Everglades Agricultural Area Regional Feasibility Study

Deliverable 3.2a — Optimum Allocation of Loads to the STAs for the Period 2010-2014

Alternative No. 2 (Final Report)

(Contract No. CN040912-WO04 Phase 2)

Prepared for:

South Florida Water Management District (SFWMD)

3301 Gun Club Road West Palm Beach, FL 33406 (561) 686-8800

Prepared by:

Burns & McDonnell Engineering Co., Inc.

9400 Ward Parkway Kansas City, Missouri 64114 (816) 822-3099

A.D.A. Engineering, Inc.

11401 S.W. 40th Street, Suite 470 Miami, Florida 33165 (305) 551-4608

October 2005

October 3, 2005

Mr. Alex Vazquez, P.E. Project Manager ADA Engineering, Inc. 1800 Old Okeechobee Road Suite 102 West Palm Beach, FL 33409

South Florida Water Management District EAA Regional Feasibility Study ADA Contract No. CN040912-WO04 Phase 2 Optimum Allocation of Loads to the STAs, 2010-2014 Alternative No. 2 B&McD Project No. 38318

Dear Mr. Vazquez:

Burns & McDonnell is pleased to submit this Final report on "Optimum Allocation of Loads to the STAs for the Period 2010-2014, Alternative No. 2". This document is intended for attachment to ADA's overall report on Task 3, and was prepared under ADA Engineering, Inc. Task Order No. BM-05WO04-02 dated April 27, 2005.

We gratefully acknowledge the valuable contributions of both your staff and that of the South Florida Water Management District in the development of the information presented herein.

Certification

I hereby certify, as a professional engineer in the State of Florida, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse without specific verification or adaptation by the Engineer. This certification is provided in accordance with the provisions of the Laws and Rules of the Florida Board of Professional Engineers under Chapter 61G15-29, Florida Administrative Code.

Galen E. Miller, P.E., Flor	ida P.E. #40624
Date:	

(Reproductions are not valid unless signed, dated and embossed with Engineer's seal)

9400 Ward Parkway Kansas City, Missouri 64114-3319 Tel: 816 333-9400 Fax: 816 333-3690 www.burnsmcd.com Florida Professional Certificates: Architecture – AAC000567 Engineering – EB0000253

Table of Contents

1.	INT	RODUCTION	1
	1.1.	BACKGROUND	1
	1.2.	SCOPE OF WORK	1
	1.3.	ANALYTICAL METHODS FOR ESTIMATING TP REDUCTION IN STAS	2
	1.4.	REFERENCE INFORMATION	3
	1.4.	1. Inflow Volumes, TP Concentrations and TP Loads	3
	1.4.	2. Basic Designs of Proposed STA Expansions	3
	1.4.	3. Rainfall and Evapotranspiration	4
	1.4.	4. Previous Studies and Reports	5
	1.4.	5. DMSTA2 Parameters for Existing STAs	6
2.	DE	SCRIPTION OF ALTERNATIVE NO. 2	8
3.	STA	A-1W	11
	3.1.	INFLOWS TO STA-1W BASED ON CURRENT OPERATIONS OF G-302	13
	3.2.	DMSTA2 ANALYSIS OF STA-1W	16
4.	STA	4 -1E	18
	4.1.	CASES CONSIDERED IN DMSTA2 ANALYSIS OF STA-1E	20
	4.2.	SUMMARY OF DMSTA2 RESULTS	20
5.	STA	4-2	21
	5.1.	ASSUMED CONFIGURATION OF FOURTH FLOW PATH ON COMPARTMENT B	23
	5.2.	CASES CONSIDERED IN DMSTA2 ANALYSIS OF STA-2	25
	5.3.	SUMMARY OF DMSTA2 RESULTS	26
6.	EA	ASR COMPARTMENT A-1	27
	6.1.	SFWMM SIMULATION OF EAASR COMPARTMENT A-1	27
	6.2.	DMSTA2 ANALYSIS OF COMPARTMENT A-1	30
7.	STA	A-3/4	33
	7.1.	SUMMARY OF DMSTA2 RESULTS	36
8.	STA	A-5	37
	8.1.	CASES CONSIDERED IN DMSTA2 ANALYSIS OF STA-5	39
	8.2.	SUMMARY OF DMSTA2 RESULTS	39

9. ST	ΓΑ-6	40
9.1.	CASES CONSIDERED IN DMSTA2 ANALYSIS OF STA-6	41
9.2.	SUMMARY OF DMSTA2 RESULTS	41
10.	SUMMARY PROJECTIONS	42
10.1.	POTENTIAL ADJUSTMENTS TO PROJECTIONS FOR STA-3/4	44
Appen	edix A DMSTA2 Output Data	
	List of Tables	
Table 3	3.1 Potential Total Inflows to STA-1 I&D Works	13
Table 3	3.2 Summary of DMSTA2 Analysis, STA-1W Alternative No. 2	17
Table 4	4.1 Estimated Inflows to C-51 West Canal	20
Table 4	4.2 Summary of DMSTA2 Analyses, STA-1E, WY 1966-2000	21
Table 5	5.1 Potential Average Annual Inflows to Expanded STA-2	23
Table 5	5.2 Summary of DMSTA2 Analysis, STA-2, WY 1966-2000	26
Table 6	6.1 Estimated Average Annual Inflows to EAASR A-1, W.Y. 1966-2000	27
Table 6	5.2 Simulated Reservoir Depths	31
Table 6	5.3 Results of DMSTA2 Analysis of EAASR Compartment A-1	32
Table 7	7.1 Estimated Inflows to STA-3/4	36
Table 7	7.2 Summary of DMSTA2 Analysis, STA-3/4, WY 1966-2000	37
Table 8	8.1 Summary of DMSTA2 Analyses, STA-5	40
Table 9	9.1 Summary of DMSTA2 Analyses, STA-6	42
Table 1	10.1 Summary Projections for all STAs, Alternative 2 for 2010-2014	43
Table 1	10.2 Estimated Back Pumping to Lake Okeechobee, 2010-2014	44
	List of Figures	
Figure	2.1 General Schematic of Alternative No. 2	11
Figure	3.1 Distribution of Discharges through G-302	16
Figure	6.1 ECP 2010 Model Configuration for EAASR Compartment A-1	28
Figure	6.2 Flow Terms in ECP 2010 Model of EAASR Compartment A-1	29

1. INTRODUCTION

This document and the analyses it summarizes were prepared by Burns & McDonnell Engineering Co., Inc. under contract to ADA Engineering, Inc (ADA). The conduct of these analyses and preparation of this document were authorized by the South Florida Water Management District (SFWMD or District) through its March 27, 2005 issuance of Work Order No. CN040912-WO04 to ADA, and subsequently authorized by ADA through its April 27, 2005 issuance of Task Order BM-05WO04-02 to Burns & McDonnell.

1.1. Background

Under the Everglades Construction Project (ECP), the South Florida Water Management District has constructed several STAs and the U.S. Army Corps of Engineers has constructed STA-1E to help improve the quality of waters released to the Everglades Protection Area (EPA). In addition to the existing STAs, the District is planning certain STA expansions and enhancements, Everglades Agricultural Area (EAA) canal improvements, construction of the EAA Storage Reservoir Project, and other EAA improvements. With recognition of these planned improvements, the EAA Regional Feasibility Study (RFS) will evaluate alternatives for redistributing inflow volumes and phosphorus loads to the various STAs to optimize phosphorus removal performance. This study is not intended to define the final arrangement, location or character of these proposed projects but is a fact-finding exercise to develop the information necessary for the subsequent planning, design and construction of these future projects.

1.2. Scope of Work

This document was prepared in support of Task 3 "Optimum Allocation of Phosphorus and Hydraulic Loading to the Existing STAs and A-1 Reservoir, and Optimum Canal Improvements Associated with Optimum Allocation" and Task 4 "Detailed Alternative Analysis" of the SFWMD Work Order No. CN040912-WO04. The overall objective of the analyses reported herein is to evaluate the redistribution of hydraulic and total phosphorus loads to the STAs (both existing and the currently planned STA-6, Section 2, full conversion of Compartments B and C of the Talisman Land Exchange to use in stormwater treatment areas) to optimize phosphorus reduction, given the presence of the Everglades Agricultural Area Storage Reservoir (EAASR) Compartment A-1. This analysis is specific to the period

2010-2014 (following completion of the above identified projects, but prior to the completion of the planned EAASR Compartment A-2), and addresses Alternative No. 2 (described more fully in Part 2 of this document).

Estimates of the overall inflow volumes and TP loads to be accommodated in the various STAs were developed under Task 1 of Contract CN040912-WO04. Basins considered include the following:

- ➤ C-51 West Canal
- ➤ S-5A (West Palm Beach Canal)
- Ch. 298 Districts:
 - East Beach Water Control District
 - East Shore Water Control District
 - 715 Farms (State Lease No. 3420)
 - South Shore Drainage District
 - South Florida Conservancy District, Unit 5 (S-236 Basin)
- > S2/S-6/S-7 (Hillsboro and North New River Canals)
- > S-3/S-8 (Miami Canal)
- ➤ C-139 and C-139 Annex
- ➤ L-8 Canal
- Lake Okeechobee deliveries south to the STAs and Everglades

1.3. Analytical Methods for Estimating TP Reduction in STAs

The estimated performance of the various STAs in reducing total phosphorus concentrations presented in this document were developed employing the July 1, 2005 issue of the Dynamic Model for Stormwater Treatment Areas, Version 2 (DMSTA2), developed for the U.S. Department of the Interior and the U.S. Army Corps of Engineers by W. Walker and R. Kadlec. Additional information on DMSTA2 can be found on the Internet at:

www.wwalker.net/dmsta

Reference Information

This section summarizes previous studies, reports and data employed in the conduct of the analyses presented herein.

1.4.1. Inflow Volumes, TP Concentrations and TP Loads

Inflow volumes, TP concentrations and TP loads employed in this analysis are based on information presented in the following reports, all prepared for the South Florida Water Management District by Burns & McDonnell Engineering Co., Inc. under subcontract to ADA Engineering, Inc. as elements of Task 1 of the scope of work under District Contract CN040912-WO04:

- > Deliverable 1.1.2: Evaluation of 2006 Hydrologic Simulation Results, Final Report dated June 27, 2005;
- > Deliverable 1.2A: Inflow Data Sets for the Period 2010-2014, Final Report dated September 29, 2005;
- ▶ Deliverable 1.3.2: Historic Inflow Volumes and Total Phosphorus Concentrations by Source, Final Report dated June 27, 2005;
- > Deliverable 1.4.2: Methodology for Development of Daily Total Phosphorus Concentrations, Final Report dated June 30, 2005;
- ▶ Deliverable 1.5.2: *Inflow Data Sets for the Period 2006-2009*, Final Report dated August 9, 2005;

1.4.2. Basic Designs of Proposed STA Expansions

Information on the presently planned configuration and basic layout and design of STA-6, Section 2; Cell 4 of STA-2; and the third flow-way of STA-5 was taken from the following documents:

- ➤ Basis of Design Report (BODR) Stormwater Treatment Area 6 Section 2 and Modifications to Section 1; prepared for the South Florida Water Management District by URS Corporation under Contract CN040936-WO02; June 1, 2005;
- ➤ Basis of Design Report (BODR) STA-2/Cell 4 Expansion Project; prepared for the South Florida Water Management District by Brown & Caldwell under Contract CN040935-WO04; May 12, 2005;
- ➤ Draft Basis of Design Report (BODR) Stormwater Treatment Area 5 Flow-way 3; prepared for the South Florida Water Management District by URS Corporation under Contract CN040936-WO05; April 20, 2005.

No information is presently available for the planned configuration and basic layout and design of the full conversion of Compartments B and C of the Talisman Land Exchange to use as stormwater treatment areas. The layout and configuration of those expanded stormwater treatment areas <u>assumed</u> for use in this analysis is described in Part 5, STA-2 and Part 8, STA-5 of this document.

The layout, configuration and operation of the EAASR Compartment A-1 <u>assumed</u> for use in this analysis is based on review of the data contained in the District's South Florida Water Management Model (SFWMM) ECP 2010 simulation, as generally described in Deliverable 1.2A.

1.4.3. Rainfall and Evapotranspiration

Estimates of daily rainfall and evapotranspiration (ET) at each of the STAs was taken from a District-furnished data file (ET_RF_STAs_ECP2006.xls). That file includes daily values for both rainfall and ET at each cell of the SFWMM occupied by STA. The data extends from January 1, 1965 through December 31, 2000. For this analysis, daily data for those STAs occupying multiple cells of the SFWMM was estimated as the average of the individual cell values. Data for STA-3/4 was applied to the adjacent EAASR Compartment A-1.

1.4.4. Previous Studies and Reports

Certain of the background data and information discussed in this document was taken from the following previous studies and reports:

- ➤ (Draft) Supplemental Analysis, Everglades Protection Area Tributary Basins, prepared for the Everglades Agricultural Area Environmental Protection District by Burns & McDonnell; March 2, 2005 (hereinafter referred to as the Supplemental Analysis);
- Final Report, Everglades Protection Area Tributary Basins, Long-Term Plan for Achieving Water Quality Goals; prepared for the South Florida Water Management District by Burns & McDonnell; October, 2003 (hereinafter referred to as the Long-Term Plan), together with such modifications to the Long-Term Plan that are embodied in a revised Part 2 (dated November, 2004) submitted to the Florida Department of Environmental Protection (FDEP), and approved by FDEP in December, 2004;
- ➤ Basin-Specific Feasibility Studies, Everglades Protection Area Tributary Basins; Evaluation of Alternatives for the ECP Basins; prepared for the South Florida Water Management District by Burns & McDonnell; October 23, 2002 (hereinafter referred to as the BSFS Evaluation of Alternatives).
- ➤ Addendum to Design Documentation Report, Stormwater Treatment Area 1 East; prepared for the Jacksonville District, U.S. Army Corps of Engineers by Burns & McDonnell; November 2000;
- > (Draft) Stormwater Treatment Area 1-East (STA-1E) Water Control Plan, Jacksonville District, U.S. Army Corps of Engineers; August, 2005;
- ➤ (Draft) Design Analysis Report for the STA-1E Cells 1-2 PSTA/SAV Field-Scale Demonstration Project, Palm Beach County, Florida; prepared for the Jacksonville District, U.S. Army Corps of Engineers by SAIC Engineering, Inc.; June 28, 2005.

Additionally, reference is made to the following documents prepared by Burns & McDonnell for ADA Engineering Co., Inc. under Tasks 2 and 3 of the SFWMD Contract No. CN040912-WO04.

- ➤ Deliverable 2.2: Optimum Allocation of Loads to the STAs for the Period 2006-2009, Final Report dated September 7, 2005;
- > Optimum Allocation of Loads to the STAs for the Period 2010-2014, Alternative No. 1, Final Report dated October 3, 2005.

1.4.5. DMSTA2 Parameters for Existing STAs

Basic physical parameters for the various existing STAs reflected in the DMSTA2 analyses reported herein were taken from the BSFS Evaluation of Alternatives, with the following modifications:

- ➤ Marsh outflow coefficients (exponent and intercept) were modified to 4 and 1, respectively, consistent with basic guidance contained in the DMSTA2 documentation. They had previously been estimated on the basis of results taken from two-dimensional hydrodynamic analyses in certain of the STAs. It was concluded on the basis of trial runs that this change did not influence projected outflow concentrations, and modified peak and mean depths in the STAs resulting from the DMSTA2 by less than 5 centimeters.
- ➤ Seepage estimates were updated to reflect the results of water balance analyses prepared by the District for operating STAs. In addition, cell-to-cell seepage (at STA-1W and STA-1E) considered in the BSFS Evaluation of Alternatives was eliminated from this analysis due to its minor influence on the results and to improve the clarity of the estimates.

The most significant modification to DMSTA parameters, as compared to those considered in the BSFS Evaluation of Alternatives, was the use of updated calibration

data sets for the performance of various vegetation types in reducing total phosphorus concentrations. Three basic vegetation calibrations were considered in this analysis:

- ➤ EMG_3: An updated calibration of the performance of emergent macrophyte vegetation, using data from full-scale STAs (replaced EMG in the 4/01/2002 version of DMSTA used in the BSFS Evaluation of Alternatives).
- ➤ SAV_3: An updated calibration of the performance of submerged aquatic vegetation, using data from full-scale STAs (replaced SAV_C4 and NEWS in the 4/01/2002 version of DMSTA used in the BSFS Evaluation of Alternatives).
- ➤ PEW_3 (Pre-Existing Wetland): A new calibration data set developed to reflect the performance of those cells in the operating STAs (and in other wetland data sets, such as WCA-2A) in which the wetland vegetation existed naturally. As applied to the existing STAs, the application of this data set is limited to Cells 1 and 2 of STA-2; STA-6 Section 1; and Cell 1B of STA-3/4.
- ➤ RES_3 (Reservoir): A new calibration data set developed to reflect the performance of reservoirs in reducing total phosphorus loads. As applied to this analysis, the use of RES_3 is limited to the EAASR Compartment A-1.

Water quality improvement projections on which the Long-Term Plan was based were predicated on an ability to reproduce the performance of the best two years of operation of Cell 4 in STA-1W (SAV_C4) in those cells containing Submerged Aquatic Vegetation. A range in performance of those cells was also considered, employing the NEWS (Non-Emergent Wetland Systems) calibration data sets.

Comparison of summary data presented in Tables 2.4 and 2.6 of Deliverable 1.4.2 indicates that, for no other change in input data, the substitution of SAV_3 in DMSTA2 for SAV_C4 in the April 2002 version of DMSTA results in roughly a 20% increase in the projected flow-weighted mean TP concentration in outflows from STA-1W, following its enhancement as recommended in the Long-Term Plan, and roughly a 30% increase in the estimated geometric mean TP concentration in those outflows. However,

the projected flow-weighted and geometric mean concentrations using the SAV_3 data set in DMSTA2 fall below those estimated using the NEWS calibration data set in the April 2002 version of DMSTA.

The net effect of this change in calibration data sets is to, as compared to projections considered in development of the Long-Term Plan and with all other inputs unchanged, result in higher projected outflow concentrations than the mean estimates considered in the Long-Term Plan, but still within the probable range of performance reported in the Long-Term Plan.

2. DESCRIPTION OF ALTERNATIVE NO. 2

As concluded in Deliverable 2.2, the overall performance of the various stormwater treatment areas is expected to be generally balanced over the period 2006-2009; no significant benefit would be expected to result from attempts to significantly redistribute inflow volumes and TP loads during that period. However, projected outflow concentrations from the STAs during the period 2006-2009 fall above long-term water quality goals.

Upon the full build-out of Compartments B and C of the Talisman Land Exchange, and completion of the EAASR Compartment A-1, substantial additional acreage of water management and treatment area will be added in the south central and western parts of the EAA, suggesting that overall system performance during the period 2010-2014 would benefit from a redistribution of projected inflow volumes and TP loads.

Alternative No. 2 is structured to redistribute inflow volumes and TP loads in order to take advantage of and more fully utilize those additional water management areas. The basic concepts of Alternative No. 2 are described below and indicated graphically in Figure 2.1.

- ➤ Runoff from the S-5A Basin and the East Beach Water Control District (EBWCD) would delivered to STA-1W, constrained only by the hydraulic capacity of STA-1W;
- ➤ Potential inflows to STA-1W in excess of its hydraulic capacity would be delivered to STA-1E through G-311;

- The TP concentrations in discharges from STA-1W would be expected to normally exceed levels desirable for release to the Loxahatchee National Wildlife Refuge (LNWR). Those discharges would be directed to STA-2 and Compartment B for further treatment prior to their release to the Everglades Protection Area (EPA);
- ➤ Separation of the STA-1W discharges from the LNWR, and the delivery of those discharges to STA-2, would be effected through a partial enlargement of the L-7 Borrow Canal and the physical separation of the L-7 Borrow Canal from the interior of the LNWR through construction of a separation berm or levee east of the L-7 Borrow Canal. That separation berm or levee would be expected to extend along the entire length of the L-7 Borrow Canal between the STA-1 Inflow & Distribution Works at G-301 to Levee L-39 (levee forming the south line of the LNWR);
- ➤ A new gated control structure would be constructed basically in the alignment of L-39, withdrawing STA-1W discharges from the L-7 Borrow Canal and delivering those discharges to the STA-2 Supply Canal immediately downstream (southeast) of Pump Station S-6. At that point, those discharges would mix with discharges from Pump Station S-6;
- ➤ The existing STA-2 and STA-1W Supply and Inflow Canals would be enlarged to permit delivery of the aggregate flow downstream of S-6 to STA-2 and Compartment B;
- ➤ Under this alternative, Compartment B of the Talisman Land Exchange would be developed as a fourth flow path of STA-2. The STA-2 Inflow Canal would be extended north and west to serve as an inflow distribution canal along the north line of Compartment B;
- ➤ Runoff from the S-2/S-6 Basin and East Shore Water Control District/715 Farms Chapter 298 Districts (ESWCD) would continue to be delivered through S-6 to the expanded STA-2, to the extent that sufficient hydraulic capacity would exist to receive those inflows. During periods of high discharge from STA-1W, the hydraulic capacity of STA-2 and Compartment B is expected to be insufficient to accept all runoff from the S-2/S-6 Basin and ESWCD. Under those conditions, a part of the runoff from the S-2/S-6 Basin

and ESWCD would be diverted west through the Cross Canal to the North New River Canal for treatment in STA-3/4;

➤ The partial diversion of runoff from the S-2/S-6 Basin and ESWCD to the North New River Canal is expected to require an enlargement of both the Cross Canal and North New River, and the possible need for a new control structure at the confluence of the Cross Canal and Hillsboro Canal;

Under Alternative No. 2, inflow volumes and TP loads to STA-5 and STA-6 would be identical to those considered in the earlier report on Alternative No. 1. Inflow volumes to the EAASR Compartment A-1 would be identical to those for Alternative No. 1, although TP concentrations in those inflows would vary from those considered for Alternative No. 1. Inflows to STA-3/4 would, with one exception, be consistent with those summarized in Deliverable 1.2A (e.g., consistent with the results of the ECP 2010 SFWMM simulation, modified as indicated in Deliverable 1.2A). That exception is that runoff volumes and TP loads from the S-2/S-6 Basin and ESWCD diverted from STA-2 would be added to the original projections of inflow volumes and loads to STA-3/4.

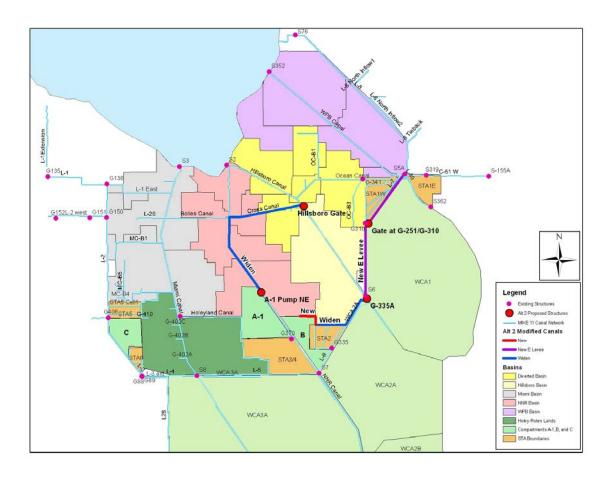


Figure 2.1 General Schematic of Alternative No. 2

3. STA-1W

For this analysis, the enhancements to STA-1W recommended in the Long-Term Plan are assumed to be complete. This analysis considers the full area of the various flow paths as being effective for treatment, resulting in a total effective treatment area of 6,670 acres. In the BSFS Evaluation of Alternatives, the effective area of Cells 3 and 4 had been reduced by 326 and 108 acres, respectively.

All inflows to STA-1W enter through Structure G-302, a gated spillway situated in Levee L-7. That structure discharges from the STA-1 Inflow and Distribution Works. Inflows to the STA-1 Inflow and Distribution Works historically include pumped discharges from Pump Station S-5A and gravity inflows from the L-8 Borrow Canal through Structure S-5AS. In addition to G-302,

discharges from the STA-1 Inflow and Distribution Works can be made through G-300 and G-301 (to the L-40 and L-7 borrow canals, respectively, in the Loxahatchee National Wildlife Refuge, or LNWR) and G-311 (to the West Distribution Cell of STA-1E).

The nominal capacity of S-5A is 4,800 cfs; of G-301 is 3,250 cfs; and of G-311 is 1,550 cfs.

In development of the South Florida Water Management Model (SFWMM) 2010 ECP simulation on which the estimated inflow volumes and TP loads are based, certain significant changes in overall system management from historic operations were assumed. Those assumptions include the following that directly and materially influence the projected performance of STA-1W in reducing total phosphorus loads and concentrations:

- Cessation of Lake Okeechobee regulatory releases at Structure S-352;
- ➤ Elimination of inflows to the STA-1 Inflow and Distribution Works from the L-8 Borrow Canal, including both L-8 Basin runoff and Lake Okeechobee releases to the L-8 Borrow Canal at Culvert C-10A:
- ➤ Water supply releases to the West Palm Beach Canal at S-352 destined for the Lower East Coast and delivered through the LNWR would only be made when the stage in the LNWR is at or below the floor of its regulation schedule.

Implementation of each of the above assumptions in the Operations Plan for STA-1W and related elements of the system is critical to the water quality improvement performance projections presented herein.

For the period 2010-2014, inflows to the STA-1 Inflow and Distribution Works are assumed to be limited to runoff from the S-5A Basin in the Everglades Agricultural Area (EAA), runoff from the East Beach Water Control District (EBWCD) diverted to the West Palm Beach Canal, and water supply releases from Lake Okeechobee; those water supply releases are assumed to simply pass through the STA-1 Inflow and Distribution Works, and not require treatment.

A summary of the total estimated average annual inflows to the STA-1 Inflow and Distribution Works is presented in Table 3.1.

Table 3.1 Potential Total Inflows to STA-1 I&D Works

Source	Estimated Average Annual Inflow, WY 1966-2000		Remarks	
	Volume (ac-ft)	TP Load (kg)	TP Conc. (ppb)	
S-5A Basin	232,318	44,104	154	Deliverable 1.2A, Table 3.14
EBWCD	15,212	9,386	500	Deliverable 1.2A, Table 2.3
Lake Okeechobee	14,184	2,227	127	Deliverable 1.2A, Table 6.8
Total Inflow	261,714	55,717	173	
Assumed Bypass	14,184	2,227	127	Water Supply to LEC and L-8
Inflow to be Treated	247,530	53,490	175	

Of the total water supply bypass volume, an average annual volume of 2,282 acre-feet per year (Term "WLC352" as reported in the ECP 2010 simulation) is considered discharged to the LNWR, with the balance delivered to the L-8 borrow canal. The average annual TP load discharged to the LNWR in the water supply bypass is estimated to be 0.36 metric tons. It should also be noted that the S-5A Basin runoff listed in Table 3.1 excludes that part of the basin runoff considered previously diverted to STA-2 through the S-5A Basin Diversion Works.

3.1. Inflows to STA-1W Based on Current Operations of G-302

At present, operations of the STA-1 Inflow and Distribution Works are normally structured to maximize the proportion of inflows to that area delivered through G-302 to STA-1W. As a result, it might be practicable to simply assign inflows up to the nominal capacity G-302 (3,250 cfs) to STA-1W, with the balance (e.g., S-5A discharges exceeding 3,250 cfs) considered delivered either to STA-1E through G-311 or bypassed to the LNWR through G-300 and G-301. However, application of a such a simplistic distribution of flow to the results of the SFWMM simulation is not considered advisable.

For analysis of Alternative No. 2, the distribution of STA-1 Inflow & Distribution Works inflows between STA-1W and STA-1E was estimated consistent with that developed in Deliverable 2.2; that distribution of inflows and its genesis is repeated herein for convenience.

The various simulations are based on estimated mean daily discharges. In the instance of pumping station operations, such as at S-5A, the District's operational practice is to, in the interest of limiting operational expenditures, limit pumping operations to a single shift per

day when practicable, and to minimize the use of second and third shifts. As a result, much of the simulated mean daily discharges at any given pumping station will occur at rates higher than the mean daily rates resulting from the simulation. In most application in the ECP, where the pumping stations discharge to large stormwater treatment areas, the influence of that operational distinction may be neglected. However, S-5A discharges to the relatively small footprint of the STA-1 Inflow and Distribution Works, where available storage is limited. It is therefore desirable to assess the distribution of outflows from that area on a basis other than simple assignation of mean daily inflows on the basis of relative capacity of the various discharge structures.

For this analysis, the distribution of discharges from the STA-1 Inflow and Distribution Works is based on evaluation of the distribution of inflows resulting from the District's actual operations of G-302 during full operation of STA-1W.

The initial filling of Cell 5 of STA-1W was begun on March 18, 1999; flow-through operations began July 7, 2000. Review of discharge data for Water Year 2001 reveals that roughly 38% of the total pumped discharges passed through Pumping Station G-310; pump testing at G-310 was not completed until the fall of 2000. That low utilization of the primary outflow pumping station leads to the presumption that STA-1W was not in full flow-through operations during significant parts of Water Year 2001.

In addition, Cells 5A and 5B were taken off line over the period February 15, 2003 through August 15, 2003 (Water Years 2003 and 2004) to permit construction of a limerock berm across Cell 5B as one element of the Process Development and Engineering (PDE) component of the *Long-Term Plan*. Cells 2 and 4 were taken off line over the period February 2004 through August 2004 (affecting the data for Water Year 2004) to allow an opportunity for tussocks in those cells to re-root, and to provide a "resting" interval following a period of extreme high inflows from Lake Okeechobee.

The above periods subsequent to July 2000 were excluded from the analysis, as the reduced utilization of STA-1W during those periods would suggest that discharges through G-302 would have been at less than normal capacity. In addition, discharges during Water Year

2005 were not considered in this analysis, as discharges to STA-1W have been curtailed in connection with on-going recovery actions in that STA.

Daily discharges were downloaded from the District's DBHYDRO data base for S-5A (DBKEY JW226), S-5AS (DBKEY TA410), and G-302 (DBKEY JJ806). Only positive discharges were considered in the analysis. The data was then screened to limit the analysis to the remaining periods of full operation of STA-1W during WY 2002-2004 (total of 824 days of full operation). Discharges from G-302 were then plotted against same-day inflows to the STA-1 Inflow and Distribution Works, and an approximate relationship was fit to the plotted data. For total daily inflows to the Inflow and Distribution Works up to 2,000 cfs, all inflows were assigned to STA-1W through G-302 (note that a daily inflow of 2,000 cfs is equivalent to pumping S-5A at capacity for a 10-hour period). For daily inflows above 2,000 cfs, the discharge at G-302 was computed as:

$$Q(G-302) = 2,000 + (Q(total) - 2,000)exp(0.8984)$$

For a total inflow to the STA-1 Inflow & Distribution Works of 4,800 cfs (capacity of S-5A), the distribution resulting from the above relationship would assign 3,250 cfs to G-302 (equal to its nominal capacity), and 1,550 cfs STA-1E through G-311.

A plot of the data employed in this analysis, on which the flow distribution resulting from the above relationship is superimposed, is presented in Figure 3.1.

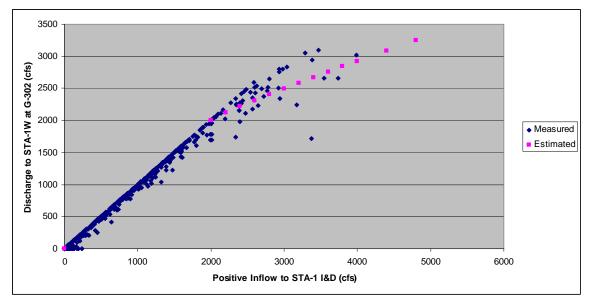


Figure 3.1 Distribution of Discharges through G-302

3.2. DMSTA2 Analysis of STA-1W

The following is a description of the case considered for analysis of STA-1W in this Alternative No. 2.

➤ STA1W Alt2: For this case, discharges from the STA-1 Inflow and Distribution Works to STA-1W were assumed governed by the relationship presented above. This case would be considered most representative of current operations in STA-1W coupled with the revised inflows applicable to the period 2010-2014. Inflows to the STA-1W Inflow and Distribution Works exceeding the assigned discharges at G-302 were considered as delivered to the West Distribution Cell of STA-1E through G-311.

Table 3.3 presents a summary of the results of the DMSTA2 analysis for STA-1W as it is influenced by Alternative No. 2; the analysis includes Water Years 1966-2000. Summary DMSTA2 input and output data for this case are included in Appendix A.

Table 3.2 Summary of DMSTA2 Analysis, STA-1W Alternative No. 2

Parameter	Units	Summary of Results
		STA1W_Alt2
Average An	nual Inflow	
Volume	1,000 ac-ft	238.6
TP Load	metric tons	51.30
FWM TP Concentration	ppb	174
Average Ann		
Volume	1,000 ac-ft	239.4
FWM TP Concentration		
Upper Confidence Limit	ppb	22.1
Mean Estimate	ppb	27.3
Lower Confidence Limit	ppb	34.2
Geometric Mean TP Conc.		
Upper Confidence Limit	ppb	17.2
Mean Estimate	ppb	22.1
Lower Confidence Limit	ppb	29.0
TP Load (Using Mean FWM Conc.)	metric tons	8.05
For Detailed Results, See Appe		Table A.1
Summary of Bypass	ses and Diver	sions
Water Supply to LEC and L-8		
Volume	1,000 ac-ft	14.2
TP Load	metric tons	2.23
FWM TP Concentration	ppb	127
Divert to STA-1E via G-311		
Volume	1,000 ac-ft	8.9
TP Load	metric tons	2.19
FWM TP Concentration	ppb	198

For Alternative No. 2, STA-1W was analyzed in DMSTA2 as one part of a "network simulation" including STA-1W, STA-2 (expanded to include all of Compartment B of the Talisman Land Exchange), the EAASR Compartment A-1, and STA-3/4. The 7/01/2005 version of DMSTA2 does not include capability for a full uncertainty analysis; specifically, it cannot develop upper confidence limit estimates. The upper confidence limit concentrations reported in Table 3.2 were estimated using the following approximation:

Log (Upper C.L.)/Log (Mean Est.)=Log (Mean Est.)/Log (Lower C.L.)

4. STA-1E

For this analysis, STA-1E is assumed to be in full operation, and the enhancements to STA-1E recommended in the Long-Term Plan are assumed to be complete. This analysis considers the West and East Distribution Cells of STA-1 as integral elements of the treatment works, modeled as emergent vegetation with poor hydraulics (0.5 CSTRs in series).

Inflows to STA-1E enter through Structure G-311, a gated spillway situated in Levee L-40; Pumping Station S-319 on the C-51 West Canal; and Pumping Station S-361, which discharges to the upper end of Cell 4S of STA-1E. Structure G-311 discharges from the STA-1 Inflow and Distribution Works; inflows to STA-1E from that source are considered to be controlled by operations at G-302 and STA-1W. Pumping Station S-361 is projected to discharge an average of 2.5% of the total C-51 West Basin runoff; for this analysis, those discharges are assumed included in the total inflows to the C-51 West Canal.

In development of the South Florida Water Management Model (SFWMM) 2010 ECP simulation on which the estimated inflow volumes and TP loads are based, certain significant changes in overall system management from historic operations were assumed. Those assumptions include the following that directly and materially influence the projected performance of STA-1E in reducing total phosphorus loads and concentrations:

- ➤ Cessation of Lake Okeechobee regulatory releases to the L-8 Borrow Canal at Culvert C-10A (in particular those eventually discharged through Structure S-5AE);
- ➤ Elimination of inflows to the STA-1 Inflow and Distribution Works from the L-8 Borrow Canal, including both L-8 Basin runoff and Lake Okeechobee releases to the L-8 Borrow Canal at Culvert C-10A;
- ➤ Elimination of regulatory releases from the LNWR through Structure S-5AS and S-5AE.

Implementation of each of the above assumptions in the Operations Plan for STA-1E and related elements of the system is critical to the water quality improvement performance projections presented herein.

In addition to the above assumptions, the operation of structures in and along the C-51 West Canal is assumed developed to send a volume through S-155A (bypassing STA-1E) equal to inflows to the C-51 West Canal from the L-8 Basin at S-5AE. For this analysis, those bypass volumes were assigned as equal to same-day inflows at S-5AE. The total phosphorus concentration in those bypasses was assigned equal to the flow-weighted mean concentration in all inflows to the C-51 West Canal on that same date. The net effect of this assumption is to bypass a larger total phosphorus load through S-155A than is delivered from the L-8 Basin through S-5AE.

For the period 2010-2014, inflows to the C-51 West Canal under this Alternative No. 2 are considered limited to:

- > Runoff from the C-51 West Basin;
- ➤ Runoff from Basin B of the Acme Improvement District, which is assumed to be diverted from its present points of discharge (to the LNWR) to the C-51 West Canal;
- ➤ Runoff from the L-8 Basin through Structure S-5AE (volumes assumed bypassed through S-155A as discussed above).

To the extent that water supply deliveries may be made through the C-51 West Canal, those water supply releases are assumed to simply pass through to S-155A and not require treatment. A summary of the estimated average annual inflows to the C-51 West Canal is presented in Table 4.1.

19

Table 4.1 Estimated Inflows to C-51 West Canal

Source	Estimated Average Annual Inflow, WY 1966-2000		Remarks	
	Volume (ac-ft)	TP Load (kg)	TP Conc. (ppb)	
C-51 West Basin	136,812	23,307	138	Deliverable 1.2A, Table 5.6
Acme Basin B	34,887	4,850	113	Deliverable 1.2A, Table 5.8
L-8 Basin	36,256	3,548	79	Deliverable 1.2A, Table 5.2
Total Inflow	207,955	31,705	124	
Assumed Bypass	36,256	4,691	105	L-8 Runoff Through S-155A
Inflow to be Treated	171,699	27,014	128	

The inflow to be treated is considered as delivered to STA-1E at S-319. In addition, under this Alternative No. 2, an estimated average annual volume of approximately 9,000 acre-feet per year at a flow-weighted mean TP concentration of 198 ppb (see Table 3.2) is also considered delivered to STA-1E through G-311.

4.1. Cases Considered in DMSTA2 Analysis of STA-1E

A total of two potential inflow cases were considered in the DMSTA-2 analysis of STA-1E. The two cases considered are described as follows:

- ➤ 2010 Base: For this case, inflows to STA-1E from the C-51 West Canal at S-319 and at S-362 were assumed to be consistent with the summary data presented in Table 4.1 (e.g., bypass of inflow volumes from the L-8 Basin, but before inclusion of inflows at G-311). This case is identical to that developed for Alternative No. 1;
- ➤ STA1E_Alt2: Identical to the above case (2010 Base), with the exception that projected diversions from STA-1W through G-311 are added to the STA-1E inflows.

4.2. Summary of DMSTA2 Results

Table 4.2 presents a summary of the results of the DMSTA2 analyses for STA-1E. Summary DMSTA2 input and output data for each case are included in Appendix A.

Table 4.2 Summary of DMSTA2 Analyses, STA-1E, WY 1966-2000

Parameter	neter Units Summary of Results by 0		esults by Case		
		2010 Base	STA1E_Alt2		
Avera	age Annual In	flow			
Volume	1,000 ac-ft	171.8	180.9		
TP Load	metric tons	27.03	29.05		
FWM TP Concentration	ppb	128	130		
Avera	ge Annual Ou	tflow			
Volume	1,000 ac-ft	168.5	177.6		
FWM TP Concentration					
Upper Confidence Limit	ppb	10.1*	11.9*		
Mean Estimate	ppb	13.3*	15.6		
Lower Confidence Limit	ppb	17.9	20.6		
Geometric Mean TP Conc.					
Upper Confidence Limit	ppb	7.6	8.4		
Mean Estimate	ppb	10.6	11.8		
Lower Confidence Limit	ppb	15.0	16.6		
TP Load (Using Mean FWM Conc.)	metric tons	2.77	3.42		
For Detailed Results, See Appe	endix A	Table A.3	Table A.2		
Summary of	Summary of Bypasses and Diversions				
Bypass Through S-155A					
Volume	1,000 ac-ft	36.3	36.3		
TP Load	metric tons	4.69	4.69		
FWM TP Concentration	ppb	105	105		

^{*} Projected flow-weighted mean TP concentration in outflows less than calibration range lower limit of 15 ppb

In addition, for each of the two cases considered, there would also be untreated discharges from the STA-1 Inflow and Distribution Works for Lower East Coast water supply when stages in the LNWR are at or below the floor of the LNWR regulation schedule (see Table 3.1 and the text immediately following that table).

5. STA-2

For this analysis, STA-2 (including the addition of all of Compartment B of the Talisman Land Exchange as a fourth flow path) is considered to be in full operation. However, the enhancements to the existing STA-2 (before Cell 4 expansion) recommended in the Long-Term Plan are considered as not in place, as the District has indicated (through its December 2004 amendment of the Long-Term Plan) its intent not to immediately proceed with the subdivision of existing flow paths. In addition, Cells 1 and 2 of STA-2 are analyzed using DMSTA2 calibration data sets

for pre-existing vegetation (PEW_3), as no efforts are presently underway to convert those cells (which are at present performing well) to SAV.

Under Alternative No. 2, Cell 4 of STA-2 is considered to be one cell of the new fourth flow path on Compartment B of the Talisman Land Exchange (see Part 5.1 of this document).

At present, inflows to STA-2 include discharges from Pumping Station S-6 and Pumping Station G-328 (an agricultural pumping station situated on the STA-2 Supply Canal intermediate to S-6 and STA-2). Currently, inflows are considered limited to:

- 1. Basin runoff from the S-2/S-6 Basin;
- 2. Basin runoff from the East Shore Water Control District/715 Farms Chapter 298 districts (ESWCD/715) diverted from Lake Okeechobee;
- 3. Basin runoff from the S-5A Basin diverted to the Hillsboro Canal through the S-5A Basin Diversion Works.

In addition, analyses summarized in the Supplemental Analysis suggest that a substantial volume of water is introduced to STA-2 as seepage from the L-6 Borrow Canal and WCA-2A, ascribed primarily to the length of the STA-2 Supply Canal between S-6 and STA-2. That induced seepage inflow is assigned at a uniform rate of 38 cfs (27,500 acre-feet per year) and an assigned flow-weighted mean TP concentration of 15 ppb.

In development of the SFWMM 2010 ECP simulation on which the estimated inflow volumes and TP loads are based, certain significant changes in overall system management from historic operations were assumed. Those assumptions include the following that directly and materially influence the projected performance of STA-2 in reducing total phosphorus loads and concentrations:

Cessation of Lake Okeechobee regulatory releases to the Hillsboro Canal and STA-2 at Structure S-351;

Water supply releases to the Hillsboro Canal at S-351 destined for the Lower East Coast Service Area 2 (term "WL2351" in the 2010 ECP simulation) would only be made when the stage in WCA-2A is at or below the floor of its regulation schedule, and would bypass STA-2.

Implementation of the first of the above assumptions in the Operations Plan for STA-2 and related elements of the system is critical to the water quality improvement performance projections presented herein. The second assumption addresses relatively minor volumes and TP loads as simulated.

Under Alternative No. 2, potential inflows to the expanded STA-2 would be increased to include discharges from STA-1W. A summary of the potential average annual inflows to STA-2 (prior to consideration of limitations due to hydraulic capacity) under Alternative No. 2 is presented in Table 5.1.

Table 5.1 Potential Average Annual Inflows to Expanded STA-2

Source	Potential Average Annual Inflow, WY 1966-2000		Remarks	
	Volume (ac-ft)	TP Load (kg)	TP Conc. (ppb)	
S-2/S-6 Basin	236,624	28,327	97	Deliverable 1.2A, Table 3.3
ESWCD/715	29,818	4,588	125	Deliverable 1.2A, Table 2.6
Current S-5A Diversion	58,778	11,152	154	Deliverable 1.2A, Table 3.15
STA-1W Discharge	239,401	8,054	27.3	Table 3.2
Seepage from WCA-2A	27,500	509	15	See text
Lake Okeechobee	832	86	84	Water Supply to LEC SA2 (WL2351)
Total Inflow	592,953	52,716	72	
Assumed Bypass	832	86	84	Water Supply to LEC SA2 (WL2351)
Inflow to be Treated	592,121	52,630	72	

5.1. Assumed Configuration of Fourth Flow Path on Compartment B

For this analysis, the new fourth flow path on Compartment B was assumed to consist of four cells in series, occupying the entire Compartment B (including Cell 4 of STA-2, which is assumed to be hydraulically severed from the existing STA-2). The following summarizes the assumed configuration of the new fourth flow path:

 Cell No. 4A would be the most upstream cell, and would consist of that part of Compartment B of the Talisman Land Exchange lying north of Cell 4. Inflows to Cell No. 4A would consist of discharges from the STA-2 inflow canal extended

23

north and west to serve as an east-west inflow distribution canal along the north line of Cell 4A, and would, from that inflow distribution canal, flow south to Cell 4B. The estimated effective treatment area of Cell 4A is 17.32 square kilometers (4,280 acres). Cell No. 4A was assumed to be vegetated with emergent vegetation, and considered as EMG_3 in the DMSTA2 analysis.

- 2. Cell No. 4B would consist of what is now termed Cell 4 of STA-2. It would receive outflows from Cell No. 4A, and carry those flows south to new Cell No. 4C. The estimated effective treatment area of Cell No. 4B is 7.70 square kilometers (1,900 acres). Cell No. 4B was assumed to be vegetated with Submerged Aquatic Vegetation, and considered as SAV_3 in the DMSTA2 analysis.
- 3. Cell No. 4C would consist of that part of Compartment B of the Talisman Land Exchange lying south of Cell No. 4B and STA-2 and westerly of the Florida Power & Light (FPL) high-voltage overhead transmission line traversing Compartment B from southwest to northeast. It would receive outflows from Cell No. 4B and carry those flows southeasterly to the access roadway serving the FPL overhead transmission line, which would serve to separate Cell No. 4C from Cell No. 4D. The estimated effective treatment area of Cell No. 4C is 1,380 acres. Cell No. 4C was assumed to be vegetated with Submerged Aquatic Vegetation, and considered as SAV_3 in the DMSTA2 analysis.
- 4. Cell No. 4D would consist of that part of Compartment B of the Talisman Land Exchange lying between the FPL high-voltage overhead transmission line and Levee L-6. It would receive outflows from Cell No. 4C and carry those flows southeasterly to L-6. The estimated effective treatment area of Cell No. 4D is 1,380 acres. Cell No. 4D was assumed to be vegetated with Submerged Aquatic Vegetation, and considered as SAV_3 in the DMSTA2 analysis.

The total effective treatment area in the new fourth flow path of STA-2 is estimated to be 8,940 acres.

5.2. Cases Considered in DMSTA2 Analysis of STA-2

The DMSTA2 analysis of STA-2 under Alternative No. 2 considered the following inflow case:

> STA2 Alt2: This case was developed upon the assumption that all potential inflows to STA-2 listed in Table 5.1 would be included in the inflow volumes and TP loads to STA-2, to the extent that hydraulic capacity is available in the expanded STA-2 to receive those inflows.

