Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 04/04/2022 (ENSO Condition: La Niña)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method¹, the SFWMD empirical method², a sub-sampling of La Nina years³ and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with La Nina ENSO years⁴. The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season	Croley's Method ^{1*}		SFWMD Empirical Method ²		Sub-sampling of La Nina ENSO Years ³		Sub-sampling of AMO Warm + La Nina ENSO Years ⁴	
	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition
Current (Mar-Aug)	N/A	N/A	1.97	Wet	1.76	Wet	1.72	Wet
Multi Seasonal (Mar-Oct)	N/A	N/A	2.67	Wet	2.31	Normal	2.37	Normal

^{*}Croley's Method Not Produced for This Report

See <u>Seasonal</u> and <u>Multi-Seasonal</u> tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

**Sub-sampling is a weighted average of ENSO conditions based on the ENSO forecast used.

Tributary Hydrologic Conditions Graph:

- **-2861 cfs** 14-day running average for Lake Okeechobee Net Inflow through 04/04/2022. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Dry.
- **-2.85** for Palmer Drought Index on 04/04/2022. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Dry.

The wetter of the two conditions above is **Dry**.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 04/04/2022:

Lake Okeechobee Stage: 13.75 feet

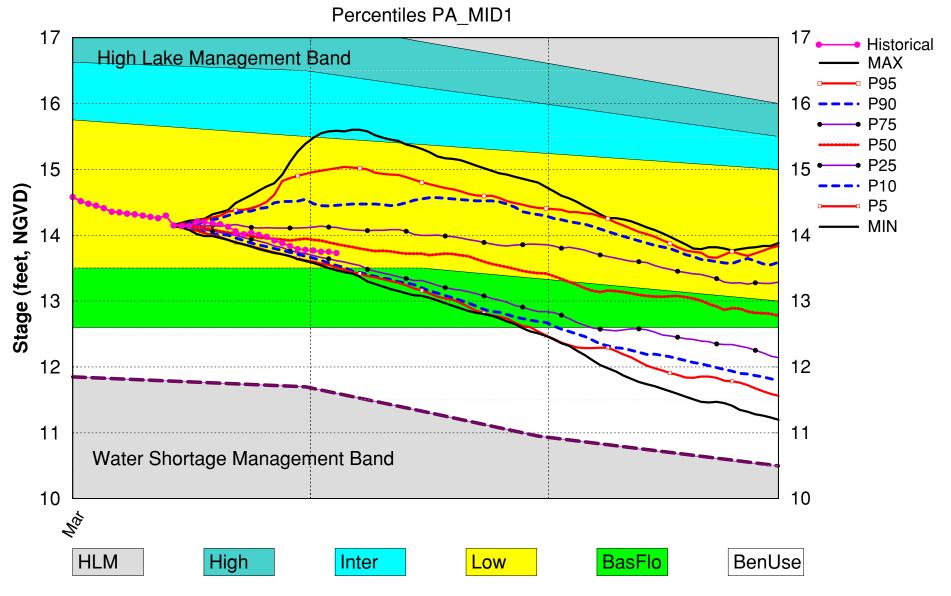
	ee Management Band	Bottom Elevation (feet, NGVD)	Current Lake Stage
High Lake Manage	ement Band	17.21	
	High sub-band	16.47	
Operational Band	Intermediate sub-band	15.48	
	Low sub-band	13.50	← 13.75 ft
Base Flow sub-ba	nd	12.60	
Beneficial Use sub	o-band	11.63	
Water Shortage M	lanagement Band		

Part C of LORS2008: Discharge to WCAs

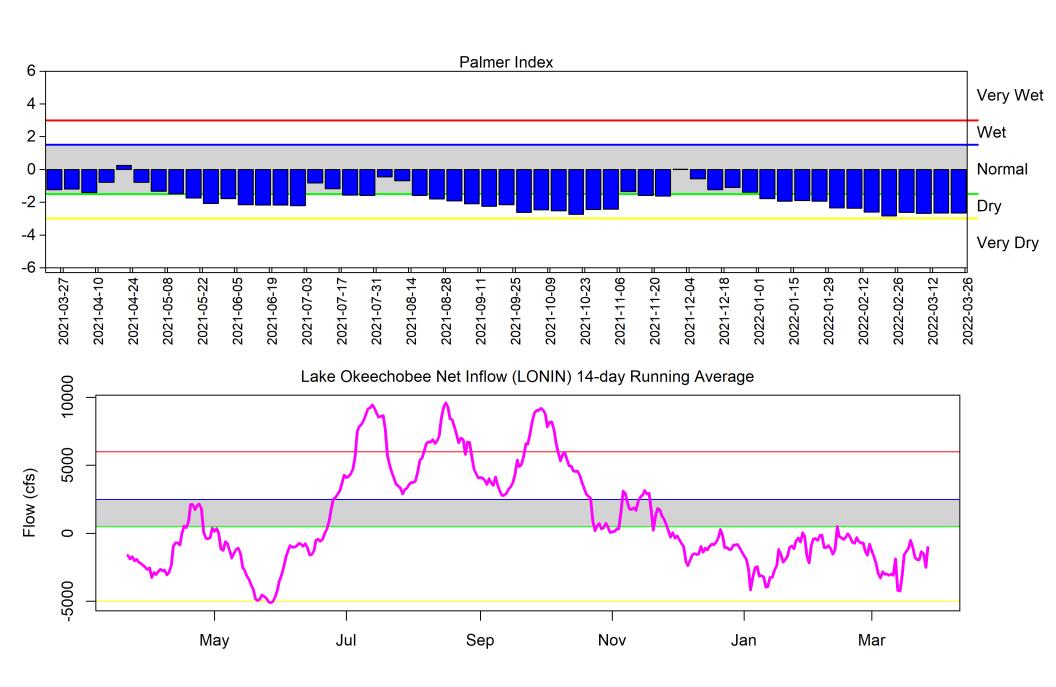
Up to Maximum Practicable to the WCAs if desirable or with minimum Everglades impact; otherwise no releases to WCAs.

Part D of LORS2008: Discharge to Tide

Up to 450 cfs at S-79 and up to 200 cfs at S-80.

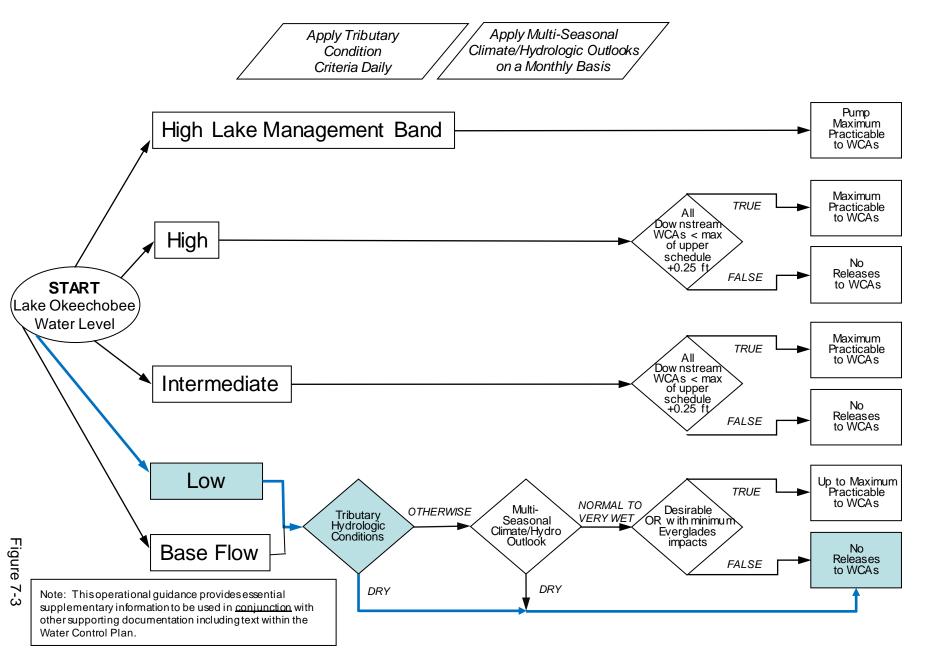

LORS2008 Implementation on 04/04/2022 (ENSO Condition- La Nina Watch): Status for week ending 04/04/2022:

