basis of Design Report (BODR) STA-2/Cell 4 Expansion Project; prepared for the South Florida Water Management District by Brown & Caldwell under Contract CN040935-WO04; May 12, 2005;
- Draft Basis of Design Report (BODR) Stormwater Treatment Area 5 Flow-way 3; prepared for the South Florida Water Management District by URS Corporation under Contract CN040936-WO05; April 20, 2005.

No information is presently available for the planned configuration and basic layout and design of the full conversion of Compartment C of the Talisman Land Exchange to use as a stormwater treatment area. The layout and configuration of this expanded stormwater treatment area <u>assumed</u> for use in this analysis is described in Part 4, STA-5 of this document.

The layout, configuration and operation of the EAASR Compartment A-1 <u>assumed</u> for use in this analysis is based on review of the data contained in the District's South Florida Water Management Model (SFWMM) ECP 2010 simulation, as generally described in Deliverable 1.2A.

1.4.3. Rainfall and Evapotranspiration

Estimates of daily rainfall and evapotranspiration (ET) at each of the STAs was taken from a District-furnished data file (ET_RF_STAs_ECP2006.xls). That file includes daily values for both rainfall and ET at each cell of the SFWMM occupied by STA. The data extends from January 1, 1965 through December 31, 2000. For this analysis, daily data for those STAs occupying multiple cells of the SFWMM was estimated as the average of the individual cell values. Data for STA-3/4 was applied to the adjacent EAASR Compartment A-1.

1.4.4. Previous Studies and Reports

Certain of the background data and information discussed in this document was taken from the following previous studies and reports:

- (Draft) Supplemental Analysis, Everglades Protection Area Tributary Basins, prepared for the Everglades Agricultural Area Environmental Protection District by Burns & McDonnell; March 2, 2005 (hereinafter referred to as the Supplemental Analysis);
- Final Report, Everglades Protection Area Tributary Basins, Long-Term Plan for Achieving Water Quality Goals; prepared for the South Florida Water Management District by Burns & McDonnell; October, 2003 (hereinafter referred to as the Long-Term Plan), together with such modifications to the Long-Term Plan that are embodied in a revised Part 2 (dated November, 2004) submitted to the Florida Department of Environmental Protection (FDEP), and approved by FDEP in December, 2004;
- Basin-Specific Feasibility Studies, Everglades Protection Area Tributary Basins; Evaluation of Alternatives for the ECP Basins; prepared for the South Florida Water Management District by Burns & McDonnell; October 23, 2002 (hereinafter referred to as the BSFS Evaluation of Alternatives).
- Addendum to Design Documentation Report, Stormwater Treatment Area 1 East; prepared for the Jacksonville District, U.S. Army Corps of Engineers by Burns & McDonnell; November 2000;
- (Draft) Stormwater Treatment Area 1-East (STA-1E) Water Control Plan, Jacksonville District, U.S. Army Corps of Engineers; August, 2005;
- (Draft) Design Analysis Report for the STA-1E Cells 1-2 PSTA/SAV Field-Scale Demonstration Project, Palm Beach County, Florida; prepared for the Jacksonville District, U.S. Army Corps of Engineers by SAIC Engineering, Inc.; June 28, 2005.

Additionally, reference is made to the following documents prepared by Burns & McDonnell for ADA Engineering Co., Inc. under Tasks 2 and 3 of the SFWMD Contract No. CN040912-WO04.

- Deliverable 2.2: Optimum Allocation of Loads to the STAs for the Period 2006-2009, Final Report dated September 7, 2005;
- Optimum Allocation of Loads to the STAs for the Period 2010-2014, Alternative No. 1, Final Report dated October 3, 2005;
- Optimum Allocation of Loads to the STAs for the Period 2010-2014, Alternative No.2, Final Report dated October 3, 2005.

1.4.5. DMSTA2 Parameters for STAs

Basic physical parameters for the various existing STAs reflected in the DMSTA2 analyses reported herein were taken from the BSFS Evaluation of Alternatives, with the following modifications:

- Marsh outflow coefficients (exponent and intercept) were modified to 4 and 1, respectively, consistent with basic guidance contained in the DMSTA2 documentation. They had previously been estimated on the basis of results taken from two-dimensional hydrodynamic analyses in certain of the STAs. It was concluded on the basis of trial runs that this change did not influence projected outflow concentrations, and modified peak and mean depths in the STAs resulting from the DMSTA2 by less than 5 centimeters.
- Seepage estimates were updated to reflect the results of water balance analyses prepared by the District for operating STAs. In addition, cell-to-cell seepage (at STA-1W and STA-1E) considered in the BSFS Evaluation of Alternatives was eliminated from this analysis due to its minor influence on the results and to improve the clarity of the estimates.

The most significant modification to DMSTA parameters, as compared to those considered in the BSFS Evaluation of Alternatives, was the use of updated calibration data sets for the performance of various vegetation types in reducing total phosphorus concentrations. Three basic vegetation calibrations were considered in this analysis:

- EMG_3: An updated calibration of the performance of emergent macrophyte vegetation, using data from full-scale STAs (replaced EMG in the 4/01/2002 version of DMSTA used in the BSFS Evaluation of Alternatives).
- SAV_3: An updated calibration of the performance of submerged aquatic vegetation, using data from full-scale STAs (replaced SAV_C4 and NEWS in the 4/01/2002 version of DMSTA used in the BSFS Evaluation of Alternatives).
- PEW_3 (Pre-Existing Wetland): A new calibration data set developed to reflect the performance of those cells in the operating STAs (and in other wetland data sets, such as WCA-2A) in which the wetland vegetation existed naturally. As applied to the existing STAs, the application of this data set is limited to Cells 1 and 2 of STA-2; STA-6 Section 1; and Cell 1B of STA-3/4.
- RES_3 (Reservoir): A new calibration data set developed to reflect the performance of reservoirs in reducing total phosphorus loads. As applied to this analysis, the use of RES_3 is limited to the EAASR Compartment A-1.

Water quality improvement projections on which the Long-Term Plan was based were predicated on an ability to reproduce the performance of the best two years of operation of Cell 4 in STA-1W (SAV_C4) in those cells containing Submerged Aquatic Vegetation. A range in performance of those cells was also considered, employing the NEWS (Non-Emergent Wetland Systems) calibration data sets.

Comparison of summary data presented in Tables 2.4 and 2.6 of Deliverable 1.4.2 indicates that, for no other change in input data, the substitution of SAV_3 in DMSTA2 for SAV_C4 in the April 2002 version of DMSTA results in roughly a 20% increase in the projected flow-weighted mean TP concentration in outflows from STA-1W,

following its enhancement as recommended in the Long-Term Plan, and roughly a 30% increase in the estimated geometric mean TP concentration in those outflows. However, the projected flow-weighted and geometric mean concentrations using the SAV_3 data set in DMSTA2 fall below those estimated using the NEWS calibration data set in the April 2002 version of DMSTA.

The net effect of this change in calibration data sets is to, as compared to projections considered in development of the Long-Term Plan and with all other inputs unchanged, result in higher projected outflow concentrations than the mean estimates considered in the Long-Term Plan, but still within the probable range of performance reported in the Long-Term Plan.

2. DESCRIPTION OF ALTERNATIVE NO. 3

As concluded in Deliverable 2.2, the overall performance of the various stormwater treatment areas is expected to be generally balanced over the period 2006-2009; no significant benefit would be expected to result from attempts to significantly redistribute inflow volumes and TP loads during that period. However, projected outflow concentrations from the STAs during the period 2006-2009 fall above long-term water quality goals.

Upon the full build-out of Compartments B and C of the Talisman Land Exchange, and completion of the EAASR Compartment A-1, substantial additional acreage of water management and treatment area will be added in the south central and western parts of the EAA, suggesting that overall system performance during the period 2010-2014 would benefit from a redistribution of projected inflow volumes and TP loads.

Both Alternative No. 1 and Alternative No. 2 were structured to redistribute inflow volumes and TP loads in order to take advantage of and more fully utilize those additional water management areas, and consisted of two fairly distinct alternatives for the overall system.

In each, the projected performance of STA-5, expanded to include all lands in Compartment C of the Talisman Land Exchange, was projected considering the full range of performance resulting from consideration of the downstream cells as both SAV_3 and EMG_3. Until such time as an improvement in the performance of the downstream cells is demonstrated, it is unclear that

volumes and TP loads from sources other than the C-139 Basin should be included in the inflows to STA-5. Conversely, should it be found that, upon the reduced unit loading resulting from expansion of STA-5, the downstream cells perform more as SAV_3 than EMG_3, the (estimated) 13,150 acre effective treatment area of the expanded STA-5 might well be substantially under-used.

Alternative No. 3 is structured upon the <u>assumption</u> that the downstream cells of STA-5 will, following its expansion to occupy all of Compartment C of the Talisman Land Exchange, perform as SAV_3. For this analysis, Alternative 3 is considered as an additional feature of Alternative No. 1; in practice, it could be considered equally applicable as an expansion of Alternative No. 2.

As indicated above, Alternative No. 3 is structured upon the assumption that the downstream cells of STA-5 will, following its expansion to occupy all of Compartment C of the Talisman Land Exchange, perform as SAV_3 (or, at a minimum, substantially improved from its actual performance to date). Should the performance of the downstream cells of STA-5 not improve markedly from that experienced to date, little benefit to the overall system would be expected to result from partial diversion of S-3/S-8 Basin runoff to the expanded STA-5.