For this analysis, the peak hydraulic capacity of STA-2 is taken as 4,720 cfs, distributed to the various flow paths as:

- 750 cfs to Cells 1;
- 840 cfs to Cell 2;
- 1,300 cfs to Cell 3;
- 1,800 cfs to Cells 4A through 4D.

The above estimate of the peak hydraulic capacity of the expanded STA-2 is an initial approximation only, and was developed without benefit of topographic data over much of Compartment B. Ongoing hydraulic analyses by ADA Engineering suggest that, in particular, the assumed hydraulic capacity of Cells 4A through 4D may be less than that considered herein. It is probable that future, more detailed hydraulic analyses would result in some adjustment to the overall hydraulic capacity of the expanded STA-2, as well as a redistribution of that peak inflow between the various flow paths. Such adjustments, if necessary, could be expected to result in a modified distribution of volumes and TP loads to the expanded STA-2 and STA-3/4, with attendant impact on the projected performance of each of those two treatment areas.

25

Estimated daily inflows to the Hillsboro Canal (comprised of basin runoff from the S-2/S-6 Basin, the ESWCD, and that part of the historic S-5A Basin tributary to the Ocean Canal west of Structure G-341) were added to simulated daily discharges from STA-1W and the induced seepage inflows from WCA-2A to the STA-2 Supply Canal. On those days when the summation of all those flows exceeded the assigned STA-2 hydraulic capacity, the excess was assigned as diversion through the Cross Canal to the North New River Canal and STA-3/4.

5.3. Summary of DMSTA2 Results

Table 5.2 presents a summary of the results of the DMSTA2 analysis for STA-2. Summary DMSTA2 input and output data for each case are included in Appendix A.

Table 5.2 Summary of DMSTA2 Analysis, STA-2, WY 1966-2000

Parameter	Units	Summary for
		STA2_Alt2
Average Annu	al Inflow	
Volume	1,000 ac-ft	563.4
TP Load	metric tons	49.58
FWM TP Concentration	ppb	71
Average Annua	al Outflow	
Volume	1,000 ac-ft	565.0
FWM TP Concentration		
Upper Confidence Limit*	ppb	12.2
Mean Estimate	ppb	14.9
Lower Confidence Limit	ppb	18.5
Geometric Mean TP Conc.		
Upper Confidence Limit	ppb	9.2
Mean Estimate	ppb	11.8
Lower Confidence Limit	ppb	15.5
TP Load (Using Mean FWM Conc.)	metric tons	10.36
For Detailed Results, See Appe		Table A.4
Summary of Bypasses	s and Diversion	ns
Water Supply to LEC		
Volume	1,000 ac-ft	0.8
TP Load	metric tons	0.09
FWM TP Concentration	ppb	84
Diversion to NNRC		
Volume	1,000 ac-ft	29.0
TP Load	metric tons	3.00
FWM TP Concentration	ppb	84

^{*} Projected flow-weighted mean TP concentration in outflows less than calibration range lower limit of 15 ppb

For Alternative No. 2, STA-2 was analyzed in DMSTA2 as one part of a "network simulation" including STA-1W, STA-2 (expanded to include all of Compartment B of the Talisman Land Exchange), the EAASR Compartment A-1, and STA-3/4. The 7/01/2005 version of DMSTA2 does not include capability for a full uncertainty analysis; specifically, it cannot develop upper confidence limit estimates. The upper confidence limit concentrations reported in Table 5.2 were estimated using the following approximation:

Log (Upper C.L.)/Log (Mean Est.)=Log (Mean Est.)/Log (Lower C.L.)

6. EAASR COMPARTMENT A-1

Summaries of the estimated average annual inflows to Compartment A-1 of the EAA Storage Reservoir Project under Alternative No. 2 are presented in Table 6.1.

Table 6.1 Estimated Average Annual Inflows to EAASR A-1, W.Y. 1966-2000

Source	Estimated Average Annual Inflow, WY 1966-2000		Remarks	
	Volume (ac-ft)	TP Load (kg)	TP Conc. (ppb)	
Inflows Ta	aken from ECP 20	10 SFWMM Simu	lation with TP loa	ds from Deliverable 1.2A
S-2/S-7 Basin Runoff	72,078	7,235	81	Deliverable 1.2A Table 3.6
S-3/S-8 Basin Runoff	59,784	5,910	80	Deliverable 1.2A, Table 3.11*
Lake Okeechobee Releases				
S-351	131,928	16,689	103	Deliverable 1.2A, Table 6.14
S-354	152,793	16,968	90	Deliverable 1.2A, Table 6.16
Total Inflow	416,583	46,802	91	

^{*} TP load and concentration modified from that shown in Deliverable 1.2A to reflect adjustment to eliminate influence of negative daily loads on results; net effect is addition of 10 kg/yr to TP load

The DMSTA2 analysis of the operation and estimated TP reduction in the EAASR Compartment A-1 was conducted to maintain, to the maximum extent practicable, the daily inflow volumes, outflow volumes (both to STA-3/4 and as irrigation supply to the EAA), and daily stages taken from the ECP 2010 SFWMM simulation. However, it was not possible to exactly match those simulated data in the DMSTA2 analysis of Compartment A-1, for reasons discussed below.

6.1. SFWMM Simulation of EAASR Compartment A-1

The basic structure of the EAASR Compartment A-1 considered in the ECP 2010 SFWMM simulation is summarized graphically in Figure 6.1, taken from Deliverable 1.2A.

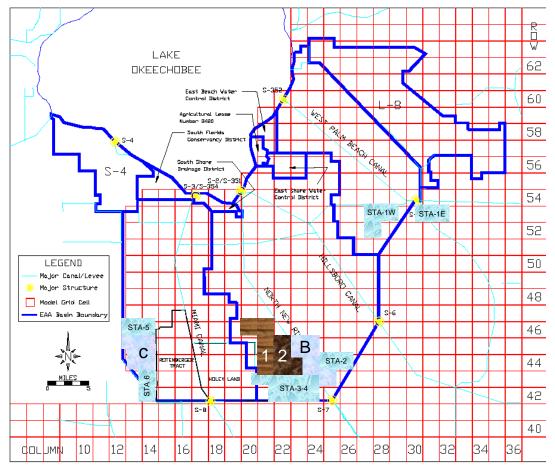


Figure 6.1 ECP 2010 Model Configuration for EAASR Compartment A-1

Flow terms reflected in the ECP 2010 SFWMM model of the EAASR Compartment A-1 are shown in Figure 6.2, also taken from Deliverable 1.2A.

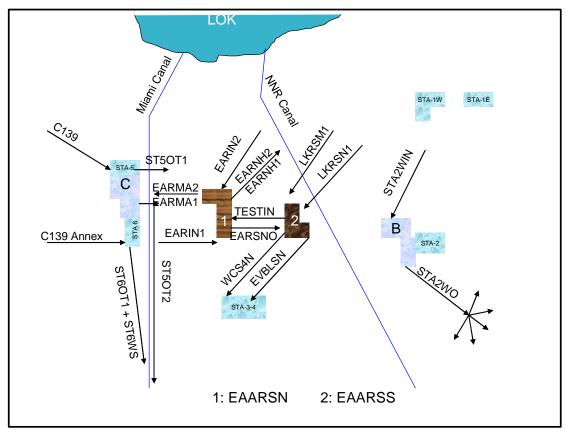


Figure 6.2 Flow Terms in ECP 2010 Model of EAASR Compartment A-1

The A-1 Reservoir introduces a number of new flow terms to the SFWMM model (Figure 6.2). The new reservoir-related terms are defined below:

- ➤ EARIN1 = Inflow into proposed EAA reservoir (Compartment 1) from Miami Canal (runoff + LOK regulatory releases)
- ➤ EARIN2 = Inflow into proposed EAA reservoir (Compartment 1) from NNR Canal (runoff + LOK regulatory releases)
- ➤ EARMA1 = Outflow from proposed EAA reservoir (Compartment 1) to meet Miami Canal basin supplemental demands
- ➤ EARMA2 = Outflow from proposed EAA reservoir (Compartment 1) to meet Miami Canal basin supplemental demands that EARMA1 does not meet

29

- ➤ EARNH1 = Outflow from proposed EAA reservoir (Compartment 1) to meet NNR-Hillsboro Canal basin supplemental demands
- ➤ EARNH2 = Outflow from the proposed EAA reservoir (Compartment 1) to meet NNR-Hillsboro canal basin supplemental demands that EARNH1 does not meet
- > EVBLSN = Environmental water supply from subsurface water down to 1.5 feet below land surface from the northern surge tank in EAA reservoir
- > EVBLSS = Environmental water supply from subsurface water down to 1.5 feet below land surface from the southern surge tank in EAA reservoir
- ➤ LKRSM1 = Excess water from Lake Okeechobee via Miami Canal to northern surge tank of the EAA reservoir
- ➤ LKRSM2 = Excess water from Lake Okeechobee via Miami Canal to southern surge tank of the EAA reservoir
- ➤ LKRSN1 = Excess water from Lake Okeechobee via NNRC to the northern surge tank of the EAA reservoir
- ➤ LKRSN2 = Excess water from Lake Okeechobee via NNRC to the southern surge tank of the EAA reservoir
- ➤ WCS4N = Outflow (surface water only) for environmental water supply purposes from northern surge tank of the EAA reservoir to WCA-3A via STA-3/4
- ➤ WCS4S = Outflow (surface water only) for environmental water supply purposes from southern surge tank of the EAA reservoir to WCA-3A via STA-3/4

The terms of primary interest to this analysis are WCS4N, WCS4S, EVBLSS and EVBLSN (those discharges from the Reservoir to STA-3/4). Although the Reservoir was simulated as two surge tanks in the ECP 2010 simulation, the present design intent is to construct Compartment A-1 as a single cell.

6.2. DMSTA2 Analysis of Compartment A-1

It was necessary to make certain approximations and adjustments to the results of the ECP 2010 simulation to analyze the Compartment A-1 reservoir in DMSTA2. Certain of those adjustments were necessary to address operational controls inherent in DMSTA2; principal among those was that DMSTA2 is constrained to not make deliveries when the stage in the reservoir is below ground surface. An additional significant approximation was the need to

consider the two "surge tanks" of the ECP 2010 simulation as a single cell. Toward that end, the simulated daily depths in each of the two "surge tanks" were averaged to define a composite depth. As DMSTA2 is constrained not to make deliveries when the depth in the reservoir is below ground surface, the reservoir was analyzed in DMSTA2 to limit discharges to reservoir depths of 10 centimeters or more.

An iterative analysis of the reservoir was conducted to result in maintenance of all originally simulated discharges to STA-3/4, principally by varying the seepage loss coefficient until such time as the targeted volume of discharge to STA-3/4 was attained, while attempting to mirror, to the extent practicable, the averaged reservoir depth taken from the ECP 2010 SFWMM simulation. Compartment A-1 was analyzed upon the assumption of a net surface area (effective storage area in the reservoir) of 16,000 acres.

Table 6.2 summarizes the range of depths in the reservoir as taken from the ECP 2010 simulation for each "surge tank"; the results of the daily averaging of those depths; and parallel data taken from the DMSTA2 simulation.

Table 6.2 Simulated Reservoir Depths

Description	Simulated Depth in feet			
-	Maximum	Minimum	Mean	
As Take	n from the ECP 20	10 ECP Simulatio	n	
North "Surge Tank"	13.85	-1.43	9.08	
South "Surge Tank"	12.72	-3.54	3.34	
Average of Daily Values	13.23	-2.23	6.21	
As Taken from the DMSTA2 Analysis				
Compartment A-1	12.57	0.03	5.41	

Table 6.3 presents a summary of the results of the DMSTA2 analysis of Compartment A-1 of the EAASR under this Alternative No.2.

Table 6.3 Results of DMSTA2 Analysis of EAASR Compartment A-1

Parameter	Units	Summary of Results
		A1_Base
Average A	nnual Inflow	
Volume	1,000 ac-ft	416.9
TP Load	metric tons	46.84
FWM TP Concentration	ppb	91
Average Annual (Outflow to ST/	4-3/4
Volume	1,000 ac-ft	235.1
FWM TP Concentration		
Upper Confidence Limit	ppb	71.7
Mean Estimate	ppb	76.2
Lower Confidence Limit	ppb	81.1
Geometric Mean TP Conc.		
Upper Confidence Limit	ppb	68.9
Mean Estimate	ppb	74.4
Lower Confidence Limit	ppb	80.4
TP Load (Using Mean FWM Conc.)	metric tons	22.08
For Detailed Results, See Appe	endix A	Table A.5
Summary of Total Irrig		
Taken Directly from ECP	2010 SFWMN	/I Simulation*
Volume	1,000 ac-ft	180.0
TP Load	metric tons	N/A
FWM TP Concentration	ppb	N/A
From Alternat	ive 2 Analysis	**
Volume	1,000 ac-ft	145.7
TP Load	metric tons	14.39
FWM TP Concentration	ppb	80

^{*}Taken from Deliverable 1.2A Table 7.1

For Alternative No. 2, Compartment A-1 of the EAASR was analyzed in DMSTA2 as one part of a "network simulation" including STA-1W, STA-2 (expanded to include all of Compartment B of the Talisman Land Exchange), the EAASR Compartment A-1, and STA-3/4. The 7/01/2005 version of DMSTA2 does not include capability for a full uncertainty analysis; specifically, it cannot develop upper confidence limit estimates. The upper confidence limit concentrations reported in Table 6.3 were estimated using the following approximation:

Log (Upper C.L.)/Log (Mean Est.)=Log (Mean Est.)/Log (Lower C.L.)

^{**}Release volumes and TP loads are approximate; due to adjustments for modeling Reservoir in DMSTA2 (see text)

The simulated average annual outflow to STA-3/4 (235,100 acre-feet per year) closely approximates that taken from the SFWMM ECP 2010 simulation (233,685 acre-feet per year). While Table 6.3 suggests a significant variance between the DMSTA2 and SFWMM simulations for irrigation releases to the EAA, that variance is considered to result more from the approximations necessary to conduct the DMSTA2 simulation than from a true "shortfall" in those irrigation releases.

7. STA-3/4

For this analysis, all enhancements to STA-3/4 recommended in the Long-Term Plan are considered complete, including the conversion of Cell 1B to SAV. The District is currently evaluating methods to convert this cell from emergent to SAV in a manner that would allow continued flow-through operations in lieu of a method that would require taking the cell completely offline to complete the conversion.

Inflows to STA-3/4 include discharges from Pumping Station G-370 (on the North New River Canal); G-372 (on the Miami Canal); and releases from Compartment A-1 of the EAASR. Those inflows are considered to include:

- ➤ Basin runoff from the S-2/S-7 Basin (North New River Canal);
- ➤ Regulatory releases from Lake Okeechobee at S-351 directed to the North New River Canal;
- ➤ Basin runoff from the S-3/S-8 Basin (Miami Canal);
- ➤ Basin runoff from the Chapter 298 South Shore Drainage District (SSDD) diverted from Lake Okeechobee (diverted to the Miami Canal);
- ➤ Basin runoff from the Chapter 298 South Florida Conservancy District No. 5 (SFCD), also known as the S-236 Basin, diverted to the Miami Canal;

33

- ➤ Basin runoff from the C-139 Basin diverted to the Miami Canal through Structure G-136 (term "G136SO" from the ECP 2006 SFWMM simulation);
- Regulatory releases from Lake Okeechobee at S-354 directed to the Miami Canal;
- ➤ Discharges from the EAASR Compartment A-1.

In addition, for Alternative No. 2, inflows to STA-3/4 include volumes and TP loads diverted from the Hillsboro Canal due to constraints on the maximum inflow rate to STA-2 imposed by the anticipated hydraulic capacity of STA-2 (expanded to include all of Compartment B of the Talisman Land Exchange).

In development of the SFWMM 2010 ECP simulation on which the estimated inflow volumes and TP loads are based, certain significant changes in overall system management from historic operations were assumed. Those assumptions include the following that directly and materially influence the projected performance of STA-3/4 in reducing total phosphorus loads and concentrations:

- ➤ Water supply releases to the North New River Canal at S-351 destined for the Lower East Coast Service Area 2 (terms "WL1351" and "WL3351" in the 2010 ECP simulation) would only be made when the stage in WCA-2A (for "WL 1351") or WCA-3A (for "WL-3351") is at or below the floor of their regulation schedules, and would bypass STA-3/4.
- ➤ Water supply releases to the Seminole Tribe's Big Cypress Reservation at S-354 would bypass STA-3/4.

Implementation of each of the above assumptions in the Operations Plan for STA-3/4 and related elements of the system is critical to the water quality improvement performance projections presented herein.

In addition, the total phosphorus concentration in discharges from the C-139 Basin through G-136 were assumed reduced by 10% from historic levels as a result of ongoing BMP implementation in that basin.

A summary of the estimated average annual inflows to STA-3/4 is presented in Table 7.1. Inflow data is summarized for two basic cases:

- As taken directly from the information presented in Deliverable 1.2A (for that case, discharges from the reservoir are assigned TP concentrations equal to that in reservoir inflows, and thus would not reflect reductions due to passing through the reservoir);
- As modified for Alternative No. 2, including those volumes and TP loads diverted from the Hillsboro Canal

35

Table 7.1 Estimated Inflows to STA-3/4

Source	Estimated Avera	age Annual Inflov	v. WY 1966-2000	Remarks
Cource	Volume (ac-ft)		TP Conc. (ppb)	incinarks
Inflows T				ads from Deliverable 1.2A
S-2/S-7 Basin	109,310	10,747	80	Deliverable 1.2A, Table 3.5
S-3/S-8 Basin	170,624	17,460	83	Deliverable 1.2A, Table 3.10
SSDD	10,559	1,390	107	Deliverable 1.2A, Table 2.9
SFCD	21,145	3,183	122	Deliverable 1.2A, Table 2.12
C-139 Basin (G-136)	13,204	2,958	182	Deliverable 1.2A, Table 4.3
Lake Flow Through				
Release at S-351	1,551	132	69	Deliverable 1.2A, Table 6.10
Lake Flow Through				
Release at S-354	26,581	2,115	65	Deliverable 1.2A, Table 6.12
Lake WS Release at				Deliverable 1.2A, Table 6.7
S-351	11,484	1,189	84	
Lake WS Release at				
S-354	109,279	9,391	70	Deliverable 1.2A, Table 6.9
A-1 Reservoir Outflow				Volume from Deliverable 1.2A, Table
to STA-3/4				7.1; TP concentration assigned equal to
				flow-weighted mean TP concentration in
	233,685	26,254	91	A-1 Reservoir inflows
Total Inflow	707,422	74,819	86	
				Water Supply to LEC and Big Cypress
Assumed Bypass	120,763	10,580	71	Reservation
Inflow to be Treated	586,659	64,239	89	
			for Alternative 2	
S-2/S-7 Basin	109,310	10,747	80	Deliverable 1.2A, Table 3.5
S-3/S-8 Basin	170,624	17,460	83	Deliverable 1.2A, Table 3.10
SSDD	10,559	1,390	107	Deliverable 1.2A, Table 2.9
SFCD	21,145	3,183	122	Deliverable 1.2A, Table 2.12
C-139 Basin (G-136)	13,204	2,958	182	Deliverable 1.2A, Table 4.3
Lake Flow Through				
Release at S-354	26,581	2,115	65	Deliverable 1.2A, Table 6.12
Lake WS Release at				Deliverable 1.2A, Table 6.7
S-351	11,484	1,189	84	
Lake WS Release at				
S-354	109,279	9,391	70	Deliverable 1.2A, Table 6.9
Diversion from				
Hillsboro Canal	29,023	3,003	84	Table 5.2
A-1 Reservoir Outflow				TP Load and Concentration based on
to STA-3/4			l	mean estimate from DMSTA2 analysis
T	235,105	22,084	76	see Table 6.3
Total Inflow	736,314	73,520	81	W
Assumed B	400 700	40.500	7.4	Water Supply to LEC and Big Cypress
Assumed Bypass	120,763	10,580	71	Reservation
Inflow to be Treated	615,551	62,940	83	

7.1. Summary of DMSTA2 Results

Table 7.2 presents a summary of the results of the DMSTA2 analysis for STA-3/4. Summary DMSTA2 input and output data are included in Appendix A.

Table 7.2 Summary of DMSTA2 Analysis, STA-3/4, WY 1966-2000

Parameter	Units	
		Summary of Results
		STA34_Alt2
Average An		·
Volume	1,000 ac-ft	617.4
TP Load	metric tons	63.07
FWM TP Concentration	ppb	83
Average Ann	ual Outflow	
Volume	1,000 ac-ft	598.4
FWM TP Concentration		
Upper Confidence Limit*	ppb	15.0
Mean Estimate	ppb	18.3
Lower Confidence Limit	ppb	22.6
Geometric Mean TP Conc.		
Upper Confidence Limit*	ppb	11.3
Mean Estimate	ppb	14.2
Lower Confidence Limit	ppb	18.3
TP Load (Using Mean FWM Conc.)	metric tons	13.49
For Detailed Results, See Appe	ndix A	Table A.6
Summary of Bypass		sions
Water Supp		
Volume	1,000 ac-ft	120.8
TP Load	metric tons	10.58
FWM TP Concentration	ppb	71

The EAASR Compartment A-1 and STA-3/4 were analyzed using the "network simulation" feature of DMSTA2. The 7/01/2005 version of DMSTA2 does not include capability for a full uncertainty analysis; specifically, it cannot develop upper confidence limit estimates. The upper confidence limit concentrations reported in Table 7.2 were estimated using the following approximation:

Log (Upper C.L.)/Log (Mean Est.)=Log (Mean Est.)/Log (Lower C.L.)

8. STA-5

Under Alternative No. 2, the analysis for STA-5 does not vary from that presented for Alternative No. 1. The information reported under Alternative No. 1 for STA-5 is repeated herein for the reader's convenience.

In this analysis, all enhancements to existing STA-5 recommended in the Long-Term Plan are assumed to be complete by the end of 2006. In addition, the proposed third flow-way at STA-5 is assumed complete, generally as described in the BODR for STA-5.

For the period 2010-2014, it is further assumed that all of Compartment B of the Talisman Land Exchange has been converted to use in a further expansion of STA-5. For this analysis, the fully expanded STA-5 is considered to consist of six parallel flow paths, each structured to contain two cells in series. Flow paths 1 through 3 (Cells 1A-3B, inclusive) are considered unchanged from the geometrics considered for the period 2006-2009 (see Deliverable 2.2). The three additional flow paths, numbered to increase from north to south, are generally described as follows:

- Flow path no. 4 (Cells 4A and 4B) is modeled as extending approximately one mile from the south line of Flow path No. 3. The effective area in this flow path is assumed limited to that area lying one-half mile and more from Levee L-3 (similar to that considered for flow paths 1-3), due to anticipated higher ground surface elevations along L-3. Cell 4A is considered to provide 1,140 acres of effective treatment area; Cell 4B is considered to provide 920 acres of effective treatment area. The levee separating the two cells is assumed to be congruent with that separating Cells 3A and 3B;
- Flow path no. 5 (Cells 5A and 5B) is modeled as extending approximately 1.4 miles south of the south line of flow path no. 4, generally to the north line of STA-6 Section 2 as it is presently structured. The westerly limit of effective area in flow path no. 5 is assumed congruent with that in the more northerly four flow paths. Cell 5A is considered to provide 1,710 acres of effective treatment area; Cell 5B is considered to provide 1,370 acres of effective treatment area. The levee separating the two cells is assumed to be congruent with that separating Cells 4A and 4B;
- Flow path no. 6 (Cells 6A and 6B) is modeled as extending south from flow path no. 5 to the north line of STA-6, Section 1. For this analysis, STA-6 Section 2 is assumed to be converted to use as Cell 6B in STA-5; the area lying between STA-6 Section 2 and the L-3 Borrow Canal is assumed converted to use as Cell 6A. Cell 6A is considered to provide 550 acres of effective treatment area; Cell 6B is considered to provide 1,300 acres of effective treatment area.

38

The total effective treatment area of the fully expanded STA-5 considered in this analysis is 13,150 acres. The upstream cell in each of the six flow paths is assumed to be vegetated with emergent macrophytes (EMG_3); the downstream cell in each of the six flow paths is assumed to vegetated with submerged aquatic vegetation (SAV_3).

Inflows to STA-5 are limited to runoff from the C-139 Basin delivered to the L-3 Borrow Canal. Over the period Water Years 1995-2005, those total inflows are estimated to average 159,030 acre-feet per year at a flow-weighted mean TP concentration of 199 ppb (taken from Deliverable 1.2A, Table 4.1). That mean inflow concentration has been reduced from historic data by 10% in anticipation of reductions in basin TP load discharges resulting from continued BMP implementation in the C-139 Basin.

8.1. Cases Considered in DMSTA2 Analysis of STA-5

A total of two potential cases were considered in the DMSTA2 analysis of STA-5. The two cases considered are described as follows:

- ➤ 2010 Base: All inflows to the L-3 Borrow Canal from the C-139 Basin over Water Years 1995-2004 are assigned to STA-5 (e.g., no bypass). Inflow concentrations are assigned at 90% of those measured over Water Years 1995-2005. The downstream cell in each flow path was analyzed using the calibration data set for SAV_3.
- ➤ 2010 Base Emg: This case is identical to "2006 Base" with the single exception that the downstream cells (1B, 2B, 3B, 4B, 5B and 6B) were assigned the EMG_3 calibration data set in lieu of SAV_3.

As outlined above, Cases "2010 Base" and "2010 Base Emg" assumed no bypass from STA-5 to STA-6.

8.2. Summary of DMSTA2 Results

Table 8.1 presents a summary of the results of the DMSTA2 analyses for STA-5. Summary DMSTA2 input and output data for each case are included in Appendix A. Data for cases "2010 Base" and "2010 Base Emg" is for Water Years 1995-2005.

No rainfall or evapotranspiration data at STA-5 was available from the District-furnished data files after December 31, 2000. As a result, all simulation data subsequent to that date excludes rainfall and evapotranspiration. This exclusion is not expected to materially influence the results of the simulation.

Table 8.1 Summary of DMSTA2 Analyses, STA-5

Parameter	Units	Summary of R	esults by Case
		2010 Base	2010 Base Emg
Avera	age Annual In	flow	
Volume	1,000 ac-ft	159.1	159.1
TP Load	metric tons	39.14	39.14
FWM TP Concentration	ppb	199	199
Avera	ge Annual Ou	tflow	
Volume	1,000 ac-ft	159.2	159.2
FWM TP Concentration			
Upper Confidence Limit	ppb	8.2*	14.7*
Mean Estimate	ppb	9.6*	21.0
Lower Confidence Limit	ppb	11.7*	30.7
Geometric Mean TP Conc.			
Upper Confidence Limit	ppb	4.7	11.0
Mean Estimate	ppb	5.8	17.1
Lower Confidence Limit	ppb	7.8	26.5
TP Load (Using Mean FWM Conc.)	metric tons	1.89	4.13
For Detailed Results, See Appe	endix A	Table A.7	Table A.8

^{*} Projected flow-weighted mean TP concentration in outflows less than calibration range lower limit of 15 ppb for SAV_3

As concluded in Deliverable 2.2, until such time as an improvement in performance is demonstrated, it is considered prudent to consider the potential range in performance of STA-5 as encompassing the full range of uncertainty in performance of the three downstream cells (e.g., range from upper limit of performance for SAV_3 to the lower limit of performance for EMG_3).

9. STA-6

Under Alternative No. 2, the analysis for STA-6 does not vary from that presented for Alternative No. 1. The information reported under Alternative No. 1 for STA-6 is repeated herein for the reader's convenience.

For analysis of the period 2010-2014, STA-6 Section 2 is considered to have been converted to use as Cell 6B of STA-5 as described above, with the result that STA-6 as considered herein is limited to the original Section 1. Enhancements to STA-6 Section 1 originally recommended in the Long-Term Plan are assumed not to be complete, consistent with the District's intent as stated in its December 2004 amendment to the Long-Term Plan.

The single source of inflow to STA-6 over the period 2010-2014 is runoff from the C-139 Annex. That inflow is projected to average 40,176 acre-feet per year at a flow-weighted mean TP concentration of 98 ppb (average annual TP load of 4,873 kilograms), taken from Table 4.5 of Deliverable 1.2A, and based on unadjusted historic data for Water Years 1997-2005.

9.1. Cases Considered in DMSTA2 Analysis of STA-6

A total of two cases were considered in the DMSTA2 analysis of STA-6. The two cases considered are described below.

- ➤ 2010 Alt1: This case was structured on the basic assumption that STA-6, Section 1 would be dedicated to runoff from the C-139 Annex. Vegetation in Section 1 was considered as PEW_3. The analysis considers all available data at station USSO (Water Years 1997-2005);
- ➤ 2010 Alt1 SAV: This case is identical to the case described immediately above, with the exception that the vegetation in Section 1 was considered as SAV_3 in lieu of PEW_3.

9.2. Summary of DMSTA2 Results

Table 9.1 presents a summary of the results of the DMSTA2 analyses for STA-6. Summary DMSTA2 input and output data for each case are included in Appendix A.

41

Table 9.1 Summary of DMSTA2 Analyses, STA-6

Parameter	Units	Summary of R	esults by Case
		2010 Alt1	2010 Alt1 SAV
Av	erage Annual	Inflow	
Volume	1,000 ac-ft	40.2	40.2
TP Load	metric tons	4.88	4.88
FWM TP Concentration	ppb	98	98
Ave	erage Annual (Outflow	
Volume	1,000 ac-ft	40.3	40.3
FWM TP Concentration			
Upper Confidence Limit	ppb	19.6	14.1*
Mean Estimate	ppb	25.5	17.1
Lower Confidence Limit	ppb	32.8	20.8
Geometric Mean TP Conc.			
Upper Confidence Limit	ppb	15.9	10.5
Mean Estimate	ppb	21.8	13.4
Lower Confidence Limit	ppb	28.9	17.2
TP Load (Using Mean FWM Conc.)	metric tons	1.27	0.85
For Detailed Results, See Appe	endix A	Table A.9	Table A.10

^{*} Projected flow-weighted mean TP concentration in outflows less than calibration range lower limit of 15 ppb for SAV_3

No rainfall or evapotranspiration data at STA-6 was available from the District-furnished data files after December 31, 2000. As a result, all simulation data subsequent to that date excludes rainfall and evapotranspiration. This exclusion is not expected to materially influence the results of the simulation.

10. SUMMARY PROJECTIONS

A summary of the projected performance of the various stormwater treatment areas over the period 2010-2014 is presented in Table 10.1. That tabulation includes identification of the specific case for each STA considered as most applicable to this summary. That tabulation also summarizes all bypass volumes and TP loads presented in earlier sections of this document. The results presented in Table 10.1 for STA-5 include the full range of uncertainty associated with the performance of the six downstream cells.

Table 10.1 Summary Projections for all STAs, Alternative 2 for 2010-2014

Parameter	Units			Summary of	DMSTA2 Results	s by Treatment Ar	ea and Case		
		STA-1W	STA-1E	STA-2	EAASR A-1	STA-3/4	STA-5	STA-6	
		STA1W_Alt2	STA1E_Alt2	STA2_Alt2	2010 Base	STA34_Alt2	2010 (Ave)	Sec1_USSO_SAV	All
Effective Treatment Area	acres	6,670	6,175	15180	16,000	16,543	13,150	897	58,615
				Average Annual In	flow				
Volume	1,000 ac-ft	238.6	180.9	324.0	416.9	382.2	159.1	40.2	1742.0
TP Load	metric tons	51.3	29.05	41.5	46.8	40.98	39.14	4.88	253.72
FWM TP Concentration	ppb	174	130	104	91	87	199	98	118
			А	verage Annual Ou	tflow				
Volume	1,000 ac-ft	239.4	177.6	565.0	235.1	598.4	159.2	40.3	1540.5
FWM TP Concentration									
Upper Confidence Limit	ppb	22.1	11.9	12.2	71.7	15.0	8.2	14.1*	
Mean Estimate	ppb	27.3	15.6	14.9	76.2	18.3	15.3	17.1	16.4
Lower Confidence Limit	ppb	34.2	20.6	18.5	81.1	22.6	30.7	20.8	
Geometric Mean TP Conc.									
Upper Confidence Limit	ppb	17.2	8.4	9.2	68.9	11.3	4.7	10.5	
Mean Estimate	ppb	22.1	11.8	11.8	74.4	14.2	11.5	13.4	
Lower Confidence Limit	ppb	29.0	16.6	15.5	80.4	18.3	26.5	17.2	
TP Load (Using Mean FWM Conc.)	metric tons	8.05	3.42	10.36	22.08	13.49	3.01	0.85	31.13
			Summary	of Bypass Volume	es and Loads				
Bypass Volume, TP Load and TP Cor									
Volume	1,000 ac-ft	14.2	36.3	0.8	0.0	120.8	0.0	0.0	172.0
TP Load	metric tons	2.23	4.69	0.09	0.00	10.58	0.00	0.00	17.58
FWM TP Concentration	ppb	127	105	84		71			83

- (1) Surface area of EAASR Compartment A-1 excluded from computation of total effective treatment area
- (2) Average annual inflows to STA-3/4 listed above include only direct inflow at G-370 and G-372; outflow from EAASR Compartment A-1 also directed to STA-3/4 (3) Outflows from EAASR Compartment A-1 excluded from computation of total outflows, as they are directed to STA-3/4 (4) At STA-1E,STA-2 and STA-5, FWM TP concentrations include estimates below the lower calibration range limit of 15 ppb for SAV_3

- (5) At STA-5, upper confidence limit reported based on the assumption that the six downstream cells act as SAV_3; lower confidence limit reported based on the assumption that the six downstream cells act as EMG_3. Mean estimates of outflow concentrations and outflow TP load taken as the average of the estimates for those two conditions. (6) STA-1W, STA-2, STA-3/4 analyzed in DMSTA2 as a part of a network with the EAASR Compartment A-1. The 7/01/2005 version of DMSTA2 is not structured to compute the upper confidence limit of TP concentrations in a network simulation. The upper confidence limits for both FWM and Geometric mean TP concentrations were estimated as described in Parts 3, 5, 6
- (7) Average annual inflows to STA-2 listed above include only direct inflow at S-6; outflow from STA-1W also directed to STA-2
- (8) Outflows from STA-1W are excluded from total outflows, as they are directed to STA-2

In the above table, bypasses at STA-1E are untreated bypass through S-155A. All other bypasses indicated in Table 10.1 consist of water supply releases bypassing the STAs.

The total inflow volume shown in Table 10.1 varies from that reported in Table 8.1 of Deliverable 1.2A due primarily to the addition of 27,500 acre-feet per year in STA-2 inflows due to seepage return to the STA-2 Supply Canal from the L-6 Borrow Canal and WCA-2A;

The estimated values of inflow volumes and TP loads to the various STAs are materially and significantly influenced by system management choices reflected in the SFWMM 2010 ECP simulation and described in detail in earlier sections of this document. Principal among those management choices are the elimination of Lake Okeechobee regulatory releases to the West Palm Beach Canal and L-8 Borrow Canal; the assumption that Lake Okeechobee water supply releases destined for the Lower East Coast (when receiving WCA's are at or below the floor of their respective regulation schedules) and the Big Cypress Reservation will bypass the STAs; and that the volume of L-8 Basin runoff entering the C-51 West Canal will be bypassed untreated through Structure S-155A.

Table 10.2 summarizes estimated average annual back pumping or back flow to Lake Okeechobee during the period 2010-2014.

Table 10.2 Estimated Back Pumping to Lake Okeechobee, 2010-2014

Location	Estimated Ave.	Annual Discharge	e, WY 1966-2000	Remarks
	Volume (ac-ft)	TP Load (kg)	TP Conc. (ppb)	
S-2 (S-2/S-6/S-7)	24,946	2,822	92	Deliverable 1.2A, Table 3.8
S-3 (S-3/S-8)	4,091	445	88	Deliverable 1.2A, Table 3.12
C-10A (L-8)	71,931	9,157	103	Deliverable 1.2A, Table 5.4
Total Discharge	100,968	12,424	100	

10.1. Potential Adjustments to Projections for STA-3/4

As noted throughout this document, the water quality analyses summarized in Table 10.1 were developed upon the assumption that water supply releases destined for the Lower East Coast and certain other destinations (such as the Big Cypress Reservation) are permitted to bypass the STAs when the receiving water conservation area is at or below the floor of its regulation schedule. For the period 2010-2014, this assumption is of particular significance only at STA-3/4.

In addition, Alternative No. 2 is expected to include some enlargement of the North New River Canal, with the result that estimated back pumping to Lake Okeechobee at S-2 and S-3 might be significantly reduced from that reflected in the ECP 2010 SFWMM simulation.

No additional DMSTA2 simulations were conducted to assess the impact of inclusion of those additional volumes and TP loads in the inflow to STA-3/4. The impact of inclusion of those incremental inflow volumes and loads on discharges from STA-3/4 can be expected to closely parallel those forecast in the analyses for Alternative No. 1.

Appendix A

DMSTA2 Output Data

List of Tables

Table A.1 STA-1W: Case "STA1W Alt2"	A-1
Table A.2 STA-1E: Case "STA1E Alt2"	A-2
Table A.3 STA-1E: Case "2010 Base"	A-3
Table A.4 STA-2: Case "STA2 Alt2"	A-4
Table A.5 EAASR A-1: Case "A1 Base"	A-5
Table A.6 STA-3/4: Case "STA34 Alt2"	A-6
Table A.7 STA-5: Case "2010 Base"	A-7
Table A.8: STA-5: Case "2010 Base Emg"	A-8
Table A.9 STA-6: Case "2010 Alt1"	A-9
Table A.10 STA-6: Case "2010 Alt1 SAV"	A-10

Table A.1 STA-1W: Case "STA1W Alt2"

OMSTA2- Inputs & Outp		*		PROJECT_A									rrent Date:	
esign Case Name	Units -	Value STA1W_Alt2 S_STA1W_Alt		tion: h Long Term F lows include all			sein and ER	WCD to ST	A 1 Inflow 8	Dietribution	. Works			1
tarting Date for Simulation nding Date for Simulation	: '	05/01/65 04/30/00	Delivery to S	STA-1W at G-3 D inflows up to	01 based on a	nalysis of his	storic distrib	ution				mouted as 2	2000+(Q-2	000)**0
tarting Date for Output Itegration Steps Per Day	:	05/01/65	Simulation Ty		2000 citirday			5010 2000	olorday, O o	JE IIIIOW to	017/11/100	mpated as 2	.0001(4 2]
umber of Iterations utput Averaging Interval	- days	0 30	Output Variab	ole / C (ppb)	Mean 27.3	Lower CL #N/A	Upper CL #N/A		Diagnostics H20 Balance	e Error Me	an & Max	0.0%	0.0%	
flow Conc Scale Factor ainfall P Conc	- ppb	1 10	GM Outflow 0 Load Reducti	C (ppb) on %	22.1 84%	#N/A #N/A	#N/A #N/A		Mass Balar Iterations &	ce Error M Converge	ean & Max	-0.2% 3	0.4% 0.1%	
tmospheric P Load (Dry) ell Number>	mg/m2-yr	20 1	Bypass Load 2	(%) 3	0.0% 4	5	6	7	Warning/Ei	ror Messag	jes 10	7 11	12	_
ell Label egetation Type	>	1A EMG_3	1B SAV_3	3 SAV_3	2A EMG_3	2B SAV_3	4 SAV_3	5A EMG_3	5B SAV_3					
flow Fraction ownstream Cell Number		0.38	3		0.17 5	6		0.45 8						
urface Area lean Width of Flow Path	km2 km	3.02 1.10	3.02 1.10	4.15 1.10	1.91 2.40	1.91 2.00	1.45 1.30	2.27 1.78	9.28 2.34					
umber of Tanks in Series linimum Depth for Releases elease 1 Series Name	cm	2.0	2.0	2.0	2.0	2.0	2.0	2.0	3.0					
elease 2 Series Name														
epth Series Name	cm	55	55	46	60	60	60	60	60					-
utflow Weir Depth	cm	4	4	4	4	4	4	4	4					
utflow Coefficient - Intercept ypass Depth	- cm	1	1	1	1	1	1	1	1					
laximum Inflow laximum Outflow	hm3/day hm3/day													
iflow Seepage Rate iflow Seepage Control Elev	(cm/d) / cm cm	0.0035 172	0.0018 172	0.0023 185										
flow Seepage Conc outflow Seepage Rate	ppb (cm/d) / cm	20	20	20 0.0014	0.0016	0.0016	0.0021	0.0156	0.0049					
utflow Seepage Control Elev	cm ppb			-60 20	-46 20	-46 20	-46 20	-46 20	-46 20					
eepage Recycle to Cell Number eepage Recycle Fraction eepage Discharge Fraction	-							1 0.91	0.8					
eepage Discharge Fraction itial Water Column Conc itial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500					
itial P Storage Per Unit Area itial Water Column Depth 0 = Conc at 0 g/m2 P Storage	cm ppb	200	200	200	200	200	200	200	200					
1 = Conc at 1 g/m2 P storage 2 = Conc at Half-Max Uptake	ppb ppb	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300					
= Net Settling Rate at Steady State 1 = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40	52.5 40	16.8 40	52.5 40	52.5 40	16.8 40	52.5 40					
2 = Lower Penalty Depth 3 = Upper Penalty Depth	cm cm	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200					
utput Variables	Units	1	2	3	4	5	6	7	8	9	10	11	12	Ove
xecution Time un Date	sec/yr -	6.06 09/30/05	6.37 09/30/05	6.71 09/30/05	7.03 09/30/05	7.34 09/30/05	7.69 09/30/05	8.00 09/30/05	8.43 09/30/05					8.4 09/3
tarting Date for Simulation tarting Date for Output	1	05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65 04/30/00	05/01/65 05/01/65	05/01/65 05/01/65 04/30/00	05/01/65 05/01/65 04/30/00	05/01/65 05/01/65	05/01/65 05/01/65					05/0 05/0
nding Date utput Duration	days	04/30/00 12784	04/30/00 12784	12784	04/30/00 12784	12784	12784	04/30/00 12784	04/30/00 12784					04/3 127
ell Label ownstream Cell Label etwork Simulation Name		1A 1B Alt2_Net	1B 3 Alt2_Net	Outflow	2A 2B Alt2_Net	2B 4 Alt2_Net	4 Outflow Alt2_Net	5A 5B Alt2_Net	5B Outflow Alt2_Net					To Alt2
imulation Type urface Area	- - km2	Base 3.02	Base 3.02	Alt2_Net Base 4.15	Base 1.91	Base 1.91	Base 1.45	Base 2.27	Base 9.28					Ba 27.
lean Rainfall lean ET	cm/yr cm/yr	134.9 129.8	134.9 129.8	134.9 129.8	134.9 129.8	134.9 129.8	134.9 129.8	134.9 123.7	134.9 128.2					13 12
ell Inflow Volume ell Inflow Load	hm3/yr kg/yr	111.8 19495	140.2 16346	142.4 8775	50.0 8721	49.0 6025	47.9 2308	132.4 23086	120.3 16475					29 513
ell Inflow Conc reated Outflow Volume	ppb hm3/yr	174.3 140.2	116.6 142.4	61.6 143.9	174.3 49.0	123.0 47.9	48.2 46.8	174.3 120.3	137.0 104.6					17
reated Outflow Load reated FWM Outflow Conc	kg/yr ppb	16346 116.6	8775 61.6	4031 28.0	6025 123.0	2308 48.2	1205 25.7	16475 137.0	2817 26.9					80 27
pper Confidence Limit ower Confidence Limit	ppb ppb	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A					#N
otal Outflow Volume + Bypass otal Outflow Load + Bypass	hm3/yr kg/yr	140.2 16346	142.4 8775	143.9 4031	49.0 6025	47.9 2308	46.8 1205	120.3 16475	104.6 2817					29: 805
otal FWM Outflow Conc ypass Load	ppb kg/yr	116.6 0	61.6	28.0	123.0	48.2 0	25.7 0	137.0	26.9 0					0.
ypass Load laximum Inflow	% hm3/d	0.0 1.56	0.0 1.69	0.0 1.73	0.0 0.70	0.0 0.71	0.0 0.73	0.0 1.84	0.0 1.82					4.
laximum Outflow urface Load Reduction oad Trapped in Sediments	hm3/d kg/yr	1.69 3149 3794	7572 7711	1.77 4744 4884	0.71 2697 2618	0.73 3716 3722	0.74 1103 1127	1.82 6611 2872	1.84 13658 12840					432 395
overall Load Reduction over Confidence Limit	kg/yr % %	16% #N/A	46% #N/A	54% #N/A	31% #N/A	62% #N/A	48% #N/A	29% #N/A	83% #N/A					84 #N
pper Confidence Limit aily Geometric Mean	% ppb	#N/A 102.5	#N/A 51.3	#N/A 21.2	#N/A 108.2	#N/A 33.7	#N/A 14.7	#N/A 152.1	#N/A 18.3					#N
utflow Geo Mean - Composites pper Confidence Limit	ppb ppb	108.2 #N/A	54.3 #N/A	23.0 #N/A	117.4 #N/A	42.3 #N/A	20.9 #N/A	134.6 #N/A	22.1 #N/A					22 #N
ower Confidence Limit requency Outflow Conc > 10 ppb	ppb %	#N/A 100%	#N/A 100%	#N/A 100%	#N/A 100%	#N/A 100%	#N/A 98%	#N/A 100%	#N/A 100%					#N 10
requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	%	100% 100%	100% 67%	67% 0%	100% 100%	100% 26%	56% 0%	100% 100%	61% 1%					90 63
req Outflow Volume > 10 ppb 5th Percentile Outflow Conc	% ppb	100% 131	100% 77	100% 37	100% 137	100% 60	99% 33	100% 180	100% 37					100
lean Biomass P Storage torage Increase / Net Removal	mg/m2 %	3953 0%	2564 0%	1179 0%	4313 0%	1956 0%	779 0%	3965 0%	1386 0%					09
et Storage Turnover Rate nit Area P Removal	1/yr mg/m2-yr	11.1 1258	34.9 2558	34.9 1176	11.1 1374	34.9 1953	35.0 778	11.1 1263	35.0 1384					23 14
lean Water Load lax Water Load lean Depth	cm/d cm/d cm	10.2 51.6 70	12.7 56.2 70	9.4 41.6 69	7.2 36.5 57	7.0 37.3 57	9.1 50.1 57	15.9 81.1 52	3.5 19.6 53					3. 15
lean Depth Iinimum Depth Iaximum Depth	cm cm	70 55 111	70 55 111	45 112	18 73	57 18 77	57 11 86	52 1 99	53 1 94					9
requency Depth < 10 cm low/Width	% m2/day	0.0% 278	0.0% 349	0.0% 354	0.0% 57	0.0% 67	0.0% 101	5.9% 204	3.5% 141					1.7
RT Days lean Velocity	days cm/sec	6.8 0.46	5.5 0.57	7.4 0.59	8.0 0.11	8.1 0.14	6.3 0.20	3.3 0.45	14.8 0.31					20
eepage Outflow / Total Outflow elease 1 Outflow Volume	% hm3/yr	0%	0%	2% 0.0	2% 0.0	2%	2%	1%	3%					3'
elease 2 Outflow Volume 5th Percentile Outflow Volume	hm3/yr hm3/d	0.0 1.01	0.0 1.01	0.0 1.02	0.0 0.41	0.0 0.41	0.0 0.41	0.0 1.03	0.0 0.98					0
5th Percentile Outflow Load imulated / Specified Mean Depth	kg/d %	128.15 #N/A	72.56 #N/A	35.70 #N/A	53.52 #N/A	23.09 #N/A	12.58 #N/A	146.47 #N/A	30.63 #N/A					78 #N
elease 1 Demand Met elease 2 Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A					#N
utflow Demand Met ange Check - Mean Depth	<u>%</u> -	#N/A -	#N/A -	#N/A -	#N/A -	#N/A 0.92	#N/A 0.92	#N/A -	#N/A 0.85					#N
ange Check - Freq Depth < 10 cm ange Check - Flow/Width	1	1.33	1	- 1		0.41	0.62	-	0.87					(
ange Check - Inflow Conc ange Check - Outflow Conc	-	-	-	-	-	-	-	-	-					(
/ater Balance Error	% %	0.00%	0.00%	0.00% 0.01%	0.00%	0.00%	0.00% 0.04%	0.00% -0.45%	0.00% -0.05%					-0.2
/arning or Error Messages		Cell# 5 2B Depth	out of calib. range	range for EMG_3: e for SAV_3: 57 v	rs. 62 - 87 cm									1
		Cell# 6 4 Depth	out of calib. range	range for SAV_3: for SAV_3: 57 vs ange for SAV_3:	. 62 - 87 cm									
		Cell# 8 5B Depth	out of calib. range	ange for SAV_3: e for SAV_3: 53 v range for SAV_3:	rs. 62 - 87 cm									
		CHIH O DB FIOW/	reality out of callb.	ge ior SAV_3:	.+1 vs. 162 - 37	- marudy								

Contract CN040912-W004
Optimum Allocation of Loads to STAs, 2010-2014

Table A.2 STA-1E: Case "STA1E Alt2"

DMSTA2- Inputs & Outp	uts		Project:	PROJECT_ST	TA1E								el Release:	
nput Variable	Units	Value	Case Descrip	tion:								Cu	urrent Date:	9/30/
Design Case Name Input Series Name	-	STA1E_Alt2 TS_1E_Alt2	STA-1E with	East and West			B runoff: L-t	Basin run	off volume th	arough S-5/	AF hynassed	thru S-155	A	
Starting Date for Simulation Ending Date for Simulation	:	05/01/65 04/30/00	Inflows also	include discha est Distribution	rges from G-3	11 from STA	4-1W Alt. 2 a	nalysis. Ce	II-to-cell see	page not c	onsidered in	analysis		
Starting Date for Output	-	05/01/65	Simulation Typ				o cens in pa	railer						
Integration Steps Per Day Number of Iterations	-	0	Output Variab	ole	Uncertainty A	Lower CL	Upper CL		Diagnostics	3				
Output Averaging Interval Inflow Conc Scale Factor	days -	30 1	FWM Outflow GM Outflow 0	C (ppb)	15.6 11.8	20.6 16.6	11.9 8.4		Mass Balar	ce Error Me nce Error M	ean & Max	0.0% 0.0%	0.0%	
Rainfall P Conc Atmospheric P Load (Dry)	ppb mg/m2-yr	10 20	Load Reducti Bypass Load		88% 0.0%	84%	91%		Iterations 8 Warning/E	Converger	nce jes	3 9	0.0%	
Cell Number> Cell Label	-	1 EDCE	2 1	3	4 EDCW	5 3	6 4N	7 4S	8 WDCW	9 7	10 WDCE	11 5	12	1
Vegetation Type Inflow Fraction	>	EMG_3 0.2	EMG_3	SAV_3	EMG_3 0.39	EMG_3	SAV_3	SAV_3	EMG_3 0.16	EMG_3	EMG_3 0.25	EMG_3	SAV_3	
Downstream Cell Number	-	2 0.95	3 2.25	2.23	5 0.95	6 2.38	7 2.61		9	12 1.69	11.00	12.00 2.31	4.05	
Surface Area Mean Width of Flow Path	km2 km	0.66	1.55	1.55	0.66	1.55	1.55	3.04 1.55	0.75	1.18	1.17 0.75	1.61	4.25 1.61	
Number of Tanks in Series Minimum Depth for Releases	- cm	0.5	3.0	3.0	0.5	3.0	3.0	3.0	0.5	3.0	0.5	3.0	3.0	
Release 1 Series Name Release 2 Series Name														
Outflow Series Name Depth Series Name														
Outflow Control Depth Outflow Weir Depth	cm cm	40	40	60	90	40	60	60	100	40	40	40	60	
Outflow Coefficient - Exponent	-	4	4 1	4	4	4	4	4	4	4	4	4	4	
Outflow Coefficient - Intercept Bypass Depth	cm	1	1	1	1	'	'	1	1	1	1	1	1	
Maximum Inflow Maximum Outflow	hm3/day hm3/day													
Inflow Seepage Rate Inflow Seepage Control Elev	(cm/d) / cm cm									0.0054 69			0.0057 94	
Inflow Seepage Conc Outflow Seepage Rate	ppb (cm/d) / cm	0.0095	0.0042	0.0042	0.0095			0.0054	0.01	20	0.01		20	
Outflow Seepage Rate Outflow Seepage Control Elev Max Outflow Seepage Conc	cm ppb	-137 20	-137 20	-99 20	-87 20		l	-38 20	-15 20		-76 20			
Seepage Recycle to Cell Number	-	1	1	1	4		l	7	8		10			
Seepage Recycle Fraction Seepage Discharge Fraction		1	1	1	1			1		l				
nitial Water Column Conc nitial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	
Initial Water Column Depth C0 = Conc at 0 g/m2 P Storage	cm ppb	50	50	50	50	50	50	50	50	50	50	50	50	
C1 = Conc at 1 g/m2 P storage C2 = Conc at Half-Max Uptake	ppb ppb	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	22 300	
K = Net Settling Rate at Steady State	m/yr	16.8	16.8	52.5	16.8	16.8	52.5	52.5	16.8	16.8	16.8	16.8	52.5	
Z1 = Saturated Uptake Depth Z2 = Lower Penalty Depth	cm cm	40 100	40 100	40 100	40 100	40 100	40 100	40 100	40 100	40 100	40 100	40 100	40 100	
Z3 = Upper Penalty Depth	cm	200	200	200	200	200	200	200	200	200	200	200	200	J
Output Variables Execution Time	Units sec/yr	1 10.26	2 10.71	3 11.17	4 11.43	5 11.86	6 12.31	7 12.77	13.03	9 13.49	10 13.74	11 14.17	12 14.63	Ove 14.
Run Date Starting Date for Simulation	-	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/3
Starting Date for Output	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/0
Ending Date Output Duration	days	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/3
Cell Label Downstream Cell Label		EDCE 1	1 2	2 Outflow	EDCW 3	3 4N	4N 4S	4S Outflow	WDCW 7	7 6	WDCE 5	5 6	6 Outflow	To
Network Simulation Name Simulation Type	- 1	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	none Uncerta	Unc
Surface Area Mean Rainfall	km2 cm/yr	0.95 142.9	2.25 142.9	2.23 142.9	0.95 142.9	2.38 142.9	2.61 142.9	3.04 142.9	1.17 142.9	1.69 142.9	1.17 142.9	2.31 142.9	4.25 142.9	25. 142
Mean ET Cell Inflow Volume	cm/yr	129.7	129.7	129.7	129.7	129.7 87.2	129.7 87.5	129.7	129.7	129.7	129.7 55.8	129.7	129.7	129
Cell Inflow Load	hm3/yr kg/yr	5810	56.8 4761	50.6 2718	87.1 11329	9697	7244	2886	35.7 4648	2968	7262	5321	82.3 5013	290
Cell Inflow Conc Treated Outflow Volume	ppb hm3/yr	130.1 56.8	83.8 50.6	53.8 45.4	130.1 87.2	111.2 87.5	82.8 87.8	32.9 88.3	130.1 30.9	95.9 31.8	130.1 50.1	106.1 50.4	60.9 85.5	130 219
Treated Outflow Load Treated FWM Outflow Conc	kg/yr ppb	4761 83.8	2718 53.8	736 16.2	9697 111.2	7244 82.8	2886 32.9	1234 14.0	2968 95.9	1718 54.0	5321 106.1	3294 65.3	1446 16.9	341 15
Upper Confidence Limit Lower Confidence Limit	ppb	87.0 80.1	61.7 45.3	21.1 12.5	113.9 107.9	90.7 73.8	41.4 25.3	18.6 10.7	102.4 88.6	65.0 43.2	111.0 100.3	76.1 54.1	22.4 12.9	20. 11.
Total Outflow Volume + Bypass Total Outflow Load + Bypass	hm3/yr kg/yr	56.8 4761	50.6 2718	45.4 736	87.2 9697	87.5 7244	87.8 2886	88.3 1234	30.9 2968	31.8 1718	50.1 5321	50.4 3294	85.5 1446	219 341
Total FWM Outflow Conc	ppb	83.8	53.8	16.2	111.2	82.8	32.9	14.0	95.9	54.0	106.1	65.3	16.9	15
Bypass Load Bypass Load	kg/yr %	0 0.0	0 0.0	0 0.0	0 0.0	0 0.0	0 0.0	0.0	0 0.0	0 0.0	0.0	0.0	0.0	0.
Maximum Inflow Maximum Outflow	hm3/d hm3/d	0.51 0.55	0.55 0.55	0.55 0.56	0.99 1.00	1.00 1.02	1.02 1.04	1.04 1.07	0.41 0.40	0.40 0.42	0.63 0.62	0.62 0.65	1.06 1.10	2.5
Surface Load Reduction Load Trapped in Sediments	kg/yr kg/yr	1049 921	2043 1734	1982 1941	1632 1171	2453 2533	4358 4446	1652 1750	1680 1279	1250 1320	1941 1400	2027 2106	3567 3764	256 243
Overall Load Reduction Lower Confidence Limit	%	18% 15%	43% 37%	73% 69%	14% 12%	25% 20%	60% 54%	57% 55%	36% 32%	42% 35%	27% 23%	38% 31%	71% 68%	88°
Upper Confidence Limit Daily Geometric Mean	%	22%	50%	75%	17%	31%	66%	57%	41%	50%	31%	46%	73%	911
Outflow Geo Mean - Composites	ppb ppb	75.7 77.2	49.6 50.3	12.2 12.8	102.4 104.0	76.9 77.9	27.4 28.2	9.9 10.5	89.0 90.2	47.9 48.8	98.7 100.0	59.3 60.1	12.1 12.9	#N
Upper Confidence Limit Lower Confidence Limit	ppb ppb	80.1 73.7	58.17 41.90	17.6 9.2	106.6 100.6	85.9 68.7	36.6 20.8	15.0 7.5	96.8 82.8	59.9 38.1	105.0 94.0	71.0 48.8	18.1 9.1	16 8.
Frequency Outflow Conc > 10 ppb Frequency Outflow Conc > 20 ppb	% %	100% 100%	100% 100%	78% 8%	100% 100%	100% 100%	100% 91%	56% 4%	100% 100%	100% 100%	100% 100%	100% 100%	77% 9%	70 25
Frequency Outflow Conc > 50 ppb Freq Outflow Volume > 10 ppb	%	100%	48% 100%	0% 90%	100%	100%	1% 100%	0% 74%	100%	42% 100%	100%	93% 100%	0% 89%	79 85
95th Percentile Outflow Conc	ppb	99	62 2420	21 872	130 3872	93	42 1707	19	106 3460	63	119 3756	75 2862	22	20
Mean Biomass P Storage Storage Increase / Net Removal	mg/m2 %	3040 0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	09
Net Storage Turnover Rate Unit Area P Removal	1/yr mg/m2-yr	11.1 968	11.1 771	34.9 871	11.1 1232	11.1 1064	34.9 1703	34.9 576	11.1 1093	11.1 781	11.1 1196	11.1 911	34.9 886	16 97
Mean Water Load Max Water Load	cm/d cm/d	12.9 53.2	6.9 24.5	6.2 24.8	25.1 103.8	10.0 41.9	9.2 39.0	7.9 34.3	8.4 34.6	5.0 23.6	13.1 54.1	5.9 27.0	5.3 25.0	2. 10
Mean Depth Minimum Depth	cm	67 51	52 40	61 56	93 90	59 40	65 59	65 57	101	50 34	60 37	51 35	64 56	63 52
Maximum Depth	cm %	95 0.0%	77 0.0%	77 0.0%	111 0.0%	90	90	91 0.0%	104	77 0.0%	95 0.0%	79 0.0%	91 0.0%	0.0
Frequency Depth < 10 cm	m2/day	185	100	89	361	154	155	155	130	72	204	85	140	139
HRT Days Mean Velocity	days cm/sec	5.2 0.32	7.5 0.22	9.9 0.17	3.7 0.45	5.8 0.30	7.1 0.28	8.2 0.28	12.0 0.15	9.9 0.17	4.6 0.39	8.6 0.19	12.2 0.25	25 0.2
Seepage Outflow / Total Outflow Release 1 Outflow Volume	% hm3/yr	0%	0%	0%	0%	0.0	0%	0.0	14% 0.0	0%	10% 0.0	0%	0.0	59
Release 2 Outflow Volume 95th Percentile Outflow Volume	hm3/yr hm3/d	0.0	0.0	0.0 0.35	0.0 0.65	0.0	0.0 0.67	0.0	0.0 0.26	0.0	0.0	0.0	0.0	0.
95th Percentile Outflow Load Simulated / Specified Mean Depth	kg/d %	35.61 #N/A	21.40 #N/A	7.29 #N/A	78.31 #N/A	59.67 #N/A	26.20 #N/A	12.44 #N/A	26.06 #N/A	16.15 #N/A	44.28 #N/A	29.29 #N/A	14.96 #N/A	34 #N
Release 1 Demand Met	%	#N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N
Release 2 Demand Met Outflow Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N #N
Range Check - Mean Depth Range Check - Freq Depth < 10 cm	-	-		0.99	1.21	-			1.32	-				3
Range Check - Flow/Width Range Check - Inflow Conc		- 1	-	0.55	1.72	-	0.96	0.96	:	- 1	- 1	-	0.86	5
Range Check - Outflow Conc Water Balance Error	- %	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.94	0.00%	0.00%	0.00%	0.00%	0.00%	0.0
Mass Balance Error	%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00% 0.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.0
Warning or Error Messages		Cell#32 Flow/W	idth out of calib. ra	for SAV_3: 61 vs ange for SAV_3:	89 vs. 162 - 374 n	n2/day								9
		Cell# 4 EDCW D	epth out of calib. r	ange for EMG_3: alib. range for EMC	93 vs. 35 - 76 cm									
		Cell# 6 4N Flow/	Width out of calib.	range for SAV_3: range for SAV_3:	155 vs. 162 - 37	4 m2/day								
		Call# 7 48 Outle	Cons out of soli	b. range for SAV_3.	2. 14 m 15 15	Loop								
		Cell# 7 43 Oddiid	Nameth and of Call	range for EMG_3:	404 · · · · · · · · · · · · · · · · · ·	, ppo								

Table A.3 STA-1E: Case "2010 Base"

DMSTA2- Inputs & Outp	uts		Project:	PROJECT_ST	TA1E								el Release: irrent Date:	
nput Variable Design Case Name	Units	Value 2010 Base	Case Descrip	tion: East and Wes	st Distribution (Cells						Ci	om Date.]
nput Series Name starting Date for Simulation ending Date for Simulation	Ī	TS_2010Base 05/01/65 04/30/00	Inlfows inclu Cell-to-cell s	de all C-51 We eepage not co est Distribution	est Basin and A	cme Basin alysis			off volume th	nrough S-5/	AE bypassed	thru S-155	A	
tarting Date for Output ntegration Steps Per Day	-	05/01/65 4	Simulation Typ		Uncertainty A				B					ı
lumber of Iterations Output Averaging Interval	days	0 30	Output Variab	C (ppb)	Mean 13.3	Lower CL 17.9	Upper CL 10.1		Diagnostics H20 Baland	ce Error Me	an & Max	0.0%	0.0%	
nflow Conc Scale Factor Rainfall P Conc	ppb	1 10 20	GM Outflow C Load Reducti Bypass Load	on %	10.6 90% 0.0%	15.0 86%	7.6 92%		Iterations 8	Converge	nce	0.0% 3 11	0.0%	
Atmospheric P Load (Dry) Cell Number> Cell Label	mg/m2-yr	1	2 1	(%) 3 2	4 EDCW	5	6 4N	7	WDCW	rror Messag	10 WDCE	11 5	12	
/egetation Type	>	EMG_3 0.2	EMG_3	SAV_3	EMG_3 0.39	EMG_3	SAV_3	SAV_3	EMG_3 0.16	EMG_3	EMG_3 0.25	EMG_3	SAV_3	
nflow Fraction Downstream Cell Number Surface Area	- - km2	2 0.95	3 2.25	2.23	5 0.95	6 2.38	7 2.61	3.04	9	12 1.69	11.00 1.17	12.00 2.31	4.25	
Mean Width of Flow Path	km	0.66	1.55	1.55	0.66	1.55	1.55	1.55	0.75 0.5	1.18	0.75 0.5	1.61	1.61	
Minimum Depth for Releases Release 1 Series Name Release 2 Series Name Outflow Series Name Depth Series Name	cm													
Outflow Control Depth Outflow Weir Depth	cm cm	40	40	60	90	40	60	60	100	40	40	40	60	
Outflow Coefficient - Exponent Outflow Coefficient - Intercept	-	4	4 1	4 1	4 1	4	4 1	4	4	4	4 1	4	4	
Bypass Depth Maximum Inflow	cm hm3/day													
Maximum Outflow nflow Seepage Rate	hm3/day (cm/d) / cm									0.0054			0.0057	
nflow Seepage Control Elev nflow Seepage Conc	cm ppb									69 20			94 20	
Outflow Seepage Rate Outflow Seepage Control Elev	(cm/d) / cm cm	0.0095 -137	0.0042 -137	0.0042 -99	0.0095 -87			0.0054 -38	0.01 -15		0.01 -76			
Max Outflow Seepage Conc Seepage Recycle to Cell Number	ppb -	20 1	20 1	20 1	20 4			20 7	20 8		20 10			
Seepage Recycle Fraction Seepage Discharge Fraction	-	1	1	1	1	20		1		20	20	90	90	
nitial Water Column Conc nitial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	
nitial Water Column Depth C0 = Conc at 0 g/m2 P Storage	ppb	50 3 22	50 3 22	50 3 22	50 3 22	50 3 22	50 3 22	50 3 22	50 3 22	50 3 22	50 3 22	50 3 22	50 3 22	
C1 = Conc at 1 g/m2 P storage C2 = Conc at Half-Max Uptake K = Net Settling Rate at Steady State	ppb ppb m/yr	300 16.8	300 16.8	300 52.5	300 16.8	300 16.8	300 52.5	300 52.5	300 16.8	300 16.8	300 16.8	300 16.8	300 52.5	
X = Net Setting Rate at Steady State Z1 = Saturated Uptake Depth Z2 = Lower Penalty Depth	cm	40 100	40 100	40 100	40 100	40 100	40 100	40 100	40 100	40	40 100	40 100	40 100	
23 = Upper Penalty Depth	cm	200	200	200	200	200	200	200	200	200	200	200	200	l
Dutput Variables Execution Time	Units sec/yr	1 10.26	2 10.71	3 11.17	4 11.43	5 11.89	6 12.31	7 12.77	13.06	9 13.49	10 13.74	11 14.20	12 14.66	Ove 14.
Run Date Starting Date for Simulation	-	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/30/05 05/01/65	09/3
Starting Date for Output Ending Date	-	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01/65 04/30/00	05/01
Output Duration Cell Label	days	12784 EDCE	12784 1	12784 2	12784 EDCW	12784 3	12784 4N	12784 4S	12784 WDCW	12784 7	12784 WDCE	12784 5	12784 6	127 Tot
Downstream Cell Label Network Simulation Name	_	1 none	2 none	Outflow none	3 none	4N none	4S none	Outflow	7 none	6 none	5 none	6 none	Outflow	noi
Simulation Type Surface Area	km2	Uncerta 0.95	Uncerta 2.25	Uncerta 2.23	Uncerta 0.95	Uncerta 2.38	Uncerta 2.61	Uncerta 3.04	Uncerta 1.17	Uncerta 1.69	Uncerta 1.17	Uncerta 2.31	Uncerta 4.25	Unce 25.
Mean Rainfall Mean ET	cm/yr cm/yr	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142.9 129.7	142 129
Cell Inflow Volume Cell Inflow Load	hm3/yr kg/yr	42.4 5407	54.5 4381	48.3 2415	82.7 10543	82.8 8930	83.1 6531	83.4 2437	33.9 4325	29.1 2680	53.0 6758	47.3 4848	77.7 4375	211 270
Cell Inflow Conc Freated Outflow Volume	ppb hm3/yr	127.6 54.5	80.4 48.3	50.0 43.1	127.6 82.8	107.9 83.1	78.6 83.4	29.2 83.8	127.6 29.1	92.0 30.0	127.6 47.3	102.4 47.6	56.3 80.9	127 207
Freated Outflow Load Freated FWM Outflow Conc	kg/yr ppb	4381 80.4	2415 50.0	606 14.1	8930 107.9	6531 78.6	2437 29.2	996 11.9	2680 92.0	1485 49.5	4848 102.4	2890 60.7	1166 14.4	276 13.
Jpper Confidence Limit Lower Confidence Limit	ppb ppb	83.6 76.5	57.9 41.7	18.5 10.7	110.6 104.5	86.7 69.4	37.4 22.1	16.0 9.0	98.6 84.6	60.4 38.9	107.5 96.5	71.5 49.5	19.4 10.8	17. 10.
Total Outflow Volume + Bypass Total Outflow Load + Bypass	hm3/yr kg/yr	54.5 4381	48.3 2415	43.1 606	82.8 8930	83.1 6531	83.4 2437	83.8 996	29.1 2680	30.0 1485	47.3 4848	47.6 2890	80.9 1166	207
Total FWM Outflow Conc Bypass Load	ppb kg/yr %	80.4	50.0	14.1	107.9	78.6 0	29.2	11.9	92.0	49.5 0	102.4	60.7	14.4	13. 0.0
Bypass Load Maximum Inflow	hm3/d	0.0 0.48 0.52	0.0 0.52 0.52	0.0 0.52	0.0 0.93 0.94	0.0 0.94 0.96	0.0 0.96 0.98	0.0 0.98 1.01	0.0 0.38 0.38	0.0	0.0 0.60 0.59	0.0	0.0 1.00 1.04	0.0 2.3 2.5
Maximum Outflow Surface Load Reduction Load Trapped in Sediments	hm3/d kg/yr kg/yr	1026 905	1966 1674	0.52 1809 1778	1614 1161	2399 2480	4094 4183	1441 1543	1646 1255	0.39 1195 1266	1910 1381	0.61 1958 2037	3210 3408	242 230
Overall Load Reduction Lower Confidence Limit	% %	19% 16%	45% 39%	75% 71%	15% 13%	27% 21%	63% 57%	59% 57%	38% 34%	45% 37%	28% 25%	40% 33%	73% 70%	909
Upper Confidence Limit Daily Geometric Mean	% ppb	23% 74.2	52% 47.2	77% 11.2	18% 101.2	33% 74.4	68% 25.3	59% 9.0	43% 87.0	53% 45.1	32% 97.0	48% 56.4	75% 10.9	92°
Outflow Geo Mean - Composites Upper Confidence Limit	ppb ppb	75.3 78.2	47.7 55.50	11.6 16.0	102.2 104.9	75.1 83.2	25.9 33.9	9.4 13.5	87.8 94.4	45.8 56.7	97.8 103.0	56.9 67.9	11.5 16.3	10. 15.
Lower Confidence Limit Frequency Outflow Conc > 10 ppb	ppb %	71.7 100%	39.40 100%	8.4 72%	98.8 100%	65.8 100%	18.9 100%	6.7 44%	80.3 100%	35.3 100%	91.7 100%	45.8 100%	8.2 69%	7.0 58
Frequency Outflow Conc > 20 ppb Frequency Outflow Conc > 50 ppb	% %	100% 100%	100% 33%	1% 0%	100% 100%	100% 100%	87% 0%	0% 0%	100% 100%	100% 28%	100% 100%	100% 86%	3% 0%	12°
Freq Outflow Volume > 10 ppb 95th Percentile Outflow Conc	% ppb	100% 96	100% 57	85% 18	100% 125	100% 88	100% 37	64% 16	100% 103	100% 57	100% 115	100% 69	84% 19	77'
Mean Biomass P Storage Storage Increase / Net Removal	mg/m2 %	2989 0%	2336 0%	799 0%	3836 0%	3272 0%	1606 0%	509 0%	3396 0%	2352 0%	3705 0%	2769 0%	804 0%	196 09
Net Storage Turnover Rate Unit Area P Removal	1/yr mg/m2-yr	11.1 952	11.1 744	34.9 797	11.1 1221	11.1 1042	34.9 1603	34.9 507	11.1 1073	11.1 749	11.1 1180	11.1 882	34.9 802	16. 92
Mean Water Load Max Water Load	cm/d cm/d	12.2 50.3	6.6 23.2	5.9 23.4	23.8 98.0	9.5 39.5	8.7 36.7	7.5 32.3	7.9 32.7	4.7 22.4	12.4 51.1	5.6 25.4	5.0 23.5	9.
Mean Depth Minimum Depth	cm	67 51	52 40	61 56	92 90	58 40	65 59	65 57	101 90	49 34	60 37	51 35	64 56	63 52
Maximum Depth Frequency Depth < 10 cm	cm %	94 0.0%	76 0.0%	76 0.0%	109 0.0%	0.0%	89 0.0%	90 0.0%	104 0.0%	76 0.0%	94 0.0%	78 0.0%	0.0%	0.0
Flow/Width HRT Days	m2/day days	176 5.5	96 7.8	85 10.3	343 3.9	146 6.1	147 7.4	147 8.6	124 12.7	10.5	193 4.8	9.1 0.48	132 12.8	132
Mean Velocity Seepage Outflow / Total Outflow	cm/sec %	0.31 0%	0.22 0%	0.16 0%	0.43 0%	0.29	0.26 0%	0.26	0.14 14%	0.16 0%	0.37 11%	0.18	0.24	0.2 59
Release 1 Outflow Volume Release 2 Outflow Volume 15th Percentile Outflow Volume	hm3/yr hm3/yr hm3/d	0.0 0.0 0.31	0.0 0.0 0.30	0.0 0.0 0.29	0.0 0.0 0.53	0.0 0.0 0.55	0.0 0.0 0.56	0.0 0.0 0.57	0.0 0.0 0.21	0.0 0.0 0.22	0.0 0.0 0.33	0.0 0.0 0.34	0.0 0.0 0.58	0. 0. 1.
95th Percentile Outflow Volume 95th Percentile Outflow Load Simulated / Specified Mean Depth	kg/d %	29.84 #N/A	16.38 #N/A	5.23 #N/A	64.32 #N/A	44.95 #N/A	20.07 #N/A	8.93 #N/A	21.13 #N/A	11.88 #N/A	36.95 #N/A	22.02 #N/A	10.74 #N/A	24. #N
Release 1 Demand Met Release 2 Demand Met	% %	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N/A #N/A #N/A	#N #N
Outflow Demand Met Range Check - Mean Depth	% -	#N/A #N/A	#N/A #N/A	#N/A 0.99	#N/A #N/A 1.21	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A 1.32	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N.
Range Check - Freq Depth < 10 cm Range Check - Flow/Width		-	-	0.53	1.63	-	0.91	0.91	-	-	-		0.82	0 5
Range Check - Inflow Conc Range Check - Outflow Conc	-	-	-	0.95	-	-	-	0.80	-	-	-	-	0.82	0
Vater Balance Error	%	0.00%	0.00%	0.00% 0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00
Varning or Error Messages		Cell#32 Depth of	ut of calib. range	for SAV_3: 61 vs ange for SAV_3:	62 - 87 cm	•			utflow Conc ou			14 vs. 15 - 15	ppb	1
		Cell# 3 2 Outflow Cell# 4 EDCW D	Conc out of calib. epth out of calib. r	range for SAV_3: ange for EMG_3:	14 vs. 15 - 153 92 vs. 35 - 76 cm	opb								
		Cell# 4 EDCW FI Cell# 6 4N Flow/\	ow/Width out of ca Width out of calib.	alib. range for EMC range for SAV_3:	S_3: 343 vs. 26 - 147 vs. 162 - 37	210 m2/day 4 m2/day								
		Cell# 7 4S Flow/\ Cell# 7 4S Outflo	Vidth out of calib. w Conc out of cali	range for SAV_3: b. range for SAV_3	147 vs. 162 - 37- 3: 12 vs. 15 - 153	1 m2/day 3 ppb								
					101 vs. 35 - 76 d									

Contract CN040912-W004
Optimum Allocation of Loads to STAs, 2010-2014

Table A.4 STA-2: Case "STA2 Alt2"

out Variable	Units	Value	Case Descrip	tion:								Cui	rent Date:	9/30/
sign Case Name out Series Name arting Date for Simulation ding Date for Simulation	- - -	STA2_Alt2 TS_STA2_Alt2 05/01/65 04/30/00	STA-2 With Inflow time s Analysis for	Compartment eries includes WY 1966-2000 S-5A Basin, S	allowance of 3 includes all b	8 cfs (27,50 asin runoff	0 ac-ft/yr) s from S-2/S-	eepage fror 6 Basin, plu	s discharge	from STA-	1W			
arting Date for Output egration Steps Per Day	-	05/01/65	Simulation Typ	oe:							·			
mber of Iterations tput Averaging Interval low Conc Scale Factor	days	30 1	Output Variab FWM Outflow GM Outflow 0	C (ppb)	Mean 14.9 11.8	#N/A #N/A	Upper CL #N/A #N/A		H20 Balan Mass Balan	E ce Error Me nce Error M	an & Max	0.0% 0.0%	0.0%	
infall P Conc nospheric P Load (Dry)	ppb mg/m2-yr	10 20	Load Reducti Bypass Load	on %	79% 5.7%	#N/A	#N/A		Iterations 8	Converger	nce	3	0.0%	
II Number>	-	1 1	2 2	3	4 4A	5 4B	6 5	7	8	9	10	11	12	1
getation Type low Fraction	>	PEW_3 0.12	PEW_3 0.14	0.21	EMG_3 0.53	SAV_3	SAV_3 7	SAV_3						
wnstream Cell Number rface Area ean Width of Flow Path	km2 km	7.28 1.58	9.19 2.00	9.19 2.00	5 17.32 6.11	6 7.70 2.50	5.59 2.60	5.59 4.07						
mber of Tanks in Series nimum Depth for Releases	- cm	3.0	3.0	6.0	3.0	3.0	3.0	3.0						
lease 1 Series Name lease 2 Series Name tflow Series Name pth Series Name														
tflow Control Depth tflow Weir Depth	cm cm	40	40	60	60	60	60	60						
tflow Coefficient - Exponent tflow Coefficient - Intercept	-	4 1	4 1	4 1	4 1	4	4 1	4 1						
pass Depth eximum Inflow	cm hm3/day				4.4									
aximum Outflow low Seepage Rate low Seepage Control Elev	hm3/day (cm/d) / cm cm	0.008 76			0.002 67	0.004 67	0.0055 67	0.002 67						
low Seepage Conc atflow Seepage Rate	ppb (cm/d) / cm	20 0.004	0.006	0.01	20 0.0037	20	20	15						
atflow Seepage Control Elev ax Outflow Seepage Conc	cm ppb	-61 20	-61 20	-30 20	12 20									
epage Recycle to Cell Number epage Recycle Fraction epage Discharge Fraction		1	1	3 1	1 0.78									
tial Water Column Conc tial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500	30 500						
tial Water Column Depth = Conc at 0 g/m2 P Storage	cm ppb	200	200	200	200	200 3	200 3	200 3						
= Conc at 1 g/m2 P storage = Conc at Half-Max Uptake	ppb ppb	22 300 34.9	22 300 34.9	22 300 52.5	22 300 16.8	22 300 52.5	22 300 52.5	22 300 52.5						
 Net Settling Rate at Steady State Saturated Uptake Depth Lower Penalty Depth 	m/yr cm cm	34.9 40 100	34.9 40 100	52.5 40 100	16.8 40 100	52.5 40 100	52.5 40 100	52.5 40 100						
= Upper Penalty Depth	cm	200	200	200	200	200	200	200						J
ecution Time	Units sec/yr	7.71	8.17 00/20/05	8.91 00/20/05	9.34	9.80	10.23	10.69	8	9	10	11	12	10.
n Date arting Date for Simulation arting Date for Output	Ē	09/30/05 05/01/65 05/01/65	09/30/05 05/01/65 05/01/65	09/30/05 05/01/65 05/01/65	09/30/05 05/01/65 05/01/65	09/30/05 05/01/65 05/01/65	09/30/05 05/01/65 05/01/65	09/30/05 05/01/65 05/01/65						09/3 05/0 05/0
ding Date for Output ding Date ttput Duration	- days	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00 12784	04/30/00	04/30/00	04/30/00 12784						04/3
II Label wnstream Cell Label		1 Outflow	2 Outflow	3 Outflow	4A 4B	4B 5	5 6	6 Outflow						То
twork Simulation Name nulation Type		Alt2_Net Base	Alt2_Net Base	Alt2_Net Base	Alt2_Net Base	Alt2_Net Base	Alt2_Net Base	Alt2_Net Base						Alt2
rface Area ean Rainfall ean ET	km2 cm/yr cm/yr	7.28 128.6 130.3	9.19 128.6 130.3	9.19 128.6 130.3	17.32 128.6 130.3	7.70 128.6 130.3	5.59 128.6 130.3	5.59 128.6 130.3						61 12 13
Il Inflow Volume	hm3/yr kg/yr	87.7 6310	102.3 7362	153.5 11042	351.5 24866	339.2 14612	339.5 7758	339.9 5302						69 49
II Inflow Conc eated Outflow Volume	ppb hm3/yr	72.0 101.4	72.0 102.1	72.0 153.3	70.7 339.2	43.1 339.5	22.9 339.9	15.6 340.0						71 69
eated Outflow Load eated FWM Outflow Conc	kg/yr ppb	1974 19.5 #N/A	1889 18.5 #N/A	2527 16.5 #N/A	14612 43.1 #N/A	7758 22.9 #N/A	5302 15.6 #N/A	3974 11.7 #N/A						103 14
per Confidence Limit wer Confidence Limit tal Outflow Volume + Bypass	ppb ppb hm3/yr	#N/A #N/A 101.4	#N/A #N/A 102.1	#N/A #N/A 153.3	#N/A #N/A 375.0	#N/A #N/A 339.5	#N/A #N/A 339.9	#N/A #N/A 340.0						#N 73:
tal Outflow Load + Bypass tal FWM Outflow Conc	kg/yr ppb	1974 19.5	1889 18.5	2527 16.5	17615 47.0	7758 22.9	5302 15.6	3974 11.7						133
pass Load pass Load	kg/yr %	0.0	0.0	0.0	3003 0.1	0.0	0.0	0.0						300
eximum Inflow eximum Outflow rface Load Reduction	hm3/d hm3/d	1.22 1.32 4336	1.42 1.50 5472	2.13 2.22 8516	3.94 4.05 10254	4.05 4.12 6853	4.12 4.17 2456	4.17 4.21 1328						8.1 9.1 392
ad Trapped in Sediments rerall Load Reduction	kg/yr kg/yr %	4771 69%	5640 74%	8591 77%	10263 41%	7113 47%	2646 32%	1511 25%						405 79
wer Confidence Limit per Confidence Limit	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A						#N
illy Geometric Mean atflow Geo Mean - Composites per Confidence Limit	ppb ppb	14.6 15.9 #N/A	12.9 14.4 #N/A	10.0 11.8 #N/A	36.7 39.2 #N/A	16.4 18.9 #N/A	10.0 12.1 #N/A	6.8 8.5 #N/A						#N 11 #N
wer Confidence Limit equency Outflow Conc > 10 ppb	ppb ppb %	#N/A 96%	#N/A #N/A 90%	#N/A 64%	#N/A 100%	#N/A 98%	#N/A 71%	#N/A 42%						#N 69
equency Outflow Conc > 20 ppb equency Outflow Conc > 50 ppb	% %	20% 0%	14% 0%	10% 0%	100% 3%	47% 0%	3% 0%	0% 0%						22
eq Outflow Volume > 10 ppb th Percentile Outflow Conc	% ppb	98% 25	97% 23	86% 22	100% 49	99% 28	87% 19 475	62% 15 271						85 1
ean Biomass P Storage orage Increase / Net Removal t Storage Turnover Rate	mg/m2 % 1/yr	987 0% 23.2	925 0% 23.2	936 0% 34.9	1860 0% 11.1	926 0% 34.9	475 0% 34.9	271 0% 35.0						10 0° 20
it Area P Removal ean Water Load	mg/m2-yr cm/d	655 3.3	614 3.0	935 4.6	593 5.6	924 12.1	473 16.6	270 16.6						65
ax Water Load ean Depth	cm/d cm	16.7 59	15.4 55	23.2 68	22.7 66	52.6 73	73.7 73	74.5 68						14 6
nimum Depth aximum Depth	cm cm %	40 95 0.0%	31 92 0.0%	55 102 0.0%	53 90 0.0%	46 113 0.0%	45 112 0.0%	42 101 0.0%						9 0.0
equency Depth < 10 cm pw/Width RT Days	m2/day days	152 17.8	140 18.0	210 14.9	157 11.8	371 6.1	358 4.4	229 4.1						21
ean Velocity epage Outflow / Total Outflow	cm/sec %	0.30 0%	0.30 0%	0.36 0%	0.28 1%	0.59 0%	0.57 0%	0.39 0%						0.:
lease 1 Outflow Volume lease 2 Outflow Volume	hm3/yr hm3/yr	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0						0.
th Percentile Outflow Volume th Percentile Outflow Load nulated / Specified Mean Depth	hm3/d kg/d %	0.74 17.56 #N/A	0.82 18.28 #N/A	1.23 25.69 #N/A	2.61 122.79 #N/A	2.60 68.55 #N/A	2.60 48.86 #N/A	2.64 37.99 #N/A						5. 99 #N
lease 1 Demand Met lease 2 Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A						#N
itflow Demand Met inge Check - Mean Depth	%	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A						#N
inge Check - Freq Depth < 10 cm inge Check - Flow/Width inge Check - Inflow Conc inge Check - Outflow Conc	- - - -	-			1	-		0.79						0
ater Balance Error ass Balance Error	% %	0.00% 0.01% Bypass occurred	0.00% 0.01%	0.00% 0.07%	0.00% 0.01%	0.00% 0.02%	0.00% 0.04%	0.00% 0.07%						0.0
arning or Error Messages				range for SAV_3:	12 vs. 15 - 153	ppb								

Table A.5 EAASR A-1: Case "A1 Base"

Value Value Value Value Value A1 Base 3 RES Base 0 RES Base 0 A(30/000 0 05/01/65 0 4/30/000 1 1 20 1 1 A-1 30 1 1 31 54 6.49 1.0 WSUPPLY **TO_STA DEPTH 10 0.002 20 30 500 10 10 10 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11	e 16,000-acre Inflow volun	oir, 2010 Inflovenet surface a mes, outflow voes compare Diversible w C (ppb) C (ppb) tion %	vs (Alternative real blumes, and de MSTA simulation of the MSTA simu	pths from Si on with indep	FWMM simulation of the state of	7	Diagnostic: H20 Balan Mass Balan Iterations 8	s Error Mence Erro	ean & Max	0.0% 0.0% 2 0 111	0.0% 0.0% 0.2% 12
30 10 0.002 20 10	16,000-acre inflow volume Tasted series Simulation 7 your Varian FVM Outflow Load Reduct Bypass Load 2	en et surface a enes, outflow vec es compare DI per est	Mean 76.2 74.4 22% 0.0%	pths from SI n with indep Lower CL #NNA #NNA 5	Deper CL #N/A #N/A #N/A 6	7	Disanostici H20 Belana Mass Balai Iterations & Warning/E	ce Error Mence Err	ean & Max coce jes 10	0.0% 2 0 111	0.0% 0.2% 12
04/30/00 05/01/65 4 3 0 1 1 0 20 1 1 A-1 RES 3 1 1 39.54 6.49 1.0 WSUPPLY 'TO_STA DEPTH 10 0.002 20 30 500 11 10 10 0.002 20 11 10 10 11 10 10 11 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11	Tested series Simulation 7: Cautout Varias Cautout Varias Cautout Varias Cautout Varias Cautout Varias Cautout	es compare Di pre- tible. C (ppb) C (ppb) G (ppb) ion % 3	MSTA simulation Mean 76.2 74.4 22% 0.0%	n with indep	Deper CL #N/A #N/A #N/A 6	7	Disanostici H20 Belana Mass Balai Iterations & Warning/E	ce Error Mence Err	ean & Max coce jes 10	0.0% 2 0 111	0.0% 0.2% 12
4 30 11 10 10 11 11 11 11 11 11 11 11 11 11	Output Varial FWM Outflow GM Outflow Load Reduct Bypass Load	bble w C (ppb) G (ppb)	76.2 74.4 22% 0.0%	#NVA #NVA 5	HNA HNA HNA G	7	H20 Balan Mass Bala Iterations & Warning/E	ce Error Mence Err	ean & Max coce jes 10	0.0% 2 0 111	0.0% 0.2% 12
10 20 11 10 20 11 10 20 11 10 20 11 10 20 11 10 20 20 20 20 20 20 20 20 20 20 20 20 20	FWM Outflot GM Outflow Load Reduct Bypass Load 2	w G (ppb) G (ppb) G (ppb) ion % 3 3 3 4 100 2 10	76.2 74.4 22% 0.0%	#NVA #NVA 5	HNA HNA HNA G	7	H20 Balan Mass Bala Iterations & Warning/E	ce Error Mence Err	ean & Max coce jes 10	0.0% 2 0 111	0.0% 0.2% 12
10 20 10 20 11 10 20	Load Reduct Bypass Load 2	(%) 3	22% 0.0%	#N/A 5	#N/A 6	7	Warning/E	ror Messag	nce	2 0 111	0.2%
1 A-1 RES 3 1 39.54 6.49 1.0 WSUPPLY TO_STA DEPTH 10 0.002 20 30 500 10 3 150 40 100 400 11.06 09/30/05 06/30/05 06/30/05 06/30/06 06/30/05 06/30/0	2	4 100 2.0				7	8	9	10	11	
RES 3 1 39.54 6.49 1.0 WSUPPLY 'TO_STA DEPTH 10 0.002 20 30 500 10 3 150 40 100 400 11.06 09/30/05 05/01/65 05/	2	2.0	4	5	6	7	8	9	10	-11	12
39.54 6.49 1.0 WSUPPLY *TO_STA DEPTH 10 0.002 20 30 500 10 3 150 40 40 400 400 400 400 400 400 400 400	2	2.0	4	5	6	7	8	9	10	11	12
1.0 WSUPPLY TO_STA DEPTH 10 0.002 20 30 500 10 3 150 5.0 40 100 400 11.06 00/30/05 05/01/65	2	2.0	4	5	6	7	8	9	10	11	12
*TO_STA DEPTH 10 0.002 20 30 500 110 3 150 150 100 400 100 400 12784 A-1 Outflow AAIZ_Net Best Best ABIZ STAR Best Best Best Best Best Best Best Best	2	2.0	4	5	6	7	8	9	10	11	12
0.002 20 30 500 10 3 150 150 10 40 100 400 12784 A-1 Outflowed 404 001 201 201 201 201 201 201 201 201 201	2	2.0	4	5	6	7	8	9	10	-11	12
0.002 20 500 500 10 3 150 5.0 400 400 400 400 400 400 400 400 400 4	2	2.0	4	5	6	7	8	9	10	11	12
0.002 20 30 500 13 3 150 5.0 40 100 9/30/05 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65 05/01/65	2	2.0	4	5	6	7	8	9	10	-11	12
30 500 10 3 150 5.0 40 100 400 99/30/05 05/01/65 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Altz_Net Base 39.54 130.0 122.3	2	2.0	4	5	6	7	8	9	10	-11	12
30 500 10 3 150 5.0 40 100 400 99/30/05 05/01/65 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Altz_Net Base 39.54 130.0 122.3	2	2.0	4	5	6	7	8	9	10	11	12
30 500 10 3 150 5.0 40 100 400 99/30/05 05/01/65 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Altz_Net Base 39.54 130.0 122.3	2	2.0	4	5	6	7	8	9	10	11	12
30 500 10 3 150 5.0 40 100 400 99/30/05 05/01/65 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Altz_Net Base 39.54 130.0 122.3	2	2.0	4	5	6	7	8	9	10	11	12
30 500 10 3 150 5.0 40 100 400 99/30/05 05/01/65 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Altz_Net Base 39.54 130.0 122.3	2	2.0	4	5	6	7	8	9	10	11	12
30 500 10 10 3 150 5.0 400 100 400 99/30/05 05/01/e5 05/01/e5 05/01/e5 05/01/e5 04/30/00 12784 A-1 Outflow Ali2_Net Base 39.54 130.0 122.3 514.2	2	2.0	4	5	6	7	8	9	10	11	12
500 10 3 150 5.0 40 100 400 1.06 09/30/05 05/01/65 04/30/00 12784 A-1 2784 A-1 2784 39.54 130.0 122.3	2	2.0	4	5	6	7	8	9	10	11	12
10 3 150 5.0 40 100 400 1.06 09/30/05 05/01/65 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Alt2_Net 130.0 122.3 514.2	2	2.0	4	5	6	7	8	9	10	11	12
5.0 40 100 400 1.06 09/30/05 05/01/65 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Al2_Net Base 39.54 130.0 122.3 514.2	2	2.0	4	5	6	7	8	9	10	11	12
5.0 40 100 400 1.06 09/30/05 05/01/65 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Al2_Net Base 39.54 130.0 122.3 514.2	2	2.0	4	5	6	7	8	9	10	11	12
100 400 1 1.06 09/30/05 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Alt2_Net Base 39.54 130.0 122.3 514.2	2	3	4	5	6	7	8	9	10	11	12
1 1.06 09/30/05 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Alt2_Net Base 39.54 130.0 122.3 514.2	2	3	4	5	6	7	8	9	10	11	12
1.06 09/30/05 05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Alt2_Net Base 39.54 130.0 122.3 514.2	2	3	4	5	6	7	8	9	10	11	12
05/01/65 05/01/65 04/30/00 12784 A-1 Outflow Alt2_Net Base 39.54 130.0 122.3 514.2											
04/30/00 12784 A-1 Outflow Alt2_Net Base 39.54 130.0 122.3 514.2											
A-1 Outflow Alt2_Net Base 39.54 130.0 122.3 514.2											
Alt2_Net Base 39.54 130.0 122.3 514.2											
39.54 130.0 122.3 514.2											
122.3 514.2											
46836											
91.1 290.0											
22084 76.2											
#N/A #N/A											
469.7 36476											
77.7 0 0.0											
6.87											
5.81 24752 8357											
22% #N/A											
#N/A											
70.1 74.4 #N/A											
#N/A 100%											
100%											
62% 117											
390 0%											
19.0 211											
3.6 17.4											
165 1											
372 10.5%											
217 46.3											
0.15											
0.0											
3.26 238.75											
0.85 81%											
#N/A 101%											
-											
-											
0.00%		L									
-											
0.00%											
0.00%											
0.00%											
1	0.15 9% 179.7 0.0 3.26 238.75 0.85 81% #N/A 101%	0.15 9% 179.7 0.0 3.26 3.26 3.85 81% 81% #N/A 101% 0.00%	0.15 9% 179.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.15 9% 179.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.15 9% 179.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.15 9% 779.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.15 9% 779.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.15 9% 779.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.15 9% 779.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.15 9% 779.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.15 9% 779.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Contract CN040912-W004
Optimum Allocation of Loads to STAs, 2010-2014

Table A.6 STA-3/4: Case "STA34 Alt2"

DMSTA2- Inputs & Outpu	uts		Project:	PROJECT_A	LT2_NETWOR	RK							el Release:	
nput Variable Design Case Name	Units	Value STA34_ALT2	Case Descrip	otion: 10-2014, Alter	native 2							Cu	o.n Date:	3/3
nput Series Name	-	TS_34_Base	Receives int	flows from EAA	SR Compartm	nent A-1; ST	A enhanced	per LTP (including SA	V in Cell 1E	3)			
Starting Date for Simulation Ending Date for Simulation Starting Date for Output		05/01/65 04/30/00 05/01/65	Water suppl	es direct inflows ly releases to L	EC and Big C	press Rese	rvation excl	uded from	z treatment ar	ea inflows				
ntegration Steps Per Day Number of Iterations		4	Simulation Ty		Moon	Lower CL	Upper Cl		Diagnostic					
Output Averaging Interval	days	30 1	FWM Outflow	v C (ppb)	Mean 18.3 14.2	#N/A #N/A	Upper CL #N/A #N/A		H20 Balan	ce Error Me	an & Max	0.0%	0.0%	
nflow Conc Scale Factor Rainfall P Conc	ppb	10	GM Outflow C Load Reducti	ion %	79%	#N/A #N/A	#N/A #N/A		Iterations 8	& Converge	lean & Max nce	0.1%	0.1%	
Atmospheric P Load (Dry) Cell Number>	mg/m2-yr	20	Bypass Load 2	3	0.0% 4	5	6	7	vvarning/E	rror Messa 9	ges 10	11	12	
Cell Label /egetation Type	>	1A EMG_3	1B SAV_3	2A EMG_3	2B SAV_3	3A EMG_3	3B SAV_3							
nflow Fraction Downstream Cell Number	-	0.4	4440	0.33		0.27 6								
Surface Area Mean Width of Flow Path	km2 km	12.30 3.42	14.12 4.50	10.29 2.89	11.71 4.02	9.61 4.88	8.92 4.88							
Number of Tanks in Series Ninimum Depth for Releases	- cm	6.0	3.0	6.0	3.0	4.0	4.0			-				1
Release 1 Series Name Release 2 Series Name														
Outflow Series Name Depth Series Name Outflow Control Depth														
Outflow Weir Depth	cm cm	60	60	60	60	60	60							
Outflow Coefficient - Exponent Outflow Coefficient - Intercept	- 1	4 1	4 1	4 1	4 1	4	4 1							
Bypass Depth Maximum Inflow	cm hm3/day													
Maximum Outflow oflow Seepage Rate	hm3/day (cm/d) / cm									-				
nflow Seepage Control Elev	cm ppb													
Outflow Seepage Rate Outflow Seepage Control Elev	(cm/d) / cm cm	0.0058 16	0.0029 40	0.0014 -67		0.0038 -64								
Max Outflow Seepage Conc Seepage Recycle to Cell Number	ppb	20 1	20 1	20 3		20 3								
Seepage Recycle Fraction Seepage Discharge Fraction		0.5	0.5	0.5		0.5		<u> </u>		<u></u>				
nitial Water Column Conc nitial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500							
nitial Water Column Depth C0 = Conc at 0 g/m2 P Storage	cm ppb	200	200	200	200	200	200							
C1 = Conc at 1 g/m2 P storage C2 = Conc at Half-Max Uptake	ppb ppb	22 300	22 300	22 300	22 300	22 300	22 300							
C = Net Settling Rate at Steady State Z1 = Saturated Uptake Depth	m/yr cm	16.8 40	52.5 40	16.8 40	52.5 40	16.8 40	52.5 40							
22 = Lower Penalty Depth 23 = Upper Penalty Depth	cm	100 200	100 200	100 200	100 200	100 200	100 200							
Output Variables	Units	1	200	3	4	5	6	7	8	9	10	11	12	0 1
xecution Time	sec/yr	8.34 09/30/05	8.83 09/30/05	9.57 09/30/05	10.03 09/30/05	10.57 09/30/05	11.11 09/30/05		T		T "			1 09.
Run Date Starting Date for Simulation		05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65	05/01/65 05/01/65							05
Starting Date for Output Ending Date Dutput Duration	- down	04/30/00	04/30/00 12784	04/30/00	04/30/00 12784	04/30/00 12784	04/30/00							04
Cell Label Cownstream Cell Label	days	1A 1B	1B Outflow	2A 2B	2B Outflow	3A 3B	3B Outflow							1
Network Simulation Name	-	Alt2_Net	Alt2_Net	Alt2_Net	Alt2_Net	Alt2_Net	Alt2_Net							Alt
Simulation Type Surface Area	km2	12.30	Base 14.12	Base 10.29	11.71	9.61	Base 8.92							6
Mean Rainfall Mean ET	cm/yr cm/yr	130.0 134.9	130.0 134.9	130.0 134.9	130.0 134.9	130.0 134.9	130.0 134.9							1
Cell Inflow Volume Cell Inflow Load	hm3/yr kg/yr	304.6 25226	299.1 15900	251.3 20812	255.3 13428	205.6 17028	188.9 9640							6
Cell Inflow Conc Freated Outflow Volume	ppb hm3/yr	82.8 299.1	53.2 294.8	82.8 255.3	52.6 254.7	82.8 188.9	51.0 188.5							7
Freated Outflow Load Freated FWM Outflow Conc	kg/yr ppb	15900 53.2	5413 18.4	13428 52.6	4668 18.3	9640 51.0	3408 18.1							1
Jpper Confidence Limit Lower Confidence Limit	ppb ppb	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A							# #
Fotal Outflow Volume + Bypass Fotal Outflow Load + Bypass	hm3/yr kg/yr	299.1 15900	294.8 5413	255.3 13428	254.7 4668	188.9 9640	188.5 3408							13
Fotal FWM Outflow Conc Bypass Load	ppb kg/yr %	53.2 0	18.4 0	52.6 0	18.3 0	51.0 0	18.1 0							
Bypass Load Maximum Inflow	hm3/d	0.0 3.33	0.0 3.29	0.0 2.75	0.0 2.75	0.0 2.25	0.0 2.22							8
Maximum Outflow Surface Load Reduction	hm3/d kg/yr	3.29 9326	3.30 10488	2.75 7383	2.77 8760	2.22 7388	2.24 6232							4
Load Trapped in Sediments Diverall Load Reduction	kg/yr %	9094 37%	10869 66%	7533 35%	9143 65%	6743 43%	6519 65%							4
Lower Confidence Limit Upper Confidence Limit	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A							#
Daily Geometric Mean Dutflow Geo Mean - Composites	ppb ppb	44.8 47.6	11.0 14.6	44.6 47.3	11.2 14.4	44.2 47.5	9.8 14.3							#
Jpper Confidence Limit	ppb	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A							#
Frequency Outflow Conc > 10 ppb Frequency Outflow Conc > 20 ppb	% %	100%	83% 21%	100%	81% 20%	100%	82% 19%							8
requency Outflow Conc > 50 ppb Freq Outflow Volume > 10 ppb	% %	47% 100%	0% 93%	44% 100%	0% 93%	42% 100%	0% 91%							
95th Percentile Outflow Conc Mean Biomass P Storage	ppb mg/m2	60	23 772	59 2299	23 782	58 2203	22 732							1
Storage Increase / Net Removal	%	0% 11.1	0% 34.9	0% 11.1	0% 34.9	0% 11.1	0% 34.9							1
Net Storage Turnover Rate Unit Area P Removal	1/yr mg/m2-yr	739	770	732	781	702	731							
Mean Water Load Max Water Load	cm/d cm/d	6.8 27.1	5.8 23.3	6.7 26.7	6.0 23.4	5.9 23.4	5.8 24.9							
Mean Depth Minimum Depth	cm cm	67 39	64 28	69 50	65 35	58 9	60 29							
Maximum Depth requency Depth < 10 cm	cm %	95 0.0%	91 0.0%	95 0.0%	89 0.0%	80 0.2%	80 0.0%							0
low/Width IRT Days	m2/day days	244 9.9	182 11.0	238 10.3	174 10.8	115 9.8	106 10.4							1
Mean Velocity Seepage Outflow / Total Outflow	cm/sec %	0.42 2%	0.33 1%	0.40 1%	0.31 0%	0.23 4%	0.20 0%							
telease 1 Outflow Volume telease 2 Outflow Volume	hm3/yr hm3/yr	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0							
5th Percentile Outflow Volume 5th Percentile Outflow Load	hm3/d kg/d	2.28 126.73	2.29 48.49	1.91 105.38	1.93 41.17	1.48 81.07	1.52 32.12							1
Simulated / Specified Mean Depth Release 1 Demand Met	%	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A							#
Release 2 Demand Met Outflow Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A							#
Range Check - Mean Depth Range Check - Freq Depth < 10 cm		-	-	-	- 1	-	0.97							
Range Check - Flow/Width Range Check - Inflow Conc	-	1.16	1	1.13	-	1	0.66							
Range Check - Outflow Conc Vater Balance Error	- %	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%							0
Mass Balance Error Varning or Error Messages	%	0.10%	0.02%	0.10% range for EMG_3:	0.02%	0.04%	0.08%	L						ő
g z zor weddayes		Cell# 3 2A Flow/	Width out of calib.	range for EMG_3: range for EMG_3: e for SAV_3: 60	238 vs. 26 - 210									
		Cell# 6 3B Flow/	Width out of calib.	range for SAV_3:	106 vs. 162 - 37	4 m2/day								

Table A.7 STA-5: Case "2010 Base"

OMSTA2- Inputs & Outpu		Value	Case Descrip	PROJECT_S									el Release: irrent Date:	
nput Variable lesign Case Name nput Series Name tarting Date for Simulation	Units - -	2010 Base TS_Base 05/01/94	STA-5 Expa 2010-2014; Historic Inflo	inded to Include downstream ce ow Concentration	ells considered ons Reduced b	as SAV_3; y 10% for o	Inflows limit	ted to C-139	9 Basin rund tation in bas	off				
nding Date for Simulation tarting Date for Output	Ī	04/30/05 05/01/94	STA-6 Secti	on 2 converted	to use as Cell	6B								
ntegration Steps Per Day lumber of Iterations output Averaging Interval	-	4 0	Simulation Ty Output Varial FWM Outflow	ole	Uncertainty A Mean 9.6	nalysis Lower CL 11.7	Upper CL		Diagnostic	s ce Error Me	9 M	0.0%	0.0%	
nflow Conc Scale Factor Rainfall P Conc	days - ppb	30 1 10	GM Outflow (Load Reducti	C (ppb)	5.8 95%	7.8 94%	8.2 4.7 96%		Mass Bala	nce Error M Converge	ean & Max	0.0%	0.0%	
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Load	(%)	0.0%	5	6	7	Warning/E	rror Messag	jes	18 11	12	
Cell Label /egetation Type	- >	1A EMG_3	1B SAV_3	2A EMG_3	2B SAV_3	3A EMG_3	3B SAV_3	4A EMG_3	4B SAV_3	5A EMG_3	5B SAV_3	6A EMG_3	6B SAV_3	
nflow Fraction Downstream Cell Number		0.156 2		0.156 4		0.156 6		0.156 8		0.235 10		0.141 12.00		
urface Area Mean Width of Flow Path	km2 km	3.38 1.56	4.94 1.56	3.38 1.56	4.94 1.56	4.61 1.56	3.71 1.56	4.61 1.56	3.71 1.56	6.92 2.34	5.56 2.34	2.22	5.26 2.39	
lumber of Tanks in Series finimum Depth for Releases telease 1 Series Name	cm	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Release 2 Series Name														
Depth Series Name Outflow Control Depth	cm	40	60	40	60	40	60	40	60	40	60	60	60	
Outflow Weir Depth Outflow Coefficient - Exponent	cm -	4	4	4	4	4	4	4	4	4	4	4	4	
Outflow Coefficient - Intercept Bypass Depth	cm	1	1	1	1	1	1	1	1	1	1	1	1	
Maximum Inflow Maximum Outflow Inflow Seepage Rate	hm3/day hm3/day (cm/d) / cm													
nflow Seepage Control Elev	cm													
Outflow Seepage Rate Outflow Seepage Control Elev	(cm/d) / cm cm	0.0075 -46	0.0075 -38											
Max Outflow Seepage Conc Seepage Recycle to Cell Number	ppb -	20	20											
Seepage Recycle Fraction Seepage Discharge Fraction	-	1	1	20	20	20	20	20	20	30	20	20	20	
nitial Water Column Conc nitial P Storage Per Unit Area nitial Water Column Depth	ppb mg/m2 cm	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	30 500 200	500 200	30 500 200	30 500 200	30 500 200	
C0 = Conc at 0 g/m2 P Storage C1 = Conc at 1 g/m2 P storage	ppb ppb	3 22	3 22	3 22	3 22	3 22	3 22	3 22	3 22	3 22	3 22	3 22	3 22	
C2 = Conc at Half-Max Uptake C = Net Settling Rate at Steady State	ppb m/yr	300 16.8	300 52.5	300 16.8	300 52.5	300 16.8	300 52.5	300 16.8	300 52.5	300 16.8	300 52.5	300 16.8	300 52.5	
1 = Saturated Uptake Depth 2 = Lower Penalty Depth	cm cm	40 100 200	40 100 200	40 100 200	40 100 200	40 100 200	40 100 200	40 100 200	40 100 200	40 100 200	40 100 200	40 100 200	40 100 200	
23 = Upper Penalty Depth Output Variables	Units	1	200	3	4	5	6	7	8	9	10	11	12	l Ove
execution Time Run Date	sec/yr	16.54 09/29/05	17.18 09/29/05	17.73 09/29/05	18.27 09/29/05	18.82 09/29/05	19.36 09/29/05	19.91 09/29/05	20.54 09/29/05	21.09 09/29/05	21.64 09/29/05	22.18 09/29/05	22.73 09/29/05	22.
Starting Date for Simulation Starting Date for Output		05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/01/94 05/01/94	05/0 05/0
Inding Date Output Duration	- days	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/30/05 4018	04/3 40
Cell Label Downstream Cell Label Network Simulation Name		1A 1B none	1B Outflow none	2A 2B none	2B Outflow none	3A 3B none	3B Outflow none	4A 4B none	4B Outflow none	5A 5B none	5B Outflow none	6A 6B none	6B Outflow none	no
Simulation Type Surface Area	km2	Uncerta 3.38	Uncerta 4.94	Uncerta 3.38	Uncerta 4.94	Uncerta 4.61	Uncerta 3.71	Uncerta 4.61	Uncerta 3.71	Uncerta 6.92	Uncerta 5.56	Uncerta 2.22	Uncerta 5.26	Unc 53
Mean Rainfall Mean ET	cm/yr cm/yr	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82.1 82.0	82 82
Cell Inflow Volume Cell Inflow Load	hm3/yr kg/yr	30.6 6106	30.6 2144	30.6 6106	30.6 2336	30.6 6106	30.6 1713	30.6 6106	30.6 1713	46.1 9199	46.1 2590	27.7 5519	27.7 2719	19 391
Cell Inflow Conc Treated Outflow Volume Treated Outflow Load	ppb hm3/yr kg/yr	199.4 30.6 2144	70.0 30.6 280	199.4 30.6 2336	76.3 30.6 287	199.4 30.6 1713	55.9 30.6 302	199.4 30.6 1713	55.9 30.6 302	199.4 46.1 2590	56.1 46.1 457	199.4 27.7 2719	98.2 27.7 260	19: 19: 18
reated Cutilow Load reated FWM Outflow Conc Jpper Confidence Limit	ppb ppb	70.0 84.3	9.2 10.9	76.3 94.0	9.4 11.3	55.9 72.5	9.9 12.2	55.9 72.5	9.9 12.2	56.1 72.8	9.9 12.3	98.2 115.1	9.4 11.1	9.
ower Confidence Limit otal Outflow Volume + Bypass	ppb hm3/yr	56.0 30.6	8.0	59.4 30.6	8.1 30.6	41.6 30.6	8.4	41.6 30.6	8.4 30.6	41.8 46.1	8.4 46.1	80.7	8.2 27.7	8. 196
otal Outflow Load + Bypass otal FWM Outflow Conc	kg/yr ppb	2144 70.0	280 9.2	2336 76.3	287 9.4	1713 55.9	302 9.9	1713 55.9	302 9.9	2590 56.1	457 9.9	2719 98.2	260 9.4	188 9.
Bypass Load Bypass Load	kg/yr %	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0.
Maximum Inflow Maximum Outflow Surface Load Reduction	hm3/d hm3/d kg/yr	0.39 0.39 3962	0.39 0.40 1864	0.39 0.39 3771	0.39 0.40 2049	0.39 0.39 4393	0.39 0.40 1411	0.39 0.39 4393	0.39 0.40 1411	0.59 0.58 6608	0.58 0.61 2133	0.35 0.35 2800	0.35 0.35 2459	2.5 2.5 372
oad Trapped in Sediments Overall Load Reduction	kg/yr %	3482 65%	1991 87%	3866 62%	2188 88%	4523 72%	1515 82%	4523 72%	1515 82%	6804 72%	2290 82%	2862 51%	2607 90%	381 95
ower Confidence Limit Jpper Confidence Limit	%	58% 72%	87% 86%	53% 70%	88% 86%	64% 79%	83% 80%	64% 79%	83% 80%	63% 79%	83% 80%	42% 60%	90% 90%	94 96
Daily Geometric Mean Outflow Geo Mean - Composites	ppb ppb	62.0 62.5	4.8 5.8	67.5 68.1	4.6 5.6	49.2 49.8	4.9 6.0	49.2 49.8	4.9 6.0	49.4 50.0	4.9 6.0	85.0 87.7	4.5 5.6	#N 5.
Jpper Confidence Limit ower Confidence Limit	ppb ppb	76.1 49.2	7.42 4.74	85.0 52.0	7.3 4.6	65.9 36.0	8.1 4.7	65.9 36.0	8.1 4.7	66.1 36.1	8.2 4.8	103.7 71.0	7.1 4.6	7. 4.
requency Outflow Conc > 10 ppb requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	% % %	100% 100% 84%	14% 0% 0%	100% 100% 95%	14% 0% 0%	100% 100% 55%	15% 0% 0%	100% 100% 55%	15% 0% 0%	100% 100% 55%	15% 0% 0%	100% 100% 100%	15% 0% 0%	15 39 09
req Outflow Volume > 10 ppb 15th Percentile Outflow Conc	% ppb	100% 86	34% 13	100% 93	37% 14	100% 64	42% 14	100%	42% 14	100%	42% 14	100%	37% 13	39
Mean Biomass P Storage Storage Increase / Net Removal	mg/m2 %	3235 0%	404 0%	3592 0%	444 0%	3081 0%	409 0%	3081 0%	409 0%	3087 0%	413 0%	4048 0%	497 0%	17
Net Storage Turnover Rate Unit Area P Removal	1/yr g/m2-yr	3.5 1030	11.0 403	3.5 1144	11.0 443	3.5 981	11.0 408	3.5 981	11.0 408	3.5 983	11.0 412	3.5 1289	11.0 496	4. 71
Mean Water Load Max Water Load Mean Depth	cm/d cm/d cm	2.5 11.5 46	1.7 7.9 59	2.5 11.5 46	1.7 7.9 59	1.8 8.5 46	2.3 10.5 58	1.8 8.5 46	2.3 10.5 58	1.8 8.5 46	2.3 10.5 58	3.4 15.9 60	1.4 6.7 58	1. 4. 5
nean Depth Minimum Depth Maximum Depth	cm cm	27 70	38 71	27 70	38 71	26 70	37 71	26 70	37 71	26 70	37 71	46 62	40 63	3 7
requency Depth < 10 cm low/Width	% m2/day	0.0% 54	0.0% 54	0.0% 54	0.0% 54	0.0% 54	0.0% 54	0.0% 54	0.0% 54	0.0% 54	0.0% 54	0.0% 30	0.0% 32	0.0 50
IRT Days Mean Velocity	days cm/sec	18.7 0.13	34.5 0.11	18.7 0.13	34.5 0.11	25.4 0.13	25.9 0.11	25.4 0.13	25.9 0.11	25.3 0.14	25.7 0.11	17.5 0.06	40.3 0.06	52 0.
teepage Outflow / Total Outflow telease 1 Outflow Volume telease 2 Outflow Volume	hm3/yr hm3/yr	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0: 0: 0:
Sth Percentile Outflow Volume Sth Percentile Outflow Volume Sth Percentile Outflow Load	hm3/yr hm3/d kg/d	0.0 0.27 21.91	0.0 0.27 3.37	0.0 0.27 23.78	0.0 0.27 3.51	0.0 0.27 17.05	0.0 0.27 3.68	0.0 0.27 17.05	0.0 0.27 3.68	0.0 0.41 25.78	0.0 0.41 5.56	0.0 0.25 28.39	0.0 0.26 3.08	0. 1. 22
Simulated / Specified Mean Depth telease 1 Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N
Release 2 Demand Met Outflow Demand Met	% %	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N #N
Range Check - Mean Depth Range Check - Freq Depth < 10 cm			0.95	-	0.94	-	0.94	-	0.94	-	0.94	-	0.94	0
Range Check - Flow/Width Range Check - Inflow Conc Range Check - Outflow Conc	-	-	0.33		0.33	-	0.33	-	0.33	-	0.33 - 0.67		0.20	0
Vater Balance Error Mass Balance Error	% %	0.00%	0.00% 0.00%	0.00%	0.00% 0.00%	0.00%	0.00% 0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.0
Varning or Error Messages		Cell# 2 1B Depth Cell# 2 1B Flow/	out of calib. rang Width out of calib.	e for SAV_3: 59 v range for SAV_3:	s. 62 - 87 cm 54 vs. 162 - 374	m2/day		Cell#84B F	low/Width out	of calib. range at of calib. ran	for SAV_3: 5 ge for SAV_3:	4 vs. 162 - 37- 10 vs. 15 - 15	4 m2/day	1
		Cell# 2 1B Outflo Cell# 4 2B Depth	w Conc out of cal out of calib. rang	ib. range for SAV_ e for SAV_3: 59 v	3: 9 vs. 15 - 153 s. 62 - 87 cm	ppb		Cell# 10 5B Cell# 10 5B	Depth out of ca Flow/Width out	alib. range for t of calib. rang	SAV_3: 58 vs e for SAV_3:	. 62 - 87 cm 54 vs. 162 - 3	74 m2/day	
		Cell# 4 2B Outflo	w Conc out of cal	range for SAV_3: ib. range for SAV_ e for SAV_3: 58 v	3: 9 vs. 15 - 153	m2/day ppb		Cell# 12 6B	Depth out of ca	alib. range for	nge for SAV_3: SAV_3: 58 vs e for SAV_3:	62 - 87 cm		
			out or callb. rang	- 101 SAV_3: 58 V				OCH# 12 0B	www.vviatn.ou!	or uand, rang	- FUT OAV_3:	va. 102 - 3	- marday	

Contract CN040912-WO04 Optimum Allocation of Loads to STAs, 2010-2014

Table A.8: STA-5: Case "2010 Base Emg"

put Variable	J ts Units	Value	Case Descrip	tion:								Cu	urrent Date:	09/
esign Case Name put Series Name tarting Date for Simulation	-	2010 Base Em TS_Base 05/01/94	STA-5 Expa 2010-2014;	nded to Include downstream ce w Concentration	ells considered	as EMG_3;	Inflows lim							
nding Date for Simulation arting Date for Output	-	04/30/05 05/01/94 4	STA-6 Secti	on 2 converted	to use as Cell	6B	ngomig Divin	Implement	autori ii i buc					
ntegration Steps Per Day umber of Iterations output Averaging Interval	- days	0	Output Variab FWM Outflow	ole / C (ppb)	Mean 21.0	Lower CL 30.7	Upper CL 14.7			ce Error Me		0.0%	0.0%	
iflow Conc Scale Factor ainfall P Conc tmospheric P Load (Dry)	ppb mg/m2-yr	1 10 20	GM Outflow C Load Reducti Bypass Load	on %	17.1 89% 0.0%	26.5 85%	11.0 93%			nce Error M k Converger rror Messag	nce	0.0% 3 0	0.0% 0.3%	
ell Number> ell Label	-	1 1A EMG_3	1B EMG_3	2A EMG_3	2B EMG 3	3A EMG_3	6 3B EMG_3	7 4A EMG 3	8 4B EMG_3	9 5A EMG_3	10 5B EMG 3	6A EMG 3	6B EMG 3	ı
egetation Type Iflow Fraction ownstream Cell Number	> - -	0.156 2		0.156 4		0.156 6		0.156 8		0.235 10		0.141 12.00		
urface Area lean Width of Flow Path umber of Tanks in Series	km2 km	3.38 1.56 3.0	4.94 1.56 3.0	3.38 1.56 3.0	4.94 1.56 3.0	4.61 1.56 3.0	3.71 1.56 3.0	4.61 1.56 3.0	3.71 1.56 3.0	6.92 2.34 3.0	5.56 2.34 3.0	2.22 2.50 3.0	5.26 2.39 3.0	
linimum Depth for Releases elease 1 Series Name	cm	5.0	5.0	5.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
elease 2 Series Name lutflow Series Name epth Series Name														
utflow Control Depth tutflow Weir Depth tutflow Coefficient - Exponent	cm cm	40	60 4	40	60 4	40	60 4	40	60 4	40	60 4	60 4	60 4	
outflow Coefficient - Intercept ypass Depth	- cm	1	1	1	1	1	1	1	1	1	1	1	1	
laximum Inflow laximum Outflow Iflow Seepage Rate	hm3/day hm3/day (cm/d) / cm													
iflow Seepage Control Elev iflow Seepage Conc	cm ppb	0.0075	0.0075											
outflow Seepage Rate outflow Seepage Control Elev lax Outflow Seepage Conc	(cm/d) / cm cm ppb	0.0075 -46 20	0.0075 -38 20											
eepage Recycle to Cell Number eepage Recycle Fraction eepage Discharge Fraction	Ē	1 1	2 1											
itial Water Column Conc itial P Storage Per Unit Area	ppb mg/m2	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	30 500	
itial Water Column Depth 0 = Conc at 0 g/m2 P Storage 1 = Conc at 1 g/m2 P storage	ppb ppb	200 3 22 300	200 3 22	200 3 22	200 3 22	200 3 22	200 3 22 300	200 3 22	200 3 22	200 3 22	200 3 22 300	200 3 22 300	200 3 22	
2 = Conc at Half-Max Uptake = Net Settling Rate at Steady State	ppb m/yr cm	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	300 16.8 40	
1 = Saturated Uptake Depth 2 = Lower Penalty Depth 3 = Upper Penalty Depth	cm cm	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	100 200	
utput Variables	Units sec/yr	1 16.73	2 17.27	3 17.82	4 18.36	5	6 19.54	7 20.09	8 20.64	9 21.18	10 21.73	11 22.36	12 22.91	Ov 22
un Date tarting Date for Simulation	-	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/29/05 05/01/94	09/2
tarting Date for Output nding Date output Duration	- days	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/01/94 04/30/05 4018	05/0 04/3 40
ell Label ownstream Cell Label etwork Simulation Name		1A 1B none	1B Outflow none	2A 2B none	2B Outflow none	3A 3B none	3B Outflow none	4A 4B none	4B Outflow none	5A 5B none	5B Outflow none	6A 6B none	6B Outflow none	no
imulation Type urface Area	- - km2	Uncerta 3.38	Uncerta 4.94	Uncerta 3.38	Uncerta 4.94	Uncerta 4.61	Uncerta 3.71	Uncerta 4.61	Uncerta 3.71	Uncerta 6.92	Uncerta 5.56	Uncerta 2.22	Uncerta 5.26	Uni 53
lean Rainfall lean ET ell Inflow Volume	cm/yr cm/yr hm3/yr	82.1 82.0 30.6	82.1 82.0 30.6	82.1 82.0 30.6	82.1 82.0 30.6	82.1 82.0 30.6	82.1 82.0 30.6	82.1 82.0 30.6	82.1 82.0 30.6	82.1 82.0 46.1	82.1 82.0 46.1	82.1 82.0 27.7	82.1 82.0 27.7	8: 8: 19
ell Inflow Load ell Inflow Conc	kg/yr ppb	6106 199.4	2144 70.0	6106 199.4	2336 76.3	6106 199.4	1713 55.9	6106 199.4	1713 55.9	9199 199.4	2590 56.1	5519 199.4	2719 98.2	39 19
reated Outflow Volume reated Outflow Load reated FWM Outflow Conc	hm3/yr kg/yr ppb	30.6 2144 70.0	30.6 615 20.1	30.6 2336 76.3	30.6 651 21.2	30.6 1713 55.9	30.6 637 20.8	30.6 1713 55.9	30.6 637 20.8	46.1 2590 56.1	46.1 966 20.9	27.7 2719 98.2	27.7 623 22.5	19 4° 2
pper Confidence Limit	ppb ppb hm3/yr	84.3 56.0 30.6	27.8 14.5 30.6	94.0 59.4 30.6	31.3 14.8 30.6	72.5 41.6 30.6	30.8 14.5 30.6	72.5 41.6 30.6	30.8 14.5 30.6	72.8 41.8 46.1	31.0 14.6 46.1	115.1 80.7 27.7	32.7 15.7 27.7	30 14
otal Outflow Volume + Bypass otal Outflow Load + Bypass otal FWM Outflow Conc	kg/yr ppb	2144 70.0	615 20.1	2336 76.3	651 21.2	1713 55.9	637 20.8	1713 55.9	637 20.8	2590 56.1	966 20.9	2719 98.2	623 22.5	41:
ypass Load ypass Load laximum Inflow	kg/yr % hm3/d	0 0.0 0.39	0 0.0 0.39	0 0.0 0.39	0 0.0 0.39	0 0.0 0.39	0 0.0 0.39	0 0.0 0.39	0 0.0 0.39	0 0.0 0.59	0 0.0 0.58	0 0.0 0.35	0 0.0 0.35	2
laximum Outflow urface Load Reduction	hm3/d kg/yr	0.39 3962	0.40 1529	0.39 3771	0.40 1685	0.39 4393	0.40 1076	0.39 4393	0.40 1076	0.58 6608	0.61 1624	0.35 2800	0.35 2096	2. 35
oad Trapped in Sediments Iverall Load Reduction ower Confidence Limit	kg/yr % %	3482 65% 58%	1587 71% 67%	3866 62% 53%	1824 72% 67%	4523 72% 64%	1180 63% 58%	4523 72% 64%	1180 63% 58%	6804 72% 63%	1781 63% 57%	2862 51% 42%	2244 77% 72%	35 89 89
pper Confidence Limit aily Geometric Mean	% ppb	72% 62.0	74% 15.4 16.5	70% 67.5	75% 16.0 17.2	79% 49.2	65% 15.7	79% 49.2	65% 15.7	79% 49.4	65% 15.8 17.0	60% 85.0 87.7	80% 16.9	93 #N 13
outflow Geo Mean - Composites pper Confidence Limit ower Confidence Limit	ppb ppb ppb	62.5 76.1 49.2	24.09 11.12	68.1 85.0 52.0	27.0 11.0	49.8 65.9 36.0	16.8 26.6 10.7	49.8 65.9 36.0	16.8 26.6 10.7	50.0 66.1 36.1	26.8 10.8	103.7 71.0	18.4 28.4 11.9	1
requency Outflow Conc > 10 ppb requency Outflow Conc > 20 ppb requency Outflow Conc > 50 ppb	% % %	100% 100% 84%	100% 17% 0%	100% 100% 95%	100% 23% 0%	100% 100% 55%	100% 20% 0%	100% 100% 55%	100% 20% 0%	100% 100% 55%	100% 21% 0%	100% 100% 100%	100% 36% 0%	10 7: 2:
req Outflow Volume > 10 ppb 5th Percentile Outflow Conc	% ppb	100% 86	100% 24	100% 93	100% 26	100%	100%	100%	100% 26	100%	100% 26	100% 126	100% 27	10
lean Biomass P Storage torage Increase / Net Removal et Storage Turnover Rate	mg/m2 % 1/yr	3235 0% 3.5	1010 0% 3.5	3592 0% 3.5	1160 0% 3.5	3081 0% 3.5	999 0% 3.5	3081 0% 3.5	999 0% 3.5	3087 0% 3.5	1005 0% 3.5	4048 0% 3.5	1340 0% 3.5	21
nit Area P Removal lean Water Load lax Water Load	g/m2-yr cm/d cm/d	1030 2.5 11.5	322 1.7 7.9	1144 2.5 11.5	369 1.7 7.9	981 1.8 8.5	318 2.3 10.5	981 1.8 8.5	318 2.3 10.5	983 1.8 8.5	320 2.3 10.5	1289 3.4 15.9	427 1.4 6.7	6 1 4
lean Depth linimum Depth	cm cm	46 27	59 38	46 27	59 38	46 26	58 37	46 26	58 37	46 26	58 37	60 46	58 40	5
laximum Depth requency Depth < 10 cm low/Width	cm % m2/day	70 0.0% 54	71 0.0% 54	70 0.0% 54	71 0.0% 54	70 0.0% 54	71 0.0% 54	70 0.0% 54	71 0.0% 54	70 0.0% 54	71 0.0% 54	62 0.0% 30	63 0.0% 32	0. 50
RT Days lean Velocity	days cm/sec	18.7 0.13	34.5 0.11	18.7 0.13	34.5 0.11	25.4 0.13	25.9 0.11	25.4 0.13	25.9 0.11	25.3 0.14	25.7 0.11	17.5 0.06	40.3 0.06	52 0.
eepage Outflow / Total Outflow elease 1 Outflow Volume elease 2 Outflow Volume	% hm3/yr hm3/yr	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0% 0.0 0.0	0
5th Percentile Outflow Volume 5th Percentile Outflow Load imulated / Specified Mean Depth	hm3/d kg/d %	0.27 21.91 #N/A	0.27 6.65 #N/A	0.27 23.78 #N/A	0.27 7.21 #N/A	0.27 17.05 #N/A	0.27 7.09 #N/A	0.27 17.05 #N/A	0.27 7.09 #N/A	0.41 25.78 #N/A	0.41 10.75 #N/A	0.25 28.39 #N/A	0.26 6.64 #N/A	1 45 #N
elease 1 Demand Met elease 2 Demand Met	%	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	1# 1#
ange Check - Mean Depth ange Check - Freq Depth < 10 cm	% - -	#N/A - -	#N/A - -	#N/A - -	#N/A - -	#N/A -	#N/A - -	#N/A - -	#N/A - -	#N/A -	#N/A -	#N/A -	#N/A - -	#1
ange Check - Flow/Width ange Check - Inflow Conc	-					-	-		-	Ė	-	Ē	-	
ange Check - Outflow Conc /ater Balance Error lass Balance Error	- % %	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.01%	0.00% 0.00%	0.0
/arning or Error Messages	.,	2.3070	2.2070	2.2070	2.3070	2.3070	2.2070	5.5070	2.3070	2.3070	2.2070	5.5170	2.3070	0.0

Table A.9 STA-6: Case "2010 Alt1"

Units -	Value	Case Descrip	tion:										09/29
	2010 Alt1	STA-6 Secti	on 1 Only		0.400.4								l
-	TS_USSO 05/01/96 04/30/05 05/01/96	Eliminated s	ed to historic di eepage losses on 2 considere	to L-3 Borrow	Canal and	norh line of	STA 5						
	4	Output Variab	ole	Mean	Lower CL	Upper CL		Diagnostic	<u>s</u>				
-	1	GM Outflow 0	C (ppb)	21.8	28.9	15.9		Mass Bala	nce Error N	lean & Max	0.0% 0.0% 3	0.0%	
mg/m2-yr	20 1	Bypass Load 2	(%)	0.0%	5	6	7	Warning/E	rror Messa	ges 10	11	12	
>	9 PEW_3	PEW_3											
km2	0.99	2.64											
km -	0.61 3.0	1.31 3.0											
cm													
cm cm	40	40											
- -	1	4 1											
hm3/day hm3/day													
(cm/d) / cm cm													
ppb (cm/d) / cm cm													
ppb -													
- pph	30	30											
mg/m2 cm	500 200	500 200											
ppb ppb	3 22	3 22	3 22 300	3 22 300	3 22 300	3 22 300							
m/yr	34.9 40	34.9 40	16.8 40	52.5 40	16.8	52.5							
cm cm	100 200	100 200	100 200	100 200	100 200	100 200							
Units sec/yr	1 4.22	2 4.89	3	4	5	6	7	8	9	10	11	12	Ove 4.8
-	05/01/96	09/29/05 05/01/96											09/29 05/01
-	04/30/05	04/30/05											05/0° 04/30 328
dayo	3 Outflow	5 Outflow											Tot
- - km2	Uncerta	Uncerta											Unce 3.6
cm/yr cm/yr	71.0 67.9	71.0 67.9											71. 67.
hm3/yr kg/yr	13.5 1331	36.1 3545											49. 487
hm3/yr	13.6	36.1											98. 49. 126
ppb ppb	25.5 32.8	25.5 32.8											25. 32.
hm3/yr	13.6	36.1											19. 49. 126
ppb kg/yr	25.5 0	25.5 0											25. 0.0
% hm3/d	0.13	0.35											0.4
kg/yr	985	2623 2694											0.4 360 370
% %	74% 67%	74% 67%											749 679
ppb	21.1 21.8	21.2 21.8											#N/ 21.
ppb ppb	28.9 15.9	28.88 15.92											28. 15.
% %	68%	67%											100 989 679
% % ppb	100% 32	100% 32											100
mg/m2 %	1538 0%	1538 0%											153 09 6.0
g/m2-yr cm/d	1021 3.7	1021 3.7											102 3.1
cm/d cm	13.3 48	13.3 50											13. 49
cm %	68	71											33 70 0.0
m2/day days	61 12.8	75 13.3											71. 13.
cm/sec %	0.15 0%	0.17 0%											0.1 09
hm3/yr hm3/d	0.0 0.11	0.0 0.28											0.0
kg/d %	3.30 #N/A	8.78 #N/A											12. #N/
%	#N/A	#N/A											#N/ #N/ #N/
-	-	-											0
	0.88												1 0 0
- % %	0.00%	0.00% 0.00%											0.00
			ange for PEW_3:	61 vs. 69 - 276 m	2/day								1
	days - days - pbb - mg/m2-yr	Care Care	-	-	- 4 Simulation Type: Uncertainty A	- 4 Simulation Type:	A	Company	1	A	1	1	1

Table A.10 STA-6: Case "2010 Alt1 SAV"

DMSTA2- Inputs & Outpu	uts		Project:	PROJECT_S	TA6								Release:	
nput Variable Design Case Name	Units -	Value 2010 Alt1 SAV	Case Descrip	on 1 Only										1
nput Series Name Starting Date for Simulation	_	TS_USSO 05/01/96	Inflows limit Eliminated s	ed to historic di seepage losses	to L-3 Borrov	v Canal and	ex (USSO) north line							
Ending Date for Simulation Starting Date for Output	1	04/30/05 05/01/96	Vegetation of	considered as	SAV in lieu of F	PEW								
ntegration Steps Per Day Number of Iterations	-	4 0	Simulation Ty Output Varial	ole	Uncertainty A Mean	Lower CL	Upper CL		Diagnostic	<u>s</u>				
Output Averaging Interval nflow Conc Scale Factor	days -	30 1	GM Outflow 0	v C (ppb) C (ppb)	17.1 13.4	20.8 17.2	14.1 10.5		Mass Bala	ce Error Me nce Error M	lean & Max	0.0% 0.0%	0.0% 0.0%	
Rainfall P Conc Atmospheric P Load (Dry)	ppb mg/m2-yr	10 20	Load Reducti Bypass Load	on % (%)	83% 0.0%	79%	86%		Warning/E	& Converge rror Messag	ges	3 4	0.0%	
Cell Number>	-	3	5	3	4	5	6	7	8	9	10	11	12	1
/egetation Type nflow Fraction	>	0.273	SAV_3 0.727											
Oownstream Cell Number Surface Area	km2 km	0.99 0.61	2.64 1.31											
Mean Width of Flow Path Number of Tanks in Series Minimum Depth for Releases	- cm	3.0	3.0											
Release 1 Series Name Release 2 Series Name	CIII													
Outflow Series Name Depth Series Name														
Outflow Control Depth Outflow Weir Depth	cm	40	40											
Outflow Coefficient - Exponent Outflow Coefficient - Intercept	Ė	4	4											
Bypass Depth Maximum Inflow	cm hm3/day													
Maximum Outflow nflow Seepage Rate	hm3/day (cm/d) / cm													
nflow Seepage Control Elev nflow Seepage Conc	cm ppb													
Outflow Seepage Rate Outflow Seepage Control Elev	(cm/d) / cm cm													
Max Outflow Seepage Conc Seepage Recycle to Cell Number	ppb -													
Seepage Recycle Fraction Seepage Discharge Fraction nitial Water Column Conc	- - ppb	30	30		ļ	1			1					
nitial Water Column Conc nitial P Storage Per Unit Area nitial Water Column Depth	mg/m2 cm	500 200	500 200											
C0 = Conc at 0 g/m2 P Storage C1 = Conc at 1 g/m2 P storage	ppb ppb	3 22	3 22	3 22	3 22	3 22	3 22							
C2 = Conc at Half-Max Uptake K = Net Settling Rate at Steady State	ppb m/yr	300 52.5	300 52.5	300 16.8	300 52.5	300 16.8	300 52.5							
Z1 = Saturated Uptake Depth Z2 = Lower Penalty Depth	cm cm	40 100	40 100	40 100	40 100	40 100	40 100							
Z3 = Upper Penalty Depth	cm	200	200	200	200	200	200							ı
Output Variables Execution Time	Units sec/yr	1 4.33	2 4.89	3	4	5	6	7	8	9	10	11	12	Ove 4.8
Run Date Starting Date for Simulation	Ē	09/29/05 05/01/96	09/29/05 05/01/96											09/29
Starting Date for Output Ending Date Output Duration	- -	05/01/96 04/30/05 3287	05/01/96 04/30/05 3287											05/0° 04/30 328
Dutput Duration Cell Label Downstream Cell Label	days	3287 3 Outflow	3287 5 Outflow											Tot
Network Simulation Name Simulation Type	1	none Uncerta	none Uncerta											nor
Surface Area Mean Rainfall	km2 cm/yr	0.99 71.0	2.64 71.0											3.6 71.
Mean ET Cell Inflow Volume	cm/yr hm3/yr	67.9 13.5	67.9 36.1											67. 49.
Cell Inflow Load Cell Inflow Conc	kg/yr ppb	1331 98.3	3545 98.3											487 98.
Treated Outflow Volume Treated Outflow Load Treated FWM Outflow Conc	hm3/yr kg/yr	13.6 232 17.1	36.1 617											49. 84
Upper Confidence Limit	ppb ppb	20.9	17.1 20.8											17. 20.
Lower Confidence Limit Total Outflow Volume + Bypass	ppb hm3/yr	14.1	14.1 36.1											49.
Total Outflow Load + Bypass Total FWM Outflow Conc Bypass Load	kg/yr ppb	232 17.1 0	617 17.1 0											848 17. 0.0
Bypass Load Bypass Load Maximum Inflow	kg/yr % hm3/d	0.0 0.13	0.0 0.35											0.0
Maximum Outflow Surface Load Reduction	hm3/d kg/yr	0.13	0.35 2929											0.4
Load Trapped in Sediments Overall Load Reduction	kg/yr %	1126 83%	3000 83%											412 839
Lower Confidence Limit Upper Confidence Limit	% %	79% 86%	79% 86%											799 869
Daily Geometric Mean Outflow Geo Mean - Composites	ppb ppb	12.8 13.4	12.8 13.4											#N/ 13.
Upper Confidence Limit Lower Confidence Limit	ppb ppb	17.2 10.5	17.16 10.47											17. 10.
Frequency Outflow Conc > 10 ppb Frequency Outflow Conc > 20 ppb	%	87% 8%	87% 8%											87°
Frequency Outflow Conc > 50 ppb Freq Outflow Volume > 10 ppb	%	0% 97%	0% 97%											89 97
95th Percentile Outflow Conc Mean Biomass P Storage	ppb mg/m2 %	23 1138 0%	23 1139 0%											113 09
Storage Increase / Net Removal Net Storage Turnover Rate Jnit Area P Removal	% 1/yr g/m2-yr	9.0 1137	9.0 1137											9.0
Mean Water Load Max Water Load	cm/d cm/d	3.7 13.3	3.7 13.3											3. 13.
Mean Depth Minimum Depth	cm	48 33	50 33											49
Maximum Depth Frequency Depth < 10 cm	cm %	68 0.0%	71 0.0%											0.0
Flow/Width HRT Days	m2/day days	61 12.8	75 13.3											71 13
Mean Velocity Seepage Outflow / Total Outflow	cm/sec %	0.15 0%	0.17 0%											0.1 09
Release 1 Outflow Volume Release 2 Outflow Volume	hm3/yr hm3/yr	0.0	0.0											0. 0.
95th Percentile Outflow Volume 95th Percentile Outflow Load	hm3/d kg/d	0.11 2.36	0.28 6.29											0. 8.
Simulated / Specified Mean Depth Release 1 Demand Met	% %	#N/A #N/A #N/A	#N/A #N/A #N/A											#N #N #N
Release 2 Demand Met Outflow Demand Met	% %	#N/A	#N/A											#N
Range Check - Mean Depth Range Check - Freq Depth < 10 cm Range Check - Flow/Width	E	0.77 - 0.38	0.80 - 0.47											0 2
Range Check - Flow/Width Range Check - Inflow Conc Range Check - Outflow Conc	-													0
Vater Balance Error Mass Balance Error	%	0.00%	0.00%											0.00
Warning or Error Messages		Cell# 1 3 Depth of	out of calib. range	for SAV_3: 48 vs ange for SAV_3:		n2/day								4
		Cell# 2 5 Depth	out of calib. range	for SAV_3: 50 vs ange for SAV_3:	. 62 - 87 cm									