Water Supply Risk Evaluation

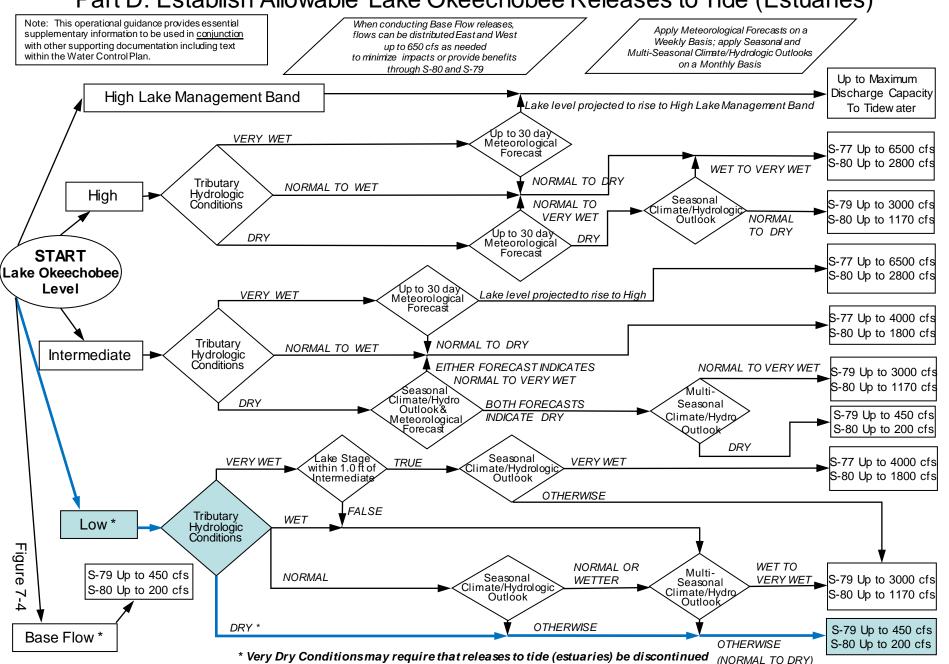

Area	Indicator	Value	Color Coded	
Alea	indicator	value	Scoring Scheme	
	Projected LOK Stage for the next two months	Low Sub-band	M	
	Palmer Drought Index for LOK Tributary Conditions	-2.85 (Extremely Dry)	Н	
	CPC Precipitation Outlook	1 month: Below Normal	M	
LOK	CF C Frecipitation Outlook	3 months: Normal	L	
	LOK Seasonal Net Inflow Outlook	1.76 ft		
	ENSO Forecast	Wet	_	
	LOK Multi-Seasonal Net Inflow Outlook	2.31 ft		
	ENSO Forecast	Normal	M	
	WCA 1: 3 Station Average (Sites 1-7, 1-8T and 1-9)	Above Line 1 (16.29 ft)	L	
WCAs	WCA 2A: Site 2-17	Above Line 1 (11.81 ft)	L	
	WCA-3A: 3 Station Average (Sites 63, 64, and 65)	Above Line 1 (8.90 ft)	L	
	Service Area 1	Year-Round Irrigation Rule in effect	L	
LEC	Service Area 2	Year-Round Irrigation Rule in effect	L	
	Service Area 3	Year-Round Irrigation Rule in effect	L	

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow outlooks use slightly different classification intervals than those used by the 2008-LORS.

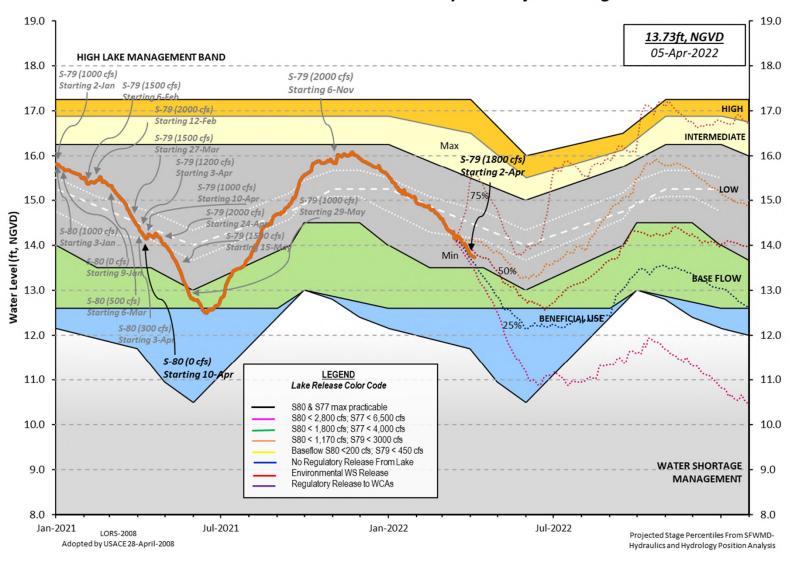
Lake Okeechobee SFWMM Mar Mid-Mon 2022 Position Analysis



(See assumptions on the Position Analysis Results website)


2008 LORS

Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas



2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Lake Okeechobee Water Level History and Projected Stages

Data Ending 2400 hours 03 APR 2022

Okeechobee Lake Re		(ft-NGVD)	(ft-NGVI	O) (ft-NGVD)	
*Okeechobee Lake Bottom of High I Currently in Ope	ake Mngmt	= 17.21 Top of		·	Eicial Elv) 53
Simulated Average Difference from			12.99 0.76		
03APR (1965-2007 Difference from			nge 14.2 -0.49		
Today Lake Okeed stations	chobee ele	vation is deter	rmined from	m the 4 Int & 4	1 Edge
++Navigation Dep	th (Based	on 2007 Channe	el Condition	on Survey) Rout	te 1 ÷
7.69'		0000 =1			•
++Navigation Dep 5.89'	th (Based	on 2008 Channe	el Conditio	on Survey) Rout	te 2 ÷
Bridge Clearance	a = 49 96'				
Dridge crearance	. – 10.00				
_					
4 Interior and 4 E	ldge Okeec	hobee Lake Aver	age (Avg-I	Daily values):	
L001 L005 L0	006 LZ40	S4 S352	S308 S	S133	
13.73 13.76 13					
10170 10170 10		3 1 13.00	101/1		
*Combination Okee	echobee A	.vg-Daily Lake A			
				(*See Note)	
_					
Okeechobee Inflows	s (cfs):				
Okeechobee Inflows S65E		S65EX1	0	Fisheating Cr	0
S65E S154	884	S191	0 0	S135 Pumps	0 0
S65E	884			_	
S65E S154 S84 S84X	884 0 0 0	S191 S133 Pumps S127 Pumps	0	S135 Pumps S2 Pumps S3 Pumps	0 0 0
S65E S154 S84 S84X S71	884 0 0 0 0	S191 S133 Pumps S127 Pumps S129 Pumps	0 0 0	S135 Pumps S2 Pumps S3 Pumps S4 Pumps	0 0 0 0
S65E S154 S84 S84X S71 S72	884 0 0 0 0 0	S191 S133 Pumps S127 Pumps	0 0 0	S135 Pumps S2 Pumps S3 Pumps	0 0 0
S65E S154 S84 S84X S71	884 0 0 0 0	S191 S133 Pumps S127 Pumps S129 Pumps	0 0 0	S135 Pumps S2 Pumps S3 Pumps S4 Pumps	0 0 0 0
S65E S154 S84 S84X S71 S72 Total Inflows:	884 0 0 0 0 0 0 884	S191 S133 Pumps S127 Pumps S129 Pumps	0 0 0	S135 Pumps S2 Pumps S3 Pumps S4 Pumps	0 0 0 0
S65E S154 S84 S84X S71 S72 Total Inflows:	884 0 0 0 0 0 0 884 7s (cfs):	S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	0 0 0 0	S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5	0 0 0 0
S65E S154 S84 S84X S71 S72 Total Inflows: Okeechobee Outflow S135 Culverts	884 0 0 0 0 0 0 884 7s (cfs):	S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	0 0 0 0 0	S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5	0 0 0 0 0
S65E S154 S84 S84X S71 S72 Total Inflows: Okeechobee Outflow S135 Culverts S127 Culverts	884 0 0 0 0 0 0 884 7s (cfs): 0	S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps S354 S354	0 0 0 0 0	S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5	0 0 0 0
S65E S154 S84 S84X S71 S72 Total Inflows: Okeechobee Outflow S135 Culverts	884 0 0 0 0 0 0 884 7s (cfs): 0 0	S191 S133 Pumps S127 Pumps S129 Pumps S131 Pumps	0 0 0 0 0	S135 Pumps S2 Pumps S3 Pumps S4 Pumps C5	0 0 0 0 0

```
****S77 structure flow is being used to compute Total Outflow.
****S308 structure flow is being used to compute Total Outflow.
Okeechobee Pan Evaporation (inches):
 S77
     0.23 S308
                                    -NR-
 Average Pan Evap x 0.75 Pan Coefficient = -NR-" = -NR-'
Lake Average Precipitation using NEXRAD: = -NR-" = -NR-'
                                  = -NR-" = -NR-"
Evaporation - Precipitation:
Evaporation - Precipitation using Lake Area of 730 square miles
 is equal to
            -NR-
Lake Okeechobee (Change in Storage) Flow is 0 cfs or 0 AC-FT
           Headwater Tailwater
                                  ----- Gate Positions -----
           Elevation Elevation Disch #1 #2 #3 #4 #5 #6 #7
#8
           (ft-msl) (ft-msl) (cfs) (ft) (ft) (ft) (ft) (ft) (ft)
(ft)
                        (I) see note at bottom
North East Shore
 S133 Pumps: 13.44
                     13.57 0 0 0 0 0 (cfs)
 S193:
                                    0.0 0.0 0.0
            18.85
                               0
 S191:
                     13.56
 S135 Pumps: 13.36
                     13.33
                                0
                                    0 0
                                            0
                                                   0
                                                          (cfs)
 S135 Culverts:
                                    0.0 0.0
North West Shore
                           884
 S65E:
         21.14
                     13.55
                                    0.3 0.7 0.5 0.4 0.0 0.4
            21.14
 S65EX1:
                     13.55
                              0
 S127 Pumps: 13.35
                               0
                                     0
                                        0
                                             0 0 0 (cfs)
                     13.64
 S127 Culvert:
                                0
                                    0.0
                                    0
 S129 Pumps: 12.91
                     13.71
                               0
                                          0
                                              0
                                                          (cfs)
 S129 Culvert:
                                0
                                    0.0
                                    0 0
 S131 Pumps: 12.73
                     13.82
                               0
                                                          (cfs)
 S131 Culvert:
                                Ω
 Fisheating Creek
   nr Palmdale
                      27.17
                                0
   nr Lakeport
 C5:
                      -NR-
                               0
                                    -NR- -NR- -NR-
South Shore
 S4 Pumps: 11.50
                      -NR-
                               0
                                      0 0
                                                          (cfs)
```