The basic concept embodied in Alternative No. 3 is the partial diversion of accumulated basin runoff in the Miami Canal away from STA-3/4 to STA-5. The works necessary for that assumed diversion are indicated graphically in Figure 2.1; the key feature is the construction of a new pumping station, withdrawing flows from the Miami Canal through the Manley Ditch, and discharging to the inflow control structures of STA-5 along the L-2 and L-3 Borrow Canals.

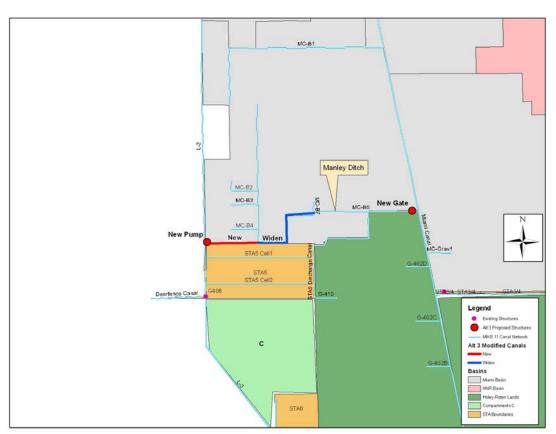


Figure 2.1 Schematic of Alternative No. 3

For this analysis, the assumed capacity of the new diversion pump station is taken as 550 cfs.

3. STA-3/4

For this analysis, all enhancements to STA-3/4 recommended in the Long-Term Plan are considered complete, including the conversion of Cell 1B to SAV. The District is currently evaluating methods to convert this cell from emergent to SAV in a manner that would allow continued flow-through operations in lieu of a method that would require taking the cell completely offline to complete the conversion.

Inflows to STA-3/4 include discharges from Pumping Station G-370 (on the North New River Canal); G-372 (on the Miami Canal); and releases from Compartment A-1 of the EAASR. Those inflows are considered to include:

- ▶ Basin runoff from the S-2/S-7 Basin (North New River Canal);
- Regulatory releases from Lake Okeechobee at S-351 directed to the North New River Canal;
- Basin runoff from the S-3/S-8 Basin (Miami Canal);
- Basin runoff from the Chapter 298 South Shore Drainage District (SSDD) diverted from Lake Okeechobee (diverted to the Miami Canal);
- Basin runoff from the Chapter 298 South Florida Conservancy District No. 5 (SFCD), also known as the S-236 Basin, diverted to the Miami Canal;
- Basin runoff from the C-139 Basin diverted to the Miami Canal through Structure G-136 (term "G136SO" from the ECP 2006 SFWMM simulation);
- Regulatory releases from Lake Okeechobee at S-354 directed to the Miami Canal;
- > Discharges from the EAASR Compartment A-1.

In development of the SFWMM 2010 ECP simulation on which the estimated inflow volumes and TP loads are based, certain significant changes in overall system management from historic operations were assumed. Those assumptions include the following that directly and materially influence the projected performance of STA-3/4 in reducing total phosphorus loads and concentrations:

- Water supply releases to the North New River Canal at S-351 destined for the Lower East Coast Service Area 2 (terms "WL1351" and "WL3351" in the 2010 ECP simulation) would only be made when the stage in WCA-2A (for "WL 1351") or WCA-3A (for "WL-3351") is at or below the floor of their regulation schedules, and would bypass STA-3/4.
- Water supply releases to the Seminole Tribe's Big Cypress Reservation at S-354 would bypass STA-3/4.

Implementation of each of the above assumptions in the Operations Plan for STA-3/4 and related elements of the system is critical to the water quality improvement performance projections presented herein.

In addition, the total phosphorus concentration in discharges from the C-139 Basin through G-136 were assumed reduced by 10% from historic levels as a result of ongoing BMP implementation in that basin.

A summary of the estimated average annual inflows to STA-3/4 (prior to any diversion to STA-5) is presented in Table 3.1, and is taken from the estimated inflows for Alternative No. 1. That listing includes basin runoff volumes (and associated TP loads) back pumped to Lake Okeechobee, as taken from the ECP 2010 SFWMM simulation; those volumes and loads are for this analysis considered to be delivered to STA-3/4.

Source	Estimated Avera	age Annual Inflov	Remarks	
	Volume (ac-ft)	TP Load (kg)	TP Conc. (ppb)	
Inf	lows as for Altern	ative No. 1, with	S-2 & S-3 Flows [Delivered to STA-3/4
				Includes both basin runoff and Lake
				Okeechobee releases at S-351, taken
NNRC at G-370	108,286	15,485	115	from Alternative No.1, Table 8.1
S-3/S-8 Basin	170,624	17,460	83	Deliverable 1.2A, Table 3.10
SSDD	10,559	1,390	107	Deliverable 1.2A, Table 2.9
SFCD	21,145	3,183	122	Deliverable 1.2A, Table 2.12
C-139 Basin (G-136)	13,204	2,958	182	Deliverable 1.2A, Table 4.3
S-2 (S-2/S-6/S-7)				Deliverable 1.2A, Table 3.8; basin runoff
				to Lake from SFWMM simulation,
				assumed redirected to STA-3/4.
	24,946	2,822	92	
S-3 (S-3/S-8)				Deliverable 1.2A, Table 3.12; basin
				runoff to Lake from SFWMM simulation,
				assumed redirected to STA-3/4.
	4,091	445	88	
Lake Flow Through				
Release at S-354	26,581	2,115	65	Deliverable 1.2A, Table 6.12
Lake WS Release at				Deliverable 1.2A, Table 6.7
S-351	11,484	1,189	84	
Lake WS Release at				Deliverable 1.2A, Table 6.9
S-354	109,279	9,391	70	
A-1 Reservoir Outflow				TP Load and Concentration based on
to STA-3/4				mean estimate from DMSTA2 analysis,
	235,100	23,332	81	Alternative No. 1, Table 8.1
Total Inflow	735,299	79,770	88	
				Water Supply to LEC and Big Cypress
Assumed Bypass	120,763	10,580	71	Reservation
Inflow to be Treated	614,536	69,190	91	

Two cases were considered for STA-3/4 in the DMSTA2 analyses for Alternative No. 3, and are summarized below;

- Case "Alt1_w_S2S3": Taken from the analyses for Alternative No. 1. Inflows to STA-3/4 include volumes and loads simulated in the ECP 2010 SFWMM simulation as being back pumped to Lake Okeechobee at S-2 and S-3;
- Case "34_Alt3_w_S2S3": As above, but with basin runoff volumes to STA-3/4 from the Miami Canal reduced to reflect an assumed diversion of 550 cfs to STA-5.

In the computation of volumes and loads diverted to STA-5, daily inflows from the S-3/S-8 basin (including volumes originally simulated as being back pumped to the Lake at S-3), the C-139 Basin at G-136, the SSDD and the SFCD were summed. That summation was then reduced by 550 cfs (the assumed capacity of the new pump station to STA-5) for determination of basin runoff discharged to STA-3/4 at Pump Station G-372. On days when the summation of basin runoff was less than or equal to 550 cfs, all runoff was considered as diverted to STA-5.

3.1. Summary of DMSTA2 Results

Table 3.2 presents a summary of the results of the DMSTA2 analysis for STA-3/4. Summary DMSTA2 input and output data are included in Appendix A.

Parameter	Units	Summary of Results by Cas				
		Alt1_w_S2S3	34_Alt3_w_S2S3			
Aver	age Annual In	flow				
Volume	1,000 ac-ft	614.8	531.6			
TP Load	metric tons	69.13	58.53			
FWM TP Concentration	ppb	91	89			
Avera	age Annual Ou	Itflow				
Volume	1,000 ac-ft	595.9	513.0			
FWM TP Concentration						
Upper Confidence Limit*	ppb	16.7	15.1			
Mean Estimate	ppb	20.3	18.2			
Lower Confidence Limit	ppb	25.0	22.3			
Geometric Mean TP Conc.						
Upper Confidence Limit*	ppb	12.0	10.4			
Mean Estimate	ppb	15.2	13.2			
Lower Confidence Limit	ppb	19.7	17.1			
TP Load (Using Mean FWM Conc.)	metric tons	14.90	11.53			
For Detailed Results, See App		Table A.1	Table A.2			
Summary of	Bypasses and	d Diversions				
Wat	er Supply Byp	ass				
Volume	1,000 ac-ft	120.8	120.8			
TP Load	metric tons	10.6	10.58			
FWM TP Concentration	ppb	71	71			
Diversion fro	om Miami Can	al to STA-5				
Volume	1,000 ac-ft	0	83.3			
TP Load	metric tons	0	10.60			
FWM TP Concentration	ppb		103			

Table 3.2 Summary of DMSTA2 Analysis, STA-3/4, WY 1966-2000

* TP Concentrations for Upper Confidence Limits approximated, see text below

The EAASR Compartment A-1 and STA-3/4 were analyzed using the "network simulation" feature of DMSTA2. The 7/01/2005 version of DMSTA2 does not include capability for a full uncertainty analysis; specifically, it cannot develop upper confidence limit estimates. The upper confidence limit concentrations reported in Table 3.2 were estimated using the following approximation:

Log (Upper C.L.)/Log (Mean Est.)=Log (Mean Est.)/Log (Lower C.L.)

4. STA-5

Under Alternative No. 3, the analysis for STA-5 varies from that presented for Alternative No. 1 due to the addition of volumes and TP loads diverted from the Miami Canal to STA-5.

In this analysis, all enhancements to existing STA-5 recommended in the Long-Term Plan are assumed to be complete by the end of 2006. In addition, the proposed third flow-way at STA-5 is assumed complete, generally as described in the BODR for STA-5.

For the period 2010-2014, it is further assumed that all of Compartment B of the Talisman Land Exchange has been converted to use in a further expansion of STA-5. For this analysis, the fully expanded STA-5 is considered to consist of six parallel flow paths, each structured to contain two cells in series. Flow paths 1 through 3 (Cells 1A-3B, inclusive) are considered unchanged from the geometrics considered for the period 2006-2009 (see Deliverable 2.2). The three additional flow paths, numbered to increase from north to south, are generally described as follows:

- Flow path No. 4 (Cells 4A and 4B) is modeled as extending approximately one mile from the south line of flow path no. 3. The effective area in this flow path is assumed limited to that area lying one-half mile and more from Levee L-3 (similar to that considered for flow paths 1-3), due to anticipated higher ground surface elevations along L-3. Cell 4A is considered to provide 1,140 acres of effective treatment area; Cell 4B is considered to provide 920 acres of effective treatment area. The levee separating the two cells is assumed to be congruent with that separating Cells 3A and 3B;
- Flow path no. 5 (Cells 5A and 5B) is modeled as extending approximately 1.4 miles south of the south line of flow path no. 4, generally to the north line of STA-6 Section 2 as it is presently structured. The westerly limit of effective area in flow path no. 5 is assumed congruent with that in the more northerly four flow paths. Cell 5A is considered to provide 1,710 acres of effective treatment area; Cell 5B is considered to provide 1,370 acres of effective treatment area. The levee separating the two cells is assumed to be congruent with that separating Cells 4A and 4B;
- Flow path no. 6 (Cells 6A and 6B) is modeled as extending south from flow path no. 5 to the north line of STA-6, Section 1. For this analysis, STA-6 Section 2 is assumed to

converted to use as Cell 6B in STA-5; the area lying between STA-6 Section 2 and the L-3 Borrow Canal is assumed converted to use as Cell 6A. Cell 6A is considered to provide 550 acres of effective treatment area; Cell 6B is considered to provide 1,300 acres of effective treatment area.

The total effective treatment area of the fully expanded STA-5 considered in this analysis is 13,150 acres. The upstream cell in each of the six flow paths is assumed to be vegetated with emergent macrophytes (EMG_3); the downstream cell in each of the six flow paths is assumed to vegetated with submerged aquatic vegetation (SAV_3).

Inflows to STA-5 from the C-139 Basin over the period Water Years 1995-2005 are estimated to average 159,030 acre-feet per year at a flow-weighted mean TP concentration of 199 ppb (taken from Deliverable 1.2A, Table 4.1). That mean inflow concentration has been reduced from historic data by 10% in anticipation of reductions in basin TP load discharges resulting from continued BMP implementation in the C-139 Basin.

For Alternative No. 2, those inflows are increased to include the diversion from the Miami Canal. Over Water Years 1966-2000, that diversion is estimated to average approximately 83,000 acrefeet per year at a flow-weighted mean TP concentration of 103 ppb (see Table 3.2).

The available periods of analysis at STA-3/4 and STA-5 are not congruent (Water Years 1966-2000 at STA-3/4, Water Years 1995-2000 at STA-5). The analyses for Alternative No. 3 consider only the common period from the analyses for the two treatment areas (Water Years 1995-2000). A summary of the estimated average annual inflows to STA-5 over that period is presented in Table 4.1.

Inflow

Total Estimated

Source	Estimated Avera	age Annual Inflov	v, WY 1995-2000	Remarks
	Volume (ac-ft)	TP Load (kg)	TP Conc. (ppb)	
C-139 Basin at L-3	160,619	34,310	173	
Diversion from Miami				
Canal (Alt. 3 only)	106,202	13,278	101	

Table 4.1 Estimated Inflows to STA-5, W.Y. 1995-2000

4.1. Cases Considered in DMSTA2 Analysis of STA-5

47,588

266,821

A total of two potential cases were considered in the DMSTA2 analysis of STA-5. The two cases considered are described as follows:

145

- STA5_Alt3_Base: This case is identical to the "2010 Base" case presented in the reports on Alternatives 1 and 2, with the exception that the analysis includes only Water Years 1995-2000. All inflows to the L-3 Borrow Canal from the C-139 Basin over Water Years 1995-2000 are assigned to STA-5 (e.g., no bypass). Inflow concentrations are assigned at 90% of those measured over Water Years 1995-2005. The downstream cell in each flow path was analyzed using the calibration data set for SAV_3.
- **STA5_Alt3:** This case varies from Case "STA5_Alt3_Base" only in that volumes and TP loads diverted from the Miami Canal over Water Years 1995-2000 are included in the inflows to STA-5.

For both cases outlined above, there was assumed to be no bypass from STA-5 to STA-6.

4.2. Summary of DMSTA2 Results

Table 4.2 presents a summary of the results of the DMSTA2 analyses for STA-5. Summary DMSTA2 input and output data for each case are included in Appendix A. All data is for Water Years 1995-2000 only.

Parameter	Units	Summary of R	esults by Case									
		STA5_Alt3_Base	STA5_Alt3									
Avera	age Annual In	flow										
Volume	1,000 ac-ft	160.7	266.9									
TP Load	metric tons	34.33	47.61									
FWM TP Concentration	ppb	173	145									
Average Annual Outflow												
Volume	1,000 ac-ft	161.6	267.8									
FWM TP Concentration												
Upper Confidence Limit	ppb	7.3*	9.4*									
Mean Estimate	ppb	8.4*	11.9*									
Lower Confidence Limit	ppb	10.2*	15.5									
Geometric Mean TP Conc.												
Upper Confidence Limit	ppb	4.8	6.9									
Mean Estimate	ppb	5.8	8.9									
Lower Confidence Limit	ppb	7.4	12.5									
TP Load (Using Mean FWM Conc.)	metric tons	1.68	3.93									
For Detailed Results, See Appe	endix A	Table A.3	Table A.4									

Table 4.2 Summary of DMSTA2 Analyses, STA-5, W.Y. 1995-2000

* Projected flow-weighted mean TP concentration in outflows less than calibration range lower limit of 15 ppb for SAV_3

As concluded in Deliverable 2.2, until such time as an improvement in performance is demonstrated, it is considered prudent to consider the potential range in performance of STA-5 as encompassing the full range of uncertainty in performance of the six downstream cells (e.g., range from upper limit of performance for SAV_3 to the lower limit of performance for EMG_3).

All analyses conducted for Alternative No. 3 at STA-5 are based on the assumption that the downstream cells of STA-5 can eventually perform as for the SAV_3 calibration data set in DMSTA2. Until such time as a significant improvement in the performance of the downstream cells of STA-5 is demonstrated in actual operation, it would not be considered prudent to divert significant volumes and TP loads from sources other than the C-139 Basin to STA-5. The potential performance of STA-5 as summarized in Table 4.2 underscores the need for continued efforts to enhance the performance of this treatment area.

Appendix A

DMSTA2 Output Data

List of Tables

Table A.1 STA-3/4: Case "Alt1_w_S2S3"	A-1
Table A.1 STA-3/4: Case "34_Alt3_w_S2S3"	A-2
Table A.3 STA-5: Case "STA5_Alt3_Base"	A-3
Table A.4 STA-5: Case "STA5_Alt3"	A-4

Table A.1 STA-3/4: Case "Alt1_w_S2S3"

DMSTA2- Inputs & Outpu	Units	Value	Case Descrip	PROJECT_A									el Release: urrent Date:	
esign Case Name out Series Name	- TS	ALT1_w_S2S3 S_2010_w_S2	STA-3/4, 20 Receives int	10-2014, Alterr lows from EAA	SR Compartm	ent A-1; ST	A enhanced	l per LTP (i	ncluding SA	ided in dire V in Cell 18	ct inflows			
arting Date for Simulation ding Date for Simulation	1	05/01/65 04/30/00 05/01/65	Also receive Water suppl	s direct inflows y releases to L	from NNRC a EC and Big Cy	t G-370 and press Rese	Miami Can rvation excl	al at G-372 uded from t	reatment ar	ea inflows				
arting Date for Output tegration Steps Per Day	-	4	Simulation Ty	pe:	Mana	Lawrence Cl	Linear Cl		Disessetia	_				
umber of Iterations utput Averaging Interval	days	30 1	Output Variat	v C (ppb)	<u>Mean</u> 20.3 15.2	Lower CL #N/A #N/A	Upper CL #N/A #N/A		Diagnostic H20 Balan	ce Error Me	an & Max	0.0% 0.1%	0.0%	
flow Conc Scale Factor ainfall P Conc tmospheric P Load (Dry)	ppb	10 20	GM Outflow (Load Reducti Bypass Load	on %	78% 0.0%	#N/A #N/A	#N/A #N/A		Iterations &	nce Error M Converge	nce	3	0.1% 0.0%	
ell Number>	mg/m2-yr	20 1 1A	2 1B	3	4 2B	5	6 3B	7	8	rror Messag 9	10	11	12	
ell Label getation Type low Fraction	>	EMG_3 0.4	SAV_3	2A EMG_3 0.33	SAV_3	3A EMG_3 0.27	SAV_3							
ownstream Cell Number urface Area	- - km2	2 12.30	14.12	4 10.29	11.71	6 9.61	8.92							
ean Width of Flow Path umber of Tanks in Series	km	3.42	4.50	2.89	4.02 3.0	4.88	4.88							
inimum Depth for Releases elease 1 Series Name	cm													
elease 2 Series Name utflow Series Name														
epth Series Name utflow Control Depth	cm	60	60	60	60	60	60							
utflow Weir Depth utflow Coefficient - Exponent	cm -	4	4	4	4	4	4							
utflow Coefficient - Intercept pass Depth	- cm	1	1	1	1	1	1							
aximum Inflow aximum Outflow	hm3/day hm3/day													
flow Seepage Rate flow Seepage Control Elev	(cm/d) / cm cm													
flow Seepage Conc utflow Seepage Rate	ppb (cm/d) / cm	0.0058	0.0029	0.0014		0.0038								
utflow Seepage Control Elev ax Outflow Seepage Conc	cm ppb	16 20	40 20	-67 20		-64 20								
eepage Recycle to Cell Number eepage Recycle Fraction	1	1 0.5	1 0.5	3 0.5		3 0.5								
tial Water Column Conc	- ppb	30	30	30	30	30	30		<u> </u>		<u> </u>	1		
itial P Storage Per Unit Area itial Water Column Depth	mg/m2 cm	500 200	500 200	500 200	500 200	500 200	500 200							
0 = Conc at 0 g/m2 P Storage 1 = Conc at 1 g/m2 P storage 2 = Conc at Holf Max Untako	ppb ppb	3 22 200	3 22 300	3 22 200	3 22 300	3 22 200	3 22 200							
2 = Conc at Half-Max Uptake = Net Settling Rate at Steady State	ppb m/yr	300 16.8	300 52.5	300 16.8	300 52.5	300 16.8	300 52.5							
I = Saturated Uptake Depth 2 = Lower Penalty Depth	cm cm	40 100	40 100	40 100	40 100	40 100	40 100							
3 = Upper Penalty Depth	cm Units	200	200 2	200	200 4	200	200 6	· .	8	9	40		12	· ~
utput Variables recution Time un Date	sec/yr	8.00 09/30/05	8.43 09/30/05	9.17 09/30/05	4 9.63 09/30/05	5 10.17 09/30/05	10.71 09/30/05			9	10	11	12	Ov 10 09/3
arting Date for Simulation arting Date for Output	-	09/30/05 05/01/65 05/01/65	05/01/65	09/30/05 05/01/65 05/01/65	09/30/05 05/01/65 05/01/65	05/01/65	05/01/65							05/0
nding Date utput Duration	- days	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784							04/3
ell Label ownstream Cell Label	uays	1A 1B	1B Outflow	2A 2B	2B Outflow	3A 3B	3B Outflow							T
atwork Simulation Name mulation Type	:	1_Alt1_w_S28 Base	1_Alt1_w_S28 Base	1_Alt1_w_S2S Base	1_Alt1_w_S28 Base	_Alt1_w_S2 Base	_Alt1_w_S2 Base	253					A1	_Alt1 Bi
urface Area ean Rainfall	km2 cm/yr	12.30 130.0	14.12 130.0	10.29 130.0	11.71 130.0	9.61 130.0	8.92 130.0							66
ean ET ell Inflow Volume	cm/yr hm3/yr	134.9 303.3	134.9 297.9	134.9 250.3	134.9 254.3	134.8 204.8	134.9 188.1							13
ell Inflow Load ell Inflow Conc	kg/yr ppb	27652 91.2	17486 58.7	22812 91.2	14759 58.0	18665 91.2	10602 56.4							69 9
eated Outflow Volume eated Outflow Load	hm3/yr kg/yr	297.9 17486	293.6 5983	254.3 14759	253.7 5152	188.1 10602	187.7 3770							73
eated FWM Outflow Conc oper Confidence Limit	ppb ppb	58.7 #N/A	20.4 #N/A	58.0 #N/A	20.3 #N/A	56.4 #N/A	20.1 #N/A							2 #1
ower Confidence Limit otal Outflow Volume + Bypass	ppb hm3/yr	#N/A 297.9	#N/A 293.6	#N/A 254.3	#N/A 253.7	#N/A 188.1	#N/A 187.7							#N
otal Outflow Load + Bypass otal FWM Outflow Conc	kg/yr ppb	17486 58.7	5983 20.4	14759 58.0	5152 20.3	10602 56.4	3770 20.1							149 20
/pass Load /pass Load	kg/yr %	0 0.0	0 0.0	0 0.0	0 0.0	0 0.0	0 0.0							0
aximum Inflow aximum Outflow	hm3/d hm3/d	4.51 4.46	4.46 4.43	3.72 3.71	3.71 3.71	3.04 3.01	3.01 3.01							11 11
urface Load Reduction ad Trapped in Sediments	kg/yr kg/yr	10165 9857	11503 11878	8054 8161	9607 9990	8063 7298	6833 7118							54 54
verall Load Reduction ower Confidence Limit	% %	37% #N/A	66% #N/A	35% #N/A	65% #N/A	43% #N/A	64% #N/A							78 #N
pper Confidence Limit aily Geometric Mean	% ppb	#N/A 49.0	#N/A 11.7	#N/A 48.7	#N/A 12.0	#N/A 48.7	#N/A 10.5							#N #N
utflow Geo Mean - Composites pper Confidence Limit	ppb ppb	52.1 #N/A #N/A	15.7 #N/A #N/A	51.7 #N/A #N/A	15.4 #N/A #N/A	52.2 #N/A #N/A	15.4 #N/A #N/A							15 #N #N
equency Outflow Conc > 10 ppb	ppb % %	#N/A 100%	#N/A 86%	#N/A 100%	#N/A 84%	#N/A 100%	#N/A 85%							84
equency Outflow Conc > 20 ppb equency Outflow Conc > 50 ppb	% %	100% 65%	28% 0%	100% 64%	28% 0%	100% 67%	26% 0%							51 20
req Outflow Volume > 10 ppb 5th Percentile Outflow Conc	ppb	100% 66 2517	94% 25 843	100% 65 2491	94% 25 855	100% 64 2385	93% 25 800							9- 2 16
ean Biomass P Storage orage Increase / Net Removal et Storage Turnover Rate	mg/m2 %	2517 0% 11.1	843 0% 34.9	2491 0% 11.1	855 0% 34.9	0%	800 0% 34.9							16
at Storage Turnover Rate hit Area P Removal ean Water Load	1/yr mg/m2-yr cm/d	11.1 802 6.8	34.9 842 5.8	11.1 793 6.7	34.9 853 5.9	11.1 759 5.8	34.9 798 5.8							1
ean Water Load ax Water Load ean Depth	cm/d	6.8 36.7 67	31.6	6.7 36.2 69	5.9 31.7 64	5.8 31.7 57	33.7							10
nimum Depth	cm cm cm	67 37 101	64 28 95	69 50 101	64 32 94	57 5 84	60 29 85							
aximum Depth equency Depth < 10 cm ow/Width	cm % m2/day	0.0%	95 0.0% 181	0.0%	94 0.0% 173	0.2% 115	0.0% 106							0. 18
ow/vvilatin RT Days ean Velocity	m2/day days cm/sec	9.9 0.42	181 11.0 0.33	10.3 0.40	173 10.8 0.31	9.8 0.23	10.4							2
epage Outflow / Total Outflow	cm/sec % hm3/yr	0.42 2% 0.0	0.33 1% 0.0	0.40 1% 0.0	0.31 0% 0.0	0.23 4% 0.0	0.20							3
elease 1 Outflow Volume elease 2 Outflow Volume th Percentile Outflow Volume	hm3/yr hm3/yr hm3/d	0.0 0.0 2.32	0.0	0.0	0.0	0.0	0.0							0
th Percentile Outflow Load nulated / Specified Mean Depth	kg/d %	2.32 143.31 #N/A	54.98 #N/A	118.78 #N/A	46.36 #N/A	90.25 #N/A	35.80 #N/A							13
lease 1 Demand Met	% %	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A							#
ange Check - Mean Depth	%	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A 0.97							#
ange Check - Mean Depth ange Check - Freq Depth < 10 cm ange Check - Flow/Width	-	1.16	-	1.13	-	-	0.97							
ange Check - Flow/Wildth ange Check - Inflow Conc ange Check - Outflow Conc	-	-	-	-	-	-	-							
ange Check - Outflow Conc ater Balance Error ass Balance Error	- % %	0.00% 0.11%	0.00%	- 0.00% 0.11%	0.00%	- 0.00% 0.04%	- 0.00% 0.08%							0.
ass Balance Error arning or Error Messages	70	Cell# 1 1A Flow/	Width out of calib.	range for EMG_3:	243 vs. 26 - 210	m2/day	0.08%	-						0.
		Cell# 6 3B Depth	out of calib. range	range for EMG_3: e for SAV_3: 60 v range for SAV_3:	/s. 62 - 87 cm									
		Come o 3B Flow/	our out of calib.	range for SAV_3:	700 VS. 162 - 374	- marday								

Table A.2 STA-3/4: Case "34_Alt3_w_S2S3"

OMSTA2- Inputs & Outpo nput Variable	Units	Value	Case Descrip	tion:									urrent Date:	9/30/ 9/30
sign Case Name out Series Name	-	L_ALT3_w_S2 TS_34_Alt3	STA-3/4, 20 Receives inf	10-2014, Altern lows from EAA	SR Compartm	ent A-1; ST	A enhanced	per LTP (i	ncluding SA	uded in dire V in Cell 1E	ct inflows			
arting Date for Simulation ding Date for Simulation	1	05/01/65 04/30/00		s direct inflows y releases to L						ea inflows				
arting Date for Output tegration Steps Per Day umber of Iterations	-	05/01/65 4	Simulation Ty Output Variat	pe: de	Mean	Lower CL	Upper CL		Diagnostic	s				
utput Averaging Interval flow Conc Scale Factor	days -	30 1	FWM Outflow GM Outflow 0	/ C (ppb)	18.2 13.2	#N/A #N/A	#N/A #N/A		H20 Balan	ce Error Me	an & Max Iean & Max	0.0% 0.1%	0.0% 0.2%	
ainfall P Conc tmospheric P Load (Dry)	ppb mg/m2-yr	10 20	Load Reducti Bypass Load	on %	80% 0.0%	#N/A	#N/A		Iterations & Warning/E	k Converge rror Messa	nce Jes	3 5	0.0%	
ell Number>	-	1 1A EMG_3	2 1B	2A EMG_3	4 2B SAV_3	5 3A	6 3B SAV_3	7	8	9	10	11	12	1
agetation Type flow Fraction ownstream Cell Number	>	0.4	SAV_3	0.33	SAV_3	EMG_3 0.27 6	SAV_3							
urface Area ean Width of Flow Path	km2 km	12.30 3.42	14.12 4.50	10.29 2.89	11.71 4.02	9.61 4.88	8.92 4.88							
umber of Tanks in Series inimum Depth for Releases	- cm	6.0	3.0	6.0	3.0	4.0	4.0							
elease 1 Series Name elease 2 Series Name utflow Series Name														
epth Series Name utflow Control Depth	cm	60	60	60	60	60	60							
utflow Weir Depth utflow Coefficient - Exponent	cm	4	4	4	4	4	4							
utflow Coefficient - Intercept pass Depth	- cm	1	1	1	1	1	1							
aximum Inflow aximum Outflow	hm3/day hm3/day													
flow Seepage Rate flow Seepage Control Elev flow Seepage Conc	(cm/d) / cm cm ppb													
utflow Seepage Rate utflow Seepage Control Elev	(cm/d) / cm cm	0.0058 16	0.0029 40	0.0014 -67		0.0038								
ax Outflow Seepage Conc eepage Recycle to Cell Number	ppb -	20 1	20 1	20 3		20 3								
eepage Recycle Fraction eepage Discharge Fraction	1	0.5	0.5	0.5		0.5	6-							
itial Water Column Conc itial P Storage Per Unit Area itial Water Column Depth	ppb mg/m2	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200							
0 = Conc at 0 g/m2 P Storage 1 = Conc at 1 g/m2 P storage	ppb ppb	200 3 22	200 3 22	200 3 22	200 3 22	200 3 22	200 3 22							
2 = Conc at Half-Max Uptake = Net Settling Rate at Steady State	ppb m/yr	300 16.8	300 52.5	300 16.8	300 52.5	300 16.8	300 52.5							
1 = Saturated Uptake Depth 2 = Lower Penalty Depth	cm cm	40 100	40 100	40 100	40 100	40 100	40 100							
3 = Upper Penalty Depth	cm	200	200	200	200	200	200	-			1		40	~
utput Variables xecution Time un Date	Units sec/yr	1 8.20 09/30/05	2 8.66 09/30/05	3 9.40 09/30/05	4 9.83 09/30/05	5 10.37 09/30/05	6 10.91 09/30/05		8	9	10	11	12	0v 10 09/3
tarting Date for Simulation tarting Date for Output	1	05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65							05/0 05/0
nding Date utput Duration	- days	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784							04/3
ell Label ownstream Cell Label		1A 1B	1B Outflow	2A 2B	2B Outflow	3A 3B	3B Outflow							To
etwork Simulation Name mulation Type urface Area	- - km2	1_Alt3_w_S25 Base 12.30	1_Alt3_w_S25 Base 14.12	1_Alt3_w_S25 Base 10.29	1_Alt3_w_S25 Base 11.71	_Alt3_w_S2 Base 9.61	_Alt3_w_S2 Base 8.92	:53					A1	_Alt3 Ba
ean Rainfall ean ET	cm/yr cm/yr	130.0 134.9	130.0 134.9	130.0 134.9	130.0 134.9	130.0 134.7	130.0 134.9							13
all Inflow Volume all Inflow Load	hm3/yr kg/yr	262.3 23410	256.9 14010	216.4 19313	220.2 11864	177.0 15802	160.7 8383							65 58
ell Inflow Conc reated Outflow Volume	ppb hm3/yr	89.3 256.9	54.5 252.9	89.3 220.2	53.9 219.7	89.3 160.7	52.2 160.3							89 63
reated Outflow Load reated FWM Outflow Conc pper Confidence Limit	kg/yr ppb	14010 54.5 #N/A	4628 18.3 #N/A	11864 53.9 #N/A	3995 18.2 #N/A	8383 52.2 #N/A	2908 18.1 #N/A							11 1; #1
over Confidence Limit over Confidence Limit otal Outflow Volume + Bypass	ppb ppb hm3/yr	#N/A #N/A 256.9	#N/A #N/A 252.9	#N/A #N/A 220.2	#N/A #N/A 219.7	#N/A #N/A 160.7	#N/A #N/A 160.3							#N 63
otal Outflow Load + Bypass otal FWM Outflow Conc	kg/yr ppb	14010 54.5	4628	11864 53.9	3995 18.2	8383 52.2	2908 18.1							115
ypass Load ypass Load	kg/yr %	0 0.0	0 0.0	0 0.0	0 0.0	0 0.0	0 0.0							0
laximum Inflow laximum Outflow	hm3/d hm3/d	4.17 4.12	4.12 4.10	3.44 3.43	3.43 3.44	2.81 2.78	2.78 2.79							10 10
urface Load Reduction bad Trapped in Sediments verall Load Reduction	kg/yr kg/yr %	9401 9173 40%	9382 9774 67%	7449 7590 39%	7869 8252 66%	7419 6686 47%	5475 5762 65%							469 472 80
pper Confidence Limit	%	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A							#N
aily Geometric Mean utflow Geo Mean - Composites	ppb ppb	44.0 47.4	9.5 13.7	43.8 47.0	9.8 13.4	45.2 47.9	8.5 13.2							#N 13
pper Confidence Limit ower Confidence Limit	ppb ppb	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A							#N #N
requency Outflow Conc > 10 ppb requency Outflow Conc > 20 ppb	%	100% 100%	80% 15%	100% 100%	78% 14%	100% 100%	77% 13%							77
requency Outflow Conc > 50 ppb req Outflow Volume > 10 ppb 5th Percentile Outflow Conc	% % ppb	49% 100% 61	0% 90% 23	47% 100% 61	0% 90% 23	45% 100% 60	0% 88% 24							14 90 2
ean Biomass P Storage corage Increase / Net Removal	mg/m2 %	2342 0%	694 0%	2316 0%	706 0%	2185 0%	647 0%							14 0
et Storage Turnover Rate nit Area P Removal	1/yr mg/m2-yr	11.1 746	34.9 692	11.1 738	34.9 705	11.1 696	34.9 646							17
ean Water Load ax Water Load	cm/d cm/d	5.8 33.9	5.0 29.2	5.8 33.4	5.1 29.3	5.0 29.3	4.9 31.2							2 15
ean Depth inimum Depth aximum Depth	cm cm cm	65 34 99	62 28 93	67 48 99	63 32 92	55 4 83	59 29 83							6 2 9
aximum Depth equency Depth < 10 cm ow/Width	cm % m2/day	99 0.0% 210	93 0.0% 156	99 0.0% 205	92 0.0% 150	83 0.7% 99	83 0.0% 90							0. 15
RT Days ean Velocity	days cm/sec	11.2 0.37	12.5 0.29	11.7 0.35	12.2 0.28	10.9 0.21	11.9 0.18							2:
eepage Outflow / Total Outflow elease 1 Outflow Volume	% hm3/yr	2% 0.0	1% 0.0	2% 0.0	0% 0.0	5% 0.0	0% 0.0							3
elease 2 Outflow Volume th Percentile Outflow Volume	hm3/yr hm3/d	0.0 2.10	0.0 2.03	0.0 1.76	0.0 1.74	0.0 1.38	0.0							5
th Percentile Outflow Load mulated / Specified Mean Depth elease 1 Demand Met	kg/d % %	119.03 #N/A #N/A	45.09 #N/A #N/A	98.97 #N/A #N/A	38.19 #N/A #N/A	74.17 #N/A #N/A	29.68 #N/A #N/A							11 #1
elease 1 Demand Met elease 2 Demand Met utflow Demand Met	%	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A							1# 1# 1#
ange Check - Mean Depth ange Check - Freq Depth < 10 cm	-	-	1	1	1	1	0.95							
ange Check - Flow/Width ange Check - Inflow Conc	1	1.00 -	0.97	1	0.93	1	0.56							
ange Check - Outflow Conc ater Balance Error ass Balance Error	- %	- 0.00% 0.13%	- 0.00% 0.03%	- 0.00% 0.14%	- 0.00%	- 0.00%	- 0.00%							0.0
ass Balance Error arning or Error Messages	%		0.03% Width out of calib. Width out of calib.	range for EMG_3:			0.09%							0.
		Cell# 4 2B Flow/	Width out of calib. Width out of calib. out of calib. range	range for SAV_3:	150 vs. 162 - 37									
			Width out of calib.			m2/day								

DMSTA2- Inputs & Outp	uts		Project:	PROJECT_S	FA5								el Release: urrent Date:	7/1/2005
Input Variable	Units	Value	Case Descrip	tion:					_			CL	Irrent Date:	09/29/05
Design Case Name Input Series Name		TA5_Alt3_Bas TS_Base	2010-2014;	nded to Include downstream ce	ells considered	as SAV_3;	Inflows limit	ted to C-13	9 Basin rune					
Starting Date for Simulation Ending Date for Simulation Starting Date for Output	1	05/01/94 04/30/00 05/01/94	Historic Inflo STA-6 Secti	ow Concentration on 2 converted	ons Reduced b to use as Cell	oy 10% for o I 6B	ngoing BMF	r implemen	tation in bas	sin				
Starting Date for Output Integration Steps Per Day Number of Iterations	-	05/01/94 4 0	Simulation Ty Output Variat		Uncertainty A	nalysis	Upper CL		Diagnostic	s				
Output Averaging Interval Inflow Conc Scale Factor	days	30 1	FWM Outflow GM Outflow 0	/ C (ppb)	8.4 5.8	10.2 7.4	7.3 4.8			ce Error Me	an & Max	0.0% 0.0%	0.0% 0.0%	
Rainfall P Conc Atmospheric P Load (Dry)	ppb mg/m2-yr	10 20	Load Reducti Bypass Load	on %	95% 0.0%	94%	96%		Iterations &	Converge	nce	4	0.1%	
Cell Number> Cell Label	-	1 1A	2 1B	3 2A	4 2B	5 3A	6 3B	7 4A	8 4B	9 5A	10 5B	11 6A	12 6B	1
Vegetation Type Inflow Fraction	>	EMG_3 0.156	SAV_3	EMG_3 0.156	SAV_3	EMG_3 0.156	SAV_3	EMG_3 0.156	SAV_3	EMG_3 0.235	SAV_3	EMG_3 0.141	SAV_3	
Downstream Cell Number Surface Area	- km2	2 3.38	4.94	4 3.38	4.94	6 4.61	3.71	8 4.61	3.71	10 6.92	5.56	12.00	5.26	
Mean Width of Flow Path Number of Tanks in Series	km -	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	2.34 3.0	2.34 3.0	2.50 3.0	2.39 3.0	
Minimum Depth for Releases Release 1 Series Name	cm													
Release 2 Series Name Outflow Series Name														
Depth Series Name Outflow Control Depth	cm	40	60	40	60	40	60	40	60	40	60	60	60	
Outflow Weir Depth Outflow Coefficient - Exponent	cm -	4	4	4	4	4	4	4	4	4	4	4	4	
Outflow Coefficient - Intercept Bypass Depth	- cm	1	1	1	1	1	1	1	1	1	1	1	1	
Maximum Inflow Maximum Outflow	hm3/day hm3/day													
Inflow Seepage Rate Inflow Seepage Control Elev	(cm/d) / cm cm													
Inflow Seepage Conc Outflow Seepage Rate	ppb (cm/d) / cm	0.0075	0.0075											
Outflow Seepage Control Elev Max Outflow Seepage Conc Seepage Recycle to Cell Number	cm ppb	-46 20 1	-38 20 2											
Seepage Recycle to Cell Number Seepage Recycle Fraction Seepage Discharge Fraction	-	1	2											
Initial Water Column Conc Initial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	
Initial P Storage Per Unit Area Initial Water Column Depth C0 = Conc at 0 g/m2 P Storage	cm ppb	200	200	200	200	200	200	200	200	200	200	200	200	
C1 = Conc at 1 g/m2 P storage C2 = Conc at 1 alf-Max Uptake	ppb ppb ppb	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	
K = Net Settling Rate at Steady State Z1 = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	
Z2 = Lower Penalty Depth Z3 = Upper Penalty Depth	cm	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	
Output Variables	Units	. 1	2	3	4	5	6	7	8	9	10	11	12	Overall
Execution Time Run Date	sec/yr	30.66 09/29/05	31.33 09/29/05	32.16 09/29/05	32.83 09/29/05	33.49 09/29/05	34.16 09/29/05	34.99 09/29/05	35.66 09/29/05	36.33 09/29/05	36.99 09/29/05	37.82 09/29/05	38.49 09/29/05	38.49 09/29/05
Starting Date for Simulation Starting Date for Output	1	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94
Ending Date Output Duration	- days	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192
Cell Label Downstream Cell Label		1A 1B	1B Outflow	2A 2B	2B Outflow	3A 3B	3B Outflow	4A 4B	4B Outflow	5A 5B	5B Outflow	6A 6B	6B Outflow	Total
Network Simulation Name Simulation Type		none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta
Surface Area Mean Rainfall	km2 cm/yr	3.38 137.1	4.94 137.1	3.38 137.1	4.94 137.1	4.61 137.1	3.71 137.1	4.61 137.1	3.71 137.1	6.92 137.1	5.56 137.1	2.22 137.1	5.26 137.1	53.23 137.1
Mean ET Cell Inflow Volume Cell Inflow Load	cm/yr hm3/yr	135.0 30.9 5355	135.0 31.0 1807	135.0 30.9 5355	135.0 31.0 1954	135.0 30.9 5355	135.0 31.0 1436	135.0 30.9 5355	135.0 31.0 1436	135.0 46.6 8067	135.0 46.7 2171	135.0 27.9 4840	135.0 28.0 2285	135.0 198.2 34328
Cell Inflow Conc Treated Outflow Volume	kg/yr ppb hm3/yr	173.2 31.0	58.3 31.1	173.2 31.0	63.0 31.1	173.2 31.0	46.3 31.1	173.2 31.0	46.3	173.2 46.7	46.5 46.8	173.2 28.0	81.6 28.1	173.2 199.3
Treated Outflow Load Treated FWM Outflow Conc	kg/yr ppb	1807 58.3	251 8.1	1954 63.0	255 8.2	1436 46.3	269 8.6	1436 46.3	269 8.6	2171 46.5	406 8.7	2285 81.6	232 8.3	1683 8.4
Upper Confidence Limit Lower Confidence Limit	ppb ppb	70.7	9.6 7.1	78.3	9.8 7.1	60.4 34.3	10.6 7.4	60.4 34.3	10.6 7.4	60.6 34.5	10.7 7.4	96.6 66.4	9.7 7.2	10.2 7.3
Total Outflow Volume + Bypass Total Outflow Load + Bypass	hm3/yr kg/yr	31.0 1807	31.1 251	31.0 1954	31.1 255	31.0 1436	31.1 269	31.0 1436	31.1 269	46.7 2171	46.8 406	28.0 2285	28.1 232	199.3 1682.8
Total FWM Outflow Conc Bypass Load	ppb	58.3 0	8.1 0	63.0 0	8.2 0	46.3 0	8.6 0	46.3 0	8.6 0	46.5 0	8.7 0	81.6 0	8.3 0	8.4 0.0
Bypass Load Maximum Inflow	kg/yr % hm3/d	0.0 0.35	0.0 0.37	0.0 0.35	0.0 0.37	0.0 0.35	0.0 0.38	0.0 0.35	0.0 0.38	0.0 0.52	0.0 0.57	0.0 0.31	0.0 0.32	0.0 2.21
Maximum Outflow Surface Load Reduction	hm3/d kg/yr	0.37 3548	0.40	0.37 3401	0.40 1699	0.38 3920	0.40 1167	0.38 3920	0.40 1167	0.57 5896	0.61 1764	0.32 2555	0.35 2053	2.56 32645
Load Trapped in Sediments Overall Load Reduction	kg/yr %	3172 66%	1719 86%	3515 64%	1865 87%	4075 73%	1292 81%	4075 73%	1292 81%	6129 73%	1952 81%	2629 53%	2231 90%	33944 95%
Lower Confidence Limit Upper Confidence Limit	% %	59% 73%	86% 85%	55% 72%	87% 85%	65% 80%	82% 78%	65% 80%	82% 78%	65% 80%	82% 78%	44% 62%	90% 89%	94% 96%
Daily Geometric Mean Outflow Geo Mean - Composites	ppb ppb	54.4 54.2	4.7 5.7	58.8 58.5	4.5 5.6	42.5 42.7	4.8 5.9	42.5 42.7	4.8 5.9	42.7 42.8	4.8 5.9	75.2 76.4	4.4 5.6	#N/A 5.8
Upper Confidence Limit Lower Confidence Limit	ppb ppb	66.3 42.5	7.09 4.80	73.5 44.4	7.0 4.7	56.5 30.8	7.7 4.9	56.5 30.8	7.7	56.7 31.0	7.8 4.9	91.0 61.5	6.9 4.7	7.4 4.8
Frequency Outflow Conc > 10 ppb Frequency Outflow Conc > 20 ppb Frequency Outflow Conc > 60 ppb	% %	100% 100% 81%	10% 0% 0%	100% 100% 96%	10% 0% 0%	100% 100% 9%	12% 0% 0%	100% 100% 9%	12% 0% 0%	100% 100% 9%	12% 0% 0%	100% 100% 100%	12% 0% 0%	12% 2% 0%
Frequency Outflow Conc > 50 ppb Freq Outflow Volume > 10 ppb 95th Perceptile Outflow Conc	%	81% 100% 67	0% 26% 11	100%	0% 29% 11	100%	0% 31% 12	9% 100% 54	0% 31% 12	100%	0% 31% 12	100% 100% 94	0% 29% 12	0% 30% 12
95th Percentile Outflow Conc Mean Biomass P Storage Storage Increase / Net Removal	ppb mg/m2 %	2946 0%	11 348 0%	73 3265 0%	11 378 0%	54 2774 0%	12 348 0%	2774 0%	348 0%	54 2780 0%	351 0%	94 3718 0%	424 0%	12 1586 0%
Net Storage Turnover Rate Unit Area P Removal	7% 1/yr g/m2-yr	1.9 939	6.0 348	1.9 1040	6.0 378	1.9 884	6.0 348	1.9 884	6.0 348	1.9 886	6.0 351	1.9 1184	6.0 424	2.4 638
Mean Water Load Max Water Load	cm/d cm/d	2.5 10.2	1.7 7.5	2.5 10.2	1.7 7.5	1.8 7.5	2.3 10.2	1.8 7.5	2.3 10.2	1.8 7.5	2.3 10.2	3.4 14.1	1.5 6.1	1.0 4.2
Mean Depth Minimum Depth	cm	47 27	58 38	47 27	58 38	47 26	58 37	47 26	58 37	47 26	58 37	60 46	58 40	53 33
Maximum Depth Frequency Depth < 10 cm	cm %	70 0.0%	71 0.0%	70 0.0%	71 0.0%	70 0.0%	71 0.0%	70 0.0%	71 0.0%	70 0.0%	71 0.0%	62 0.0%	63 0.0%	69 0.0%
Flow/Width HRT Days	m2/day days	54 18.6	54 33.8	54 18.6	54 33.8	54 25.3	54 25.3	54 25.3	54 25.3	55 25.3	55 25.2	31 17.3	32 39.6	51.2 52.1
Mean Velocity Seepage Outflow / Total Outflow	cm/sec %	0.13 0%	0.11 0%	0.13 0%	0.11 0%	0.13 0%	0.11 0%	0.13 0%	0.11 0%	0.14 0%	0.11 0%	0.06 0%	0.06 0%	0.11 0%
Release 1 Outflow Volume Release 2 Outflow Volume	hm3/yr hm3/yr	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
95th Percentile Outflow Volume 95th Percentile Outflow Load	hm3/d kg/d	0.26 16.96	0.27 3.09	0.26 18.37	0.27 3.18	0.26 14.06	0.27 3.37	0.26 14.06	0.27 3.37	0.40 21.24	0.41 5.10	0.23 20.24	0.25 2.72	1.7 20.9
Simulated / Specified Mean Depth Release 1 Demand Met	%	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A
Release 2 Demand Met Outflow Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A
Range Check - Mean Depth Range Check - Freq Depth < 10 cm	-	1	0.94	-	0.94	1	0.93	1	0.93	1	0.93	-	0.93	6
Range Check - Flow/Width Range Check - Inflow Conc	1	1	0.34	1	0.34	1	0.34	1	0.34	1	0.34	-	0.20	6
Range Check - Outflow Conc Water Balance Error	- %	- 0.00%	0.54	- 0.00%	0.55	- 0.00%	0.58	- 0.00%	0.58	- 0.00%	0.58	- 0.00%	0.56	6 0.00%
Mass Balance Error Warning or Error Messages	%	0.00% Cell# 2 1B Depti	0.00% n out of calib. range	0.00% e for SAV_3: 58 v	0.00% s. 62 - 87 cm	0.00%	0.00%	0.00% Cell# 8 4B F	0.00% low/Width out	0.00% of calib. range	0.00% for SAV_3: 5	0.01% 4 vs. 162 - 37		0.00% 18
		Cell# 2 1B Outfle	Width out of calib.	b. range for SAV_	3: 8 vs. 15 - 153	m2/day ppb		Cell# 10 5B	Depth out of ca	alib. range for	ge for SAV_3: SAV_3: 58 vs	. 62 - 87 cm		
		Cell# 4 2B Flow/	n out of calib. range Width out of calib.	range for SAV_3:	54 vs. 162 - 374	m2/day		Cell# 10 5B	Outflow Conc	out of calib. ra	e for SAV_3: nge for SAV_3	9 vs. 15 - 18	r≄ m∠/day 53 ppb	
		Cell# 6 3B Depth	w Conc out of cali o out of calib. range Width out of calib.	e for SAV_3: 58 v	rs. 62 - 87 cm			Cell# 12 6B	Flow/Width ou	t of calib. rang	SAV_3: 58 vs e for SAV_3: nge for SAV_3	32 vs. 162 - 3	74 m2/day	
		Cell# 6 3B Outfle	Width out of calib. w Conc out of cali out of calib. range	b. range for SAV_	3: 9 vs. 15 - 153	ppb		June 12 68	Concord Conco	out or callb. ra	inge for SAV_3	. ovs. 15 - 18	o pho	
		- ann o +o Depti		a. 08\										

Table A.3 STA-5: Case "STA5_Alt3_Base"

Table A.4 STA-5: Case "STA5_Alt3"

	uts			PROJECT_S	TA5								el Release: urrent Date:	7/1/200 09/29/0
nput Variable Design Case Name nput Series Name	Units -	Value STA5_Alt3 TS_STA5_Alt3	Case Descrip STA-5 Expa	nded to Include downstream ce	Full Build-out	of Compar	tment C; W	Y 1995-200	0; 550 cfs d	iversion fro	m Miami Ca	inal		
starting Date for Simulation	-	05/01/94	Historic Inflo	w Concentratio	ons Reduced b	y 10% for a	ngoing BMF	ed to C-13 implemen	tation in bas	in				
Inding Date for Simulation	-	04/30/00 05/01/94 4	Simulation Typ	on 2 converted	Uncertainty A									
ntegration Steps Per Day lumber of Iterations	-	0	Output Variat	ble	Mean	Lower CL	Upper CL		Diagnostic:	<u> </u>		0.004	0.004	
Output Averaging Interval oflow Conc Scale Factor	days -	30 1	FWM Outflow GM Outflow 0	C (ppb)	11.9 8.9	15.5 12.5	9.4 6.6			nce Error M	lean & Max	0.0% 0.0%	0.0% 0.0%	
tainfall P Conc tmospheric P Load (Dry)	ppb mg/m2-yr	10 20	Load Reducti Bypass Load		92% 0.0%	89%	93%		Iterations & Warning/E	ror Messag	jes	3 18	0.5%	
Cell Number> Cell Label	-	1 1A	2 1B	3 2A	4 2B	5 3A	6 3B	7 4A	8 4B	9 5A	10 5B	11 6A	12 6B	1
egetation Type Inflow Fraction	>	EMG_3 0.156	SAV_3	EMG_3 0.156	SAV_3	EMG_3 0.156	SAV_3	EMG_3 0.156	SAV_3	EMG_3 0.235	SAV_3	EMG_3 0.141	SAV_3	
Downstream Cell Number Surface Area	- km2	2 3.38	4.94	4 3.38	4.94	6 4.61	3.71	8 4.61	3.71	10 6.92	5.56	12.00 2.22	5.26	
lean Width of Flow Path lumber of Tanks in Series	km -	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	1.56 3.0	2.34 3.0	2.34 3.0	2.50 3.0	2.39 3.0	
Inimum Depth for Releases Release 1 Series Name	cm													
telease 2 Series Name Outflow Series Name														
Depth Series Name Dutflow Control Depth	cm	40	60	40	60	40	60	40	60	40	60	60	60	
Dutflow Weir Depth Dutflow Coefficient - Exponent	cm	40	4	4	4	4	4	4	4	40	4	4	4	
Outflow Coefficient - Intercept	- cm	1	1	1	1	1	1	1	1	1	1	1	1	
lypass Depth Iaximum Inflow	hm3/day													
faximum Outflow flow Seepage Rate	hm3/day (cm/d) / cm													
flow Seepage Control Elev flow Seepage Conc	cm ppb													
Outflow Seepage Rate Outflow Seepage Control Elev	(cm/d) / cm cm	0.0075 -46	0.0075 -38											
fax Outflow Seepage Conc eepage Recycle to Cell Number	ppb -	20 1	20 2											
eepage Recycle Fraction eepage Discharge Fraction	1	1	1											
nitial Water Column Conc nitial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	
nitial Water Column Depth 0 = Conc at 0 g/m2 P Storage	cm ppb	200 3	200 3	200 3	200 3	200 3	200 3	200 3	200 3	200 3	200 3	200 3	200 3	
1 = Conc at 1 g/m2 P storage 2 = Conc at Half-Max Uptake	ppb ppb	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	
X = Net Settling Rate at Steady State 1 = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40	
2 = Lower Penalty Depth 3 = Upper Penalty Depth	cm	100	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	
output Variables	Units	1	2	3	4	5	6	7	8	9	10	11	12	Overa
xecution Time	sec/yr	21.83 09/29/05	22.49 09/29/05	23.16 09/29/05	23.83 09/29/05	24.49 09/29/05	25.33 09/29/05	25.99 09/29/05	26.66 09/29/05	27.33 09/29/05	28.16 09/29/05	28.83 09/29/05	29.49 09/29/05	29.49 09/29/0
tarting Date for Simulation tarting Date for Output		05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94	05/01/9
nding Date	- days	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/00 2192	04/30/0
ell Label ownstream Cell Label	uays	1A 1B	1B Outflow	2A 2B	2B Outflow	3A 3B	3B Outflow	4A 4B	4B Outflow	5A 5B	5B Outflow	6A 6B	6B Outflow	Total
etwork Simulation Name	-	none	none	none	none	none	none	none	none	none	none	none	none	none
imulation Type urface Area	km2	Uncerta 3.38	Uncerta 4.94	Uncerta 3.38	Uncerta 4.94	Uncerta 4.61	Uncerta 3.71	Uncerta 4.61	Uncerta 3.71	Uncerta 6.92	Uncerta 5.56	Uncerta 2.22	Uncerta 5.26	Uncert 53.23
lean Rainfall lean ET	cm/yr cm/yr	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0	137.1 135.0
ell Inflow Volume ell Inflow Load	hm3/yr kg/yr	51.4 7427	51.4 3592	51.4 7427	51.4 3863	51.4 7427	51.5 3105	51.4 7427	51.5 3105	77.4 11188	77.5 4691	46.4 6713	46.5 4150	329.2 47606
Cell Inflow Conc Treated Outflow Volume	ppb hm3/yr	144.6 51.4	69.8 51.5	144.6 51.4	75.1 51.5	144.6 51.5	60.3 51.5	144.6 51.5	60.3 51.5	144.6 77.5	60.5 77.6	144.6 46.5	89.3 46.6	144.6 330.3
reated Outflow Load reated FWM Outflow Conc	kg/yr ppb	3592 69.8	569 11.0	3863 75.1	581 11.3	3105 60.3	643 12.5	3105 60.3	643 12.5	4691 60.5	974 12.5	4150 89.3	517 11.1	3927 11.9
Ipper Confidence Limit ower Confidence Limit	ppb ppb	79.9 59.2	14.0 9.0	86.9 62.7	14.5 9.1	72.9 48.1	16.6 9.7	72.9 48.1	16.6 9.7	73.1 48.3	16.7 9.8	99.6 77.8	14.0 9.1	15.5 9.4
otal Outflow Volume + Bypass otal Outflow Load + Bypass	hm3/yr kg/yr	51.4 3592	51.5 569	51.4 3863	51.5 581	51.5 3105	51.5 643	51.5 3105	51.5 643	77.5 4691	77.6 974	46.5 4150	46.6 517	330.3 3926.7
otal FWM Outflow Conc lypass Load	ppb kg/yr	69.8 0	11.0 0	75.1 0	11.3 0	60.3 0	12.5 0	60.3 0	12.5 0	60.5 0	12.5 0	89.3 0	11.1 0	11.9 0.0
lypass Load Maximum Inflow	% hm3/d	0.0	0.0	0.0	0.0	0.0	0.0 0.51	0.0	0.0 0.51	0.0 0.71	0.0	0.0 0.43	0.0	0.0 3.04
Maximum Outflow Surface Load Reduction	hm3/d kg/yr	0.50	0.54	0.50	0.54 3282	0.51	0.54	0.51 4321	0.54	0.77	0.81 3717	0.44 2562	0.48 3633	3.45 43680
oad Trapped in Sediments Overall Load Reduction	kg/yr %	3392 52%	3156 84%	3677	3448 85%	4476	2587 79%	4476	2587 79%	6729 58%	3904 79%	2637 38%	3810 88%	44879
ower Confidence Limit	%	45% 59%	82% 85%	40%	83% 85%	50% 67%	77% 80%	50% 67%	77% 80%	49% 67%	77% 80%	31%	86% 88%	89% 93%
Ipper Confidence Limit Daily Geometric Mean Dutflow Geo Mean - Composites	ppb	65.2 65.7	7.4 8.5	70.2 70.8	7.3 8.5	56.1 56.5	80% 8.5 9.6	56.1 56.5	80% 8.5 9.6	56.2 56.7	80% 8.5 9.7	46% 83.2 84.6	6.9 8.2	93% #N/A 8.9
Ipper Confidence Limit	ppb ppb	55.7 75.6 55.2	8.5 11.40 6.43	70.8 82.5 58.5	8.5 11.7 6.3	68.9 44.4	9.6 13.7 6.9	68.9 44.4	9.6 13.7 6.9	69.1 44.5	9.7 13.8 7.0	94.6 73.3	8.2 11.1 6.3	8.9 12.5 6.6
ower Confidence Limit requency Outflow Conc > 10 ppb	ppb %	100%	32%	100%	33%	100%	45%	100%	45%	100%	47%	100%	35%	37%
requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	%	100% 100%	0% 0%	100% 100%	0% 0%	100% 89%	0% 0%	100% 89%	0% 0%	100% 89%	0% 0%	100%	0% 0%	6% 0%
req Outflow Volume > 10 ppb 5th Percentile Outflow Conc	% ppb	100% 79	56% 14	100% 84	58% 15	100% 67	72% 16	100% 67	72% 16	100% 68	73% 16	100% 101	58% 15	66% 15
lean Biomass P Storage torage Increase / Net Removal	mg/m2 %	3151 0%	639 0%	3416 0%	698 0%	3048 0%	697 0%	3048 0%	697 0%	3052 0%	702 0%	3729 0%	724	1863 0%
let Storage Turnover Rate Init Area P Removal	1/yr g/m2-yr	1.9 1004	6.0 639	1.9 1088	6.0 698	1.9 971	6.0 697	1.9 971	6.0 697	1.9 972	6.0 702	1.9 1188	6.0 724	2.7 843
lean Water Load lax Water Load	cm/d cm/d	4.2 14.0	2.9 10.1	4.2 14.0	2.9 10.1	3.1 10.3	3.8 13.7	3.1 10.3	3.8 13.7	3.1 10.3	3.8 13.8	5.7 19.3	2.4 8.4	1.7 5.7
lean Depth linimum Depth	cm cm	51 36	61 45	51 36	61 45	51 34	61 44	51 34	61 44	51 34	61 44	61 57	60 46	57 41
faximum Depth requency Depth < 10 cm	cm %	75 0.0%	76 0.0%	75 0.0%	76 0.0%	75 0.0%	76 0.0%	75 0.0%	76 0.0%	75 0.0%	77 0.0%	65 0.0%	67 0.0%	74 0.0%
low/Width IRT Days	m2/day days	90 12.3	90 21.5	90 12.3	90 21.5	90 16.8	90 16.1	90 16.8	90 16.1	91 16.8	91 16.0	51 10.6	53 24.6	85.0 33.5
lean Velocity eepage Outflow / Total Outflow	cm/sec %	0.20 0%	0.17	0.20 0%	0.17	0.20 0%	0.17 0%	0.20 0%	0.17 0%	0.20	0.17	0.10 0%	0.10 0%	0.18 0%
elease 1 Outflow Volume elease 2 Outflow Volume	hm3/yr hm3/yr	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5th Percentile Outflow Volume 5th Percentile Outflow Load	hm3/d kg/d	0.40 30.40	0.41 5.61	0.40 32.45	0.41 5.78	0.40 26.20	0.41 6.32	0.40 26.20	0.41 6.32	0.60 39.57	0.62	0.35 34.91	0.37 5.05	2.6 38.8
imulated / Specified Mean Depth elease 1 Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	9.57 #N/A #N/A	#N/A #N/A	#N/A #N/A	30.0 #N/A #N/A
elease 2 Demand Met utflow Demand Met	70 %	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A
ange Check - Mean Depth	-	-	#N/A 0.99	-	#IN/A 0.99	-	#N/A 0.98	-	#N/A 0.98	-	#N/A 0.98	-	#IN/A 0.96	6
ange Check - Freq Depth < 10 cm ange Check - Flow/Width	1	1	0.56	1	0.56	1	0.56	1	0.56	-	0.56	1	0.33	0
ange Check - Inflow Conc ange Check - Outflow Conc	-	-	- 0.74	-	- 0.76	:	- 0.84	-	- 0.84	-	- 0.84	-	- 0.75	0
/ater Balance Error lass Balance Error	% %	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.01%	0.00% 0.01%	0.00%
/arning or Error Messages		Cell# 2 1B Flow/	out of calib. range Width out of calib.	range for SAV_3:	90 vs. 162 - 374			Cell#84B O	utflow Conc ou	it of calib. ran	for SAV_3: 9 ge for SAV_3:	12 vs. 15 - 1		18
		Cell# 4 2B Depth	w Conc out of cali out of calib. range	e for SAV_3: 61 v	rs. 62 - 87 cm			Cell# 10 5B	Flow/Width out	of calib. rang	SAV_3: 61 v: e for SAV_3:	91 vs. 162 - 3		
		Cell# 4 2B Flow/ Cell# 4 2B Outflo	Width out of calib. w Conc out of cali	range for SAV_3: b. range for SAV_	90 vs. 162 - 374 3: 11 vs. 15 - 153	m2/day 3 ppb		Cell# 10 5B Cell# 12 6B	Outflow Conc o Depth out of ca	out of calib. ra lib. range for	nge for SAV_3 SAV_3: 60 vs	: 13 vs. 15 - . 62 - 87 cm	153 ppb	
		Cell# 6 3B Depth	out of calib. range	e for SAV_3: 61 v	rs. 62 - 87 cm			Cell# 12 6B	Flow/Width out	of calib. rang	e for SAV_3:		74 m2/day	
		Cell# 6 3B Flow/	Width out of calib. w Conc out of cali	range for SAV_3:	90 vs. 162 - 374	m2/day		Cell# 12 6B	Outflow Conc of	out of calib. ra	nge for SAV_3	: 11 vs. 15 -	153 ppb	

