Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 12/19/2022 (ENSO Condition: La Niña)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using methods described in the LORS2008 Water Control Plan: Croley's method, the SFWMD empirical method, a subsampling of La Niña years and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with La Niña ENSO years. The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season	Croley	Croley's Method*		SFWMD Empirical Method		Sub-sampling of La Niña ENSO Years**		Sub-sampling of AMO Warm + La Niña ENSO Years***	
	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	
Current (Dec-May)	N/A	N/A	-0.05	Dry	-0.07	Dry	-0.32	Dry	
Multi Seasonal (Dec-Oct)	N/A	N/A	2.50	Wet	2.68	Wet	2.17	Normal	

^{*}Croley's Method Not Produced for This Report

See <u>Seasonal</u> and <u>Multi-Seasonal</u> tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

^{**}Sub-sampling is a weighted average of ENSO conditions based on the IRI ENSO forecast published.

^{***}Sub-sampling based on combination of ENSO and AMO conditions. For this predominant ENSO categorization is used instead of weights.

Tributary Hydrologic Conditions:

685 cfs 14-day running average for Lake Okeechobee Net Inflow through 12/19/2022. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Near Normal.

0.61 for Palmer Drought Index on 12/17/2022.

According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Near Normal.

The wetter of the two conditions above is Normal.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 12/19/2022:

Lake Okeechobee Stage: 16.41 feet

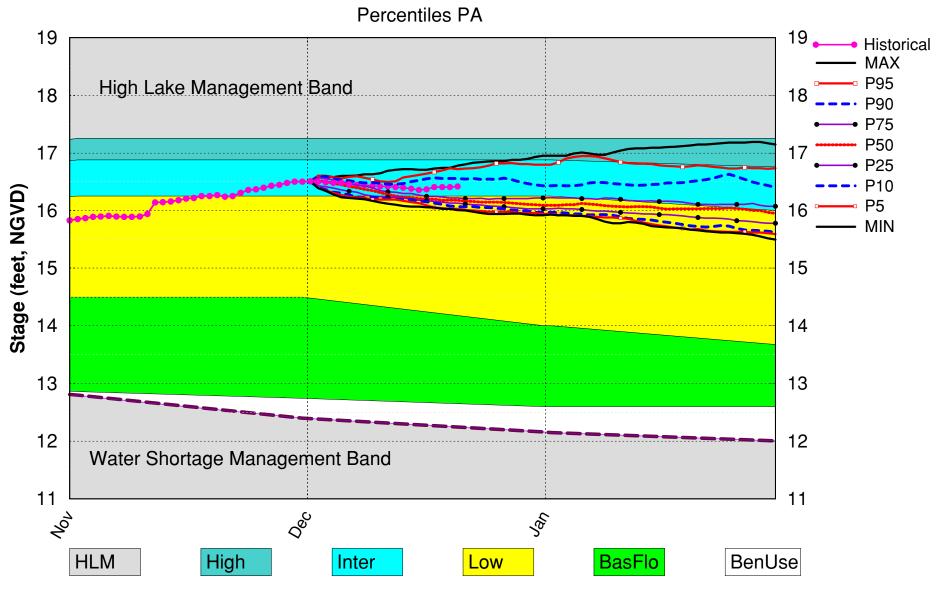
	ee Management /Band	Bottom Elevation (feet, NGVD)	Current Lake Stage
High Lake Manage	ement Band	17.25	
	High sub-band	16.88	
Operational Band	Intermediate sub-band	16.25	← 16.41 ft
	Low sub-band	14.21	
Base Flow sub-band		12.66	
Beneficial Use sub	o-band	12.26	
Water Shortage M	lanagement Band		

Part C of LORS2008: Discharge to WCAs

Maximum practicable to WCAs if "All downstream WCAs < max. of upper schedule + 0.25 ft". Currently, all WCAs have the potential to receive regulatory releases from Lake Okeechobee.

Part D of LORS2008: Discharge to Tide

Up to 4000 cfs at S-77 and up to 1800 cfs at S-80.

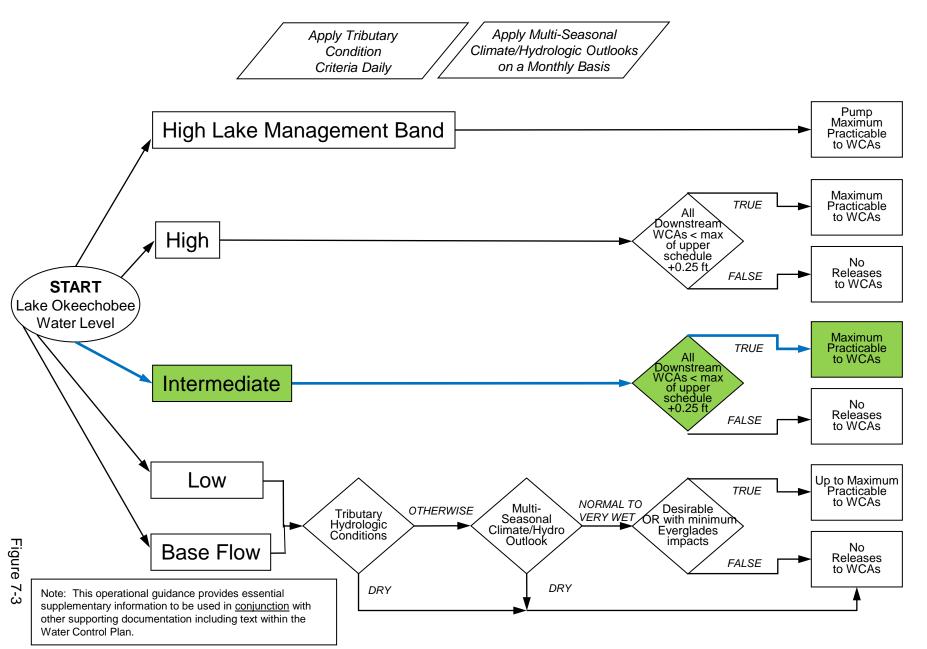

LORS2008 Implementation on 12/19/2022 (ENSO Condition- La Niña Watch): Status for week ending 12/19/2022:

Water Supply Risk Evaluation

Area	Indicator	Value	Color Coded Scoring Scheme
	Projected LOK Stage for the next two months	Intermediate Sub-band	L
	Palmer Drought Index for LOK Tributary Conditions	0.61 (Normal to Extremely Wet)	L
	CPC Precipitation Outlook	1 month: Below Normal	M
LOK	CFC Frecipitation Outlook	3 months: Below Normal	M
	LOK Seasonal Net Inflow Outlook	-0.07 ft	Н
	ENSO Forecast	Extremely Dry	''
	LOK Multi-Seasonal Net Inflow Outlook	2.68 ft	M
	ENSO Forecast	Normal	IVI
	WCA 1: 3 Station Average (Sites 1-7, 1-8T, 1-9)	Above Line 1 (17.34 ft)	L
WCAs	WCA 2A: Site 2-17	Above Line 1 (12.76 ft)	L
	WCA-3A: 3 Station Average (Sites 63, 64, and 65)	Above Line 1 (10.35 ft)	L
	Service Area 1	Year-Round Irrigation Rule in effect	L
LEC	Service Area 2	Year-Round Irrigation Rule in effect	L
	Service Area 3	Year-Round Irrigation Rule in effect	L

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow outlooks use slightly different classification intervals than those used by the 2008-LORS.

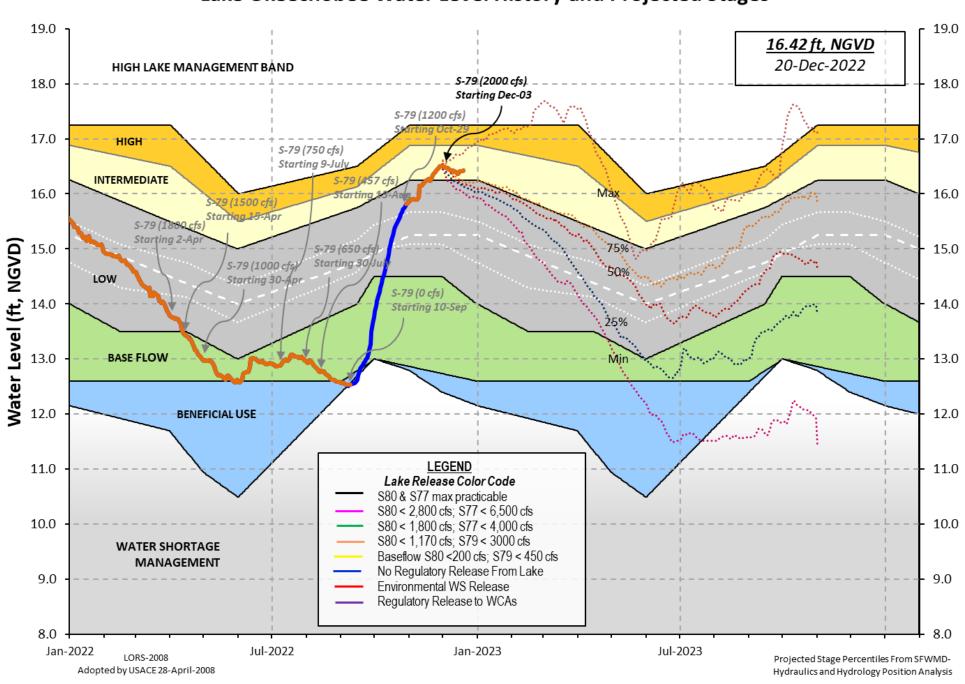
Lake Okeechobee SFWMM December 2022 Position Analysis


(See assumptions on the Position Analysis Results website)

Tributary Basin Condition Indicators as of December 18 2022

2008 LORS

Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas



2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Lake Okeechobee Water Level History and Projected Stages

Data Ending 2400 hours 18 DEC 2022

Okeechobee Lake Regulation	Elevation	Last Year	2YRS Ago
	(ft-NGVD)	(ft-NGVD)	(ft-NGVD)

*Okeechobee Lake Elevation 16.41 15.73 15.92 (Official Elv) Bottom of High Lake Mngmt= 17.25 Top of Water Short Mngmt= 12.26 Currently in Operational Management Band

Simulated Average LORS2008 [1965-2000] 13.61 Difference from Average LORS2008 2.80

18DEC (1965-2007) Period of Record Average 14.70 Difference from POR Average 1.71

Today Lake Okeechobee elevation is determined from the 4 Int & 4 Edge stations

++Navigation Depth (Based on 2007 Channel Condition Survey) Route 1 ◆ 10.35' ++Navigation Depth (Based on 2008 Channel Condition Survey) Route 2 ◆ 8.55' Bridge Clearance = 49.35'

4 Interior and 4 Edge Okeechobee Lake Average (Avg-Daily values):

L001 L005 L006 LZ40 S4 S352 S308 S133 16.37 16.48 16.55 16.43 16.57 16.61 16.02 16.23

*Combination Okeechobee Avg-Daily Lake Average = 16.41 (*See Note)

(*See Note)

Okeechobee Inflo	ws (cfs):				
S65E	1626	S65EX1	0	Fisheating Cr	122
S154	0	S191	0	S135 Pumps	0
S84	0	S133 Pumps	0	S2 Pumps	0
S84X	0	S127 Pumps	0	S3 Pumps	0
S71	158	S129 Pumps	0	S4 Pumps	0
S72	194	S131 Pumps	0	C5	0
Total Inflows:	2100				
Okeechobee Outfl	ows (cfs):				
S135 Culverts	0	S354	0	S77	1869
S127 Culverts	0	S351	0	S308	2
S129 Culverts	0	S352	0		
S131 Culverts	0	L8 Canal Pt	-2		
Total Outflows:	1869				

****S77 structure flow is being used to compute Total Outflow.
****S308 structure flow is being used to compute Total Outflow.

Okeechobee Pan Evaporation (inches):

S77 0.14 \$308 0.20

Average Pan Evap x 0.75 Pan Coefficient = 0.13" = 0.01'

Lake Average Precipitation using NEXRAD: = -NR-" = -NR-"

Evaporation - Precipitation: = -NR-" = -NR-"

Evaporation - Precipitation using Lake Area of 730 square miles

----- Gate Positions -----Headwater Tailwater Elevation Elevation Disch #1 #2 #3 #4 #5 #6 #7 #8 (ft-msl) (ft-msl) (cfs) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (I) see note at bottom North East Shore S133 Pumps: 13.57 0 0 16.15 0 0 0 (cfs) S193: S191: 19.07 16.14 0 0.0 0.0 0.0 S135 Pumps: 13.51 16.19 0 0 0 0 0 (cfs) S135 Culverts: 0 0.0 0.0 North West Shore S65E: 16.10 1626 0.5 0.5 1.2 0.5 1.2 0.9 20.89 S65EX1: 20.89 16.10 0 S127 Pumps: 13.49 16.14 0 0 0 0 0 0 (cfs) S127 Culvert: 0.0 0 S129 Pumps: 12.95 16.37 0 0 (cfs) 0 0 S129 Culvert: 0.0 S131 Pumps: 12.90 0 0 (cfs) 16.33 0 S131 Culvert: 0 Fisheating Creek nr Palmdale 122 31.02 nr Lakeport -NR-0 -NR- -NR- -NR-C5: South Shore -NR-S4 Pumps: 11.37 0 0 (cfs) -NR--NR--NR- -NR- -NR-S169: S310: 16.75 3 S3 Pumps: 9.41 16.81 0 0 0 (cfs) 0 S354: 16.81 9.41 0 0.1 0.0 S2 Pumps: 9.77 16.83 0 0 0 0 (cfs) 9.77 0 0.0 0.0 S351: 16.83 0.0 S352: 9.84 0.1 0.0 16.62 C10A: -NR--NR--NR- -NR- -NR--NR-L8 Canal PT 14.57 -2 S351 and S352 Temporary Pumps/S354 Spillway S351: 9.77 16.83 0 -NR--NR--NR--NR--NR-S352: 9.84 16.62 0 -NR--NR--NR-S354: 9.41 16.81 0 -NR--NR--NR-Caloosahatchee River (S77, S78, S79) 0.0 0.5 S47B: 14.22 12.45 11.30 S47D: 12.42 40 1.0 S77: Spillway and Sector Preferred Flow: 1867 0.0 2.5 2.5 0.5 16.35 11.18 2 Flow Due to Lockages+:

Spillway and Sector Flow:

11.14 2.87 1817 2.0 0.0 2.5 1.0

Flow Due to Lockages+: 4

S79:

Spillway and Sector Flow:

3.03 1.82 3084 0.0 0.0 0.0 3.0 3.0 3.0 2.5 0.0

Flow Due to Lockages+: 5
Percent of flow from S77 61%
Chloride (ppm) 0

St. Lucie Canal (S308, S80)

S308:

Spillway and Sector Preferred Flow:

16.24 14.15 0 0.0 0.0 0.0 0.0

Flow Due to Lockages+: 2

S153: 18.85 14.25 23 0.0 0.5

S80:

Spillway and Sector Flow:

14.51 0.83 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Flow Due to Lockages+: 15 Percent of flow from S308 NA %

Steele Point Top Salinity (mg/ml) ****
Steele Point Bottom Salinity (mg/ml) ****

Speedy Point Top Salinity (mg/ml) ****
Speedy Point Bottom Salinity (mg/ml) ****

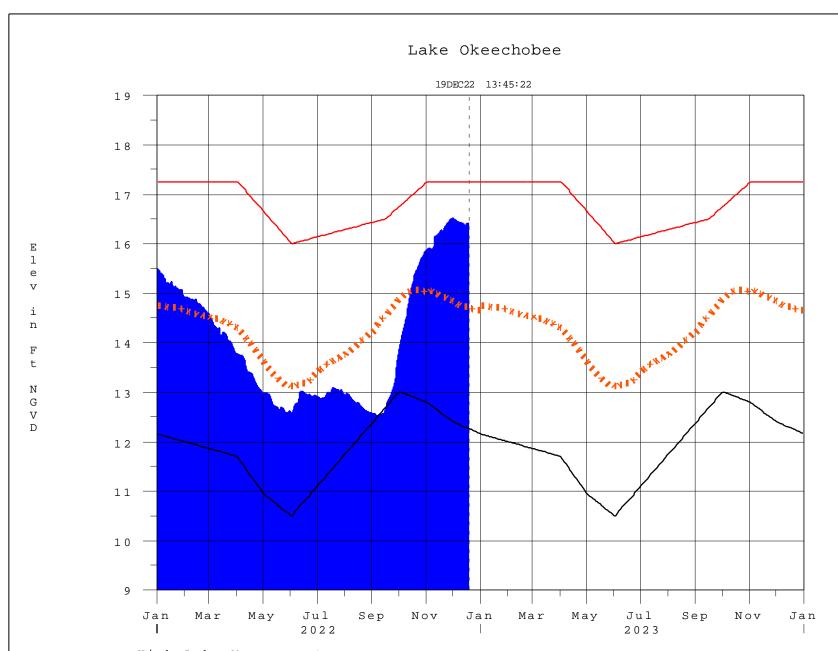
+ Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

++ Preferred flow is determined from either the spillway discharge or the below flow meter daily

				Wi	nd
aily Precipitation Totals	1-Day	3-Day	7-Day	Directio	n Speed
	(inches)	(inches)	(inches)	(Deg�)	(mph
S133 Pump Station:	-NR-	0.00	0.00		
S193:	-NR-	0.00	0.00	-NR-	-NR -
Okeechobee Field Station:	-NR-	0.00	0.00		
S135 Pump Station:	-NR-	0.00	0.00		
S127 Pump Station:	-NR-	0.00	0.00		
S129 Pump Station:	-NR-	0.00	0.00		
S131 Pump Station:	-NR-	0.00	0.00		
S77:	-NR-	0.00	0.00	27	12
S78:	-NR-	0.00	0.00	334	3
S79:	-NR-	0.00	0.00	1	2
S4 Pump Station:	-NR-	0.00	0.00		
Clewiston Field Station:	-NR-	0.00	0.00		
S3 Pump Station:	-NR-	0.00	0.00		
S2 Pump Station:	-NR-	0.00	0.00		
S308:	-NR-	0.00	0.00	352	4
S80:	-NR-	0.00	0.00	22	4
Okeechobee Average	-NR-	0.00	0.00		
(Sites S78, S79 and	S80 not inc	luded)			
Oke Nexrad Basin Avg	-NR-	0.00	0.00		

18DEC22 -2 Da	ays = 16	DEC 2022		16.41	0.00
18DEC22 -3 Da	ays = 15	DEC 2022		16.37	-0.04
18DEC22 -4 Da		DEC 2022		16.36	-0.05
18DEC22 -5 Da					
	•	DEC 2022		16.38	-0.03
18DEC22 -6 Da	•	DEC 2022		16.40	-0.01
18DEC22 -7 Da	ays = 11	DEC 2022		16.41	0.00
18DEC22 -30 Da	avs = 18	NOV 2022		16.27	-0.14
	•	DEC 2021		15.73	-0.68
		DEC 2020		15.92	-0.49
1001022 2 10	10	DEC 2020		13.32	0.45
Long Term Mean 30	day Avearge F	T for Lake	Alfred (Inches) =	- NR -
Long Term Tiedir 30	day Avearge E	i ioi Lake	. AITTEU (inches) =	TWI
	Lako (Okoochobo	Not Infl	ow (LONIN)	
					Ave Deily Flav
	Average Flo		•	:	Avg-Daily Flow
18DEC22 Tod	•	DEC 2022	687	MON	1867
18DEC22 -1 Da	ay = 17	DEC 2022	721	SUN	1304
18DEC22 -2 Da	vs = 16	DEC 2022	622	SAT	9100
	-	DEC 2022	-50		3062
			-274	:	
18DEC22 -4 Da		DEC 2022			-2259
18DEC22 -5 Da	•	DEC 2022	206		-1784
18DEC22 -6 Da		DEC 2022	370		482
18DEC22 -7 Da	ys = 11	DEC 2022	680	MON	-597
18DEC22 -8 Da	•	DEC 2022	1211		2067
18DEC22 -9 Da	,	DEC 2022	1390	SAT	-1193
18DEC22 -10 Da	•	DEC 2022	1963	FRI	-147
	•				
18DEC22 -11 Da		DEC 2022	2461	THU	226
18DEC22 -12 Da		DEC 2022	2609	WED	-162
18DEC22 -13 Da	ays = 05	DEC 2022	3432	TUE	-2352
		S65E			
	Λνοησσο		previous	14 days	Avg-Daily Flow
10DEC22 T-	_		•	- :	
	•	DEC 2022	1798	MON	1767
18DEC22 -1 Da	ay = 17	DEC 2022	1829	SUN	1659
18DEC22 -2 Da	ays = 16	DEC 2022	1871	SAT	1785
18DEC22 -3 Da	ivs = 15	DEC 2022	1913	FRI	1680
	•	DEC 2022	1987		1675
18DEC22 -5 Da		DEC 2022	2068	WED	1704
	•			!	
18DEC22 -6 Da	,	DEC 2022	2157	TUE	1707
18DEC22 -7 Da	ays = 11	DEC 2022	2260	MON	1750
18DEC22 -8 Da	ays = 10	DEC 2022	2381	SUN	1735
18DEC22 -9 Da		DEC 2022	2519		1783
18DEC22 -10 Da		DEC 2022			1755
18DEC22 -11 Da		DEC 2022		:	1940
18DEC22 -12 Da	•	DEC 2022			2058
18DEC22 -13 Da	ays = 05	DEC 2022	2926	TUE	2167
		S65EX1			
	Average		previous	14 days	Avg-Daily Flow
18DEC22 To		DEC 2022	0		
	•				0
18DEC22 -1 Da	-	DEC 2022	0		0
18DEC22 -2 Da	ays = 16	DEC 2022	0	SAT	0
18DEC22 -3 Da	ys = 15	DEC 2022	0	FRI	0
		DEC 2022	0		j 0
18DEC22 -5 Da		DEC 2022			j 0
18DEC22 -6 Da		DEC 2022			0
	-				
18DEC22 -7 Da	-	DEC 2022			0
18DEC22 -8 Da		DEC 2022			0
18DEC22 -9 Da	ays = 09	DEC 2022	38	SAT	0
18DEC22 -10 Da	-	DEC 2022			j 0
18DEC22 -11 Da	-	DEC 2022			j ø
					:
18DEC22 -12 Da	-	DEC 2022			0
18DEC22 -13 Da	ays = 05	DEC 2022	85	TUE	0

	S-77	Below S-77	S-78	S-79	
	Discharge	Discharge	Discharge	Discharge	
	(ALL DAY)	(ALL-DAY)	(ALL DAY)	(ALL DAY)	
DATE	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	
18 DEC 2022	3699	4320	3613	6153	
17 DEC 2022		2915	3241	4639	
16 DEC 2022		-NR -	1387	-NR-	
15 DEC 2022		-NR -	1286	- NR -	
14 DEC 2022		3242	2391	2939	
13 DEC 2022		3530	2954	3825	
12 DEC 2022		3410	3081	4319	
11 DEC 2022		1559	1706	2656	
10 DEC 2022		1382	656	1592	
09 DEC 2022 08 DEC 2022		1227 2717	1508	1701 2865	
07 DEC 2022		3271	1825 2551	3491	
06 DEC 2022		2808	2556	3648	
05 DEC 2022		3807	3146	4680	
03 DEC 2022	. 3430	3007	3140	4080	
	S-310	S-351	S-352	S-354	L8 Canal Pt
	Discharge	Discharge	Discharge	Discharge	Discharge
	(ALL DAY)	(ALL DAY)	(ALL DAY)	(ALL DAY)	(ALL DAY)
DATE	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
18 DEC 2022		0	0	0	-4
17 DEC 2022		0	0	0	-2
16 DEC 2022		0	49	0	-NR -
15 DEC 2022		0	154	60	-NR -
14 DEC 2022		0	152	283	13
13 DEC 2022		678	157	514	48
12 DEC 2022		885	197	241	102
11 DEC 2022		1036	737	249	67 13
10 DEC 2022		1525	759 407	832	13
09 DEC 2022 08 DEC 2022		594 737	407 605	238 331	96 201
07 DEC 2022		892	493	459	224
06 DEC 2022		610	303	492	17
05 DEC 2022		291	248	106	211
05 DEC 2022		251	240	100	211
	S-308	Below S-308	S-80		
	Discharge	Discharge	Discharge		
	(ALL DAY)	(ALL-DAY)	(ALL-DAY))	
DATE	(AC-FT)	(AC-FT)	(AC-FT)		
18 DEC 2022		-NR-	30		
17 DEC 2022		-NR-	44		
16 DEC 2022		-NR-	44		
15 DEC 2022		-NR-	629		
14 DEC 2022		-NR-	514 44		
13 DEC 2022 12 DEC 2022		- NR - - NR -	26		
12 DEC 2022		-NR-	-NR-		
10 DEC 2022		-NR-	34		
09 DEC 2022		-NR-	50		
08 DEC 2022		-NR-	31		
07 DEC 2022		-NR-	53		
06 DEC 2022		-NR-	42		
05 DEC 2022		-NR-	41		


*** NOTE: Discharge (ALL DAY) is computed using Spillway, Sector Gate and Lockages Discharges from 0015 hrs to 2400 hrs.

⁽I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

- * On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average.

 On 14 Mar 2001, due to the isolation of various gages within the standard 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation.
 - On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.
 - On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels.
- Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/
- \$ For information regarding Lake Okeechobee Service Area water restrictions
 please refer to www.sfwmd.gov

Report Generated 19DEC2022 @ 13:15 ** Preliminary Data - Subject to Revision **

High Lake Management Okeechobee Avg Elev Average Elev [1965-2007] Water Shortage Management

Classification Tables

Supplemental Tables used in conjunction with the LORS2008

Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• 6-15 Day Precipitation Outlook Categories

Table ?? in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Seasonal

Outlook

Table K-3 in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic	Palmer Index	2-wk Mean L.O. Net
Classification*	Class Limits	Inflow Class Limits
Very Wet	3.0 or greater	Greater >= 6000 cfs
Wet	1.5 to 2.99	2500 - 5999 cfs
Near Normal	-1.49 to 1.49	500 - 2499 cfs
Dry	-2.99 to -1.5	-5000 – 500 cfs
Very Dry	-3.0 or less	Less than -5000 cfs

^{*} use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
[[]	Seasonal Outlook
> 0.93	> 2.0	Very Wet
0.71 to 0.93	1.51 to 2.0	Wet
0.35 to 0.70	0.75 to 1.5	Normal
< 0.35	< 0.75	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

<u>Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook</u>*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
[[root]	Multi-Seasonal Outlook
> 2.0	> 4.3	Very Wet
1.18 to 2.0	2.51 to 4.3	Wet
0.5 to 1.17	1.1 to 2.5	Normal
< 0.5	< 1.1	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories
Above Normal	Wet to Very Wet
Normal	Normal
Below Normal	Dry

^{*} Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan