LOSOM Technical Summary September 22, 2025 This technical summary provides insight into the application of the Lake Okeechobee Systems Operation Manual (LOSOM). LOSOM, which went into effect with Record of Decision on August 12, 2024, provides operational guidelines that establishes Lake Okeechobee's operational strategy for flood risk management, water supply, fish and wildlife enhancement, navigation, and recreation. LOSOM has four zones (three relevant to regulatory release guidance), unlike the previous operations schedule Lake Okeechobee Regulation Schedule (LORS08) which had seven sub-bands (five relevant to regulatory release guidance). As described by the United States Army Corps of Engineers (USACE), LOSOM operational decision making has shifted to an approach that benefits the system by allowing regulatory releases south in all operational zones, while eliminating regulatory releases to the east in zones below Zone B/C. Below is the Lake Okeechobee Regulation Schedule for LOSOM. Related documentation can be found on the USACE Jacksonville District's Environmental planning website. (https://www.saj.usace.army.mil/About/Divisions-Offices/Planning/Environmental-Branch/Environmental-Documents/) # 1. Lake Okeechobee Stage Classification: Lake Okeechobee Stage on 9/21/2025: Lake Okeechobee Stage: 13.17 feet (NGVD29), 11.92 (NAVD88)* | | Bottom Elevation | Current Lake | |---------------------------------|---------------------------|------------------------------| | Lake Okeechobee Management Zone | feet, NGVD (feet
NAVD) | Stage feet, NGVD (feet NAVD) | | Zone A | 17.05 (15.80) | | | Zone B/C | 16.65 (15.40) | | | Zone D | 12.81 (11.56) | 13.17 (11.92) | | Water Shortage Manage | | | ^{*}Lake Okeechobee Stage NAVD88 offset of -1.25 is based on Final Regulation Schedule Conversion (5/19/2020). Anything below Zone D is in the Water Shortage Management Band. USACE Jacksonville District maintains Central and South Florida system-wide database which is updated daily (https://w3.saj.usace.army.mil/h2o/reports.htm). These 'Daily Operational Reports' contain information related to Lake Okeechobee regulation schedule, recent stage, and relevant structure flows history. This is the primary source of information used in above table. #### Lake Okeechobee Water Level # 2. Release Guidance: | Regulatory Releases* | | | | | |---|-----------------------|---|--|--| | East | West | South | | | | S-80 (SLE): No releases
S-271 or S-352 (LWL): Up to
300 cfs | S-79: Up to 2,000 cfs | S-351 and S-354 combined: Up to 1,100 cfs | | | ^{*}Release guidance values are based on up to values stated in the Regulation Schedule figure (page 1 of this document) in the LOSOM Water Control Plan (https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll7/id/25888). ### 3. Water Management Considerations: LOSOM decision-making on quantity, timing, and duration of releases from Lake Okeechobee should consider recent, current, and forecasted system conditions. While the list of factors that should be considered is elaborate, this report focuses on current climate, weather forecasts (together termed as climatological conditions), and hydrologic conditions. #### 3.1 Current Climate and Forecast: El Niño Southern Oscillation (ENSO) observations and forecasts are used to develop seasonal strategies for Lake Okeechobee operations. The LOSOM water control plan considers 'moderate-to-strong' temperature anomalies to be more than 1 °C in the Niño 3.4 Index Region. The Climate Projection Center (CPC) defines warm and cold periods when the Oceanic Niño Index (3-month running mean of Sea Surface Temperature [SST] anomalies) pass the thresholds of +/- 0.5 °C. Water managers should consider ENSO forecasts at three key seasonal assessment points (AMJ, OND, and JFM) for release guidance. Sources: ONI (NOAA Climate Prediction Center), Forecasts (IRI ENSO Predictions Plume) #### 3.2 Hydrological Conditions: Lake Okeechobee Net Inflow (LONIN) is a surrogate of Lake Okeechobee basin hydrologic condition. This along with climatologic conditions are considered while adopting weekly release strategies. The graphic below provides a historical view of wetness in upstream lake watershed represented by LONIN's 14-day moving average. Based on modeling assumptions for Zone D operations used in LOSOM planning, ENSO-based "wet" or "dry" conditions would be overridden by hydrologic conditions under specific situations. If 14-day moving average LONIN is greater than 6000 cfs for 14 consecutive days would trigger "wet" condition operations until this criterion is no longer satisfied. Similarly, "dry" condition operations would be triggered when 14-day moving average LONIN remains negative for 28 consecutive days. For more detailed information LOSOM modeling interested readers refer on can to https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll7/id/25896. Real-time Lake Okeechobee operations under LOSOM could consider additional metrics beyond ENSO and hydrologic conditions to trigger "wet" or "dry" operations. Meteorological forecasts, tropical activity, recent Lake ascension/recession rates are examples of such metrics. The scope of this report is limited to tracking "wet" and "dry" conditions based on ENSO and LONIN. ### 3.3 Lake Okeechobee Stage Projection with Conditional Position Analysis: The Position Analysis graphic below shows stage percentile lines for the next two months along with historical stages. For more information about the Dynamic Position Analysis (DPA) or the Conditional Position Analysis (CPA), please visit the SFWMD operational planning webpage https://www.sfwmd.gov/science-data/operational-planning. CPA stochastically transforms stages obtained from the Dynamic Position Analysis (DPA) considering projected rainfall tercile probabilities over the next twelve 3-monthly seasons. The preferred scenario calculates tercile probability projections using forecasted SST anomalies published by CPC and conversion matrix based on historical data. ### Lake Okeechobee Sept 01 Conditional Position Analysis (PrefSce) (See Assumptions on the Operational Planning Website) 09/22/25 09:43:26 ^{*} Lake Okeechobee stage NAVD88 offset of -1.25 is based on Final Regulation Schedule Conversion (5/19/2020). ### 3.4 Lake Okeechobee Stage Hindcast with Lane Assist Tool: The Interagency Modeling Center (IMC) developed a tool called Lane Assist Tool (LAT) for Lake Okeechobee Water Managers. It provides perspective on hindcast simulated stages compared to actual stages and potential future stages on 4-week horizon. Simulations are based on the modeling assumptions used in LOSOM planning process and help to provide context on how stage observation is influenced by real-time operational flexibility relate to planning assumptions and performance. The combination of rainfall forecasts from SFWMD meteorologist and European Center for Medium-Range Weather Forecasts (ECMWF) are used to drive component models. Insights provided by LAT are valuable for situational awareness and potentially exercising real time operational flexibility and should not be used to audit water management decisions which consider several factors not included in the planning modeling. The following graphics show Lake Okeechobee stage and S-77 flows forecasted assuming target flow rates of 350 cfs at S-79 and 0 cfs at S-80, consistent with planning modeling considerations under LOSOM. The PA25 simulation includes two scenarios: (a) one in which actual flows under Recovery Operations were simulated from 12/7/2024 to 5/28/2025 and (b) one in which actual flows under Recovery Operations were not simulated, demonstrating the influence of Recovery Operations on projected lake stage. (a) LAT-forecasted Lake Okeechobee stage and S-77 flows with 350 cfs target at S-79 and 0 cfs at S-80, with Recovery Operations included in the PA25 simulation between 12/7/2024 and 5/28/2025. **(b)** LAT-forecasted Lake Okeechobee stage and S-77 flows with 350 cfs target at S-79 and 0 cfs at S-80, with Recovery Operations not included in the PA25 simulation between 12/7/2024 and 5/28/2025. ### 3.5 LOSOM Definition of "Wet" or "Dry" Conditions: In LOSOM, "Wet" or "Dry" Conditions are determined by a combination of the ENSO 3.4 SST anomaly and the 14-day running average for LONIN. These considerations can be used to help with release decisions in the bounds of the WCP. October 2024 ENSO 3.4 SST anomaly was -0.28°C. Assuming observed ONI on AMJ 2025 represents the ENSO value at the latest evaluation point for climatological conditions classifying them as **Normal**. Last change in hydrologic conditions occurred on May 13 (Dry to Normal). Test for "Wet" hydrologic conditions: Did each of the past 14 consecutive days of Lake Okeechobee Net Inflow (LONIN) have values >6000 cfs, YES. Test for "Dry" hydrologic conditions: Did each of the past 28 consecutive days of Lake Okeechobee Net Inflow have values < 0 cfs, NO. The considerations above indicate the conditions are Wet. ### 4. Planning Modeling Considerations: The LOSOM Water Control Plan makes several provisions for lower releases (compared to the "up-to" release rate). This section helps to provide context on what was assumed in the planning modeling that supported the LOSOM Environmental Impact Statement. While this information is not intended to be prescriptive release guidance and many other factors should be considered in release decisions, this information is helpful to give an additional piece of context that relates back to the modeled performance on the LOSOM plan. LOSOM modeling documentation can be used for providing modified release guidance under these lower Lake conditions (LOSOM EIS Appendix G, USACE 2024). Current Lake Okeechobee Stage is in the lower portion of Zone D. As per modeling documentation the current stage is 0.36 ft above Water Shortage Management Zone. Current climatological conditions are Normal. Current hydrological conditions are Wet. Based on modeling performed during LOSOM planning, the following regulatory releases values were modeled: - No releases at S80 - No releases at S271 - Up to 350 cfs at S79 - Up to 930 cfs at S354 - Up to 810 cfs at S351 # 5. Lake Okeechobee Hydrographs: #### Lake Okeechobee Water Level History and Projected Stages # 6. Water Supply Risk Evaluation: | Area | Subzone Indicator ¹ | Value | Color Coded
Scoring Scheme | |-------------------|--|--|-------------------------------| | | Projected LOK Stage for the next two months | D3 | М | | LOK | Palmer Drought Index for LOK
Tributary Conditions | -2.96
Extremely Dry | Н | | | CPC Precipitation Outlook | 1 month: Above Normal | L | | | | 3 months: Above Normal | L | | | LOK Seasonal Net Inflow Outlook | 1.50 ft | | | | ENSO Forecast | Normal to Extremely Wet | _ | | | LOK Multi-Seasonal Net Inflow
Outlook | 1.43 ft | М | | | ENSO Forecast | Normal | | | | WCA 1: Site 1-8C | Above Line 1 (16.86 ft)
(15.36 ft NAVD88) | L | | WCAs ² | WCA 2A: Site S11B-HW | Above Line 1 (13.88 ft)
(12.38 ft NAVD88) | L | | | WCA-3A: Site 3-69W ³ | Above Line 1 (9.31 ft)
(7.81 ft NAVD88) | L | ¹ All water supply risk metrics, except for 'Projected LOK Stage for the next two months', originated from Adaptive Protocols developed under LORS2008. ² WCA1, WCA2A, and WCA3A NAVD88 offset of -1.5 is based on Final Regulation Schedule Conversion (5/19/2020). An updated Table A-9 that classifies Lake Okeechobee projected stage for the next two months is forthcoming to meet the updated regulation schedule under LOSOM. Stage for 3-69W was acquired from DBHydro (DBKey: OU839).