-NR-

13.82

-NR-

39

-NR- -NR- -NR-

S169:

S310:

```
S3 Pumps: 10.13 13.83 0 0 0 0 0 (cfs)
S354: 13.83 10.13 181 0.0 0.0
S2 Pumps: 10.36 -NR- 0 -NR- -NR- -NR- -NR- (cfs)
S351: -NR- 10.36 148 0.0 0.0 0.0
S352: 13.85 10.16 110 0.1 0.0
C10A: -NR- 13.63 8.0 8.0 8.0 0.0 0.0
                         13.60 -NR-
  L8 Canal PT
                   S351 and S352 Temporary Pumps/S354 Spillway
               10.36
                                   148 -NR--NR--NR--NR--NR-
  S351:
                          -NR-
               10.16 13.85
10.13 13.83
  S352:
                                   110 -NR--NR--NR--NR-
  S354:
                                   181 -NR--NR--NR--NR-
Caloosahatchee River (S77, S78, S79)

      S47B:
      13.63
      12.33
      0.0

      S47D:
      12.27
      11.09
      0
      0.0

                                          0.0 0.0
  S77:
    Spillway and Sector Preferred Flow:
               13.54 11.00 2012 2.5 2.5 2.5 2.5
                                    5
    Flow Due to Lockages+:
  S78:
    Spillway and Sector Flow:
              10.95 3.31 1676 0.0 2.5 2.5 0.0
   Flow Due to Lockages+:
                                    22
  S79:
    Spillway and Sector Flow:
                3.16 0.82 2142 0.0 0.0 2.0 2.0 2.0 0.0
0.0
                                    10
    Flow Due to Lockages+:
    Percent of flow from S77
                                    94%
               (ppm)
    Chloride
                                   0
St. Lucie Canal (S308, S80)
  S308:
    Spillway and Sector Preferred Flow:
               13.62 13.54 532 3.0 3.0 3.0 3.0
    Flow Due to Lockages+:
                                   -NR-
  S153:
          18.98 -NR- -NR- 0.0 0.0
  S80:
    Spillway and Sector Flow:
    13.58 1.36 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Flow Due to Lockages+: 26
    Percent of flow from S308 NA %
  Steele Point Top Salinity (mg/ml) ****
  Steele Point Bottom Salinity (mg/ml) ****
  Speedy Point Top Salinity (mg/ml) ****
  Speedy Point Bottom Salinity (mg/ml) ****
```

- + Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.
- ++ Preferred flow is determined from either the spillway discharge or the below flow meter daily

---- Wind ---Daily Precipitation Totals 1-Day 3-Day 7-Day Direction Speed (inches) (inches) (inches) (Degø) (mph) S133 Pump Station: -NR-0.00 0.00 S193: -NR-0.00 0.00 -NR--NR-Okeechobee Field Station: -NR-0.00 0.00 S135 Pump Station: 0.00 -NR-0.00 0.00 S127 Pump Station: -NR-0.00 S129 Pump Station: -NR-0.00 0.00 0.00 S131 Pump Station: -NR-0.00 S77: 0.00 0.18 0.18 90 S78: 0.00 0.08 0.08 117 3 S79: 0.09 0.09 30 4 0.00 S4 Pump Station: 0.00 0.00 -NR-Clewiston Field Station: 0.00 0.00 -NR-0.00 S3 Pump Station: -NR-0.00 S2 Pump Station: -NR-0.00 0.00 S308: 0.01 0.11 0.11 62 5 1.91 S80: 0.00 1.91 359 Λ Okeechobee Average 0.00 0.02 0.02 (Sites S78, S79 and S80 not included) ______ 0.00 0.00 -NR-Oke Nexrad Basin Avg ______

_ Okeechobee Lake Elevations 03APR22	03 APR 2022	13.75 Difference from
03APR22 -1 Day =	02 APR 2022	13.75 0.00
03APR22 -2 Days =	01 APR 2022	13.77 0.02
03APR22 -3 Days =	31 MAR 2022	13.78 0.03
03APR22 - 4 Days =	30 MAR 2022	13.79 0.04
03APR22 -5 Days =	29 MAR 2022	13.84 0.09
03APR22 -6 Days =	28 MAR 2022	13.88 0.13
03APR22 -7 Days =	27 MAR 2022	13.92 0.17
03APR22 - 30 Days =	04 MAR 2022	14.41 0.66
03APR22 -1 Year =	03 APR 2021	14.32 0.57
03APR22 -2 Year =	03 APR 2020	11.74 -2.01

Long Term Mean 30day Avearge ET for Lake Alfred (Inches) = -NR-

03APR22 Tod	ay =	03	APR	2022	-1665	MON	3002
03APR22 -1 Da	_			2022	-2318	SUN	-1654
03APR22 -2 Da	_			2022	-2214	SAT	470
03APR22 -3 Da	_	31	MAR	2022	-2422	FRI	2347
03APR22 -4 Da	_			2022	-2568	THU	-5415
03APR22 -5 Da	_			2022	-862	WED	-3463
03APR22 -6 Da	_			2022	-379	TUE	-4279
03APR22 -7 Da		27	MAR	2022	-112	MON	-7413
03APR22 -8 Da				2022	-1737	SUN	-1586
03APR22 -9 Da	_			2022	-858	SAT	-3007
03APR22 -10 Da	_	24	MAR	2022	-689	FRI	7895
03APR22 -11 Da	ys =	23	MAR	2022	-1244	THU	165
03APR22 -12 Da	ys =	22	MAR	2022	-1237	WED	51
03APR22 -13 Da	_	21	MAR	2022	-1098	TUE	-10424
						·	
_							
_							
				55E			
					previous	14 days	Avg-Daily Flow
03APR22 To	day=	03	APR	2022	977	MON	1012
03APR22 -1 Da	_	02	APR	2022	970	SUN	1022
03APR22 -2 Da		01	APR	2022	957	SAT	1029
03APR22 -3 Da	ys =	31	MAR	2022	944	FRI	987
03APR22 -4 Da	ys =	30	MAR	2022	931	THU	968
03APR22 -5 Da	ys =	29	MAR	2022	918	WED	960
03APR22 -6 Da	ys =	28	MAR	2022	893	TUE	985
03APR22 -7 Da	ys =	27	MAR	2022	861	MON	956
03APR22 -8 Da	ys =	26	MAR	2022	822	SUN	960
03APR22 -9 Da	ys =	25	MAR	2022	787	SAT	991
03APR22 -10 Da	ys =	24	MAR	2022	741	FRI	906
03APR22 -11 Da	ys =	23	MAR	2022	701	THU	929
03APR22 -12 Da	ys =	22	MAR	2022	658	WED	977
03APR22 -13 Da	ys =	21	MAR	2022	610	TUE	994
·						·	
_							
_							
				55EX1			
	_				previous		Avg-Daily Flow
	day=			2022	0	MON	0
03APR22 -1 Da				2022	0	SUN	0
03APR22 -2 Da	_			2022	0	SAT	0
03APR22 -3 Da	_			2022	0	FRI	0
03APR22 -4 Da	_			2022	0	THU	0
03APR22 -5 Da				2022	0	WED	0
03APR22 -6 Da	_			2022	0	TUE	0
03APR22 -7 Da	_			2022	0	MON	0
03APR22 -8 Da	-			2022	0	SUN	0
03APR22 -9 Da	-			2022	0	SAT	0
03APR22 -10 Da				2022	0	FRI	0
03APR22 -11 Da	_			2022	0	THU	0
03APR22 -12 Da	_			2022	0	WED	0
03APR22 -13 Da	ys =	21	MAR	2022	0	TUE	0

02 01 31 30 29 28 27 26 25 24 23 22	DATE APR APR APR MAR MAR MAR MAR MAR MAR MAR MAR MAR MA	2022 2022 2022 2022 2022 2022 2022 202	S-77 Discharge (ALL DAY) (AC-FT) 4001 3671 2669 3610 4900 4628 3599 4381 3998 3255 3297 3352 3706 4248	Below S-77 Discharge (ALL-DAY) (AC-FT) 4078 3677 2549 3811 5241 4615 3827 4436 4022 3427 3358 3206 3733 4494	S-78 Discharge (ALL DAY) (AC-FT) 3368 3010 2256 2741 3700 3509 2624 3133 3719 2711 2628 2516 2739 3219	S-79 Discharge (ALL DAY) (AC-FT) 4281 3482 3671 3435 3975 3850 3468 4046 4075 4159 3090 2881 3555 4364	
			S-310	S-351	S-352	S-354	L8 Canal Pt
			Discharge		Discharge	Discharge	Discharge
			(ALL DAY)	(ALL DAY)	(ALL DAY)	(ALL DAY)	(ALL DAY)
	DATE		(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
	APR		78	293	219	360	-NR-
	APR		147	0	0	0	-NR-
	APR		288	55	338	292	-NR-
	MAR MAR		117 266	942 1047	1293 1231	1058 1355	-NR- -NR-
	MAR		375	1170	1119	1592	-NR-
	MAR		277	1252	604	1632	-NR-
	MAR		130	1975	754	2545	-NR-
	MAR		180	1874	903	1508	-NR-
	MAR		18	1462	393	582	-NR-
24	MAR	2022	143	1877	37	449	-NR-
	MAR		267	2748	119	621	-NR-
	MAR		397	2445	11	562	-NR-
21	MAR	2022	244	3316	45	180	-NR-
			S-308	Below S-308	S-80		
			Discharge	Discharge	Discharge	<u> </u>	
			(ALL DAY)	(ALL-DAY)	(ALL-DAY)		
	DATE		(AC-FT)	(AC-FT)	(AC-FT)		
03	APR	2022	-NR-	-NR-	52		
	APR		-NR-	-NR-	61		
	APR		-NR-	-NR-	50		
	MAR		-NR-	-NR-	46		
	MAR MAR		-NR-	-NR-	45		
			-NR-	-NR-	49		
	MAR MAR		-NR- 555	-NR- -NR-	0 0		
	MAR		778	-NR-	0		
	MAR		730	-NR-	0		
	MAR		1102	-NR-	0		
	MAR		1448	-NR-	0		
	MAR		1319	-NR-	0		
	MAR		959	-NR-	0		

*** NOTE: Discharge (ALL DAY) is computed using Spillway, Sector Gate and

Lockages Discharges from 0015 hrs to 2400 hrs.

5

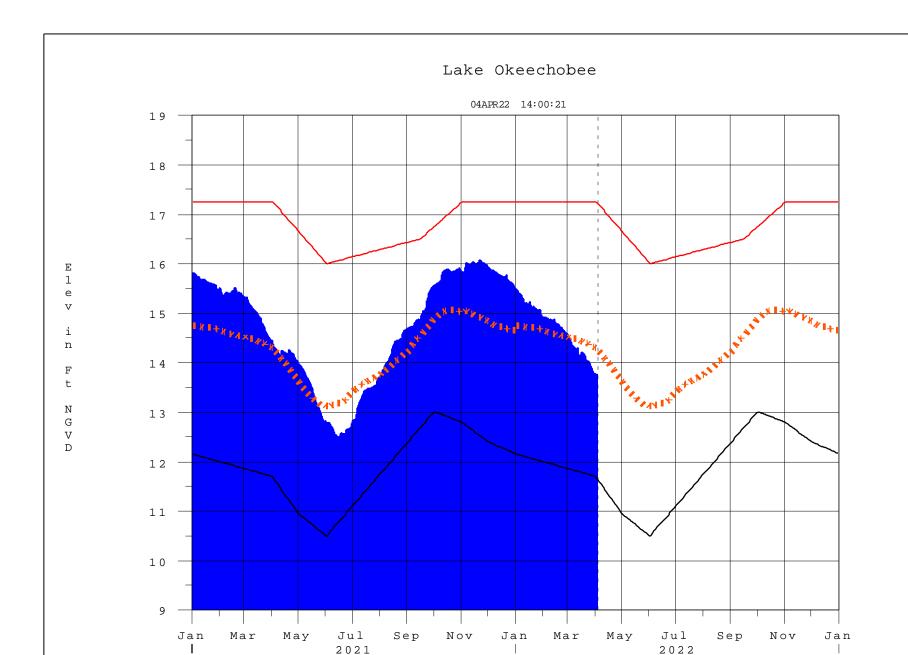
(I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

* On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average. On 14 Mar 2001, due to the isolation of various gages within the standard

10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation.

On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.

On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels.


Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations

- ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/
- \$ For information regarding Lake Okeechobee Service Area water restrictions

please refer to www.sfwmd.gov

-- Report Generated 04APR2022 @ 10:15 ** Preliminary Data - Subject to Revision

Report Generated 04APR2022 @ 10:15 ** Preliminary Data - Subject to Revision **

High Lake Management Okeechobee Avg Elev Average Elev [1965-2007] Water Shortage Management

Classification Tables

Supplemental Tables used in conjunction with the LORS2008

Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• <u>6-15 Day Precipitation Outlook Categories</u>

Table ?? in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Seasonal

Outlook

Table K-3 in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic	Palmer Index	2-wk Mean L.O. Net
Classification*	Class Limits	Inflow Class Limits
Very Wet	3.0 or greater	Greater >= 6000 cfs
Wet	1.5 to 2.99	2500 - 5999 cfs
Near Normal	-1.49 to 1.49	500 - 2499 cfs
Dry	-2.99 to -1.5	-5000 – 500 cfs
Very Dry	-3.0 or less	Less than -5000 cfs

^{*} use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
[minori doro root]	[1001]	Seasonal Outlook
> 0.93	> 2.0	Very Wet
0.71 to 0.93	1.51 to 2.0	Wet
0.35 to 0.70	0.75 to 1.5	Normal
< 0.35	< 0.75	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

<u>Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook</u>*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
[[noot]	Multi-Seasonal Outlook
> 2.0	> 4.3	Very Wet
1.18 to 2.0	2.51 to 4.3	Wet
0.5 to 1.17	1.1 to 2.5	Normal
< 0.5	< 1.1	Dry

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories
Above Normal	Wet to Very Wet
Normal	Normal
Below Normal	Dry

^{*} Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan