Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method\(^1\), the SFWMD empirical method\(^2\), a sub-sampling of La Nina years\(^3\) and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with La Nina ENSO years\(^4\). The results for Croley’s method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

<table>
<thead>
<tr>
<th>Season</th>
<th>Croley's Method(^1)*</th>
<th>SFWMD Empirical Method(^2)</th>
<th>Sub-sampling of La Nina ENSO Years(^3)</th>
<th>Sub-sampling of AMO Warm + La Nina ENSO Years(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value (ft)</td>
<td>Condition</td>
<td>Value (ft)</td>
<td>Condition</td>
</tr>
<tr>
<td>Current (Mar-Aug)</td>
<td>N/A</td>
<td>N/A</td>
<td>1.64</td>
<td>Wet</td>
</tr>
<tr>
<td>Multi Seasonal (Mar-Oct)</td>
<td>N/A</td>
<td>N/A</td>
<td>2.34</td>
<td>Normal</td>
</tr>
</tbody>
</table>

*Croley’s Method Not Produced for This Report

See Seasonal and Multi-Seasonal tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

**Sub-sampling is a weighted average of ENSO conditions based on the ENSO forecast used.
Tributary Hydrologic Conditions Graph:

-2558 cfs 14-day running average for Lake Okeechobee Net Inflow through 04/18/2022. According to the classification in Tributary Hydrologic Conditions table, this condition is Dry.

-2.24 for Palmer Drought Index on 04/18/2022. According to the classification in Tributary Hydrologic Conditions table, this condition is Dry.

The wetter of the two conditions above is **Dry**.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 04/18/2022:

Lake Okeechobee Stage: **13.41 feet**

<table>
<thead>
<tr>
<th>Lake Okeechobee Management Zone/Band</th>
<th>Bottom Elevation (feet, NGVD)</th>
<th>Current Lake Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Lake Management Band</td>
<td>16.92</td>
<td></td>
</tr>
<tr>
<td>Operational Band</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High sub-band</td>
<td>16.24</td>
<td></td>
</tr>
<tr>
<td>Intermediate sub-band</td>
<td>15.36</td>
<td></td>
</tr>
<tr>
<td>Low sub-band</td>
<td>13.48</td>
<td></td>
</tr>
<tr>
<td>Base Flow sub-band</td>
<td>12.60</td>
<td>13.41 ft</td>
</tr>
<tr>
<td>Beneficial Use sub-band</td>
<td>11.28</td>
<td></td>
</tr>
<tr>
<td>Water Shortage Management Band</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part C of LORS2008: Discharge to WCAs

Up to Maximum Practicable to the WCAs if desirable or with minimum Everglades impact; otherwise no releases to WCAs.

Part D of LORS2008: Discharge to Tide

Up to 450 cfs at S-79 and up to 200 cfs at S-80.

Lake Okeechobee Releases to the Caloosahatchee Estuary for 2008 LORS Baseflow & for Environmental Water Supply

Guidance for Lake Okeechobee Releases to the Caloosahatchee Estuary indicates no S77 release to the Caloosahatchee Estuary unless the Governing Board recommends otherwise.
LORS2008 Implementation on 04/18/2022 (ENSO Condition- La Nina Watch):
Status for week ending 04/18/2022:

Water Supply Risk Evaluation

<table>
<thead>
<tr>
<th>Area</th>
<th>Indicator</th>
<th>Value</th>
<th>Color Coded Scoring Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOK</td>
<td>Projected LOK Stage for the next two months</td>
<td>Base Flow</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Palmer Drought Index for LOK Tributary Conditions</td>
<td>-2.24</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>(Extremely Dry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPC Precipitation Outlook</td>
<td>1 month: Below Normal</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>3 months: Normal</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>LOK Seasonal Net Inflow Outlook</td>
<td>1.47 ft</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>ENSO Forecast</td>
<td>Normal to extremely wet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOK Multi-Seasonal Net Inflow Outlook</td>
<td>2.01 ft</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>ENSO Forecast</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>WCAs</td>
<td>WCA 1: 3 Station Average (Sites 1-7, 1-8T and 1-9)</td>
<td>Above Line 1 (16.05 ft)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>WCA 2A: Site 2-17</td>
<td>Above Line 0 (11.57 ft)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>WCA-3A: 3 Station Average (Sites 63, 64, and 65)</td>
<td>Above Line 2 (8.72 ft)</td>
<td>M</td>
</tr>
<tr>
<td>LEC</td>
<td>Service Area 1</td>
<td>Year-Round Irrigation Rule in effect</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Service Area 2</td>
<td>Year-Round Irrigation Rule in effect</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Service Area 3</td>
<td>Year-Round Irrigation Rule in effect</td>
<td>L</td>
</tr>
</tbody>
</table>

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow outlooks use slightly different classification intervals than those used by the 2008-LORS.
2008 LORS
Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas

Start
Lake Okeechobee Water Level

High Lake Management Band

High

Intermediate

Low

Base Flow

Tributary Hydrologic Conditions

OTHERWISE

Multi-Seasonal Climate/Hydrologic Outlook

NORMAL TO VERY WET

Desirable OR with minimum Everglades impacts

TRUE

FALSE

Up to Maximum Practicable to WCAs

No Releases to WCAs

Pump Maximum Practicable to WCAs

All Downstream WCAs < max of upper schedule +0.25 ft

TRUE

FALSE

All Downstream WCAs < max of upper schedule +0.25 ft

TRUE

FALSE

Maximum Practicable to WCAs

No Releases to WCAs

Note: This operational guidance provides essential supplementary information to be used in conjunction with other supporting documentation including text within the Water Control Plan.
2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Note: This operational guidance provides essential supplementary information to be used in conjunction with other supporting documentation including text within the Water Control Plan.

When conducting Base Flow releases, flows can be distributed East and West up to 650 cfs as needed to minimize impacts or provide benefits through S-80 and S-79.

Apply Meteorological Forecasts on a Weekly Basis; apply Seasonal and Multi-Seasonal Climate/Hydrologic Outlooks on a Monthly Basis.

High Lake Management Band

Lake level projected to rise to High Lake Management Band

Very Wet

- **Normal to Wet**
 - **Dry**

Tributary Hydrologic Conditions

Normal to Very Wet

- **Normal to Dry**

Up to 30 day Meteorological Forecast

Seasonal Climate/Hydrologic Outlook & Meteorological Forecast

EITHER FORECAST INDICATES NORMAL TO VERY WET

BOTH FORECASTS INDICATE DRY

Multi-Seasonal Climate/Hydrologic Outlook

WET TO VERY WET

S-77 Up to 6500 cfs
S-80 Up to 2800 cfs

S-77 Up to 4000 cfs
S-80 Up to 1800 cfs

S-79 Up to 3000 cfs
S-80 Up to 1170 cfs

S-79 Up to 4500 cfs
S-80 Up to 2000 cfs

Up to Maximum Discharge Capacity To Tidewater

High

Intermediate

Low

Tributary Hydrologic Conditions

Very Wet

- **Normal to Wet**
 - **Dry**

Up to 30 day Meteorological Forecast

Seasonal Climate/Hydrologic Outlook

Very Wet

OTHERWISE

NORMAL OR WETTER

Multi-Seasonal Climate/Hydrologic Outlook

WET TO VERY WET

S-79 Up to 3000 cfs
S-80 Up to 1170 cfs

S-79 Up to 450 cfs
S-80 Up to 200 cfs

Base Flow

S-79 Up to 450 cfs
S-80 Up to 200 cfs

OTHERWISE

NORMAL TO DRY

Very Dry Conditions may require that releases to tide (estuaries) be discontinued
Flowchart to Guide Recommendations for Lake Okeechobee Releases to the Caloosahatchee Estuary for 2008 LORS Baseflow & for Environmental Water Supply (revised 9-Aug-2012)

1The 2008 LORS Release Guidance (Part D) can suggest baseflow releases in the Intermediate, Low, or Baseflow Subbands.
2Estuary “needs” water when the 30-day moving average salinity at I-75 bridge is projected to exceed 5 practical salinity units (psu) within 2 weeks.
3LOWSM = Lake Okeechobee Water Shortage Management.
4Tributary Hydrologic Condition (THC) is based on classification of Lake Okeechobee Net Inflow and Palmer Index.
5Can release less than the “up to” limit if lower release is sufficient to reach or sustain desired estuary salinity; cfs = cubic feet per second.
6After reviewing conditions in Water Conservation Areas (WCAs), Stormwater Treatment Areas (STAs), ENP, St. Lucie Estuary and Lake Okeechobee.
7Should this condition be reached, the Governing Board will be briefed at their next regularly scheduled meeting as part of the State of the Water Resources agenda item.
U. S. Army Corps of Engineers, Jacksonville District
Lake Okeechobee and Vicinity Report
** Preliminary Data - Subject to Revision **

Data Ending 2400 hours 17 APR 2022

<table>
<thead>
<tr>
<th>Okeechobee Lake Regulation</th>
<th>Elevation</th>
<th>Last Year</th>
<th>2YRS Ago</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ft-NGVD)</td>
<td>(ft-NGVD)</td>
<td>(ft-NGVD)</td>
</tr>
<tr>
<td>*Okeechobee Lake Elevation</td>
<td>13.41</td>
<td>14.19</td>
<td>11.34 (Official Elv)</td>
</tr>
<tr>
<td>Bottom of High Lake Mgmt= 16.92</td>
<td>Top of Water Short Mgmt= 11.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currently in Operational Management Band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference from Average LORS2008</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17APR (1965-2007) Period of Record Average</td>
<td>13.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference from POR Average</td>
<td>-0.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Today Lake Okeechobee elevation is determined from the 4 Int & 4 Edge stations

++Navigation Depth (Based on 2007 Channel Condition Survey) Route 1 ÷ 7.35'
++Navigation Depth (Based on 2008 Channel Condition Survey) Route 2 ÷ 5.55'
Bridge Clearance = 50.24'

4 Interior and 4 Edge Okeechobee Lake Average (Avg-Daily values):

L001 L005 L006 LZ40 S4 S352 S308 S133

Combination Okeechobee Avg-Daily Lake Average = 13.41
(*See Note)

Okeechobee Inflows (cfs):

S65E 1022 S65EX1 0 Fisheating Cr -NR-
S154 0 S191 0 S135 Pumps 0
S84 0 S133 Pumps 0 S2 Pumps 0
S84X 0 S127 Pumps 0 S3 Pumps 0
S71 0 S129 Pumps 0 S4 Pumps 0
S72 0 S131 Pumps 0 C5 0
Total Inflows: 1022

Okeechobee Outflows (cfs):

S135 Culverts 0 S354 233 S77 -NR-
S127 Culverts 0 S351 577 S308 608
S129 Culverts 0 S352 372
S131 Culverts 0 L8 Canal Pt -NR-
Total Outflows: No Report Due To Missing S77 or S308 Discharge Data
****S77 structure flow is being used to compute Total Outflow.
****S308 structure flow is being used to compute Total Outflow.

Okeechobee Pan Evaporation (inches):
S77 -NR- S308 0.21
Average Pan Evap x 0.75 Pan Coefficient = -NR-" = -NR-

Lake Average Precipitation using NEXRAD: = -NR-" = -NR-

Evaporation - Precipitation: = -NR-" = -NR-
Evaporation - Precipitation using Lake Area of 730 square miles
is equal to -NR-
Lake Okeechobee (Change in Storage) Flow is 2067 cfs or 4100 AC-FT

<table>
<thead>
<tr>
<th>Headwater</th>
<th>Tailwater</th>
<th>Gate Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation Elevation</td>
<td>Disch</td>
<td>#1</td>
</tr>
<tr>
<td>(ft-msl)</td>
<td>(ft-msl)</td>
<td>(cfs)</td>
</tr>
</tbody>
</table>

(I) see note at bottom

North East Shore
S133 Pumps: 13.28 13.35 0 0 0 0 0 0 (cfs)
S193: ______
S191: 19.31 13.32 0 0.0 0.0 0.0
S135 Pumps: 12.90 13.22 0 0 0 0 0 0 (cfs)
S135 Culverts: 0 2.6 2.6

North West Shore
S65E: 21.17 13.21 1022 0.5 0.3 0.2 0.5 0.5 0.9
S65EX1: 21.17 13.21 0
S127 Pumps: 13.17 13.37 0 0 0 0 0 0 (cfs)
S127 Culvert: 0 0.0
S129 Pumps: 12.79 13.42 0 0 0 0 (cfs)
S129 Culvert: 0 0.0
S131 Pumps: 12.94 13.48 0 0 0 (cfs)
S131 Culvert: 0

Fisheating Creek
nr Palmdale: ______ -NR-
nr Lakeport: ______
C5: ______ -NR- 0 -NR- -NR- -NR-

South Shore
S4 Pumps: 11.97 -NR- 0 -NR- -NR- -NR- -NR- -NR- (cfs)
S169: ______ -NR- -NR- -NR- -NR- -NR-
S310: 13.33 -5
S3 Pumps: 10.22 13.45 0 0 0 0 (cfs)
S354: 13.45 10.22 233 0.0 0.0
S2 Pumps: 10.08 -NR- 0 -NR- -NR- -NR- -NR- (cfs)
S351: -NR- 10.08 577 0.6 0.6 0.4
S352: 13.42 10.11 372 1.0 1.2
C10A: -NR- 13.26 8.0 8.0 8.0 0.0 0.0
L8 Canal PT 13.33 -NR-

S351 and S352 Temporary Pumps/S354 Spillway
S351: 10.08 -NR- 577 -NR- -NR- -NR- -NR- -NR- -NR-
S352: 10.11 13.42 372 -NR- -NR- -NR- -NR-
S354: 10.22 13.45 233 -NR- -NR- -NR- -NR-

Caloosahatchee River (S77, S78, S79)
S47B: 12.73 12.42 0.0 0.0
S47D: 12.41 10.82 0 0.0
S77:
Spillway and Sector Preferred Flow:
13.26 10.76 339 0.0 3.0 0.0 0.0
Flow Due to Lockages+:
- NR-
S78:
Spillway and Sector Flow:
10.78 3.07 994 0.0 0.0 2.5 0.5
Flow Due to Lockages+:
- NR-
S79:
Spillway and Sector Flow:
3.25 0.88 1750 0.0 0.0 1.5 2.0 2.0 1.5 0.0
Flow Due to Lockages+:
9
Percent of flow from S77 19%
Chloride (ppm) 0

St. Lucie Canal (S308, S80)
S308:
Spillway and Sector Preferred Flow:
13.37 13.26 608 3.0 3.0 3.0 3.0
Flow Due to Lockages+:
0
S153: 18.80 13.04 0 0.0 0.0
S80:
Spillway and Sector Flow:
13.31 1.71 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flow Due to Lockages+:
27
Percent of flow from S308 NA %

Steele Point Top Salinity (mg/ml) ****
Steele Point Bottom Salinity (mg/ml) ****
Speedy Point Top Salinity (mg/ml) ****
Speedy Point Bottom Salinity (mg/ml) ****
Flow due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

Preferred flow is determined from either the spillway discharge or the below flow meter daily.

--- Wind ---

Daily Precipitation Totals

<table>
<thead>
<tr>
<th>Speed</th>
<th>1-Day</th>
<th>3-Day</th>
<th>7-Day</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mph)</td>
<td>(inches)</td>
<td>(inches)</td>
<td>(inches)</td>
<td>(Degø)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>1-Day</th>
<th>3-Day</th>
<th>7-Day</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>S133 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S193:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>Okeechobee Field Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S135 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S127 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S129 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S131 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S77:</td>
<td>5.44</td>
<td>5.45</td>
<td>5.88</td>
<td>137</td>
</tr>
<tr>
<td>S78:</td>
<td>2.68</td>
<td>3.29</td>
<td>4.53</td>
<td>188</td>
</tr>
<tr>
<td>S79:</td>
<td>-0.64</td>
<td>0.11</td>
<td>0.16</td>
<td>134</td>
</tr>
<tr>
<td>S4 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>Clewiston Field Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S3 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S2 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S308:</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>76</td>
</tr>
<tr>
<td>S80:</td>
<td>0.00</td>
<td>0.06</td>
<td>0.71</td>
<td>88</td>
</tr>
</tbody>
</table>

Okeechobee Average: 2.72 0.42 0.45

(Sites S78, S79 and S80 not included)

Oke Nexrad Basin Avg: -NR- 0.00 0.00

Lake Okeechobee Lake Elevations

<table>
<thead>
<tr>
<th>Date</th>
<th>Elevations</th>
<th>Difference from 17APR22</th>
</tr>
</thead>
<tbody>
<tr>
<td>17APR22</td>
<td>13.41</td>
<td></td>
</tr>
</tbody>
</table>

Okeechobee Lake Elevations 17 APR 2022 13.41 Difference from 17APR22

17APR22 -1 Day = 16 APR 2022 13.40 -0.01
17APR22 -2 Days = 15 APR 2022 13.41 0.00
17APR22 -3 Days = 14 APR 2022 13.42 0.01
17APR22 -4 Days = 13 APR 2022 13.44 0.03
17APR22 -5 Days = 12 APR 2022 13.46 0.05
17APR22 -6 Days = 11 APR 2022 13.49 0.08
17APR22 -7 Days = 10 APR 2022 13.53 0.12
17APR22 -30 Days = 18 MAR 2022 14.18 0.77
17APR22 -1 Year = 17 APR 2021 14.19 0.78
17APR22 -2 Year = 17 APR 2020 11.34 -2.07

Long Term Mean 30day Averge ET for Lake Alfred (Inches) = -NR-

Lake Okeechobee Net Inflow (LONIN)

Average Flow over the previous 14 days | Avg-Daily Flow
Average Flow over Previous 14 Days

<table>
<thead>
<tr>
<th>Date</th>
<th>Flow</th>
<th>Day of Week</th>
<th>Avg-Daily Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>17APR22</td>
<td>1174</td>
<td>MON</td>
<td>1162</td>
</tr>
<tr>
<td>17APR22 -1 Day</td>
<td>1162</td>
<td>SUN</td>
<td>1485</td>
</tr>
<tr>
<td>17APR22 -2 Days</td>
<td>1126</td>
<td>SAT</td>
<td>1242</td>
</tr>
<tr>
<td>17APR22 -3 Days</td>
<td>1110</td>
<td>FRI</td>
<td>1237</td>
</tr>
<tr>
<td>17APR22 -4 Days</td>
<td>1091</td>
<td>THU</td>
<td>1109</td>
</tr>
<tr>
<td>17APR22 -5 Days</td>
<td>1080</td>
<td>WED</td>
<td>-NR-</td>
</tr>
<tr>
<td>17APR22 -6 Days</td>
<td>1072</td>
<td>TUE</td>
<td>1190</td>
</tr>
<tr>
<td>17APR22 -7 Days</td>
<td>1057</td>
<td>MON</td>
<td>1178</td>
</tr>
<tr>
<td>17APR22 -8 Days</td>
<td>1041</td>
<td>SUN</td>
<td>1160</td>
</tr>
<tr>
<td>17APR22 -9 Days</td>
<td>1027</td>
<td>SAT</td>
<td>1087</td>
</tr>
<tr>
<td>17APR22 -10 Days</td>
<td>1020</td>
<td>FRI</td>
<td>1181</td>
</tr>
<tr>
<td>17APR22 -11 Days</td>
<td>1000</td>
<td>THU</td>
<td>1098</td>
</tr>
<tr>
<td>17APR22 -12 Days</td>
<td>988</td>
<td>WED</td>
<td>1066</td>
</tr>
<tr>
<td>17APR22 -13 Days</td>
<td>982</td>
<td>TUE</td>
<td>1060</td>
</tr>
</tbody>
</table>

Lake Okeechobee Outlets Last 14 Days

<table>
<thead>
<tr>
<th>Date</th>
<th>Flow</th>
<th>Day of Week</th>
<th>Avg-Daily Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>17APR22</td>
<td>0</td>
<td>MON</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -1 Day</td>
<td>0</td>
<td>SUN</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -2 Days</td>
<td>0</td>
<td>SAT</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -3 Days</td>
<td>0</td>
<td>FRI</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -4 Days</td>
<td>0</td>
<td>THU</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -5 Days</td>
<td>0</td>
<td>WED</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -6 Days</td>
<td>0</td>
<td>TUE</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -7 Days</td>
<td>0</td>
<td>MON</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -8 Days</td>
<td>0</td>
<td>SUN</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -9 Days</td>
<td>0</td>
<td>SAT</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -10 Days</td>
<td>0</td>
<td>FRI</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -11 Days</td>
<td>0</td>
<td>THU</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -12 Days</td>
<td>0</td>
<td>WED</td>
<td>0</td>
</tr>
<tr>
<td>17APR22 -13 Days</td>
<td>0</td>
<td>TUE</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>S-77</td>
<td>Below S-77</td>
<td>S-78</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DATE</td>
<td>Discharge (ALL DAY)</td>
<td>(AC-FT)</td>
<td>Discharge (ALL-DAY)</td>
</tr>
<tr>
<td>17 APR 2022</td>
<td>-NR-</td>
<td>1108</td>
<td>-NR-</td>
</tr>
<tr>
<td>16 APR 2022</td>
<td>656</td>
<td>1661</td>
<td>1789</td>
</tr>
<tr>
<td>15 APR 2022</td>
<td>1837</td>
<td>2469</td>
<td>2491</td>
</tr>
<tr>
<td>14 APR 2022</td>
<td>3346</td>
<td>4043</td>
<td>2640</td>
</tr>
<tr>
<td>13 APR 2022</td>
<td>3599</td>
<td>4509</td>
<td>3039</td>
</tr>
<tr>
<td>12 APR 2022</td>
<td>3567</td>
<td>3435</td>
<td>2413</td>
</tr>
<tr>
<td>11 APR 2022</td>
<td>3889</td>
<td>3319</td>
<td>2424</td>
</tr>
<tr>
<td>10 APR 2022</td>
<td>4954</td>
<td>4790</td>
<td>3577</td>
</tr>
<tr>
<td>09 APR 2022</td>
<td>3515</td>
<td>3521</td>
<td>2749</td>
</tr>
<tr>
<td>08 APR 2022</td>
<td>3662</td>
<td>3633</td>
<td>1722</td>
</tr>
<tr>
<td>07 APR 2022</td>
<td>1895</td>
<td>1969</td>
<td>2127</td>
</tr>
<tr>
<td>06 APR 2022</td>
<td>2526</td>
<td>*****</td>
<td>1482</td>
</tr>
<tr>
<td>05 APR 2022</td>
<td>2936</td>
<td>2180</td>
<td>2536</td>
</tr>
<tr>
<td>04 APR 2022</td>
<td>3852</td>
<td>3879</td>
<td>3183</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S-308</th>
<th>Below S-308</th>
<th>S-80</th>
<th>Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>Discharge (ALL DAY)</td>
<td>(AC-FT)</td>
<td>Discharge (ALL-DAY)</td>
<td>(AC-FT)</td>
</tr>
<tr>
<td>17 APR 2022</td>
<td>1237</td>
<td>-NR-</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>16 APR 2022</td>
<td>1120</td>
<td>-NR-</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>15 APR 2022</td>
<td>1023</td>
<td>-NR-</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>14 APR 2022</td>
<td>1421</td>
<td>-NR-</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>13 APR 2022</td>
<td>1444</td>
<td>-NR-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12 APR 2022</td>
<td>1440</td>
<td>-NR-</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>11 APR 2022</td>
<td>1371</td>
<td>-NR-</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>10 APR 2022</td>
<td>1169</td>
<td>-NR-</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>09 APR 2022</td>
<td>1279</td>
<td>-NR-</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>08 APR 2022</td>
<td>825</td>
<td>-NR-</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>07 APR 2022</td>
<td>1194</td>
<td>-NR-</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>06 APR 2022</td>
<td>1235</td>
<td>-NR-</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>05 APR 2022</td>
<td>1262</td>
<td>-NR-</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>04 APR 2022</td>
<td>1295</td>
<td>-NR-</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>
*** NOTE: Discharge (ALL DAY) is computed using Spillway, Sector Gate and Lockages Discharges from 0015 hrs to 2400 hrs.

(I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

* On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average.
On 14 Mar 2001, due to the isolation of various gages within the standard 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation.
On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.
On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels.
Today Lake Okeechobee elevation is determined from the 4 Int & 4 Edge stations
++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/
$ For information regarding Lake Okeechobee Service Area water restrictions please refer to www.sfwmd.gov

Report Generated 18APR2022 @ 09:07 ** Preliminary Data - Subject to Revision **
Classification Tables

Supplemental Tables used in conjunction with the LORS2008 Release

Guidance Flow Charts

- **Class Limits for Tributary Hydrologic Conditions**
 Table K-2 in the Lake Okeechobee Water Control Plan

- **6-15 Day Precipitation Outlook Categories**
 Table ?? in the Lake Okeechobee Water Control Plan

- **Classification of Lake Okeechobee Net Inflow for Seasonal Outlook**
 Table K-3 in the Lake Okeechobee Water Control Plan

- **Classification of Lake Okeechobee Net Inflow for Multi-Seasonal Outlook**
 Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage
<table>
<thead>
<tr>
<th>Tributary Hydrologic Classification*</th>
<th>Palmer Index Class Limits</th>
<th>2-wk Mean L.O. Net Inflow Class Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Wet</td>
<td>3.0 or greater</td>
<td>Greater >= 6000 cfs</td>
</tr>
<tr>
<td>Wet</td>
<td>1.5 to 2.99</td>
<td>2500 - 5999 cfs</td>
</tr>
<tr>
<td>Near Normal</td>
<td>-1.49 to 1.49</td>
<td>500 - 2499 cfs</td>
</tr>
<tr>
<td>Dry</td>
<td>-2.99 to -1.5</td>
<td>-5000 – 500 cfs</td>
</tr>
<tr>
<td>Very Dry</td>
<td>-3.0 or less</td>
<td>Less than -5000 cfs</td>
</tr>
</tbody>
</table>

* use the wettest of the two indicators
Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

<table>
<thead>
<tr>
<th>Lake Net Inflow Prediction [million acre-feet]</th>
<th>Equivalent Depth** [feet]</th>
<th>Lake Okeechobee Net Inflow Seasonal Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0.93</td>
<td>> 2.0</td>
<td>Very Wet</td>
</tr>
<tr>
<td>0.71 to 0.93</td>
<td>1.51 to 2.0</td>
<td>Wet</td>
</tr>
<tr>
<td>0.35 to 0.70</td>
<td>0.75 to 1.5</td>
<td>Normal</td>
</tr>
<tr>
<td>< 0.35</td>
<td>< 0.75</td>
<td>Dry</td>
</tr>
</tbody>
</table>

**Volume-depth conversion based on average lake surface area of 467,000 acres
Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

<table>
<thead>
<tr>
<th>Lake Net Inflow Prediction [million acre-feet]</th>
<th>Equivalent Depth** [feet]</th>
<th>Lake Okeechobee Net Inflow Multi-Seasonal Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 2.0</td>
<td>> 4.3</td>
<td>Very Wet</td>
</tr>
<tr>
<td>1.18 to 2.0</td>
<td>2.51 to 4.3</td>
<td>Wet</td>
</tr>
<tr>
<td>0.5 to 1.17</td>
<td>1.1 to 2.5</td>
<td>Normal</td>
</tr>
<tr>
<td>< 0.5</td>
<td>< 1.1</td>
<td>Dry</td>
</tr>
</tbody>
</table>

Volume-depth conversion based on average lake surface area of 467,000 acres
6-15 Day Precipitation Outlook Categories*

<table>
<thead>
<tr>
<th>6-15 Day Precipitation Outlook Categories</th>
<th>WSE Decision Tree Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Normal</td>
<td>Wet to Very Wet</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Below Normal</td>
<td>Dry</td>
</tr>
</tbody>
</table>

* Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan