ENSO Strength to Rainfall Outlook Tercile Probability Conversion

Yogesh Khare, Matthew Goshgarian, and Jenifer Barnes

Methodology

Use historical SST Anomaly for ENSO region 3.4 (ONI) and rainfall information to

 convert ENSO into tercile probabilities$>$ For each of the 12 3-month seasons

Rainfall ENSO conversion coefficient Matrix

S_LN - Strong La Nina (ONI <-1.5 C)
M_LN - Moderate La Nina ($-1.5 \mathrm{C}<=\mathrm{ONI}<-1 \mathrm{C}$)
NN_LN - Near Neutral La Nina ($-1 \mathrm{C}<=\mathrm{ONI}<-0.5 \mathrm{C}$)
NN_EN - Near Neutral El Nino ($0.5 \mathrm{C}<\mathrm{ONI}<=1 \mathrm{C}$)
M_EN - Moderate El Nino ($1 \mathrm{C}<\mathrm{ONI}<=1.5 \mathrm{C}$)
S_EN - Strong El Nino (1.5 C < ONI)
S - 3-month seasons \{DJF, JFM, FMA, MAM, AMJ, MJJ, JJA, JAS, ASO, SON, OND, NDJ\}

Step 1:

Classify SST Anomaly for Region 3.4 (ONI) into ENSO Categories for each 3-month season

Step 2:

Calculate counts/probabilities of Below Normal, Normal, and Above Normal rainfall events for each ENSO category

Note: each column of this matrix will/should add to 1

Step 3:

Repeat steps 1 and 2 for each 3-month seasons

ENSO Strength Probability Vector

ENSO Cat-Strength Probability Matrix

HOME> Climate \& Weather Linkage> El Nino Southern Oscillation ENSO Strengths This table shows the forecast probability (\%) of Niño-3.4 index exceeding a certain threshold (in degrees Celsius). For negative thresholds, the table shows the probability (\%) of a Niño-3.4 index value that is less than (more negative) that value. For positive thresholds, the table shows the probability (\%) of a Niño-3.4 index value that is greater than (more positive) that value. This tool supports the official ENSO Diagnostic discussion updated on the 2nd Thursday of each month.						
Target	<-1.5 ${ }^{\circ} \mathrm{C}$	- $-1.0^{\circ} \mathrm{C}$	$<-0.5{ }^{\circ} \mathrm{C}$	> $0.5{ }^{\circ} \mathrm{C}$	$=1.0{ }^{\circ} \mathrm{C}$	> $1.5{ }^{\circ} \mathrm{C}$
JJA	\sim	\sim	\sim	97	53	4
JAS	\sim	\sim	\sim	96	70	25
Aso	\sim	\sim	\sim	96	76	37
son	\sim	\sim	\sim	96	80	46
OND	\sim	\sim	\sim	96	82	52
NDJ	\sim	\sim	\sim	96	81	51
DJF	\sim	\sim	\sim	93	73	41
JFm	\sim	\sim	\sim	90	64	30
FMA	\sim	\sim	\sim	85	52	17
	$<-1.5{ }^{\circ} \mathrm{C}$	$<-1.0^{\circ} \mathrm{C}$	$<-0.5^{\circ} \mathrm{C}$	> $0.5{ }^{\circ} \mathrm{C}$	$=1.0{ }^{\circ} \mathrm{C}$	> $1.5{ }^{\circ} \mathrm{C}$

The values are based on the analysis published in:
L'Heureux, M. L., Tippett, Michael K., Takahashi, Ken, Barnston, Anthony G., Becker, Emily J., Bell, L'Heureux, M. L., Tippett, Michael K., Takahashi, Ken, Barnston, Anthony G., Becker, Emily J.,
Gerald D.., Di Liberto, Tom E., Gottschalck, Jon, Halpert, Michael I., Hu, Zung Zhen, Johnson, Nathaniel C., Xue, Ya, and Wang, Wanqiu, 2019 's strength Outlooks for the EI Niño-Southern
Oscillation. Wea. Forecasting, $34,165-175$, https://doi.org/10.1175/WAF-D-18-0126.1.

CALCULATION DETAILS

$>$ Currently CPC uses a 30-year base period of SST that is used to define an anomaly. The base periods are used for 5 -year periods then updated. Climate Prediction Center - Monitoring \& Data: Ocean Niño Index Changes Description (noaa.gov)
> For example, "ONI values during 19501955 will be based on the 1936-1965 base period, ONI values during 19561960 will be based on the 1941-1970 base period, and so on and so forth."
$>$ This method for ONI calculation is used due to a warming trend in the Nino-3.4 area.
$>$ We considered 3 methods to calculate SST anomalies and settled on using a base period of 1914-1950.
\Rightarrow psl.noaa.gov/gcos wgsp/Timeseries/Da

Step 1: ENSO Classification

$>$ After calculating ONI values from 1915-1949 we classified the values into ENSO categories

 using 3-month averages.| | DJF | JFM | FMA | MAM | AMJ | MנJ | JJA | JAS | AsO | son | OND | NDJ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1915 | | 0.66 | 0.54 | 0.55 | 0.76 | 0.67 | 0.51 | 0.22 | 0.26 | 0.22 | 0.06 | -0.11 |
| 1916 | -0.3 | -0.4 | -0.6 | -0.4 | -0.3 | -0.5 | -0.9 | -1.2 | -1.3 | -1.4 | -1.5 | -1.6 |
| 1917 | -1.5 | -1.1 | -0.7 | -0.3 | -0.1 | 0.0 | 0.1 | 0.2 | 0.2 | 0.0 | -0.3 | -0.6 |
| 1918 | -0.8 | -0.9 | -0.8 | -0.5 | -0.1 | 0.2 | 0.2 | 0.3 | 0.6 | 1.0 | 1.3 | 1.4 |
| 1919 | 1.4 | 1.2 | 0.9 | 0.8 | 0.7 | 0.7 | 0.7 | 0.6 | 0.5 | 0.2 | 0.1 | 0.3 |
| 1920 | 0.5 | 0.6 | 0.3 | 0.1 | 0.0 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.2 | 0.2 |
| 1921 | -0.1 | -0.5 | -0.8 | -0.9 | -0.5 | -0.4 | -0.2 | -0.1 | 0.0 | -0.3 | -0.4 | -0.6 |
| 1922 | -0.4 | -0.2 | -0.2 | 0.0 | -0.2 | -0.1 | -0.4 | -0.4 | -0.4 | -0.2 | -0.3 | -0.4 |
| 1923 | -0.6 | -0.7 | -0.7 | -0.5 | -0.2 | -0.1 | 0.1 | 0.3 | 0.7 | 0.9 | 1.0 | 0.8 |
| 1924 | 0.7 | 0.5 | 0.3 | -0.1 | -0.4 | -0.7 | -0.7 | -0.8 | -0.6 | -0.7 | -0.6 | -0.9 |
| 1925 | -0.7 | -0.7 | -0.5 | -0.4 | -0.3 | 0.1 | 0.4 | 0.8 | 0.9 | 1.0 | 1.3 | 1.4 |
| 1926 | 1.5 | 1.3 | 1.2 | 1.1 | 0.9 | 0.8 | 0.6 | 0.4 | 0.0 | -0.1 | -0.2 | -0.1 |
| 1927 | 0.0 | 0.0 | -0.1 | -0.3 | -0.3 | -0.2 | -0.1 | -0.1 | 0.1 | 0.2 | 0.3 | 0.3 |
| 1928 | 0.3 | 0.1 | -0.1 | -0.1 | -0.1 | 0.0 | -0.1 | 0.0 | -0.1 | 0.0 | 0.0 | -0.1 |
| 1929 | -0.1 | -0.1 | -0.1 | -0.1 | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 | 0.4 |
| 1930 | 0.4 | 0.3 | 0.4 | 0.3 | 0.3 | 0.4 | 0.6 | 1.0 | 1.1 | 1.5 | 1.5 | 1.6 |
| 1931 | 1.4 | 1.3 | 1.2 | 1.0 | 0.8 | 0.6 | 0.4 | 0.2 | -0.1 | -0.2 | -0.2 | -0.3 |
| 1932 | -0.3 | -0.1 | 0.1 | 0.3 | 0.3 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.0 | -0.2 |
| 1933 | -0.3 | -0.2 | -0.1 | -0.1 | -0.4 | -0.5 | -0.7 | -0.7 | -0.8 | -0.8 | -1.0 | -1.0 |
| 1934 | -1.0 | -0.9 | -0.7 | -0.6 | -0.4 | -0.3 | -0.3 | -0.3 | -0.3 | -0.2 | -0.1 | -0.2 |
| 1935 | -0.3 | -0.3 | -0.3 | -0.3 | -0.4 | -0.4 | -0.2 | 0.0 | 0.2 | 0.3 | 0.3 | 0.4 |
| 1936 | 0.4 | 0.4 | 0.3 | 0.1 | 0.0 | -0.1 | -0.2 | -0.1 | 0.1 | 0.2 | 0.4 | 0.2 |
| 1937 | 0.2 | 0.1 | 0.3 | 0.1 | -0.1 | -0.1 | 0.0 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 |
| 1938 | 0.1 | 0.0 | 0.1 | 0.0 | -0.3 | -0.6 | -0.8 | -0.6 | -0.5 | -0.5 | -0.7 | -0.7 |
| 1939 | -0.8 | -0.8 | -0.7 | -0.4 | -0.1 | 0.1 | 0.2 | 0.4 | 0.1 | 0.2 | 0.1 | 0.6 |
| 1940 | 0.8 | 1.2 | 1.1 | 0.8 | 0.6 | 0.5 | 0.6 | 0.5 | 0.5 | 0.5 | 0.9 | 1.2 |
| 1941 | 1.3 | 1.4 | 1.4 | 1.4 | 1.3 | 1.1 | 0.9 | 0.9 | 0.9 | 1.1 | 1.2 | 1.1 |
| 1942 | 0.8 | 0.5 | 0.5 | 0.3 | 0.0 | -0.3 | -0.6 | -0.8 | -1.0 | -1.2 | -1.3 | -1.3 |
| 1943 | -1.2 | -1.2 | -1.0 | -0.6 | -0.3 | -0.1 | 0.1 | 0.0 | -0.1 | -0.3 | -0.4 | -0.4 |
| 1944 | -0.3 | -0.2 | 0.0 | 0.1 | 0.2 | 0.2 | 0.1 | 0.0 | -0.1 | -0.2 | -0.2 | -0.3 |
| 1945 | -0.4 | -0.6 | -0.7 | -0.6 | -0.5 | -0.4 | -0.6 | -0.6 | -0.7 | -0.6 | -0.5 | -0.4 |
| 1946 | -0.4 | -0.4 | -0.4 | -0.3 | -0.2 | 0.0 | 0.0 | -0.1 | -0.1 | 0.0 | 0.0 | 0.1 |
| 1947 | 0.1 | 0.2 | 0.0 | 0.0 | -0.1 | -0.2 | -0.1 | -0.5 | -0.6 | -0.7 | -0.4 | -0.1 |
| 1948 | 0.2 | 0.3 | 0.4 | 0.5 | 0.3 | 0.2 | 0.1 | 0.1 | -0.1 | -0.2 | -0.1 | -0.1 |
| 1949 | 0.0 | -0.3 | 0.0 | -0.1 | -0.1 | -0.3 | -0.4 | -0.3 | -0.5 | -0.8 | -1.0 | -1.1 |

S_LN - Strong La Nina (ONI <-1.5 C)
M_LN - Moderate La Nina ($-1.5 \mathrm{C}<=\mathrm{ONI}<-1 \mathrm{C}$)
NN_LN - Near Neutral La Nina ($-1 \mathrm{C}<=$ ONI <-0.5 C $)$
NN_EN - Near Neutral El Nino ($0.5 \mathrm{C}<$ ONI <= 1 C)
M EN - Moderate El Nino ($1 \mathrm{C}<\mathrm{ONI}<=1.5 \mathrm{C}$)
S_EN - Strong El Nino (1.5 C < ONI)
S- 3-month seasons \{DJF, JFM, FMA, MAM, AMJ, MJJ, JJA, JAS, ASO, SON, OND, NDJ\}

	DJF	JFM	FMA	MAM	AMJ	мנड	JA	JAS	AsO	son	OND	NDJ
1915		NN_EN	NN_EN	NN_EN	NN_EN	NN_EN	NN_EN	N	N	N	N	N
1916	N	N	NN_LN	N	N	N	NN_LN	M_LN	M_LN	M_LN	M_LN	S_LN
1917	M_LN	M_LN	NN_LN	N	N	N	N	N	N	N	N	NN_LN
1918	NN_LN	NN_LN	NN_LN	N	N	N	N	N	NN_EN	NN_EN	M_EN	M_EN
1919	M_EN	M_EN	NN_EN	N	N	N						
1920	NN_EN	NN_EN	N	N	N	N	N	N	N	N	N	N
1921	N	NN_LN	NN_LN	NN_LN	N	N	N	N	N	N	N	NN_LN
1922	N	N	N	N	N	N	N	N	N	N	N	N
1923	NN_LN	NN_LN	NN_LN	N	N	N	N	N	NN_EN	NN_EN	NN_EN	Nn_EN
1924	NN_EN	N	N	N	N	NN_LN						
1925	NN_LN	NN_LN	NN_LN	N	N	N	N	NN_EN	NN_EN	M_EN	M_EN	M_EN
1926	M_EN	M_EN	M_EN	M_EN	NN_EN	NN_EN	NN_EN	N	N	N	N	N
1927	N	N	N	N	N	N	N	N	N	N	N	N
1928	N	N	N	N	N	N	N	N	N	N	N	N
1929	N	N	N	N	N	N	N	N	N	N	NN_EN	N
1930	N	N	N	N	N	N	NN_EN	NN_EN	M_EN	S_EN	S_EN	S_EN
1931	M_EN	M_EN	M_EN	NN_EN	NN_EN	NN_EN	N	N	N	N	N	N
1932	N	N	N	N	N	N	N	N	N	N	N	N
1933	N	N	N	N	N	NN_LN	NN_LN	NN_LN	NN_LN	NN_LN	M_LN	M_LN
1934	M_LN	NN_LN	NN_LN	NN_LN	N	N	N	N	N	N	N	N
1935	N	N	N	N	N	N	N	N	N	N	N	N
1936	N	N	N	N	N	N	N	N	N	N	N	N
1937	N	N	N	N	N	N	N	N	N	N	N	N
1938	N	N	N	N	N	NN_LN	NN_LN	NN_LN	NN_LN	N	NN_LN	NN_LN
1939	NN_LN	NN_LN	NN_LN	N	N	N	N	N	N	N	N	NN_EN
1940	NN_EN	M_EN	M_EN	NN_EN	NN_EN	N	NN_EN	N	N	N	NN_EN	M_EN
1941	M_EN	M_EN	M_EN	M_EN	M_EN	M_EN	NN_EN	Nn_EN	NN_EN	M_EN	M_EN	M_EN
1942	NN_EN	N	N	N	N	N	NN_LN	NN_LN	M_LN	M_LN	M_LN	M_LN
1943	M_LN	M_LN	NN_LN	NN_LN	N	N	N	N	N	N	N	N
1944	-	N	N	N	N	N	N	N	N	N	N	N
1945	N	NN_LN	NN_LN	NN_LN	NN_L	N	NN_LN	NN_LN	NN_LN	NN_LN	NN_LN	N
1946	N	N	N	N	N	N	N	N	N	N	N	N
1947	N	N	N	N	N	N	N	N	NN_LN	NN_LN	N	N
1948	N	N	N	N	N	N	N	N	N	N	N	N
1949	N	N	N	N	N	N	N	N	N	NN_LN	NN_LN	M_LN

Step 2: Rainfall classification

$>$ Rainfall data was converted into 3-month season just as ENSO values are.
$>$ The seasonal values were then classified as either below normal, normal or above normal using.
$>$ Tercile thresholds ranges were 1914-1980 and 1981-2022.

	DJF	JFM	FMA	MAM	AMJ	mıJ	JA	JAS	ASO	SoN	OND	NDJ
1915	Above	Above	Normal	Above	Above	Above						
1916	Below	Below	Below	Normal	Normal	Normal	Normal	Below	Normal	Normal	Above	Normal
1917	Belo	Below	Norma	Bel	Below	Belo	Bel	Abo	Abo	Above	Below	No
1918	Normal	Normal	Normal	Normal	Below	Below	Below	Below	Normal	Normal	Normal	Norm
1919	Above	Above	Above	Above	Above	Above	Normal	Below	Below	Below	Normal	Above
1920	Normal	Normal	Above	Above	Normal	Above	Normal	Above	Normal	Above	Above	Above
1921	Normal	Normal	Normal	Normal	Below	Below	Below	Below	Normal	Above	Above	Normal
1922	ow	Below	Below	Normal	Above	Norn						
1923	ow	Below	Below	Ab	Above	Above	Above	Normal	Below	Below	Below	Normal
1924	ove	Above	Normal	Normal	Below	Below	Below	Normal	Above	Above	Above	Abour
1925	ove	Above	Normal	Above	Above	Above	Normal	Below	Below	Below	Above	Above
1926	Above	Above	Normal	Normal	Normal	Normal	Above	Above	Normal	Normal	Below	Below
1927	Below	Below	Normal	Below	Below	Below	Below	Normal	Normal	Below	Below	Below
1928	Below	Normal	Normal	Normal	Normal	Normal	Abo	Abov	Above	Abov	Be	Bel
1929	Below	Below	Below	Normal	Above	Above	Normal	Above	Above	Above	Above	Above
1930	Above	Normal	Normal	Normal	Normal	Above						
1931	bve	Above	Above	Above	Below	Below	Below	Below	Normal	Below	Below	Belo
1932	low	Normal	Below	Above	Above	Normal	Normal	Below	Above	Normal	Above	Normal
1933	Below	Normal	Above	Above	Normal	Normal	Above	Above	Above	Above	Above	Bel
1934	Normal	Normal	Above	Above	Above	Above	Normal	Normal	Below	Below	Below	Below
1935	Below	Below	Normal	Below	Normal	Below	Below	Above	Above	Above	Norma	Abo
1936	Above	Above	Above	Normal	Above	Above	Above	Below	Below	Normal	Normal	Above
1937	Normal	Above	Above	Normal	Normal	Below	Normal	Normal	Normal	Above	Normal	Normal
1938	Below	Below	Below	Below	Below	Normal	Below	Below	Below	Normal	Normal	Below
1939	Below	Below	Normal	Normal	Above	Above	Above	Above	Above	Normal	Normal	Normal
1940	ove	Above	Above	Below	Below	Below	Normal	Above	Above	Normal	Below	Above
1941	Above	Above	Above	Above	Normal	Norma	Normal	Normal	Below	Norma	Normal	Above
1942	Above	Above	Above	Above	Above	Normal	Normal	Below	Below	Below	Below	Normal
1943	Below	Below	Normal	Normal	Normal	Normal	Normal	Normal	Below	Below	Below	Below
1944	Below	Below	Below	Normal	Below	Belo						
1945	Below	Below	Below	Below	Below	Below	Above	Above	Above	Above	Normal	Belo
1946	Normal	Normal	Below	Normal	Normal	Above	Normal	Normal	Below	Below	Below	Normal
1947	Normal	Above										
1948	Normal	Normal	Below	Below	Below	Below	Below	Above	Above	Above	Below	Below
1949	Below	Below	Below	Below	Normal	Normal	Above	Above	Above	Normal	Normal	Normal
1950	Normal	Below	Above	Normal	Above	Below						
1951	Below	Below	Normal	Below	Below	Below	Below	Normal	Normal	Normal	Above	Below
1952	Normal	Above	Above	Below	Below	Below	Below	Normal	Above	Above	Above	Normal
1953	Normal	Normal	Above	Normal	Normal	Normal	Above	Above	Above	Above	Above	Normal
1954	Normal	Normal	Above	Above	Above	Above	Above	Normal	Below	Normal	Normal	Normal
1955	Below	Below	Below	Below	Normal	Normal	Normal	Below	Below	Below	Below	Below
1956	Normal	Below	Normal	Normal	Normal	Below						
1957	Above	Above	Above	Above	Above	Normal	Normal	Above	Normal	Normal	Above	Above
1958	Above	Above	Above	Above	Above	Normal	Below	Below	Below	Below	Above	Above
1959	Above	Normal										
1960	Normal	Normal	Above	Above	Normal	Above	Above	Above	Above	Above	Normal	Normal
1961	Normal	Normal	Below	Normal	Below	Belo						
1962	Below	Normal	Normal	Below	Norma	Norma	Ab	Ab	Norn	Norm	Below	Nor

Step 3：Rainfall－ENSO Matrix

$>$ Finally，we calculated the $3 x 7$ matrix for each 3－month season using the Rainfall and ENSO tables．

${ }^{195}$	Alove	Above	\％	＊em	，	bea			Nomal	Above			
${ }^{1916}$	Reau	Beau	Boow	Nomal	Noma	Nomal	Noma	Rew			（tabe		
${ }^{1918}$	vomal	Noma	Nomal	Noma	Beow	bobom	Beow	Beow					
199													
1220					loma	Alove		dove		dove	Above		
192	Nomal	Nomal	Nomal		Boow	Boav	Beow	Blow	Nomal	ve	A Aboue		
192	seaw	Beow	Bolow		Alove	flove	hlove	bove	howe	hove	Alowe		
${ }^{1923}$		beour			Alove	Alowe	Alove	Lomal	beow	dow	beow		
${ }^{124}$	Above	above	Nomal	Nomal	Beow	Beow	Beow	Noma	Alove	Alowe	Alove		
${ }^{12125}$	above	dove	Nomal		haove	choue	，	beor	lomal	loum	doue		
${ }^{126}$											dot		
${ }_{1}^{1927}$	${ }_{\text {Beour }}^{\text {Beour }}$	Nomal		beom		beou	Beov		dove	doe	deoum		
193	seow	Beon	baw	Noma	Alove	Above	，mam	Hove	Alove	hove	Above		
1380	Above	Abve	Alove	Alove	have	Alove	Above	lomal		，mal	Nomal		
${ }^{1981}$			Alove	Alove	Beow	beow	beow	Beow	Nomal	8eom	beom		
－		Nomal	diour	Aboue	diove	Noma			dobove	dome	dole		sou
${ }^{193}$	Nomal	Nomal	Alove	Above	Alove	Alove	Iomal	lomal	Beom	Beom	beow		
（1935								doove					
${ }_{1987}^{1987}$	Nomed	Above	Alowe	Nomal	Nomel	floue	Nomal	Nomal	Noma	Home	Nommd		
${ }^{1938}$		seou	Boow	Beou	biow	Nomal	Beaw	Beow	beow	Noma	Nomal		
${ }^{1930}$	deow	Stan	den	，	den	doue	doov	dole	隹	Noma	domad		
${ }_{11901}^{1901}$	Hotere			Stour	doma				coow		mal		
1992					Hove				soow		Beow		
193	Brow				voma	voma	退		tou	dow	Boov		
${ }^{194}$		Bean	Bean	Nomal	Beow	8eow	faom	boul	beour	dow	foul		
${ }^{1945}$	soan	beoul	bioum		faour	beaw				Sve			
${ }_{\substack{1996 \\ 198 \\ \hline 1 \\ \hline}}$	Noma	Nomal	diove	Heme	Nome	Alove	lome		deow	flowe	deom		
${ }_{1988}$					boow	Booul	Boow			toe	Sour		
199													

	D．f	JfM	FMA	mam	AMJ	мנJ	J．	JAS	AsO	SoN	OND	NoJ
1915		NN＿EN	NN＿EN	NN＿EN	NN＿EN	NN＿ N	NN＿EN	N	N	N	N	N
1916	N	N	NN＿LN	N	N	N	NN＿L	M＿LN	M＿LN	M＿LN	M＿LN	S＿LN
1917	M＿LN	M＿L	NN＿LN	N	N	N	N	N	N	N	N	NN＿LN
1918	NN＿L	N＿LN	NN＿LN	N	N	N	N	N	NN＿EN	NN＿EN	M＿EN	M＿EN
1919	M＿EN	M＿EN	NN＿ N	NN＿EN	NN＿EN	NN＿EN	NN＿EN	NN＿EN	NN＿EN	N	N	N
1920	NN＿EN	NN＿EN	N	N	N	N	N	N	N	N	N	N
1921	N	NN＿LN	NN＿LN	NN＿L	N	N	N	N	N	N	N	NN＿LN
1922	N	，	N	N	N	N	N	N	N	N	N	N
1923	NN＿LN	NN＿LN	N＿＿LN	N	N	N	N	N	NN＿EN	NN＿EN	NN＿EN	NN＿EN
1924	NN＿EN	，	N	N	N	NN＿LN	NN＿L	NN＿LN	NN＿LN	NN＿L	N＿LN	NN＿LN
1925	NN＿L	N＿LN	N＿LN	N	N	N	N	NN＿EN	NN＿EN	M＿en	M＿EN	M＿EN
1926	M＿EN	M＿EN	M＿EN	M＿EN	NN＿EN	NN＿EN	NN＿EN	N	N	N	N	N
1927	N	N	N	，	N	N	N	N	N	N	N	N
1928	N	N	N	N	N	N	N	N	N	N	N	N
1929	N	N	N	N	N	N	N	N	N	N	N＿En	N
1930	N	N	N	N	N	N	NN＿EN	NN＿EN	M＿EN	S＿EN	S＿EN	S＿EN
1931	M＿EN	M＿EN	M＿EN	NN＿EN	NN＿EN	NN＿EN	N	N	N	N	N	N
1932	N	N	N	N	N	N	N	N	N	N	N	N
1933	N	N	N	N	N	NN＿LN	NN＿LN	NN＿LN	NN＿LN	NN＿L	M＿LN	M＿LN
1934	M＿LN	NN＿LN	NN＿LN	NN＿L	N	N	N	N	N	N	N	N
1935	N	N	N	N	N	N	N	N	N	N	N	N
1936	N	N	N	N	N	N	N	N	N	N	N	N
1937	N	N	N	N	N	N	N	N	N	N	N	N
1938	N	N	N	N	N	NN＿LN	NN＿L	NN＿LN	NN＿LN	N	NN＿LN	No＿LN
1939	NN＿L	NN＿LN	NN＿LN	N	N	N	N	，	N	N	N	NN＿ $\mathrm{N}^{\text {d }}$
1940	NN＿EN	M＿EN	M＿EN	NN＿EN	NN＿EN	N	NN＿EN	N	N	N	N＿EN	M＿EN
1941	M＿en	M＿EN	M＿EN	M＿en	M＿EN	M＿EN	NN＿EN	NN＿EN	NN＿EN	M＿EN	M＿EN	M＿EN
1942	NN＿EN	N	N	N	N	N	NN＿L	NN＿LN	M＿LN	M＿LN	M＿L	M＿LN
1943	M＿LN	M＿LN	NN＿LN	NN＿L	N	N	N	N	N	N	N	N
1944	N	N	N	N	N	N	N	N	N	N	N	N
1945	N	NN＿LN	NN＿LN	NN＿L	NN＿L	N	NN＿L	NN＿LN	NN＿LN	NN＿L	NN＿LN	N
1946	N	N	N	1	N	N		N	N	N	N	N
1947	N	N	N	N	N	N	N	，	NN＿LN	NN＿LN	N	N
1948	N	N	N	N	N	N	N	，	N	N	N	N

RESULTS

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Counts (108 years of data)

D.JF	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	3	5	11	16	1	0	0
Normal	3	4	6	14	7	1	1
Above	0	0	2	10	10	8	5

JFM	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	1	8	14	13	0	0	0
Normal	1	1	6	20	7	0	1
Above	0	0	2	16	4	10	4

FMMA	S LN	M LN	NN LN	N	NN	EN	M EN
Below	0	5	15	16	0	0	0
Normal	0	1	9	19	5	1	1
Above	0	1	1	20	6	7	1

MAM	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0	2	9	22	2	1	0
Normal	0	2	4	21	7	2	0
Above	0	0	2	27	6	1	0

AMMJ	S LN	M	LN	NN LN	N	NN EN	M EN
Below	0	1	9	22	4	0	0
Normal	0	0	5	24	5	2	0
Above	0	1	3	24	7	1	0

MJJ	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0	0	6	22	6	2	0
Normal	0	1	7	19	6	3	0
Above	0	1	3	28	4	0	0

JAS	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0	1	7	21	4	2	1
Normal	0	3	6	18	6	1	2
Above	0	3	5	24	2	1	1

ASO	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0	3	4	16	8	2	3
Normal	1	5	3	18	4	2	3
Above	0	2	8	22	4	0	0

SON	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	2	3	5	17	5	3	1
Normal	0	3	3	17	4	4	5
Above	0	4	10	17	4	1	0

OND	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	5	1	6	17	7	0	0
Normal	0	1	7	16	3	6	3
Above	0	7	6	9	4	5	4

NDJ	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	3	4	9	17	2	0	1
Normal	4	3	7	14	7	1	0
Above	1	1	2	10	6	8	8

SOUTH FLORIDDA WATER MANAGEMENT DIS TRICT
Probabilities

DJF	S LN	M LN	NN LN	N	NN EN	M EN	S EN	
Below	0.50	0.56	0.58	0.40	0.06	0.00	0.00	
Normal	0.50	0.44	0.32	0.35	0.39	0.11	0.17	Bc
Above	0.00	0.00	0.11	0.25	0.56	0.89	0.83	At

JFM	S LN	W LN	W LN	N	NN	W	S
Below	0.50	0.89	0.64	0.27	0.00	0.00	0.00
Normal	0.50	0.11	0.27	0.41	0.64	0.00	0.20
Above	0.00	0.00	0.09	0.33	0.36	1.00	0.80

JAS	SLLN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0.33	0.14	0.39	0.33	0.33	0.50	0.25
Normal	0.33	0.43	0.33	0.29	0.50	0.25	0.50
Above	0.33	0.43	0.28	0.38	0.17	0.25	0.25

FMMA	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0.33	0.71	0.60	0.29	0.00	0.00	0.00
Normal	0.33	0.14	0.36	0.35	0.45	0.13	0.50
Above	0.33	0.14	0.04	0.36	0.55	0.88	0.50

ASO	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0.00	0.30	0.27	0.29	0.50	0.50	0.50
Normal	1.00	0.50	0.20	0.32	0.25	0.50	0.50
Above	0.00	0.20	0.53	0.39	0.25	0.00	0.00

MAM	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0.33	0.50	0.60	0.31	0.13	0.25	0.33
Normal	0.33	0.50	0.27	0.30	0.47	0.50	0.33
Above	0.33	0.00	0.13	0.39	0.40	0.25	0.33

SON	S. LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	1.00	0.30	0.28	0.33	0.38	0.38	0.17
Normal	0.00	0.30	0.17	0.33	0.31	0.50	0.83
Above	0.00	0.40	0.56	0.33	0.31	0.13	0.00

AMMJ	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0.33	0.50	0.53	0.31	0.25	0.00	0.33
Normal	0.33	0.00	0.29	0.34	0.31	0.67	0.33
Above	0.33	0.50	0.18	0.34	0.44	0.33	0.33

OND	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	1.00	0.11	0.32	0.40	0.50	0.00	0.00
Normal	0.00	0.11	0.37	0.38	0.21	0.55	0.43
Above	0.00	0.78	0.32	0.21	0.29	0.45	0.57

NDJ	S LN	M LN	NN LN	N	NN EN	M EN	S EN
Below	0.38	0.50	0.50	0.41	0.13	0.00	0.11
Normal	0.50	0.38	0.39	0.34	0.47	0.11	0.00
Above	0.13	0.13	0.11	0.24	0.40	0.89	0.89

EXAMPLE CALCULATIONS NOV 2023

The values are based on the analysis published in:
L'Heureux, M. L., Tippett, Michael K., Takahashi, Ken, Barnston, Anthony G., Becker, Emily J., Bell, Gerald D., Di Liberto, Tom E., Gottschalck, Jon, Halpert, Michael S., Hu, Zeng-Zhen, Johnson, Nathaniel C., Xue, Yan, and Wang, Wanqiu, 2019: Strength Outlooks for the El Niño-Southern Oscillation. Wea. Forecasting, 34, 165-175, https://doi.org/10.1175/WAF-D-18-0126.1.

```
// Run name
PrefSce
// Current Month
11
// Outlook Probability for Nov 2023 Precipitation from CPC Map, Oct 24
0.225
0.450
// Outlook Probability 12 3-monthly seasons based on ENSO Strength Forecasts and ENSO to Rain Probability Conversion
//NDJ DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND
```



```
0.126 0.175
```

