# Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 12/26/2022 (ENSO Condition: La Niña)

#### **Lake Okeechobee Net Inflow Outlook:**

The Lake Okeechobee Net Inflow Outlook has been computed using methods described in the LORS2008 Water Control Plan: Croley's method, the SFWMD empirical method, a subsampling of La Niña years and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with La Niña ENSO years. The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

| Season                         | Croley's Method* |           | SFWMD<br>Empirical Method |           | Sub-sampling of<br>La Niña ENSO<br>Years** |           | Sub-sampling of<br>AMO Warm + La<br>Niña ENSO<br>Years*** |           |
|--------------------------------|------------------|-----------|---------------------------|-----------|--------------------------------------------|-----------|-----------------------------------------------------------|-----------|
|                                | Value<br>(ft)    | Condition | Value<br>(ft)             | Condition | Value<br>(ft)                              | Condition | Value<br>(ft)                                             | Condition |
| Current<br>(Dec-May)           | N/A              | N/A       | -0.03                     | Dry       | -0.03                                      | Dry       | -0.29                                                     | Dry       |
| Multi<br>Seasonal<br>(Dec-Oct) | N/A              | N/A       | 2.52                      | Wet       | 2.72                                       | Wet       | 2.21                                                      | Normal    |

<sup>\*</sup>Croley's Method Not Produced for This Report

See <u>Seasonal</u> and <u>Multi-Seasonal</u> tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

<sup>\*\*</sup>Sub-sampling is a weighted average of ENSO conditions based on the IRI ENSO forecast published.

<sup>\*\*\*</sup>Sub-sampling based on combination of ENSO and AMO conditions. For this predominant ENSO categorization is used instead of weights.

## **Tributary Hydrologic Conditions:**

**1,339 cfs** 14-day running average for Lake Okeechobee Net Inflow through 12/26/2022. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Near Normal.

**1.02** for Palmer Drought Index on 12/24/2022.

According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Near Normal.

The wetter of the two conditions above is **Normal**.

## **LORS2008 Classification Tables:**

#### Lake Okeechobee Stage on 12/26/2022:

Lake Okeechobee Stage: 16.38 feet

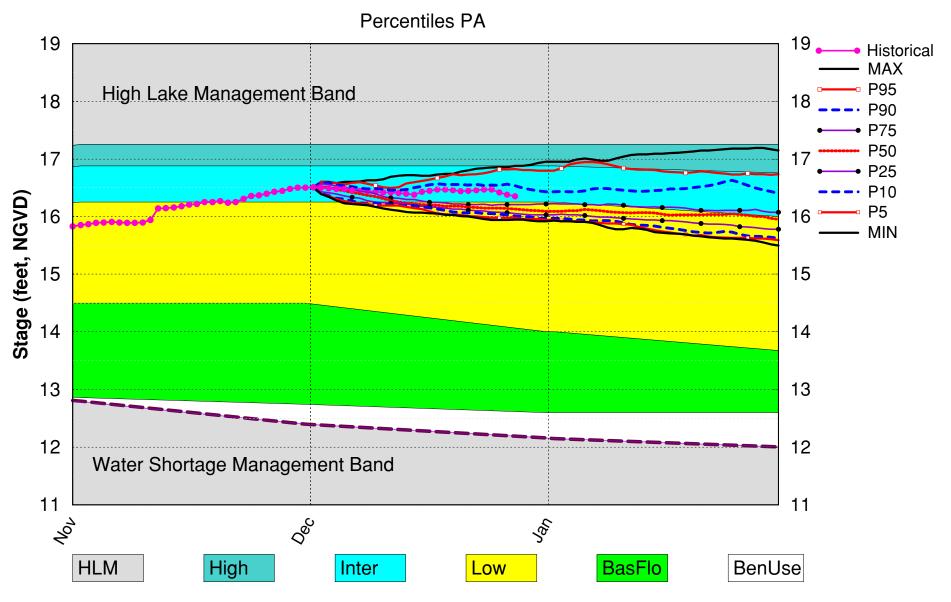
| Lake Okeechobee Management<br>Zone/Band |                       | Bottom Elevation (feet, NGVD) | Current Lake<br>Stage |
|-----------------------------------------|-----------------------|-------------------------------|-----------------------|
| High Lake Management Band               |                       | 17.25                         |                       |
|                                         | High sub-band         | 16.88                         |                       |
| Operational<br>Band                     | Intermediate sub-band | 16.25                         | ← 16.38 ft            |
|                                         | Low sub-band          | 14.10                         |                       |
| Base Flow sub-band                      |                       | 12.63                         |                       |
| Beneficial Use sub-band                 |                       | 12.21                         |                       |
| Water Shortage M                        | lanagement Band       |                               |                       |

#### Part C of LORS2008: Discharge to WCAs

Maximum practicable to WCAs if "All downstream WCAs < max. of upper schedule + 0.25 ft". Currently, all WCAs have the potential to receive regulatory releases from Lake Okeechobee.

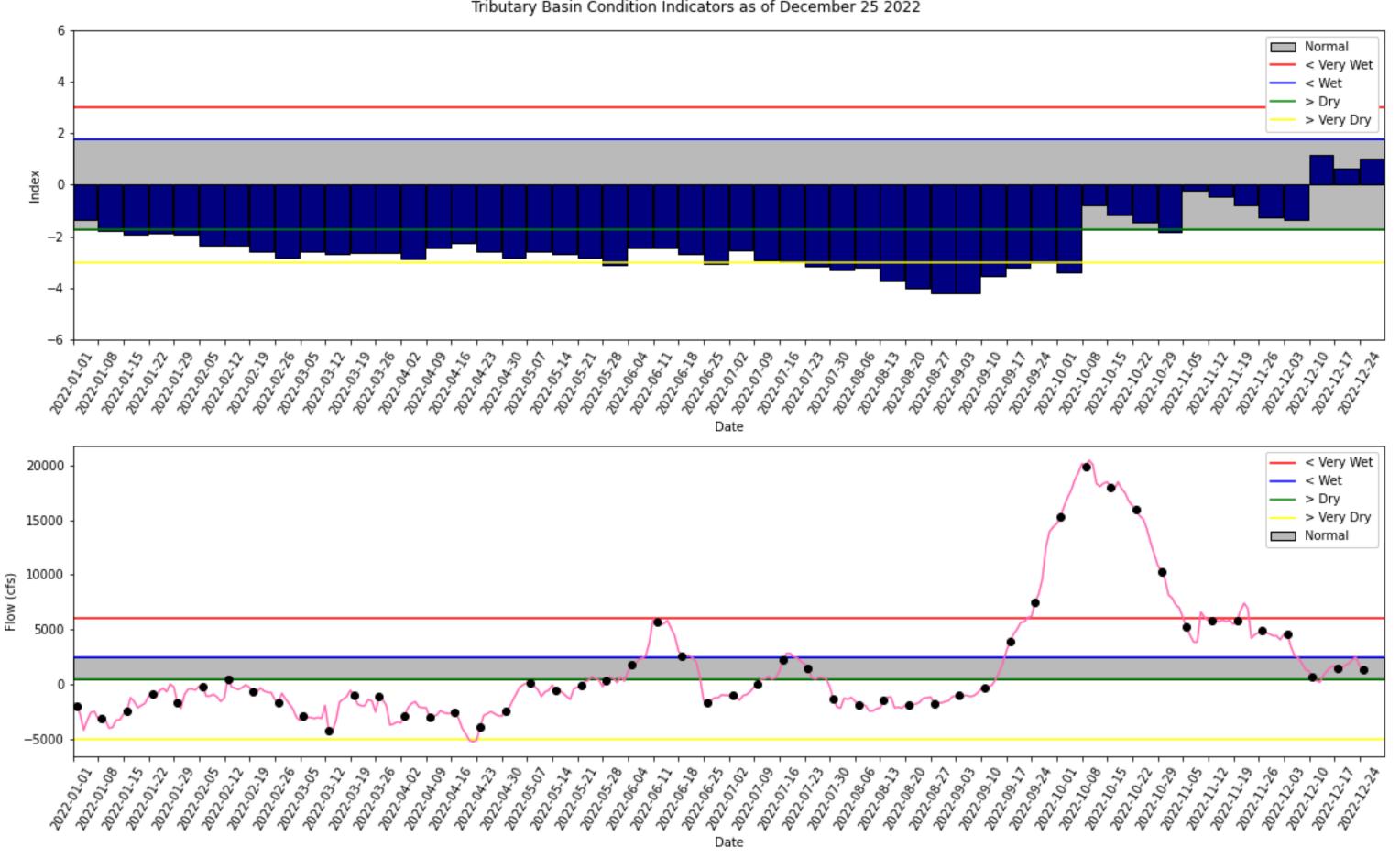
#### Part D of LORS2008: Discharge to Tide

Up to 4000 cfs at S-77 and up to 1800 cfs at S-80.


## LORS2008 Implementation on 12/26/2022 (ENSO Condition- La Niña Watch): Status for week ending 12/26/2022:

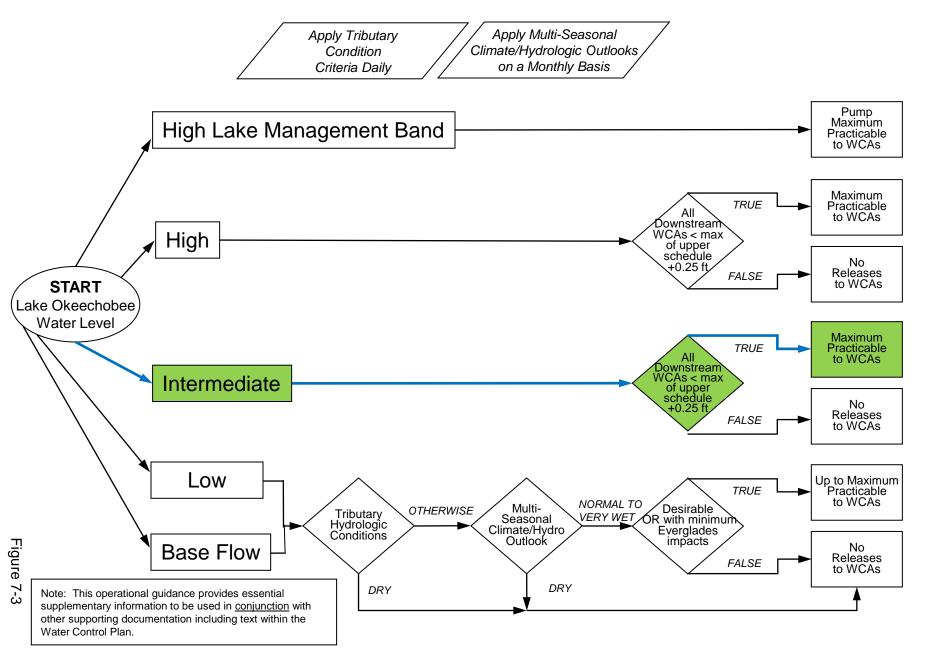
**Water Supply Risk Evaluation** 

| Area | Indicator                                            | Value                                | Color Coded<br>Scoring Scheme |
|------|------------------------------------------------------|--------------------------------------|-------------------------------|
|      | Projected LOK Stage for the next two months          | Intermediate Sub-band                | L                             |
|      | Palmer Drought Index for LOK<br>Tributary Conditions | 1.02<br>(Normal to Extremely Wet)    | L                             |
|      | CPC Precipitation Outlook                            | 1 month: Below Normal                | M                             |
| LOK  | CFC Frecipitation Outlook                            | 3 months: Below Normal               | M                             |
|      | LOK Seasonal Net Inflow Outlook                      | -0.03 ft                             | Н                             |
|      | ENSO Forecast                                        | Extremely Dry                        | ''                            |
|      | LOK Multi-Seasonal Net Inflow Outlook                | 2.72 ft                              | M                             |
|      | ENSO Forecast                                        | Normal                               | IVI                           |
|      | WCA 1: 3 Station Average (Sites 1-7, 1-8T, 1-9)      | Above Line 1 (17.29 ft)              | L                             |
| WCAs | WCA 2A: Site 2-17                                    | Above Line 1 (12.60 ft)              | L                             |
|      | WCA-3A: 3 Station Average<br>(Sites 63, 64, and 65)  | Above Line 1 (10.29 ft)              | L                             |
|      | Service Area 1                                       | Year-Round Irrigation Rule in effect | L                             |
| LEC  | Service Area 2                                       | Year-Round Irrigation Rule in effect | L                             |
|      | Service Area 3                                       | Year-Round Irrigation Rule in effect | L                             |


Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow outlooks use slightly different classification intervals than those used by the 2008-LORS.

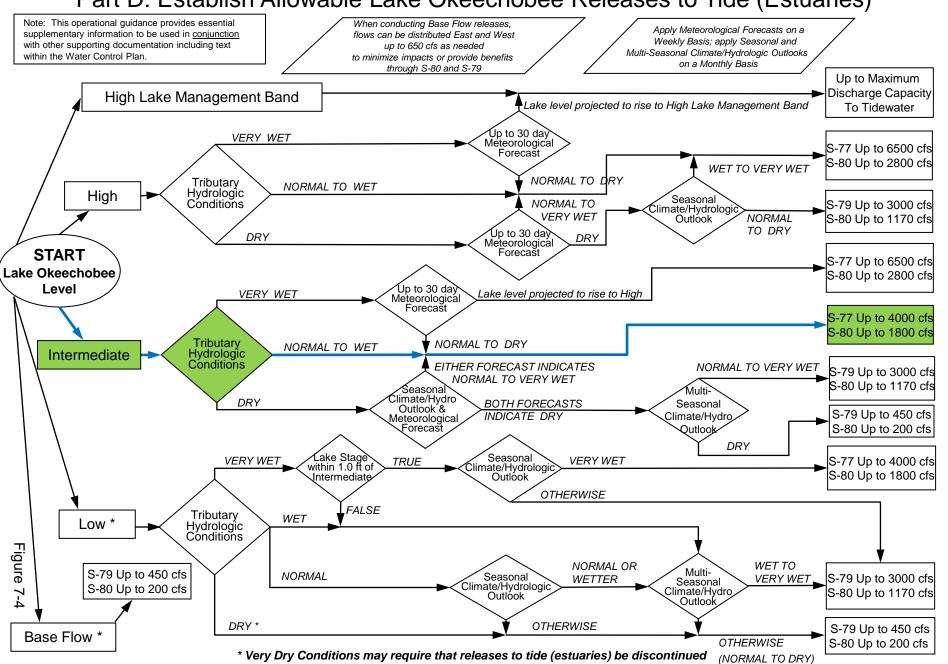
## Lake Okeechobee SFWMM December 2022 Position Analysis



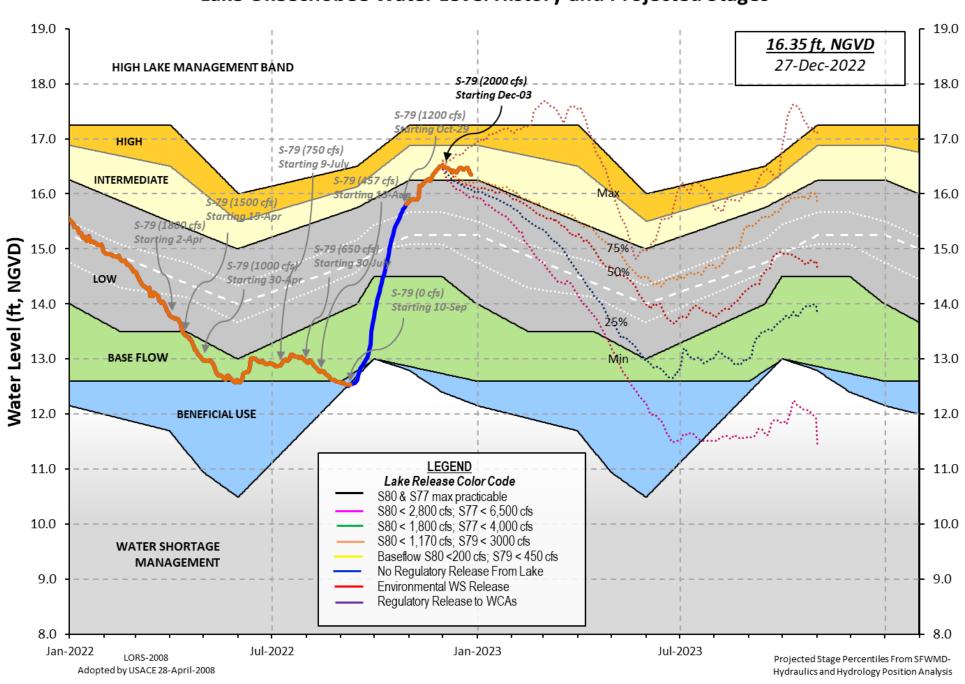

(See assumptions on the Position Analysis Results website)

Tributary Basin Condition Indicators as of December 25 2022




## **2008 LORS**

Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas




## **2008 LORS**

## Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)



## **Lake Okeechobee Water Level History and Projected Stages**



# U. S. Army Corps of Engineers, Jacksonville District Lake Okeechobee and Vicinity Report \*\* Preliminary Data - Subject to Revision \*\*

Data Ending 2400 hours 25 DEC 2022

| Okeechobee La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ke Regulatio                                                                                                     |                                                                                                                                                         |                                                                     | Year 2YRS Ago                                                                                              |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | igh Lake Mn                                                                                                      | •                                                                                                                                                       | 15<br>of Water S                                                    |                                                                                                            | Official Elv)                  |
| Simulated A<br>Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 2008 [1965-2000]<br>e LORS2008                                                                                                                          | 13.56<br>2.82                                                       |                                                                                                            |                                |
| 25DEC (1965<br>Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | od of Record Ave<br>erage                                                                                                                               | -                                                                   | 4.67<br>.71                                                                                                |                                |
| Today Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Okeechobee (                                                                                                     | elevation is det                                                                                                                                        | ermined f                                                           | rom the 4 Int 8                                                                                            | & 4 Edge stations              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Depth (Ba                                                                                                      | sed on 2007 Chan<br>sed on 2008 Chan<br>56'                                                                                                             |                                                                     |                                                                                                            |                                |
| 1 Interior an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d 4 Edge Ok                                                                                                      | eechobee Lake Av                                                                                                                                        | erage (Av                                                           | g-Daily values)                                                                                            | ):                             |
| L001 L005<br>16.29 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | Z40 S4 S35<br>5.38 16.45 16.                                                                                                                            |                                                                     | S133<br>6 16.16                                                                                            |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                         |                                                                     |                                                                                                            |                                |
| *Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Okeechobee                                                                                                       | Avg-Daily Lake                                                                                                                                          | Average :                                                           | = 16.38<br>(*See Note)                                                                                     |                                |
| *Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                         | Average :                                                           |                                                                                                            |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                         | Average =                                                           | (*See Note)  Fisheating (                                                                                  |                                |
| Okeechobee In<br>S65E<br>S154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flows (cfs)<br>1614<br>0                                                                                         | :<br>S65EX1<br>S191                                                                                                                                     | 0 0                                                                 | (*See Note)  Fisheating ( S135 Pumps                                                                       | 0                              |
| Okeechobee In<br>S65E<br>S154<br>S84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flows (cfs)<br>1614<br>0<br>631                                                                                  | :<br>S65EX1<br>S191<br>S133 Pumps                                                                                                                       | Ø<br>Ø<br>Ø                                                         | (*See Note)  Fisheating ( S135 Pumps S2 Pumps                                                              | 0<br>0                         |
| Okeechobee In<br>S65E<br>S154<br>S84<br>S84X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | flows (cfs)<br>1614<br>0<br>631<br>83                                                                            | :<br>S65EX1<br>S191<br>S133 Pumps<br>S127 Pumps                                                                                                         | 0<br>0<br>0<br>0                                                    | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps                                                     | 0<br>0<br>0                    |
| Okeechobee In<br>S65E<br>S154<br>S84<br>S84X<br>S71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flows (cfs)<br>1614<br>0<br>631<br>83<br>285                                                                     | :<br>S65EX1<br>S191<br>S133 Pumps<br>S127 Pumps<br>S129 Pumps                                                                                           | 0<br>0<br>0<br>0                                                    | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps S4 Pumps                                            | 0<br>0<br>0<br>0               |
| Okeechobee In<br>S65E<br>S154<br>S84<br>S84X<br>S71<br>S72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | flows (cfs)<br>1614<br>0<br>631<br>83<br>285<br>121                                                              | :<br>S65EX1<br>S191<br>S133 Pumps<br>S127 Pumps                                                                                                         | 0<br>0<br>0<br>0                                                    | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps                                                     | 0<br>0<br>0                    |
| Okeechobee In<br>S65E<br>S154<br>S84<br>S84X<br>S71<br>S72<br>Total Inflows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | flows (cfs)<br>1614<br>0<br>631<br>83<br>285<br>121<br>: 2816<br>tflows (cfs)                                    | :<br>S65EX1<br>S191<br>S133 Pumps<br>S127 Pumps<br>S129 Pumps<br>S131 Pumps                                                                             | 0<br>0<br>0<br>0<br>0                                               | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5                                         | 0<br>0<br>0<br>0               |
| Okeechobee In<br>S65E<br>S154<br>S84<br>S84X<br>S71<br>S72<br>Total Inflows<br>Okeechobee Our<br>S135 Culver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | flows (cfs) 1614 0 631 83 285 121 : 2816  tflows (cfs)                                                           | :     S65EX1     S191     S133 Pumps     S127 Pumps     S129 Pumps     S131 Pumps ):     S354                                                           | 0<br>0<br>0<br>0<br>0<br>0                                          | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5                                         | 0<br>0<br>0<br>0<br>-NR-       |
| Okeechobee In<br>S65E<br>S154<br>S84<br>S84X<br>S71<br>S72<br>Total Inflows<br>Okeechobee Our<br>S135 Culver<br>S127 Culver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | flows (cfs) 1614 0 631 83 285 121 : 2816  tflows (cfs)                                                           | :     S65EX1     S191     S133 Pumps     S127 Pumps     S129 Pumps     S131 Pumps ):     S354     S351                                                  | 0<br>0<br>0<br>0<br>0<br>0                                          | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5                                         | 0<br>0<br>0<br>0               |
| Okeechobee In<br>S65E<br>S154<br>S84<br>S84X<br>S71<br>S72<br>Total Inflows<br>Okeechobee Ou<br>S135 Culver<br>S127 Culver<br>S129 Culver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flows (cfs) 1614 0 631 83 285 121 : 2816  tflows (cfs)                                                           | :     S65EX1     S191     S133 Pumps     S127 Pumps     S129 Pumps     S131 Pumps ):     S354     S351     S352                                         | 0<br>0<br>0<br>0<br>0<br>0<br>176<br>304<br>365                     | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5                                         | 0<br>0<br>0<br>0<br>-NR-       |
| Okeechobee In S65E S154 S84 S84X S71 S72 Total Inflows Okeechobee Our S135 Culver S127 Culver S129 Culver S129 Culver S131 Culver S131 Culver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flows (cfs) 1614 0 631 83 285 121 : 2816  tflows (cfs)                                                           | :     S65EX1     S191     S133 Pumps     S127 Pumps     S129 Pumps     S131 Pumps ):     S354     S351                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>176<br>304<br>365<br>-4               | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5  S77 S308                               | 0<br>0<br>0<br>0<br>-NR -<br>0 |
| Okeechobee In S65E S154 S84 S84X S71 S72 Total Inflows Okeechobee Our S135 Culver S127 Culver S129 Culver S129 Culver S131 Culver Total Outflow S131 Struct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | flows (cfs) 1614 0 631 83 285 121 : 2816  tflows (cfs) ts 0                   | :     S65EX1     S191     S133 Pumps     S127 Pumps     S129 Pumps     S131 Pumps ):     S354     S351     S352     L8 Canal Pt                         | 0<br>0<br>0<br>0<br>0<br>0<br>176<br>304<br>365<br>-4<br>g S77 or S | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5  S77 S308  S308 Discharge otal Outflow. | 0<br>0<br>0<br>0<br>-NR -<br>0 |
| Okeechobee In S65E S154 S84 S84X S71 S72 Total Inflows Okeechobee Our S135 Culver S127 Culver S129 Culver S129 Culver S131 Culver Total Outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | flows (cfs) 1614 0 631 83 285 121 : 2816  tflows (cfs) ts 0                   | S65EX1 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps  ): S354 S351 S352 L8 Canal Pt rt Due To Missing s being used to being used to                  | 0<br>0<br>0<br>0<br>0<br>0<br>176<br>304<br>365<br>-4<br>g S77 or S | (*See Note)  Fisheating ( S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5  S77 S308  S308 Discharge otal Outflow. | 0<br>0<br>0<br>0<br>-NR -<br>0 |
| Okeechobee In S65E S154 S84 S84X S71 S72 Total Inflows Okeechobee Our S135 Culver S127 Culver S129 Culver S131 Cul | flows (cfs) 1614 0 631 83 285 121 : 2816  tflows (cfs) ts 0 ts flow in Evaporation | S65EX1 S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps  ): S354 S351 S352 L8 Canal Pt rt Due To Missing s being used to be being used to con (inches): | 0<br>0<br>0<br>0<br>0<br>0<br>176<br>304<br>365<br>-4<br>g S77 or 9 | Fisheating (S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5 S77 S308 S308 Discharge otal Outflow. Total Outflow.  | 0<br>0<br>0<br>0<br>-NR -<br>0 |

Evaporation - Precipitation using Lake Area of 730 square miles

\_\_\_\_\_

|               | Headwater  | Tailwater   |        |         |           | ·- Gat     | te Pos | sitio | ns    |      |      |
|---------------|------------|-------------|--------|---------|-----------|------------|--------|-------|-------|------|------|
|               |            | Elevation   | Disch  | #1      | #2        | #3         | #4     | #5    | #6    | #7   | #8   |
|               |            | (ft-msl)    |        |         |           |            |        |       | -     |      |      |
|               | (10 11131) |             |        | note at |           |            | (10)   | (10)  | (10)  | (10) | (10) |
| North East Sh | none       | (-          | , , ,  | noce ac |           | .0111      |        |       |       |      |      |
|               |            | 16 17       | 0      | 0       | 0         | 0          | 0      | a     | (cf   | - \  |      |
| S133 Pumps:   | : 13.60    | 16.17       | 0      | О       | 0         | 0          | 0      | 0     | (С13  | >)   |      |
| S193:         |            | 44.45       | _      |         |           |            |        |       |       |      |      |
| S191:         | 18.80      | 16.15       | 0      | 0.0     |           | 0.0        | _      |       |       |      |      |
| S135 Pumps:   |            | 16.23       | 0      | 0       | 0         | 0          | 0      |       | (cf   | 5)   |      |
| S135 Culver   | rts:       |             | 0      | 0.0     | 0.0       |            |        |       |       |      |      |
| North West Sh | nore       |             |        |         |           |            |        |       |       |      |      |
| S65E:         | 20.89      | 16.01       | 1614   | 0.5     | 0 5       | 1 2        | 0.5    | 1 2   | 0.9   |      |      |
| S65EX1:       | 20.89      |             | 0      | 0.5     | 0.5       | 1.2        | 0.5    | 1.2   | 0.5   |      |      |
|               |            | 16.01       |        | ^       | 0         | •          | 0      |       | / - C | - \  |      |
| S127 Pumps:   |            | 16.22       | 0      | 0       | 0         | 0          | 0      | 0     | (cf   | 5)   |      |
| S127 Culver   | rt:        |             | 0      | 0.0     |           |            |        |       |       |      |      |
| S129 Pumps:   | 12.99      | 16.28       | 0      | 0       | 0         | 0          |        |       | (cfs  | 5)   |      |
| S129 Culver   |            | 10.20       | 0      | 0.1     | Ū         | Ū          |        |       | (0).  | ,    |      |
|               | •          |             | _      |         |           |            |        |       |       |      |      |
| S131 Pumps:   | 12.84      | 16.25       | 0      | 0       | 0         |            |        |       | (cf   | 5)   |      |
| S131 Culver   |            |             | 0      |         |           |            |        |       | `     | •    |      |
|               |            |             |        |         |           |            |        |       |       |      |      |
| Fisheating    | Creek      |             |        |         |           |            |        |       |       |      |      |
| nr Palmda     | ale        | 30.36       | 82     |         |           |            |        |       |       |      |      |
| nr Lakepo     | ort        |             |        |         |           |            |        |       |       |      |      |
| C5:           |            | -NR-        | 0      | -NR     | RNF       | RNF        | ₹-     |       |       |      |      |
|               |            |             |        |         |           |            |        |       |       |      |      |
| South Shore   |            |             |        |         |           |            |        |       |       |      |      |
| S4 Pumps:     | 12.56      | -NR-        | 0      | 0       | 0         | 0          |        |       | (cf   | 5)   |      |
| S169:         |            | -NR-        | -NR -  | -NR-    | -NR -     | -NR-       |        |       |       |      |      |
| S310:         | 16.34      |             | 5      |         |           |            |        |       |       |      |      |
| S3 Pumps:     | 10.48      | 16.52       | 0      | 0       | 0         | 0          |        |       | (cfs  | 5)   |      |
| S354:         | 16.52      | 10.48       | 176    | 0.1     | 0.1       |            |        |       |       |      |      |
| S2 Pumps:     | 10.44      | 16.55       | 0      | 0       | 0         | 0          | 0      |       | (cf   | 5)   |      |
| S351:         | 16.55      | 10.44       | 304    | 0.1     | 0.2       | 0.1        |        |       | `     | •    |      |
| S352:         | 16.47      | 10.71       | 365    | 0.8     | 0.1       |            |        |       |       |      |      |
| C10A:         | -NR-       | -NR-        |        | -NR-    | -NR-      | - NF       | RN     | NR-   | -NR-  |      |      |
| L8 Canal P1   |            | 14.16       | -4     | 1411    | 1411      |            |        | ***   | 1411  |      |      |
| Lo Canai i    | l          | 14.10       |        |         |           |            |        |       |       |      |      |
|               |            |             |        |         |           |            |        |       |       |      |      |
|               | S35:       | 1 and S352  | Tempor | ary Pum | ıps/S3    | 854 Sp     | oillwa | ay    |       |      |      |
| S351:         | 10.44      | 16.55       | 304    | -NRN    | IR – – NF | R – – NR - | NR     | -NR-  |       |      |      |
| S352:         | 10.71      | 16.47       |        | -NRN    |           |            |        |       |       |      |      |
| S354:         | 10.48      | 16.52       | 176    |         |           |            |        |       |       |      |      |
| 3331.         | 20.10      | 10.52       | 2,0    |         |           |            |        |       |       |      |      |
|               |            |             |        |         |           |            |        |       |       |      |      |
| Caloosahatche |            |             | 79)    |         |           |            |        |       |       |      |      |
| S47B:         | 14.35      | 12.63       |        | 1.5     | 1.5       |            |        |       |       |      |      |
| S47D:         | 12.62      | 10.95       | 7      | 0.0     |           |            |        |       |       |      |      |
| S77:          |            |             |        |         |           |            |        |       |       |      |      |
| Spillway      | and Sector | r Preferred | Flow:  |         |           |            |        |       |       |      |      |
|               | 16.08      | 10.91       |        | 0.0 3   | 3.0       | 3.0        | 3.0    |       |       |      |      |
| Flow Due      | to Lockage | es+:        | -NR-   |         |           |            |        |       |       |      |      |

S78:

Spillway and Sector Flow:

10.77 2.92 2404 1.0 2.5 2.5 2.0

Flow Due to Lockages+: -NR-

S79:

Spillway and Sector Flow:

2.93 0.54 3349 0.0 0.0 0.0 2.5 3.0 3.0 3.0 0.0

Flow Due to Lockages+: 2
Percent of flow from S77 72%
Chloride (ppm) 0

St. Lucie Canal (S308, S80)

S308:

Spillway and Sector Preferred Flow:

16.77 13.84 0 0.0 0.0 0.0 0.0

Flow Due to Lockages+: 0

S153: 18.72 13.97 52 0.0 0.0

S80:

Spillway and Sector Flow:

14.24 1.92 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Flow Due to Lockages+: 0 Percent of flow from S308 NA %

Steele Point Top Salinity (mg/ml) \*\*\*\*
Steele Point Bottom Salinity (mg/ml) \*\*\*\*

Speedy Point Top Salinity (mg/ml) \*\*\*\*
Speedy Point Bottom Salinity (mg/ml) \*\*\*\*

+ Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

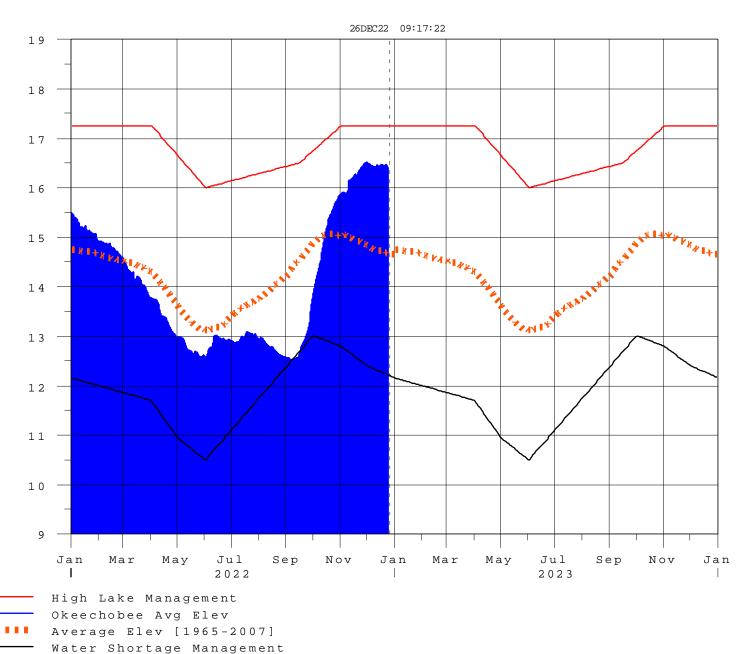
++ Preferred flow is determined from either the spillway discharge or the below flow meter daily

|                           |             |          |          | Wi       | nd      |
|---------------------------|-------------|----------|----------|----------|---------|
| aily Precipitation Totals | 1-Day       | 3-Day    | 7-Day    | Directio | n Speed |
|                           | (inches)    | (inches) | (inches) | (Deg�)   | (mph    |
| S133 Pump Station:        | -NR-        | 0.00     | 0.00     |          |         |
| S193:                     | -NR-        | 0.00     | 0.00     | -NR-     | -NR -   |
| Okeechobee Field Station: | -NR-        | 0.00     | 0.00     |          |         |
| S135 Pump Station:        | -NR-        | 0.00     | 0.00     |          |         |
| S127 Pump Station:        | -NR-        | 0.00     | 0.00     |          |         |
| S129 Pump Station:        | -NR-        | 0.00     | 0.00     |          |         |
| S131 Pump Station:        | -NR-        | 0.00     | 0.00     |          |         |
| S77:                      | -NR-        | 0.00     | 0.00     | 91       | 4       |
| S78:                      | -NR-        | 0.00     | 0.00     | 312      | 6       |
| S79:                      | -NR-        | 0.00     | 0.00     | 3        | 4       |
| S4 Pump Station:          | -NR-        | 0.00     | 0.00     |          |         |
| Clewiston Field Station:  | -NR-        | 0.00     | 0.00     |          |         |
| S3 Pump Station:          | -NR-        | 0.00     | 0.00     |          |         |
| S2 Pump Station:          | -NR-        | 0.00     | 0.00     |          |         |
| 5308:                     | -NR-        | 0.00     | 0.00     | 338      | 17      |
| S80:                      | -NR-        | 0.00     | 0.00     | 0        | 7       |
| Okeechobee Average        | -NR-        | 0.00     | 0.00     |          |         |
| (Sites S78, S79 and       | S80 not inc | luded)   |          |          |         |
| Oke Nexrad Basin Avg      | -NR-        | 0.00     | 0.00     |          |         |

| 25DEC22 -2 Days =          | 23 DEC 2022         | 16.47           | 0.09           |
|----------------------------|---------------------|-----------------|----------------|
|                            |                     |                 |                |
| 25DEC22 -3 Days =          | 22 DEC 2022         | 16.47           | 0.09           |
| 25DEC22 -4 Days =          | 21 DEC 2022         | 16.46           | 0.08           |
| 25DEC22 -5 Days =          | 20 DEC 2022         | 16.45           | 0.07           |
|                            | 19 DEC 2022         |                 |                |
| 25DEC22 -6 Days =          |                     | 16.44           | 0.06           |
| 25DEC22 -7 Days =          | 18 DEC 2022         | 16.46           | 0.08           |
| 25DEC22 -30 Days =         | 25 NOV 2022         | 16.43           | 0.05           |
| 25DEC22 -1 Year =          | 25 DEC 2021         | 15.64           | -0.74          |
|                            |                     |                 |                |
| 25DEC22 -2 Year =          | 25 DEC 2020         | 15.88           | -0.50          |
| Long Term Mean 30day Avear | rge ET for Lake Al- |                 | -NR-           |
| Average                    | e Flow over the pro | vious 14 days l | Avg-Daily Flow |
| 25DEC22 Today =            | 25 DEC 2022         | 1332 MON        | -5833          |
|                            |                     |                 |                |
| 25DEC22 -1 Day =           | 24 DEC 2022         | 1706 SUN        | -8706          |
| 25DEC22 -2 Days =          | 23 DEC 2022         | 2476 SAT        | 1841           |
| 25DEC22 -3 Days =          | 22 DEC 2022         | 2259 FRI        | 4632           |
|                            | 21 DEC 2022         | :               |                |
| 25DEC22 -4 Days =          |                     | 1918 THU        | 2858           |
| 25DEC22 -5 Days =          | 20 DEC 2022         | 1730 WED        | 3642           |
| 25DEC22 -6 Days =          | 19 DEC 2022         | 1458 TUE        | -2896          |
| 25DEC22 -7 Days =          | 18 DEC 2022         | 1497 MON        | -402           |
|                            |                     |                 |                |
| 25DEC22 -8 Days =          | 17 DEC 2022         | 1693 SUN        | 1304           |
| 25DEC22 -9 Days =          | 16 DEC 2022         | 1595 SAT        | 4562           |
| 25DEC22 -10 Days =         | 15 DEC 2022         | 1246 FRI        | 5330           |
| 25DEC22 -11 Days =         | 14 DEC 2022         | 861 THU         | 9              |
|                            |                     | :               |                |
| 25DEC22 -12 Days =         | 13 DEC 2022         | 1178 WED        | -1784          |
| 25DEC22 -13 Days =         | 12 DEC 2022         | 1342 TUE        | 14094          |
|                            | S65E                |                 |                |
| Ave                        | erage Flow over pre | evious 14 days  | Avg-Daily Flow |
| 25DEC22 Today=             | 25 DEC 2022         | 1733 MON        | 1759           |
| 25DEC22 -1 Day =           | 24 DEC 2022         | 1733 SUN        | 1762           |
| 25DEC22 -2 Days =          | 23 DEC 2022         | 1731 SAT        | 1781           |
| •                          |                     | :               |                |
| 25DEC22 -3 Days =          | 22 DEC 2022         | 1731 FRI        | 1769           |
| 25DEC22 -4 Days =          | 21 DEC 2022         | 1730 THU        | 1787           |
| 25DEC22 -5 Days =          | 20 DEC 2022         | 1741 WED        | 1712           |
| 25DEC22 -6 Days =          | 19 DEC 2022         | 1765 TUE        | 1717           |
|                            |                     |                 |                |
| 25DEC22 -7 Days =          | 18 DEC 2022         | 1798 MON        | 1768           |
| 25DEC22 -8 Days =          | 17 DEC 2022         | 1829 SUN        | 1656           |
| 25DEC22 -9 Days =          | 16 DEC 2022         | 1871 SAT        | 1789           |
| 25DEC22 -10 Days =         | 15 DEC 2022         | 1912 FRI        | 1682           |
|                            | 14 DEC 2022         | :               |                |
| 25DEC22 -11 Days =         |                     | 1987 THU        | 1672           |
| 25DEC22 -12 Days =         | 13 DEC 2022         | 2068 WED        | 1704           |
| 25DEC22 -13 Days =         | 12 DEC 2022         | 2157 TUE        | 1707           |
|                            |                     |                 |                |
|                            | S65EX1              |                 |                |
| Ave                        | erage Flow over pro | evious 14 days  | Avg-Daily Flow |
| 25DEC22 Today=             | 25 DEC 2022         | Ø MON .         | 0              |
| 25DEC22 -1 Day =           | 24 DEC 2022         | 0 SUN           |                |
|                            |                     |                 | :              |
| 25DEC22 -2 Days =          | 23 DEC 2022         | 0 SAT           | 0              |
| 25DEC22 -3 Days =          | 22 DEC 2022         | 0 FRI           | 0              |
| 25DEC22 -4 Days =          | 21 DEC 2022         | 0 THU           | j 0            |
| 25DEC22 -5 Days =          | 20 DEC 2022         | 0 WED           | 0              |
|                            |                     |                 | •              |
| 25DEC22 -6 Days =          | 19 DEC 2022         | 0 TUE           | 0              |
| 25DEC22 -7 Days =          | 18 DEC 2022         | 0 MON           | 0              |
| 25DEC22 -8 Days =          | 17 DEC 2022         | 0 SUN           | j 0            |
| 25DEC22 -9 Days =          | 16 DEC 2022         | 0 SAT           | 0              |
|                            |                     |                 | •              |
| 25DEC22 -10 Days =         | 15 DEC 2022         | 0 FRI           | 0              |
| 25DEC22 -11 Days =         | 14 DEC 2022         | 0 THU           | 0              |
| 25DEC22 -12 Days =         | 13 DEC 2022         | 0 WED           | 0              |
| 25DEC22 -13 Days =         | 12 DEC 2022         | 3 TUE           | i 0            |
| 2301022 13 Days -          | 12 010 2022         | JIOL            | 1              |
|                            |                     |                 |                |

| DATE 25 DEC 2022 24 DEC 2022 23 DEC 2022 21 DEC 2022 20 DEC 2022 19 DEC 2022 18 DEC 2022 17 DEC 2022 16 DEC 2022 15 DEC 2022                                                  | 2979<br>687<br>1058<br>1121<br>2728<br>3273<br>3699<br>2638<br>15 | Below S-77<br>Discharge<br>(ALL-DAY)<br>(AC-FT)<br>5490<br>3647<br>1382<br>1128<br>1127<br>2873<br>2944<br>4320<br>2915<br>-NR- | S-78<br>Discharge<br>(ALL DAY)<br>(AC-FT)<br>-NR-<br>3369<br>762<br>1152<br>1608<br>2624<br>3649<br>3613<br>3241<br>1387<br>1286 | S-79<br>Discharge<br>(ALL DAY)<br>(AC-FT)<br>6683<br>5221<br>1760<br>2342<br>2838<br>3786<br>5451<br>6153<br>4639<br>-NR- |                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 14 DEC 2022<br>13 DEC 2022<br>12 DEC 2022                                                                                                                                     | 4073                                                              | 3242<br>3530<br>3410                                                                                                            | 2391<br>2954<br>3081                                                                                                             | 2939<br>3825<br>4319                                                                                                      |                                                             |
|                                                                                                                                                                               | S-310<br>Discharge                                                | S-351<br>Discharge                                                                                                              | S-352<br>Discharge                                                                                                               | S-354<br>Discharge                                                                                                        | L8 Canal Pt<br>Discharge                                    |
| DATE  25 DEC 2022  24 DEC 2022  23 DEC 2022  21 DEC 2022  20 DEC 2022  19 DEC 2022  17 DEC 2022  16 DEC 2022  15 DEC 2022  14 DEC 2022  13 DEC 2022  13 DEC 2022  12 DEC 2022 | 13<br>11<br>-NR-<br>-NR-<br>9<br>8<br>6<br>9<br>-NR-<br>-NR-      | (ALL DAY) (AC-FT) 603 1117 1446 1848 0 0 0 0 0 678 885                                                                          | (ALL DAY) (AC-FT) 724 843 1133 812 0 6 0 49 154 152 157 197                                                                      | (ALL DAY) (AC-FT) 349 385 386 976 0 1 0 0 283 514 241                                                                     | (ALL DAY) (AC-FT) -8 -9 -9 -9 2 -4 0 -4 -2 -NRNR- 13 48 102 |
| DATE  25 DEC 2022  24 DEC 2022  23 DEC 2022  21 DEC 2022  29 DEC 2022  19 DEC 2022  17 DEC 2022  16 DEC 2022  15 DEC 2022  14 DEC 2022  13 DEC 2022  13 DEC 2022  12 DEC 2022 | 1<br>4<br>9<br>8<br>10<br>6<br>3<br>12<br>7<br>10<br>6<br>8       | Below S-308 Discharge (ALL-DAY) (AC-FT) -NRNRNRNRNRNRNRNR                                                                       |                                                                                                                                  |                                                                                                                           |                                                             |

\*\*\* NOTE: Discharge (ALL DAY) is computed using Spillway, Sector Gate and Lockages Discharges from 0015 hrs to 2400 hrs.


<sup>(</sup>I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

- \* On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average.

  On 14 Mar 2001, due to the isolation of various gages within the standard 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation.
  - On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.
  - On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels.
- Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/
- \$ For information regarding Lake Okeechobee Service Area water restrictions
  please refer to www.sfwmd.gov

Report Generated 26DEC2022 @ 09:15 \*\* Preliminary Data - Subject to Revision \*\*





E 1

i n

F t N

G V D

## **Classification Tables**

Supplemental Tables used in conjunction with the LORS2008

Release

**Guidance Flow Charts** 

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• 6-15 Day Precipitation Outlook Categories

Table ?? in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Seasonal

#### Outlook

Table K-3 in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Multi-

## Seasonal Outlook

Table K-4 in the Lake Okeechobee Water Control Plan

#### **Back to Lake Okeechobee Operations Main Page**

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

| Tributary Hydrologic | Palmer Index   | 2-wk Mean L.O. Net  |
|----------------------|----------------|---------------------|
| Classification*      | Class Limits   | Inflow Class Limits |
| Very Wet             | 3.0 or greater | Greater >= 6000 cfs |
| Wet                  | 1.5 to 2.99    | 2500 - 5999 cfs     |
| Near Normal          | -1.49 to 1.49  | 500 - 2499 cfs      |
| Dry                  | -2.99 to -1.5  | -5000 – 500 cfs     |
| Very Dry             | -3.0 or less   | Less than -5000 cfs |

<sup>\*</sup> use the wettest of the two indicators

## Classification of Lake Okeechobee Net Inflow Seasonal Outlook\*

| Lake Net Inflow<br>Prediction | Equivalent<br>Depth** | Lake Okeechobee  |
|-------------------------------|-----------------------|------------------|
| [million acre-feet]           | [feet]                | Net Inflow       |
| [                             | []                    | Seasonal Outlook |
| > 0.93                        | > 2.0                 | Very Wet         |
| 0.71 to 0.93                  | 1.51 to 2.0           | Wet              |
| 0.35 to 0.70                  | 0.75 to 1.5           | Normal           |
| < 0.35                        | < 0.75                | Dry              |

<sup>\*\*</sup>Volume-depth conversion based on average lake surface area of 467,000 acres

## <u>Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook</u>\*

| Lake Net Inflow<br>Prediction | Equivalent<br>Depth** | Lake Okeechobee        |
|-------------------------------|-----------------------|------------------------|
| [million acre-feet]           | [feet]                | Net Inflow             |
| [                             | [root]                | Multi-Seasonal Outlook |
| > 2.0                         | > 4.3                 | Very Wet               |
| 1.18 to 2.0                   | 2.51 to 4.3           | Wet                    |
| 0.5 to 1.17                   | 1.1 to 2.5            | Normal                 |
| < 0.5                         | < 1.1                 | Dry                    |

<sup>\*\*</sup>Volume-depth conversion based on average lake surface area of 467,000 acres

## 6-15 Day Precipitation Outlook Categories\*

| 6-15 Day Precipitation Outlook<br>Categories | WSE Decision Tree<br>Categories |  |
|----------------------------------------------|---------------------------------|--|
| Above Normal                                 | Wet to Very Wet                 |  |
| Normal                                       | Normal                          |  |
| Below Normal                                 | Dry                             |  |

<sup>\*</sup> Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan