Disclaimer: Information contained in the report addresses environmental conditions only and is not the official South Florida Water Management District operations recommendation or decision.

MEMORANDUM

TO: John Mitnik, Assistant Executive Director, Executive Office Staff

FROM: SFWMD Staff Environmental Advisory Team

DATE: February 1, 2023

SUBJECT: Weekly Environmental Conditions for Systems Operations

Summary

Weather Conditions and Forecast

A strong mid-level high pressure will locate itself over the southern Florida Peninsula on Wednesday resulting in dry weather with well above-normal temperatures. Next, a vigorous upper-air disturbance will cross the Gulf of Mexico causing the high-pressure system to shift southeastward. A swath of greater moisture, surface heating, and strong forced ascent will result in a line of showers and thunderstorms in the northern part of the SFWMD through north Florida Friday afternoon and early evening, while widely scattered showers develop elsewhere across the SFWMD. After the frontal passage, strong winds gusting to near gale-force Saturday afternoon and evening transporting cooler air over relatively warmer waters will induce instability causing an east-coast rain event Saturday through the evening before a drying occurs from north to south except for the far southern part of the SFWMD. Locally significant rainfall accumulations are possible during this time. On Sunday, another round of rain could occur along and near the east coast of the SFWMD through the eastern interior. The rains have the potential to be locally heavy. On Monday, drying will occur except for some light east-coast showers. For the week ending next Tuesday morning, total SFWMD rainfall is forecast to be below normal but with abovenormal rainfall along and near the east coast. January 2023 will finish with just under half of an inch of total rainfall or around 10th percentile in the record for all Januarys since 1932, a typical outcome considering the strong La Niña still ongoing.

Kissimmee

Releases were made from East Lake Toho and Lake Toho to continue their recessions to their respective low pools on June 1. Weekly average discharges on January 29, 2023 at S-65 and S-65A were 1,300 cfs and 1,400 cfs, respectively. Mean weekly water depth on the Kissimmee River floodplain of 0.46 ft was approximately the same as for the previous week. The weekly average concentration of dissolved oxygen in the Kissimmee River decreased from 7.3 mg/L the previous week to 6.5 mg/L for the week ending January 29, 2023, above both the potentially lethal level and the physiologically stressful range for largemouth bass and other sensitive species.

Lake Okeechobee

Lake Okeechobee stage was 16.02 feet NGVD on January 29, 2023, which is 0.07 feet lower than the previous week and 0.34 feet lower than a month ago (**Figure LO-1**). Lake stage remained in the Intermediate sub-band and was 0.75 feet above the upper limit of the ecological envelope. This is the third year in a row Lake stages have exceeded 16.0 feet NGVD in the fall or winter season. According to NEXRAD, 0.34 inches of rain fell directly on the Lake last week. Average daily inflows (excluding rainfall) were like the previous week, going from 1,590 cfs to 1,720 cfs. Average daily outflows (excluding evapotranspiration) increased from the previous week, going from 2,850 cfs to 3,280 cfs. The most recent satellite image (January 29, 2023) from NOAA's Harmful Algal Bloom Monitoring System showed low bloom potential across much of the pelagic region, but moderate bloom potential in scattered areas along the nearshore, especially in the western bay. The fourth wading bird survey of the season was conducted on January 26, 2023. Six flocks, with an estimated total of 2,790 birds were seen actively foraging on the Lake, which is less than a third of the five-year average. Water levels remain too high to provide suitable foraging habitat across much of the Lake.

Estuaries

Total inflow to the St. Lucie Estuary averaged 520 cfs over the past week with 360 cfs coming from Lake Okeechobee. Mean salinities decreased at all sites over the past week. Salinity in the middle estuary was in the optimal range (10-25) for adult eastern oysters.

Total inflow to the Caloosahatchee Estuary averaged 2,175 cfs over the past week with 1,290 cfs coming from Lake Okeechobee. Mean surface salinities remained the same at S-79 and Val I-75 and decreased at the remaining sites within the estuary over the past week. Salinities were in the optimal range (0-10) for tape grass in the upper estuary. Salinities were in the optimal range for adult eastern oysters at Cape Coral and Shell Point (10-25) and in the upper stressed range at Sanibel (>25).

Stormwater Treatment Areas

For the week ending Sunday, January 29, 2023, 3,500 ac-ft of Lake Okeechobee water was delivered to the FEBs/STAs. The total amount of Lake releases sent to the FEBs/STAs in WY2023 (since May 1, 2022) is approximately 20,200 ac-feet. The total amount of inflows to the STAs in WY2023 is approximately 990,000 ac-feet. Most STA cells are at or near target stage, except STA-5/6 where most cells are below target. STA-1E Western Flow-way is offline for post-construction vegetation grow in, STA-3/4 Eastern Flow-way is offline for vegetation rehabilitation/drawdown, and STA-2 Flow-way 2 is offline for post-construction vegetation grow in. Operational restrictions are in effect in STA-1E Central and Eastern Flow-ways, STA-1W Eastern, Western, and Northern Flow-ways, and STA-2 Flow-ways 3 and 4 for vegetation management activities. This week, if 2008 LORS recommends Lake releases to the WCAs and conditions allow, releases will be sent to STA-2.

Everglades

Last week rates of stage change within the EPA were in the "fair" or "poor" category, with NESRS the exception. Depths are above average in WCA-3A northeast (but remain one of the shallowest regions in the WCAs), maintaining that condition could be important for wading bird nesting in that region. 10,000 wading birds are foraging in WCA-3A North both on the west and east side of the Miami canal, large flocks are also feeding along the coastal margins of ENP. Few birds are feeding in the western marl prairies, SRS or Taylor slough. Storks and Egrets have begun nesting in numbers in the western coastal colonies, and Egrets have begun nesting within multiple colonies within the WCAs. Taylor slough stages fell again last week but remain above the pre-Florida Bay initiative average. Average salinity decreased last week on average in Florida Bay last week. The Eastern Bay is slightly above the IQR.

Biscayne Bay

Total inflow to Biscayne Bay averaged 200 cfs and the previous 30-day mean inflow averaged 340 cfs. The seven-day mean salinity was 26.2 at BBCW8 and 24.4 at BBCW10, both within the ideal salinity range for estuarine organisms in this region (salinity less than 35). Data provided by Biscayne National Park.

Supporting Information

Kissimmee Basin

Upper Kissimmee

On January 29, 2023, mean daily lake stages were 57.2 feet NGVD (0.8 feet below schedule) in East Lake Toho, 54.2 feet NGVD (0.8 feet below schedule) in Lake Toho, and 51.9 feet NGVD (0.6 below schedule) in Lakes Kissimmee-Cypress-Hatchineha (KCH) (**Table KB-1**, **Figures KB-1-3**).

Lower Kissimmee

For the week ending January 29, 2023, mean weekly discharge was 1,300 cfs at S-65 and 1,400 cfs at S-65A. Mean weekly discharge from the Kissimmee River was 1,400 cfs at S-65D and 1,400 cfs at S-65E (**Table KB-2**). Mean weekly headwater stages were 46.3 feet NGVD at S-65A and 28.4 feet NGVD at S-65D on January 29, 2023. Mean weekly river channel stage of 37.5 ft NGVD on January 29, 2023 was unchanged from the previous week's mean (**Figure KB-4**). Mean weekly water depth on the Kissimmee River floodplain of 0.46 ft for the week ending January 29, 2023 was approximately the same as the previous week's mean (**Table KB-2**, **Figure KB-5**). The weekly average concentration of dissolved oxygen in the Kissimmee River decreased from 7.3 mg/L the previous week to 6.5 mg/L for the week ending January 29, 2023 (**Table KB-2**, **Figure KB-6**).

Water Management Recommendations

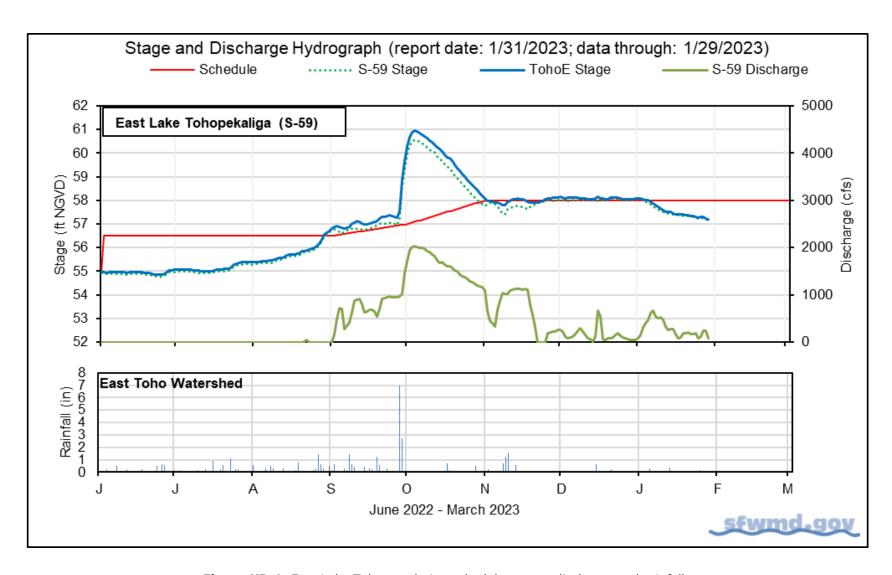

Continue stage recessions in Lake Toho and East Lake Toho to their June 1 low pools. Per the IS-14-50.0 discharge plan, adjust S-65 discharge to maintain a minimum flow of at least 1,400 cfs at S-65A to the Kissimmee River while stage in KCH is at or above 50 ft (**Figure KB-7**).

Table KB-1. Average discharge for the preceding seven days, Sunday's average daily stage and Sunday's average daily departure from KCOL flood regulation lines or temporary schedules. All data are provisional.

Water Body	Structure	Stage Monitoring Site	Weekly (7-Day) S Average Discharge (cfs) (f	Sunday Lake Stage	Schedule	Sunday Schedule Stage_ (feet NGVD)	Sunday Departure from Regulation (feet)	
				(feet NGVD) ^a	Type ^b		1/29/23	1/22/23
Lakes Hart and Mary Jane	S-62	LKMJ	20	61.0	R	61.0	0.0	0.1
Lakes Myrtle, Preston and Joel	S-57	S-57	12	61.4	R	61.4	0.0	0.0
Alligator Chain	S-60	ALLI	0	64.0	R	64.0	0.0	0.0
Lake Gentry	S-63	LKGT	0	61.6	R	61.5	0.1	0.1
East Lake Toho	S-59	TOHOE	160	57.2	R	58.0	-0.8	-0.7
Lake Toho	S-61	TOHOW S-61	430	54.2	R	55.0	-0.8	-0.6
Lakes Kissimmee, Cypress and Hatchineha	S-65	KUB011 LKIS5B	1300	51.9	R	52.5	-0.6	-0.4

a. Names of in-lake monitoring sites and structures used to determine lake stage. If more than one site is listed, an average is reported.

b. A: projected recession line; R: USACE regulation schedule; S: temporary recession target line; T: temporary schedule; NA: not applicable or not available.

Figure KB-1. East Lake Toho regulation schedule, stage, discharge and rainfall.

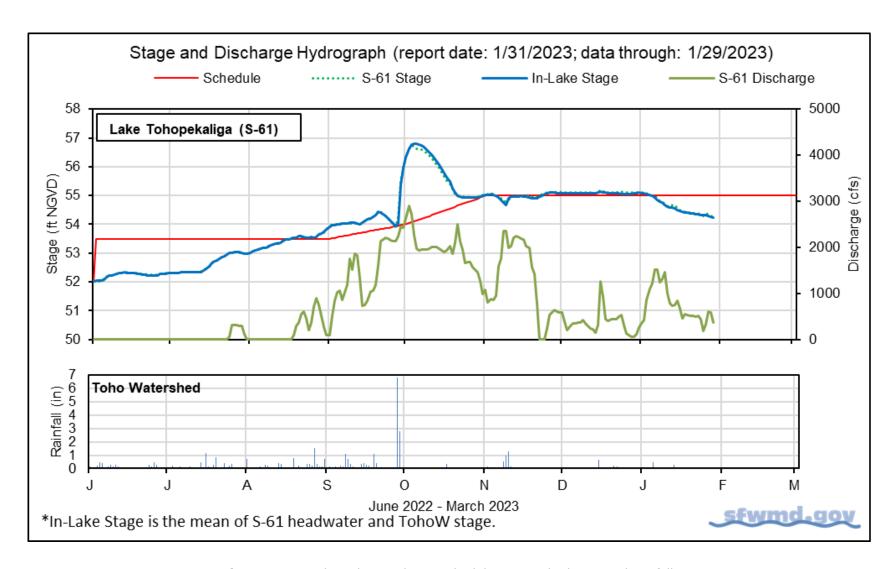


Figure KB-2. Lake Toho regulation schedule, stage, discharge and rainfall.

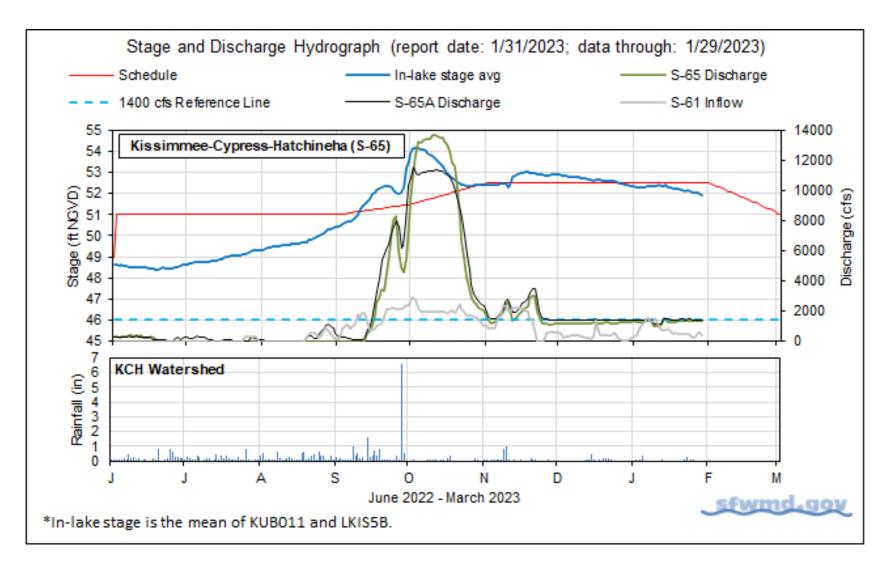


Figure KB-3. Lakes Kissimmee, Cypress and Hatchineha regulation schedule, stage, discharge and rainfall.

Table KB-2. One- and seven-day average discharge and stage at Lower Kissimmee basin structures, river channel dissolved oxygen concentrations and water depths in the Phase I area floodplain. All data are provisional.

Metric	Location	Sunday Daily Average	Weekly Average for Previous Seven Day Periods			
		1/29/23	1/29/23	1/22/23	1/15/23	1/8/23
Discharge	S-65	1,300	1,300	1,300	1,200	1,300
Discharge	S-65A ^a	1,400	1,400	1,400	1,300	1,400
Headwater Stage (feet NGVD)	S-65A	46.3	46.3	46.3	46.5	46.4
Discharge	S-65D ^b	1,400	1,400	1,300	1,400	1,400
Headwater Stage (feet NGVD)	S-65D ^c	28.4	28.4	28.4	28.3	28.4
Discharge (cfs)	S-65E ^d	1,500	1,400	1,300	1,500	1,500
Discharge (cfs)	S-67	0	0	0	0	0
Dissolved Oxygen (mg/L) e	Phase I, II/III river channel	6.7	6.5	7.3	6.8	6.6
River channel mean stage ^f	Phase I river channel	37.5	37.5	37.5	37.4	37.6
Mean depth (feet) g	Phase I floodplain	0.45	0.46	0.45	0.57	0.64

a. Combined discharge from main and auxiliary structures.

b. Combined discharge from S-65D, S-65DX1 and S-65DX2.

c. Average stage from S-65D and S-65DX1.

d. Combined discharge from S-65E and S-65EX1.

e. Dissolved oxygen is the average of values from sondes KRBN, PC62, PC33, PD62R and PD42R.

f. Mean of five river channel stations (PC62, KRDR02, KRBN, PC33, PC11) in the Phase I area.

g. One-day spatial average obtained from the South Florida Water Depth Assessment Tool (SFWDAT).

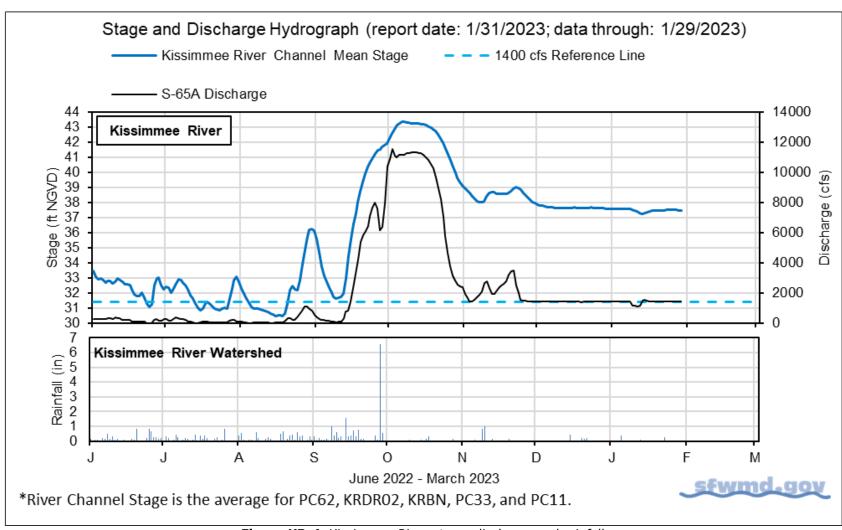
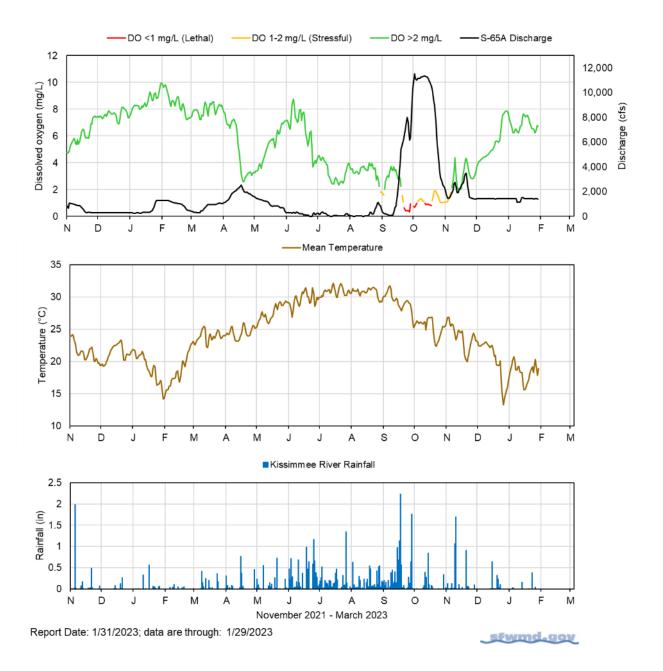


Figure KB-4. Kissimmee River stage, discharge and rainfall.


<-2.5'

Below Ground

Figure KB-5. Phase I area Kissimmee River floodplain water depths (from left to right) one year ago, one month ago and current.

Above Ground

5.0' 10' >15'

Figure KB-6. Restored Kissimmee river channel mean daily dissolved oxygen concentration (mg/L), S-65A discharge (cfs), temperature (°C) and rainfall (inches). Dissolved oxygen (DO) and temperature are mean daily values averaged for PC62, KRDR02, KRBN, PC33, PC11, PD62R, and PD42R with an average of six stations reporting this week. Rainfall values are daily totals for Kissimmee River (Pool BCD) AHED watershed.

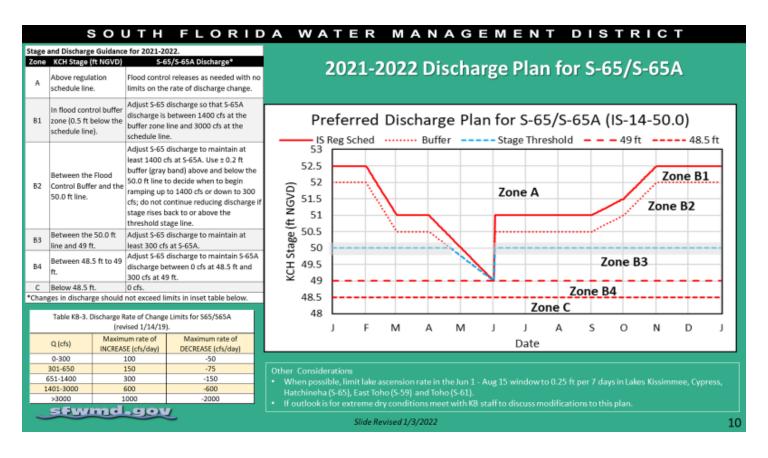
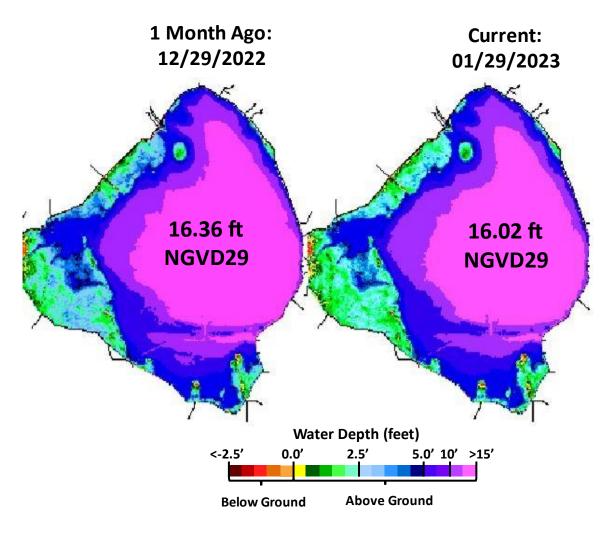


Figure KB-7. IS-14-50 Discharge Plan for S65/S65A with discharge rate of change limits (revised 1/14/19).


Lake Okeechobee

Lake Okeechobee stage was 16.02 feet NGVD on January 29, 2023, which is 0.07 feet lower than the previous week and 0.34 feet lower than a month ago (**Figure LO-1**). Lake stage remained in the Intermediate sub-band (**Figure LO-2**) and was 0.75 feet above the upper limit of the ecological envelope (**Figure LO-3**). According to NEXRAD, 0.34 inches of rain fell directly on the Lake last week.

Average daily inflows (excluding rainfall) were like the previous week, going from 1,590 cfs to 1,720 cfs. Average daily outflows (excluding evapotranspiration) increased from the previous week, going from 2,850 cfs to 3,280 cfs. The highest inflow came from the Kissimmee River (C-38 Canal; 1,410 cfs). Outflows to the west via the S-77 structure averaged 1,300 cfs for the week. Outflows to the east via the S-308 structure averaged 860 cfs and flows south via the S-350 structures averaged 830 cfs. **Figures LO-4 and LO-5** show the combined average daily inflows and outflows for the Lake over the past eight weeks, and average inflows and outflows last week, respectively. These data are provisional and are subject to change.

The most recent satellite image (January 29, 2023) from NOAA's Harmful Algal Bloom Monitoring System showed low bloom potential across the lake, except for a few pixels of moderate bloom potential scattered along the nearshore and in the western bay (**Figure LO-6**).

The fourth wading bird survey of the season was conducted on January 26, 2023. Six flocks, with an estimated total of 2,790 birds were seen actively foraging on the Lake (**Figure LO-7**). Water levels remain too high to provide suitable foraging habitat across much of the Lake, with all four 2023 surveys having numbers in the lowest quartile of the previous five years (**Figure LO-8**).

Figure LO-1. Lake Okeechobee water depth estimates based on South Florida Water Depth Assessment Tool (SFWDAT).

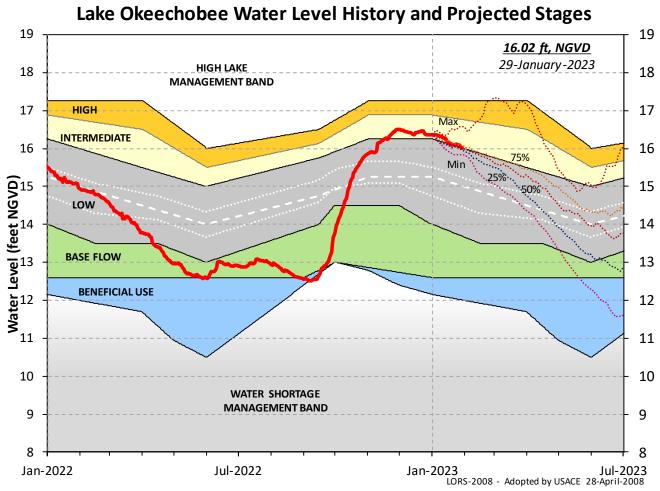
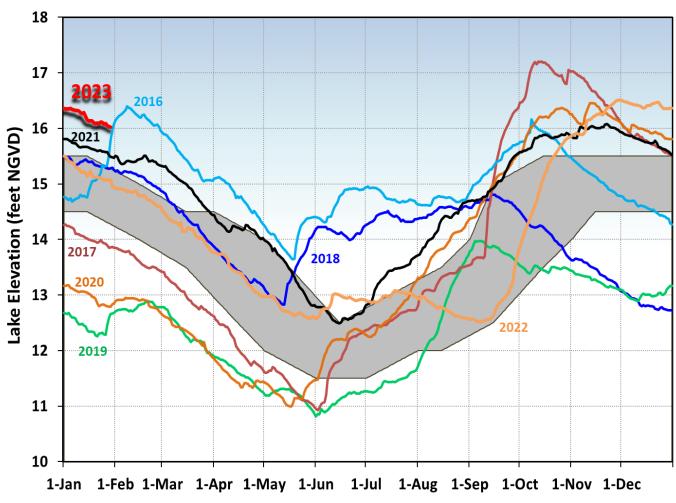
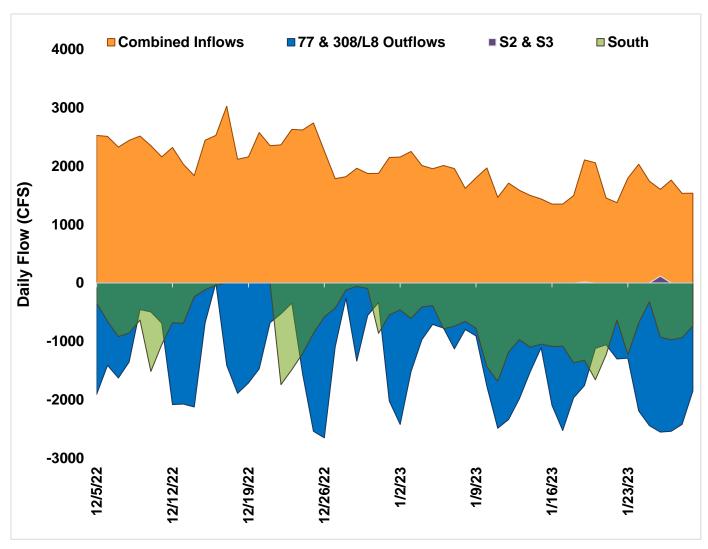
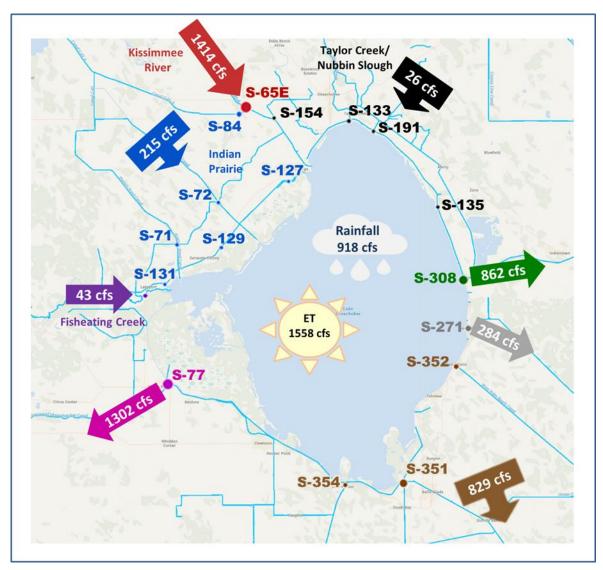
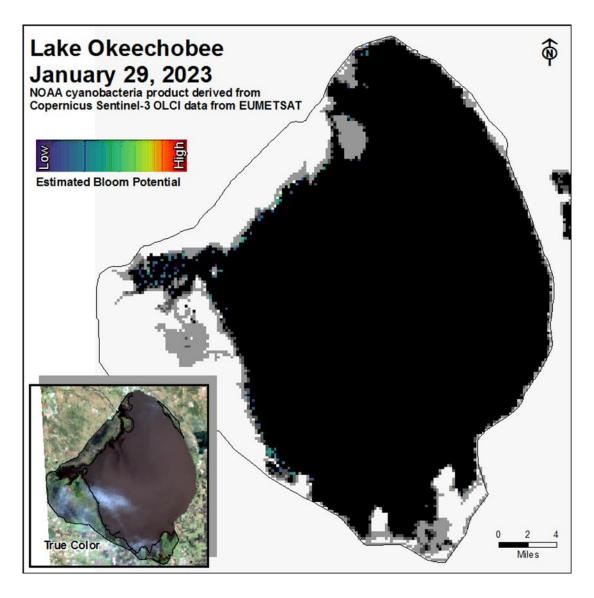
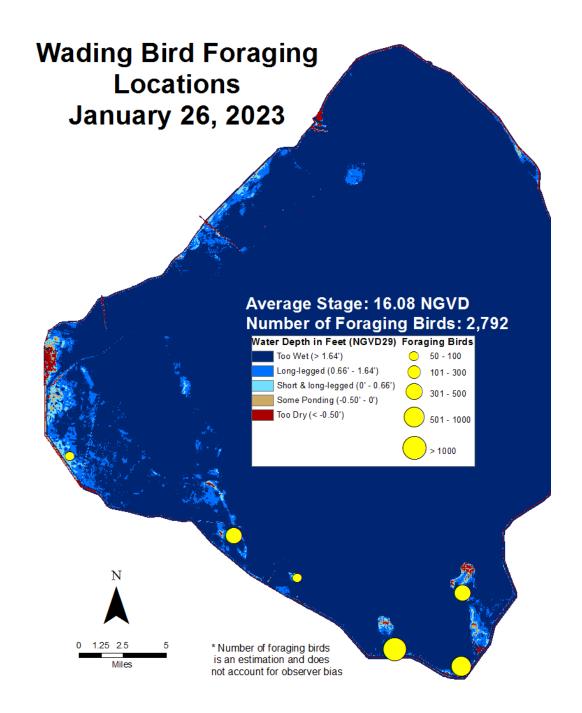




Figure LO-2. Recent Lake Okeechobee stages with projected stages based on a dynamic position analysis.


Lake Okeechobee Stage vs Ecological Envelope


Figure LO-3. The prior seven years of annual stage hydrographs for Lake Okeechobee in comparison to the ecological envelope.


Figure LO-4. Major inflows (orange) to and outflows east and west (blue) from Lake Okeechobee. Outflows south are shown in green. Flows into Lake Okeechobee from the L-8 canal through S-271 (formerly Culvert 10A) or from the C-44 canal through the S-308 are included as inflows. Conversely, flows from Lake Okeechobee into the L-8 or C-44 canals are included with outflows. Inflows are shown as positive values; outflows are negative. Outflows through the S-77 (Caloosahatchee) and S-308 (C-44 Canal) structures are based on downstream gauges to include flows to lock openings for navigation.

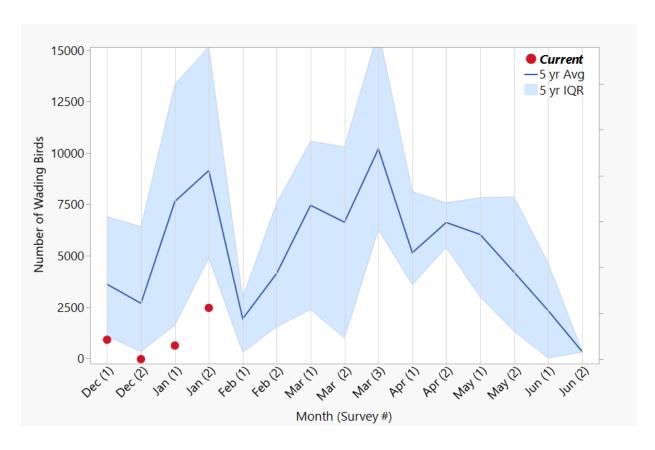

Figure LO-5. Inflows into Lake Okeechobee from Indian Prairie basins, Taylor Creek/Nubbin Slough, Kissimmee River and Fisheating Creek, and outflows to the west via S-77, to the east via S-308, to the south via S-351, S-352, S-354, and to southeast via S-271 (formerly Culvert 10A) for the week of January 23 - 29, 2023.

Figure LO-6. Cyanobacteria bloom potential on January 29, 2023, based on NOAA's harmful algal bloom monitoring system. Gray color indicates cloud cover.

Figure LO-7. Results from the Wading Bird surveys conducted on January 26, 2023. Image shows the location of flocks and the estimated total number of birds seen actively foraging on Lake Okeechobee.

Figure LO-8. Results from the 2023 Wading Bird surveys (red dots) relative to the interquartile range (shaded area) and the average (blue line) of the previous five years (2018-2022).

Estuaries

St. Lucie Estuary

Over the past week, mean total inflow to the St. Lucie Estuary was 520 cfs (**Figures ES-1** and **ES-2**) and the previous 30-day mean inflow was 160 cfs. For comparison, the historical provisional mean inflows from the contributing areas are shown in **Figure ES-2**.

Over the past week, salinities decreased at all sites in the estuary (**Table ES-1** and **Figure ES-3**). The seven-day moving average of the surface and bottom salinities at the US1 Bridge was 19.0. Salinity conditions in the middle estuary were estimated to be within the optimal range for adult eastern oysters (**Figure ES-4**). The mean larval oyster recruitment rate reported by the Fish and Wildlife Research Institute (FWRI) was 0.5 spat/shell for December (**Figure ES-5**).

Caloosahatchee River Estuary

Over the past week, mean total inflow to the Caloosahatchee River Estuary was 2,180 cfs (**Figures ES-6** and **ES-7**) and the previous 30-day mean inflow was 2,060 cfs. For comparison, the historical provisional mean inflows from the contributing areas are shown in **Figure ES-7**.

Over the past week, salinities remained the same at S-79 and Val I-75 and decreased at the remaining sites in the estuary (**Table ES-2** and **Figures ES-8** and **ES-9**). The sevenday mean salinities (**Table ES-2**) were in the optimal range (0-10) for tape grass in the upper estuary. The seven-day mean salinity values were within the optimal range for adult eastern oysters at Cape Coral and Shell Point, and in the stressed range at Sanibel (**Figure ES-10**). Oyster recruitment data in the CRE are not available at this time due to impacts from Hurricane Ian; FWRI redeployed recruitment collectors in January and will retrieve those samples in February.

Surface salinity at Val I-75 was forecasted for the next two weeks, using an autoregression model (Qiu and Wan, 2013¹) coupled with a linear reservoir model for the tidal basin. Model scenarios included pulse releases at S-79 ranging from 0 to 1,500 cfs, and a steady release at 2,000 cfs with estimated tidal basin inflows of 84 cfs. Model results from all scenarios predict daily salinity to be 1.0 or lower and the 30-day moving average surface salinity to be 0.4 or lower at Val I-75 at the end of the two-week period (**Table ES-3** and **Figure ES-13**). This keeps predicted salinities in the upper estuary within the optimal salinity range (0-10) for tape grass.

¹ Qui, C., and Y. Wan. 2013. Time series modeling and prediction of salinity in the Caloosahatchee River Estuary. *Water Resources Research* 49:5804-5816.

Red Tide

The Florida Fish and Wildlife Research Institute reported on January 27, 2023, that *Karenia brevis*, the Florida red tide dinoflagellate, was observed at bloom concentrations in samples collected from Lee and Monroe counties over the past week. On the east coast, red tide was not observed in samples from St. Lucie, Martin, or Palm Beach counties.

Water Management Recommendations

Lake stage is in the Intermediate Sub-Band. Tributary conditions are normal. The LORS2008 release guidance suggests up to 4,000 cfs release at S-77 to the Caloosahatchee River Estuary and up to 1,800 cfs release at S-80 to the St. Lucie Estuary.

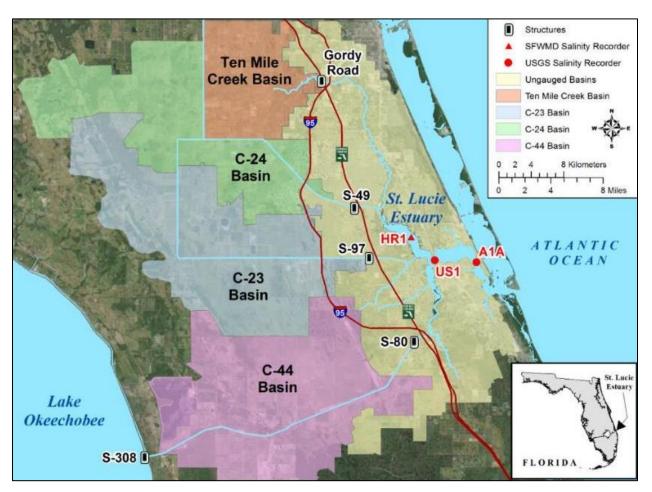
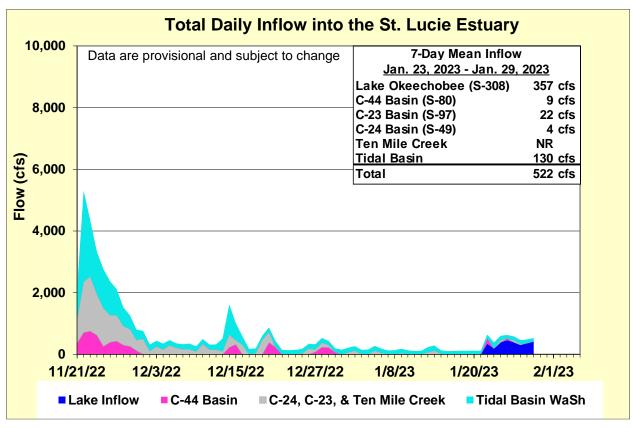
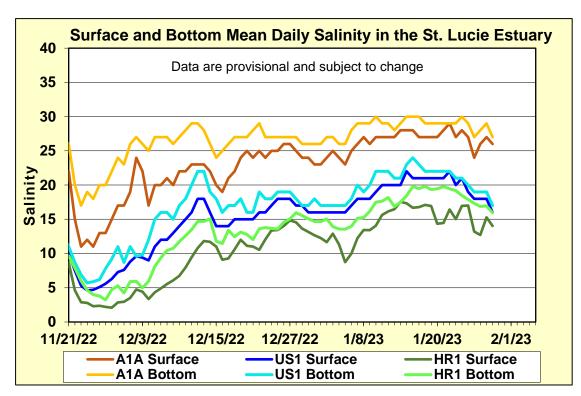
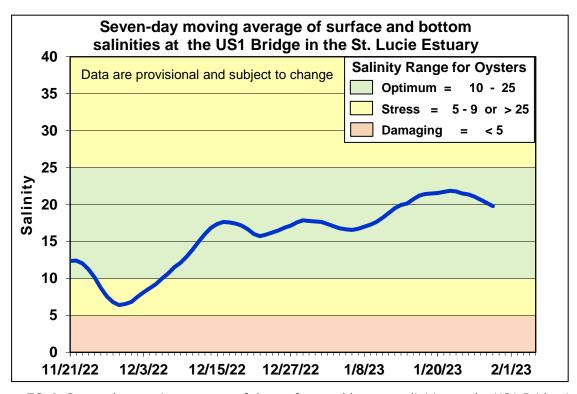
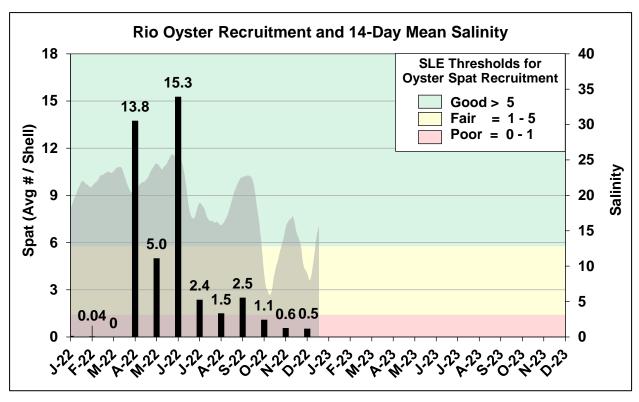



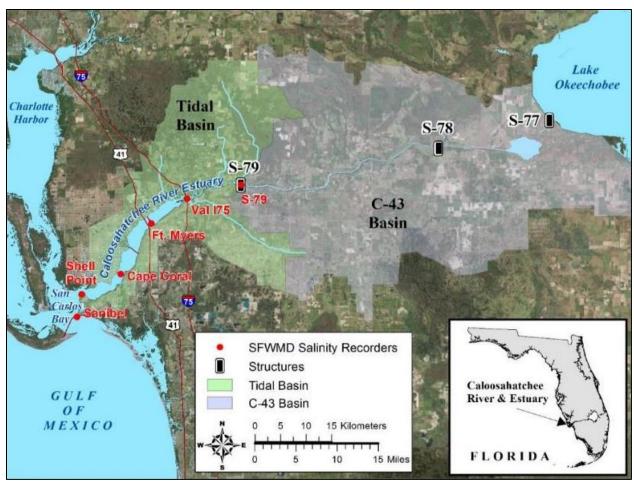
Figure ES-1. Basins, water control structures and salinity monitoring sites in the St. Lucie Estuary.

Figure ES-2. Total daily inflows from Lake Okeechobee and runoff from the C-44, C-23, C-24, Ten Mile Creek, and Tidal Basins into the St. Lucie Estuary.

Table ES-1. Seven-day mean salinity at oyster monitoring sites in the St. Lucie Estuary. Current means are in bold font; previous week's means are in parentheses. The envelope reflects the optimum salinity range for adult eastern oysters (*Crassostrea virginica*) in the estuary. Data are provisional.

Sampling Site	Surface	Bottom	Optimum Envelope
HR1 (North Fork)	14.9 (16.1)	17.5 (19.6)	10.0 – 25.0
US1 Bridge	18.6 (21.1)	19.4 (22.4)	10.0 – 25.0
A1A Bridge	26.4 (27.6)	28.4 (29.3)	10.0 – 25.0


Figure ES-3. Mean daily salinity at the A1A, US1 and HR1 sites in the St. Lucie Estuary.

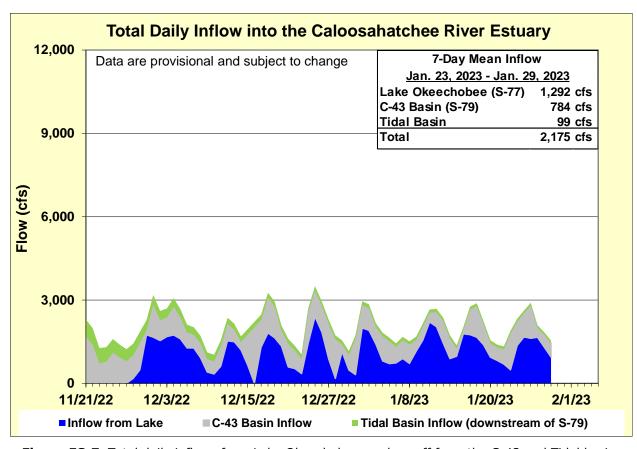
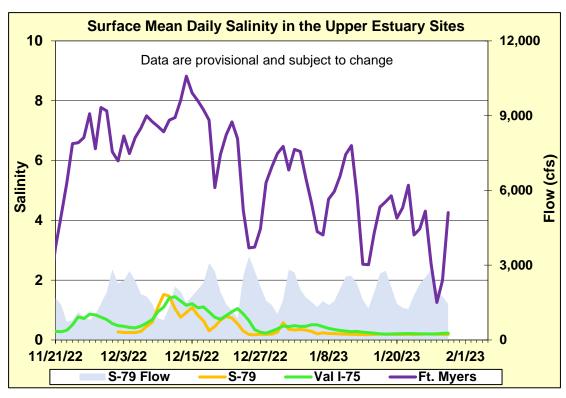

Figure ES-4. Seven-day moving average of the surface and bottom salinities at the US1 Bridge in the St. Lucie Estuary.

Figure ES-5. Mean oyster recruitment at the Rio oyster monitoring station and 14-day mean salinity at US1 Bridge.


Figure ES-6. Basins, water control structures and salinity monitoring sites in the Caloosahatchee River Estuary.

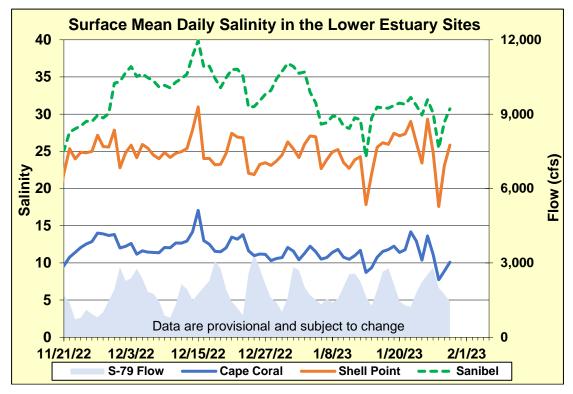

Figure ES-7. Total daily inflows from Lake Okeechobee, and runoff from the C-43 and Tidal basins into the Caloosahatchee River Estuary.

Table ES-2. Seven-day mean salinity at six monitoring sites in the Caloosahatchee River Estuary. Current means are in bold font; previous week's means are in parentheses. The envelope in the upper estuary sites is for the protection of tape grass and the envelope in the lower estuary is the optimum salinity range for adult eastern oysters (*Crassostrea virginica*). Data are provisional.

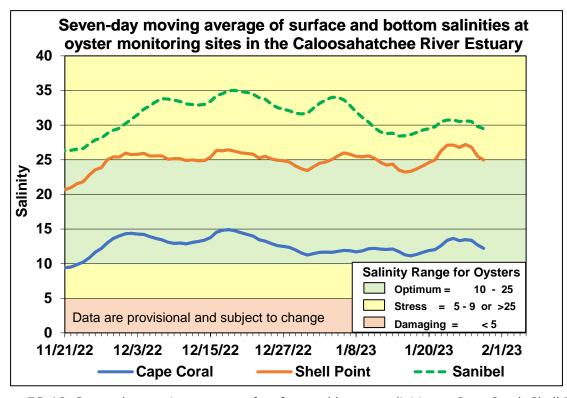

Sampling Site	Surface	Bottom	Optimum Envelope
S-79 (Franklin Lock)	0.2 (0.2)	0.2 (0.2)	0.0 – 10.0
Val I-75	0.2 (0.2)	0.2 (0.2)	0.0 - 10.0
Fort Myers Yacht Basin	3.1 (4.4)	4.9 (6.5)	0.0 - 10.0
Cape Coral	10.7 (12.0)	13.1 (14.8)	10.0 – 25.0
Shell Point	24.3 (26.9)	24.7 (27.3)	10.0 – 25.0
Sanibel	29.7 (31.3)	28.9 (30.2)	10.0 – 25.0

Figure ES-8. Mean daily salinity at upper Caloosahatchee River Estuary monitoring sites and mean daily flow at S-79.

Figure ES-9. Mean daily surface salinity at lower Caloosahatchee River Estuary monitoring sites and mean daily flow at S-79.

Figure ES-10. Seven-day moving average of surface and bottom salinities at Cape Coral, Shell Point and Sanibel monitoring sites in the Caloosahatchee River Estuary.

Table ES-3. Predicted salinity at Val I-75 in the Caloosahatchee River Estuary at the end of the forecast period for various S-79 flow release scenarios.

Scenario	Simulated S-79 Flow (cfs)	Tidal Basin Runoff (cfs)	Daily Salinity	30-Day Mean Salinity
Α	0	84	1.0	0.4
В	450	84	0.5	0.4
С	750	84	0.3	0.4
D	1000	84	0.3	0.4
Е	1500	84	0.3	0.4
F	2000	84	0.3	0.4

Caloosahatchee River Estuary Flows and Salinity Observed and Forecast Salinity at Val I-75 S-79 = 0 cfs & TBR = 84 cfs

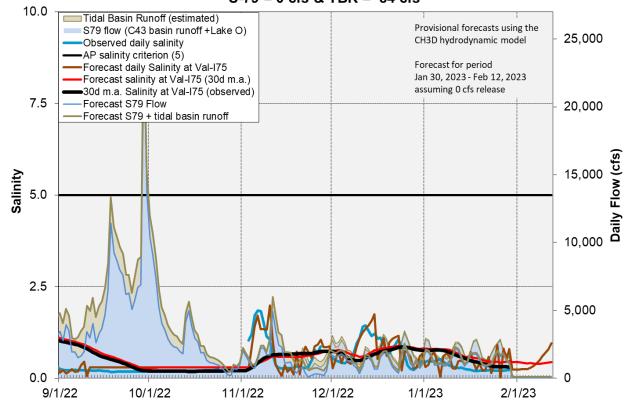
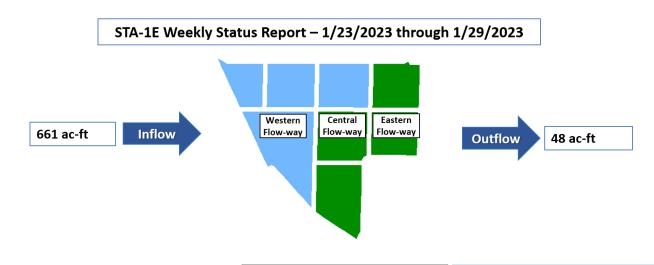


Figure ES-11. Forecasted Val I-75 site surface salinity assuming no pulse release at S-79.

Stormwater Treatment Areas

STA-1E: STA-1E Western Flow-way is offline for post-construction vegetation grow in. Operational restrictions are in place in STA-1E Central and Eastern Flow-ways for vegetation management activities. Online treatment cells are at or near target stage and vegetation in the flow-ways is stressed and highly stressed. The 365-day phosphorus loading rates (PLRs) are high for the Eastern and Central Flow-way (**Figure S-1**).


STA-1W: Operational restrictions are in place in STA-1W Western, Eastern, and Northern Flow-ways for vegetation management activities. Treatment cells are at target stage. Vegetation in the flow-ways is stressed and highly stressed. The 365-day PLR for the Eastern Flow-way is below 1.0 g/m²/year. The 365-day PLRs for the Northern and Western Flow-way are high (**Figure S-2**).

STA-2: STA-2 Flow-way 2 is offline for post-construction vegetation grow in. Operational restrictions are in place in STA-2 Flow-ways 3 and 4 for vegetation management activities. Online treatment cells are at or near target stage. Vegetation in Flow-ways 1 and 3 is stressed, and in Flow-ways 2, 4 and 5 is highly stressed. The 365-day PLRs for Flow-ways 4 and 5 are below 1.0 g/m²/year. The 365-day PLR for Flow-ways 1 and 3 are high (**Figure S-3**).

STA-3/4: STA-3/4 Eastern Flow-way is offline for vegetation rehabilitation/drawdown. Online treatment cells are at or near above target stage. Vegetation in the Eastern and Central Flow-ways is highly stressed and in the Western Flow-way is stressed. The 365-day PLRs for the Central and Western Flow-ways are below 1.0 g/m²/year (**Figure S-4**).

STA-5/6: All flow-ways in STA-5/6 are online. Most treatment cells are below target stage. All treatment cells have highly stressed vegetation conditions except Flow-ways 7 and 8 which are healthy. The 365-day PLRs for most flow-ways are at or below 1.0 g/m²/year, except Flow-ways 3 and 4 which are high (**Figure S-5** and **S-6**).

For definitions on STA operational language see glossary following figures.

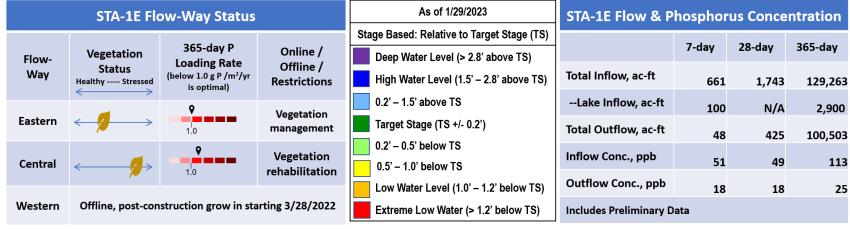


Figure S-1. STA-1E Weekly Status Report

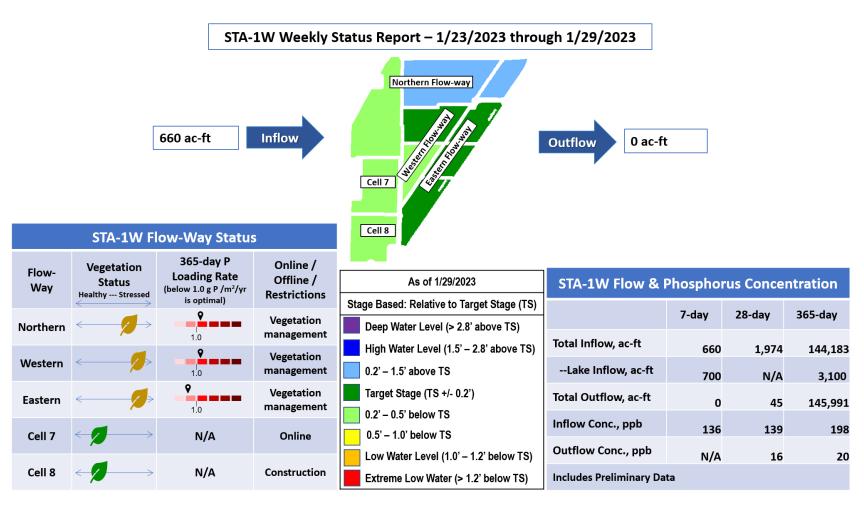
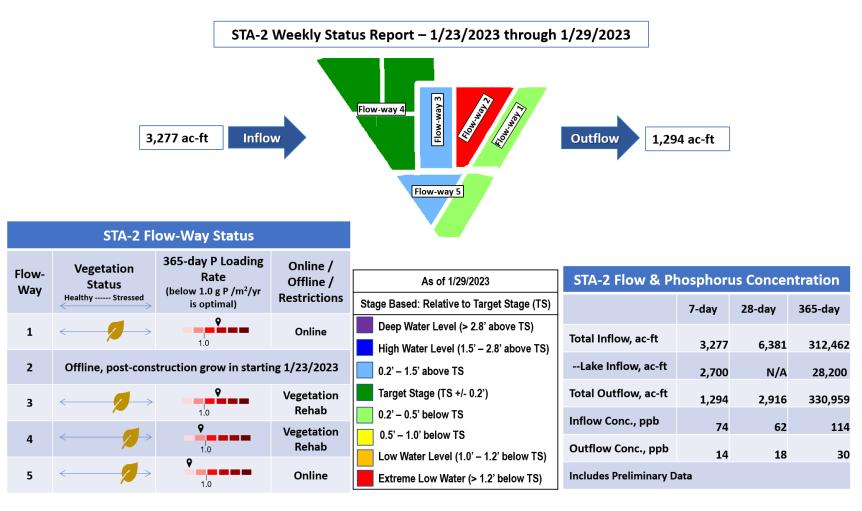
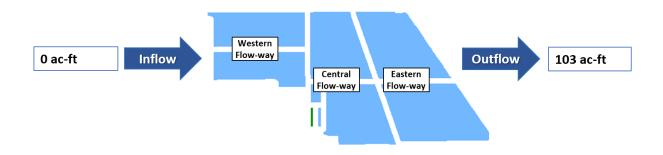
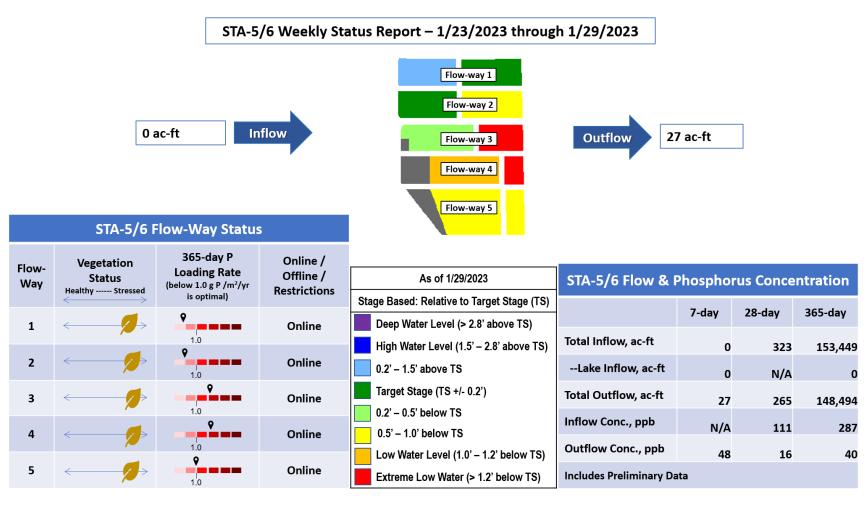
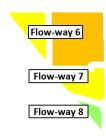


Figure S-2. STA-1W Weekly Status Report


Figure S-3. STA-2 Weekly Status Report

STA-3/4 Weekly Status Report – 1/23/2023 through 1/29/2023


STA-3/4 Flow-Way Status				As of 1/29/2023	STA-3/4 Flow & Phosphorus Concentration			
	Vozatation	365-day P	Online /	Stage Based: Relative to Target Stage (TS)		7-day	28-day	365-day
Flow- Way	Vegetation Status	Loading Rate (below 1.0 g P /m²/yr	Offline /	Deep Water Level (> 2.8' above TS)	Total Inflow, ac-ft	_		
,	Healthy Stressed	is optimal)	Restrictions	High Water Level (1.5' – 2.8' above TS)	Total Illinoit, ac It	0	14	299,657
	Offline, vegetation management drawdown as of 3/1/2021			0.2' – 1.5' above TS	Lake Inflow, ac-ft	0	N/A	4,300
Eastern				Target Stage (TS +/- 0.2')	Total Outflow, ac-ft	103	185	293,092
Central	←	1.0	Online	0.2' – 0.5' below TS	Inflow Conc., ppb			
				0.5' – 1.0' below TS	milett centil) pps	N/A	N/A	93
		•		Low Water Level (1.0' – 1.2' below TS)	Outflow Conc., ppb	19	20	16
Western	\longleftrightarrow	1.0	Online	Extreme Low Water (> 1.2' below TS)	Includes Preliminary Da	ata		

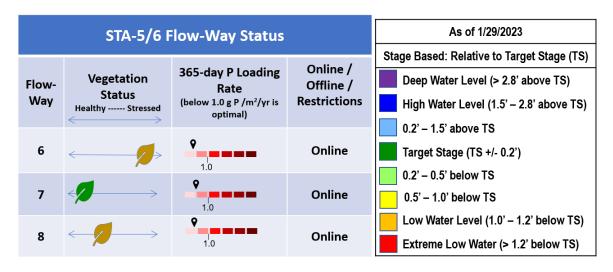

Figure S-4. STA-3/4 Weekly Status Report

Figure S-5. STA-5/6 Weekly Status Report (Flow-ways 1 – 5)

STA-5/6 Weekly Status Report - 1/23/2023 through 1/29/2023

Figure S-6. STA-5/6 Weekly Status Report (Flow-ways 6 – 8)

Basic Concepts and Definitions for STA Weekly Status Report

- Inflow: Sum of flow volume at all inflow structures to an STA.
- Lake Inflow: Portion of the STA total inflow volume that originates from Lake Okeechobee.
- Outflow: Sum of flow volume at outflow structures from an STA.
- Total Phosphorus (TP): Total mass of phosphorus in all its forms; including particulate, dissolved, etc.
- Inflow Concentration: TP concentration is the mass of TP in micrograms per liter of water, µg/L or ppb. Inflow concentration refers to the flow-weighted mean TP from all inflow structures over a period of time.
- Outflow Concentration: The flow-weighted mean TP from all outflow structures over a period of time. The outflow concentration represents the reduction of inflow TP achieved by STA treatment of the inflow water.
- WQBEL: The STA outflow concentration that is required upon completion of the Restoration Strategies projects by December 2025. The outflow concentration shall not exceed 13 ppb as an annual flow weighted mean in more than 3 out of 5 water years on a rolling basis and shall not exceed 19 ppb as an annual flow weighted in any water year.
- Flow-Way (FW): One or more treatment cells connected in series. Cells typically have emergent aquatic vegetation (EAV) in the front portion of the flow-way followed by a mix of EAV and submerged aquatic vegetation (SAV)
- Vegetation Status: Healthy means the vegetation condition is good and will allow the STA to perform as designed. Stressed means the vegetation is showing signs of poor health, such as browning or areas of vegetation die-off, or the cell contains undesirable vegetation such as floating exotic vegetation requiring treatment. The TP reduction capability of the STA is affected when the vegetation condition is poor.
- Phosphorus Loading Rate (PLR): Mass of inflow TP in grams, divided by total treatment area of STA in square meters, per year. In general, a 365-day value of less than 1.0 is needed for an STA to perform optimally. A PLR of 2.0 is considered very high and a PLR of 3.0 is considered extremely high. The TP reduction capability of the STA is affected when the PLR is high, very high and extremely high.
- Online: Online status means the FW can receive and treat inflow.
- Online with Restriction: The FW can receive and treat inflow, but the amount of flow or water level may be limited temporarily. For example, a vegetation rehabilitation effort may require reduced flows through an area while the new plants are establishing, or nesting by protected species may require a certain water level not to be exceeded.
- Offline: The FW is unable to receive and treat inflow due to repairs, construction, or other prohibitive reasons.
- **Depth**: Difference between the average surface water level in a cell and the average ground elevation in that cell. Target depths, or depths between flow events, are between 1.25 ft to 1.5 ft. As depth approaches or drops below zero, an increasing percentage of the cell is considered dry and STA conditions deteriorate. An increase in depth above target depth is expected with increasing flow. However, as depth increases much above the target depth and is sustained over a period of time, it can be detrimental to vegetation health and overall STA treatment performance.
- Note: The data provided in this summary report were developed using a combination of provisional and quality-assured flow and water quality data. In some cases, best professional judgment was used to estimate missing data and revise questionable data. Values provided are not considered final but are appropriate for use in STA operational decision-making.

Everglades

Water Conservation Area Regulation Schedules

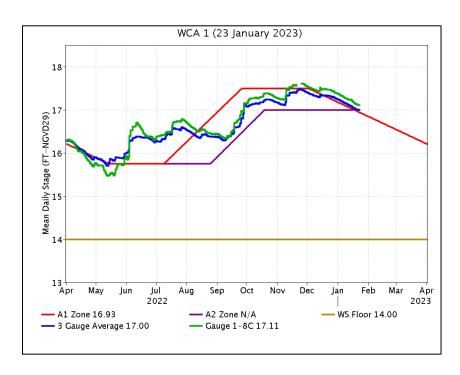
WCA-1: Stage at the 1-8C receded over the week in parallel with schedule. The average on Sunday was 0.16 feet above the falling Zone A1 regulation line. WCA-2A: Stage recession at the 2-17 gauge continued the trend from last week. The average on Sunday was 0.96 feet above the falling regulation line. WCA-3A: Over the last week the Three Gauge Average stage continues to recede faster than the slope of the regulation line. The average stage was around 0.59 feet below the falling regulation line on Sunday. WCA-3A North: At gauge 62 (Northwest corner) stage continues a steep recession, the average on Sunday was 0.88 feet below the Upper schedule line. (**Figures EV-1** through **EV-4**).

Water Depths

The SFWDAT tool illustrates current stages in the EPA are falling in most of the major basins; with NESRS, southern WCA-1 and the upper reaches of the L-67s retaining stage. WCA-3A continues to dry down from the northwest to the southeast. There is a further expansion in extent for areas with the potential for stages to have moved to ground surface, with more than one-half of that sub basin now in the 0.0' to 0.5' category. Connectivity in SRS of ENP remains strong while to the east and west it is diminishing. Comparing current WDAT water depths to one month ago conditions within the EPA are shallower with southern WCA-2A and eastern WCA-3A significantly so. Looking back a year ago, most of eastern WCA-3A and western ENP are slightly deeper. (**Figure EV-5 and Figure EV-6**). Comparing current conditions to the 20-year average on January 29: Conditions are above average in northeastern WCA-3A and below in the southeastern WCA-3A; significantly above the 90th percentile in, northeastern SRS and portions of WCA-1 (**Figure EV-7**).

Taylor Slough and Florida Bay

There was very little rainfall in Taylor Slough and Florida Bay over the past week (Monday-Sunday) based on the 18 gauges used in this report. Rainfall ranged from 0.0 inches at 7 sites to 0.1 inches in Royal Palm Lake in northeast Taylor Slough. Taylor Slough stages decreased between -0.16 feet and -0.06 feet at Taylor Slough Bridge (TSB) and P37 downstream in Taylor Slough, respectively (**Figure EV-8 and Figure EV-9**). Taylor Slough water levels remain above the historical average for this time of year by +3.2 inches compared to before the Florida Bay initiative (starting in 2017), a decrease of -1.6 inches from last week, largely driven by decreases in the northern slough.


Average Florida Bay salinity was 28.5, a decrease of -0.8 from last week. Salinity changes ranged from a decrease of -7.9 in Joe Bay (JB) in the eastern nearshore following strong positive flows to +1.4 at Buoy Key (BK) in the western bay (**Figure EV-8**). As of 1/29, salinity is just 0.1 above the 75th percentile in the Eastern Bay and within the IQR in the Central and Western regions (**Figure EV-10**). Florida Bay salinity is +2.3 above its historical average for this time of year, down -0.3 from last week.

Water Management Recommendations

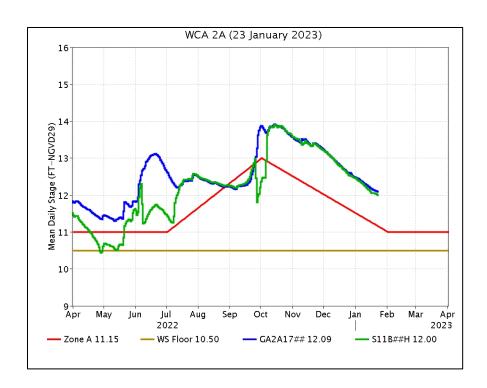

Conserving water in the northern WCA-3A region will most likely prove critical for the upcoming wading bird nesting season. Optimizing the volume of water currently available to be discharged into the northern perimeter of WCA-3A will benefit the ecology of that region as conditions transition to a dry season predicted to be drier than average Maintaining a moderate rate of stage change within the marshes of WCAs, avoiding abrupt changes in water depth and conserving water north in the system has an ecological benefit. When water is available discharge downstream through Taylor Slough. Individual regional recommendations can be found in **Table EV-2**.

Table EV-2. Previous week's rainfall and water depth changes in Everglades basins.

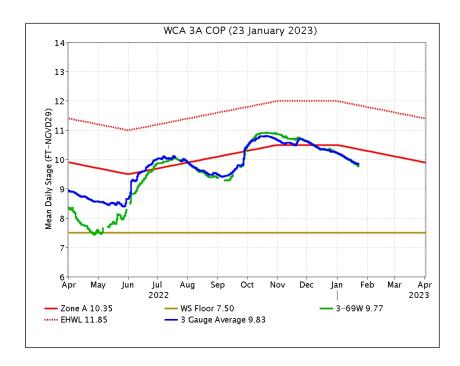
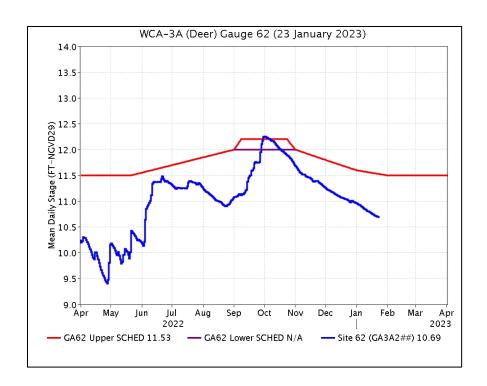
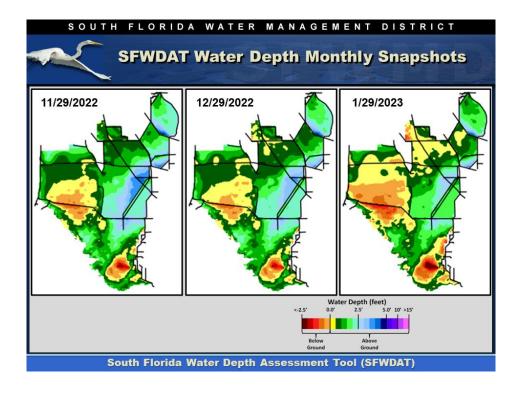
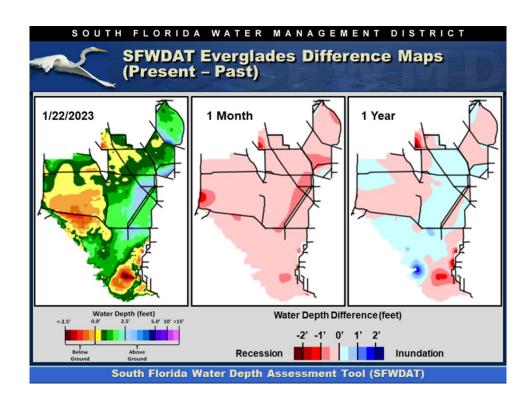
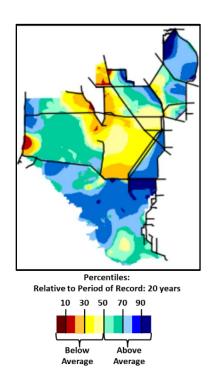

Everglades Region	Rainfall (inches)	Stage change (feet)
WCA-1	0.26	-0.07
WCA-2A	0.16	-0.09
WCA-2B	0.06	-0.13
WCA-3A	0.15	-0.11
WCA-3B	0.06	-0.10
ENP	<0.01	-0.04

Figure EV-1. WCA-1 stage hydrographs and regulation schedule.

Figure EV-2. WCA-2A stage hydrographs and regulation schedule.

Figure EV-3. WCA-3A stage hydrographs (three-gauge average, S-333 headwater) and regulation schedule.


Figure EV-4. WCA-3A stage hydrograph (Deer gauge; Site 62) and CA62 regulation schedule.

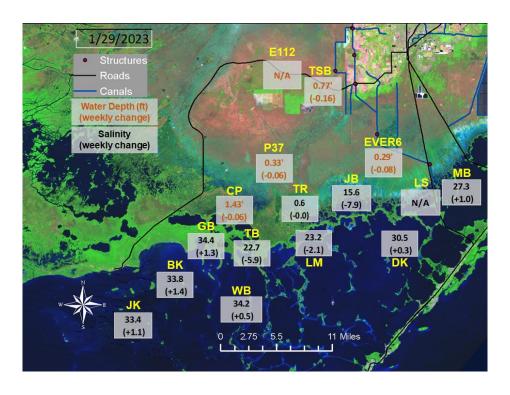

Figure EV-5. Everglades water depths from two months ago (left), one month ago (center) and present (right), based on SFWDAT.

Figure EV-6. Present Everglades water depths (left) and water depth changes from one month (center) and one year (right) ago, based on SFWDAT.

Figure EV-7. Present water depths (1/29/2023) compared to the day of year average over the previous 20 years.

Figure EV-8. Taylor Slough water depths with changes since a week ago and Florida Bay salinities with changes since a week ago.

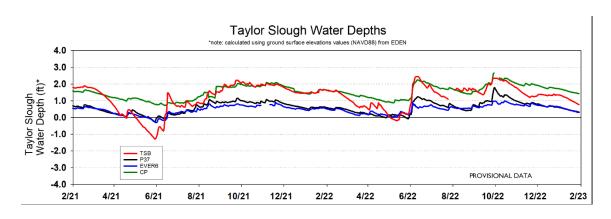
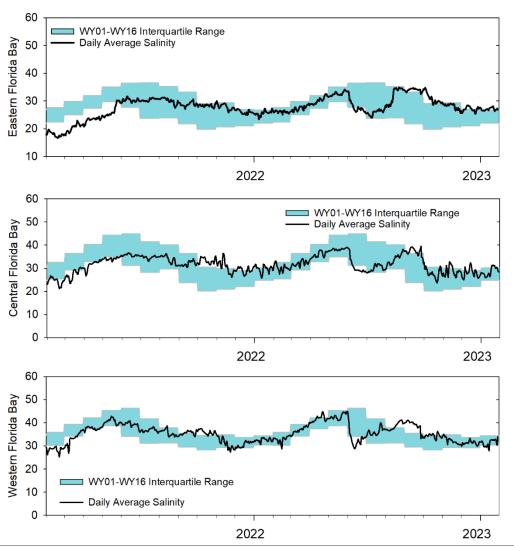



Figure EV-9. Taylor Slough water depth time series.

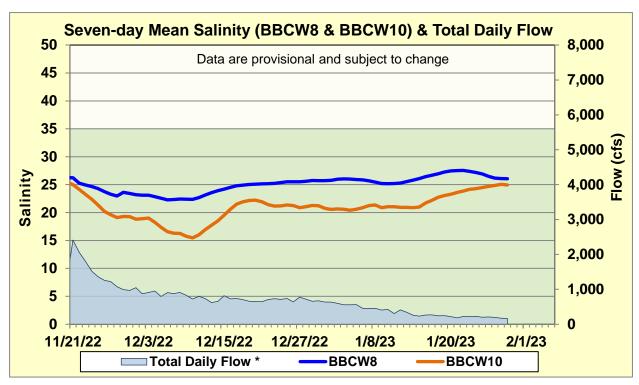

Figure EV-10. Eastern (top panel), Central (middle panel) and Western (bottom panel) Florida Bay daily average salinities with interquartile (25-75 percentile) ranges.

Table EV-2. Weekly water depth changes and water management recommendations

Area	Weekly change	Recommendation Conserve water in this basin as possible. Recession rate of less than 0.05' per week.	Protect within basin and downstream habitat and wildlife.	
WCA-1	Stage decreased by 0.07'			
WCA-2A	Stage decreased by 0.09'	Conserve water in this basin as possible. Recession rate of less than 0.05' per week.	Protect within basin and downstream habitat and wildlife. Protect conditions conducive to wading bird foraging later in the season.	
WCA-2B	Stage decreased by 0.13'	Conserve water in this basin as possible. Recession rate of less than 0.05' per week.	Protect within basin and downstream habitat and wildlife.	
WCA-3A NE	Stage decreased by 0.13'	Conserve water in this basin as possible. Recession rate of less than 0.05' per week	Protect within basin and downstream habitat and wildlife. Protect conditions conducive to wading bird foraging later in the season. Lowe fire risk and protect peat soils.	
WCA-3A NW	Stage decreased by 0.07'	Conserve water in this basin as possible. Recession rate of less than 0.05' per week		
Central WCA-3A S	Stage decreased by 0.13'	Conserve water in this basin as possible. Recession rate of less than 0.10' per week	Protect within basin and downstream habitat and wildlife.	
Southern WCA-3A S	Stage decreased by 0.12'			
WCA-3B	Stage decreased by 0.10'	Recession rate of less than 0.10' per week.	Protect within basin and downstream habitat and wildlife.	
ENP-SRS	Stage decreased by 0.04'	Make discharges to ENP according to COP and TTFF protocol while adaptively considering upstream and downstream ecological conditions. Discussions on water management within the system should be continued.	Protect within basin and upstream habitat and wildlife.	
Taylor Slough	Stage changes ranged from -0.16' to -0.06'	Move water southward as possible.	When available, provide freshwater buffer for downstream conditions.	
FB- Salinity	Salinity changes ranged from -7.9 to +1.4	Move water southward as possible.	When available, provide freshwate to maintain low salinity buffer and promote water movement.	

Biscayne Bay

As shown in **Figure BB-1**, mean total inflow to Biscayne Bay was 198 cfs and the previous 30-day mean inflow was 343 cfs. The seven-day mean salinity was 26.2 at BBCW8 and 24.4 at BBCW10, both within the ideal salinity range for estuarine organisms in this region (salinity less than 35). Data provided by Biscayne National Park.

Figure BB-1. Seven-day mean salinity at BBCW8 and BBCW10 and total daily flow in Biscayne Bay. Total daily flow was calculated using flow from structures S20G, S20F, S21A, S123, and S700P.