Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 3/8/2021 (ENSO Condition: La Niña)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method¹, the SFWMD empirical method², a sub-sampling of La Nina years³ and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with La Nina ENSO years⁴. The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season	Croley	's Method ^{1*}	Em	FWMD npirical ethod ²	La Ni	ampling of na ENSO ′ears³	Sub-sampling of AMO Warm + La Nina ENSO Years ⁴	
	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition	Value (ft)	Condition
Current (Mar-Aug)	N/A	N/A	1.26	Normal	0.84	Normal	0.92	Normal
Multi Seasonal (Mar-Oct)	N/A	N/A	2.71	Wet	2.16	Normal	2.17	Normal

^{*}Croley's Method Not Produced for This Report. See <u>Seasonal</u> and <u>Multi-Seasonal</u> tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

**Sub-sampling is a weighted average of ENSO conditions based on the ENSO forecast used.

Tributary Hydrologic Conditions Graph:

- **-581 cfs** 14-day running average for Lake Okeechobee Net Inflow through 3/7/2021. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Dry.
- **-0.56** for Palmer Drought Index on 3/6/2021. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Normal.

The wetter of the two conditions above is Normal.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 3/8/2021:

Lake Okeechobee Stage: 15.18 feet

	ee Management /Band	Bottom Elevation (feet, NGVD)	Current Lake Stage
High Lake Manage	ement Band	17.25	
	High sub-band	16.61	
Operational Band	Intermediate sub-band	15.70	
	Low sub-band	13.50	← 15.18 ft
Base Flow sub-ba	nd	12.60	
Beneficial Use sub	o-band	11.82	
Water Shortage M	lanagement Band		

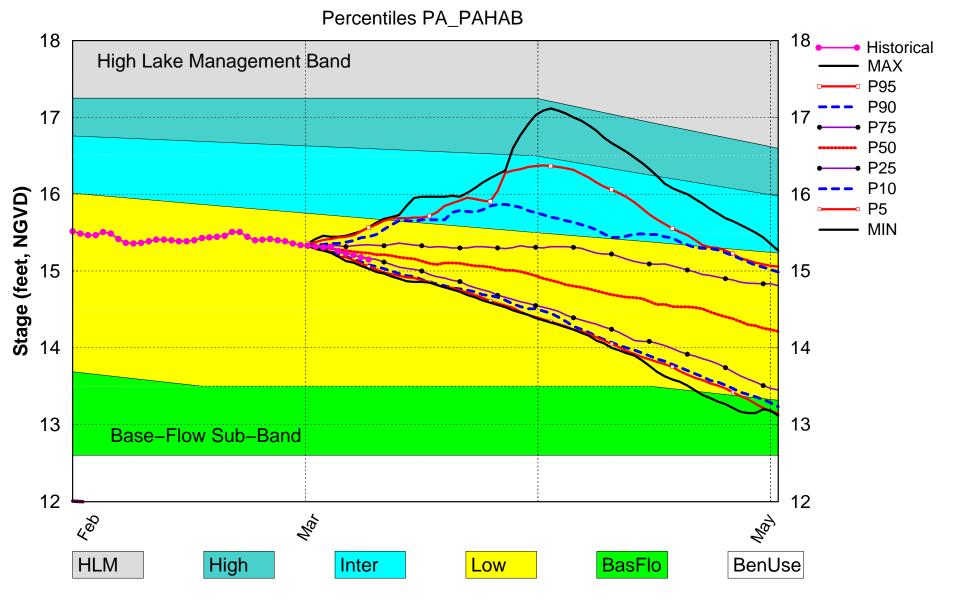
Part C of LORS2008: Discharge to WCAs

Up to Maximum Practicable to the WCAs if desirable or with minimum Everglades impact; otherwise no releases to WCAs.

Part D of LORS2008: Discharge to Tide

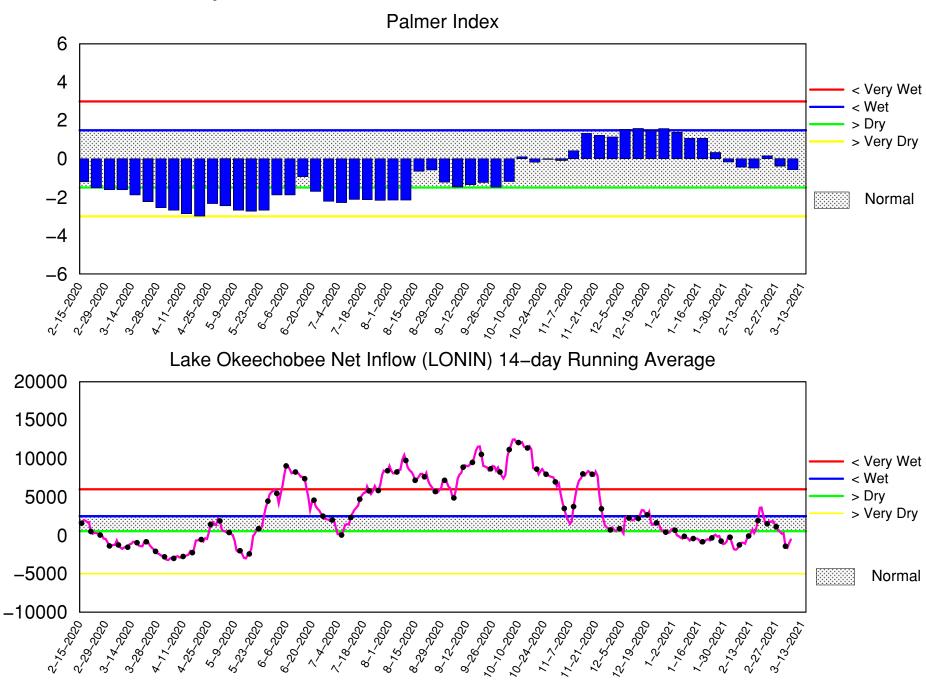
Up to 450 cfs at S-79 and up to 200 cfs at S-80.

LORS2008 Implementation on 3/8/2021 (ENSO Condition- La Nina):


Status for week ending 3/8/2021:

Water Supply Risk Evaluation

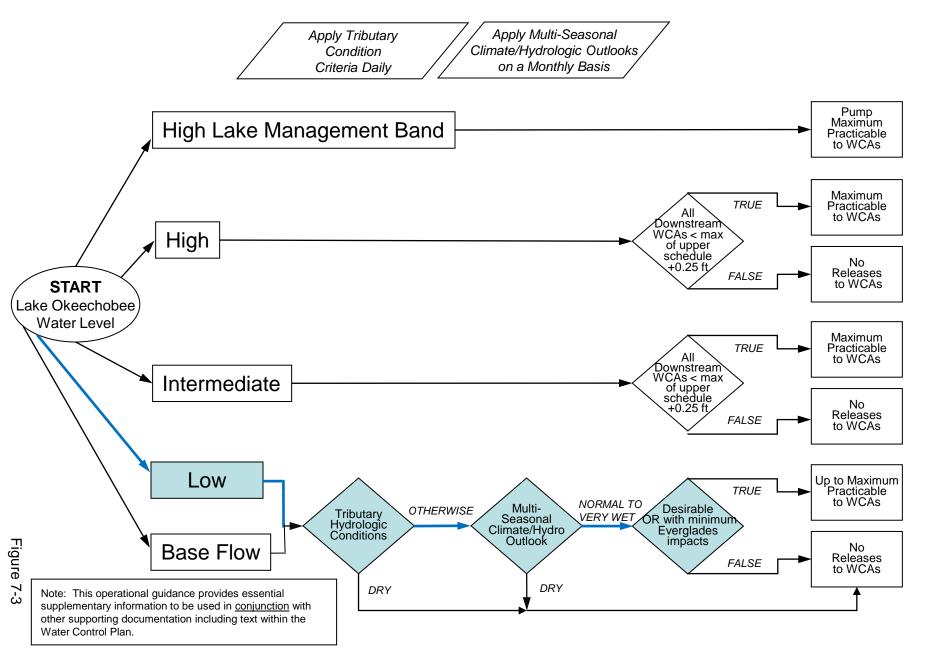
Area	Indicator	Value	Color Coded Scoring Scheme
LOK	Projected LOK Stage for the next two months	Low Sub-band	M
	Palmer Drought Index for LOK Tributary Conditions	-0.56 (Normal to Extremely Wet)	L
	CDC Procinitation Outlook	1 month: Below Normal	Н
	CPC Precipitation Outlook	3 months: Below Normal	M
	LOK Seasonal Net Inflow Outlook	0.84 ft	M
	ENSO Forecast	Dry	
	LOK Multi-Seasonal Net Inflow Outlook	2.16 ft	
	ENSO Forecast	Normal	M
	WCA 1: 3 Station Average (Site 1-7, 1-8T and 1-9)	Above Line 1 (16.69 ft)	L
WCAs	WCA 2A: Site 2-17	Above Line 1 (12.05 ft)	L
	WCA-3A: 3 Station Average (Site 63, 64 and 65)	Above Line 1 (9.97 ft)	L
	Service Area 1	Year-Round Irrigation Rule in effect	L
LEC	Service Area 2	Year-Round Irrigation Rule in effect	L
	Service Area 3	Year-Round Irrigation Rule in effect	L


Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow outlooks use slightly different classification intervals than those used by the 2008-LORS.

Lake Okeechobee SFWMM Mar 2021 Position Analysis

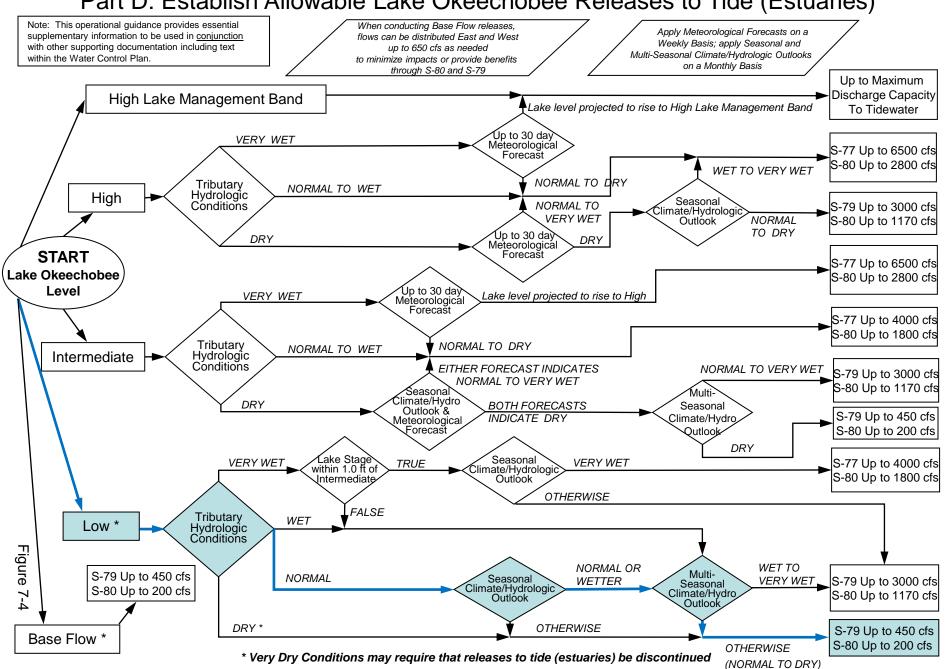
(See assumptions on the Position Analysis Results website)

Tributary Basin Condition Indicators as of March 8 2021

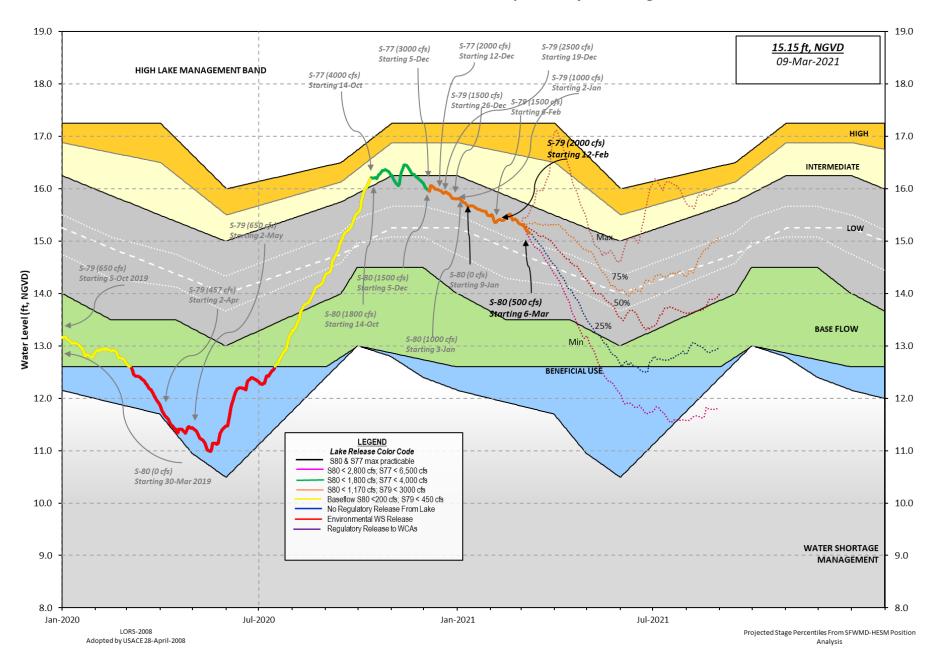


Tue Mar 09 07:21:13 EST 2021

Flow (cfs)


2008 LORS

Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas



2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)

Lake Okeechobee Water Level History and Projected Stages

U. S. Army Corps of Engineers, Jacksonville District Lake Okeechobee and Vicinity Report ** Preliminary Data - Subject to Revision **

Data Ending 2400 hours 07 MAR 2021

*Okeechobee Lake Elevation 15.18 12 Bottom of High Lake Mngmt= 17.25 Top of Water Currently in Operational Management Band Simulated Average LORS2008 [1965-2000] 13.22 Difference from Average LORS2008 1.91 07MAR (1965-2007) Period of Record Average Difference from POR Average Today Lake Okeechobee elevation is determined ++Navigation Depth (Based on 2007 Channel Cond: ++Navigation Depth (Based on 2008 Channel Cond: Bridge Clearance = 49.01' 4 Interior and 4 Edge Okeechobee Lake Average (Average Cond: Louis	7 14.49 3.69 from the 4 Int & 4 Edge station ition Survey) Route 1 9.12' ition Survey) Route 2 7.32'
Currently in Operational Management Band Simulated Average LORS2008 [1965-2000] 13.27 Difference from Average LORS2008 1.91 07MAR (1965-2007) Period of Record Average Difference from POR Average Today Lake Okeechobee elevation is determined ++Navigation Depth (Based on 2007 Channel Cond: ++Navigation Depth (Based on 2008 Channel Cond: Bridge Clearance = 49.01' 4 Interior and 4 Edge Okeechobee Lake Average (Average Cond: L001 L005 L006 LZ40 S4 S352 S308)	7 14.49 3.69 from the 4 Int & 4 Edge station ition Survey) Route 1 9.12' ition Survey) Route 2 7.32'
Simulated Average LORS2008 [1965-2000] 13.22 Difference from Average LORS2008 1.91 07MAR (1965-2007) Period of Record Average Difference from POR Average Conductor of the cond	14.49 0.69 from the 4 Int & 4 Edge station ition Survey) Route 1 � 9.12' ition Survey) Route 2 � 7.32'
Difference from Average LORS2008 1.91 07MAR (1965-2007) Period of Record Average Difference from POR Average Today Lake Okeechobee elevation is determined ++Navigation Depth (Based on 2007 Channel Cond: ++Navigation Depth (Based on 2008 Channel Cond: Bridge Clearance = 49.01' 4 Interior and 4 Edge Okeechobee Lake Average (Average Clearance) L001 L005 L006 LZ40 S4 S352 S308	14.49 0.69 from the 4 Int & 4 Edge station ition Survey) Route 1 � 9.12' ition Survey) Route 2 � 7.32'
Difference from POR Average Today Lake Okeechobee elevation is determined - ++Navigation Depth (Based on 2007 Channel Cond: ++Navigation Depth (Based on 2008 Channel Cond: Bridge Clearance = 49.01' Interior and 4 Edge Okeechobee Lake Average (Av. L001 L005 L006 LZ40 S4 S352 S308)	7.69 from the 4 Int & 4 Edge station ition Survey) Route 1 � 9.12' ition Survey) Route 2 � 7.32'
++Navigation Depth (Based on 2007 Channel Cond: ++Navigation Depth (Based on 2008 Channel Cond: Bridge Clearance = 49.01' 4 Interior and 4 Edge Okeechobee Lake Average (Average)	ition Survey) Route 1 � 9.12' ition Survey) Route 2 � 7.32'
++Navigation Depth (Based on 2008 Channel Cond: Bridge Clearance = 49.01' Interior and 4 Edge Okeechobee Lake Average (Average) L001 L005 L006 LZ40 S4 S352 S308	ition Survey) Route 2 🏟 7.32
	/g-Daily values):
	S133
	13 14.61
*Combination Okeechobee Avg-Daily Lake Average	
	(*See Note)
Oles-alada - T. (1 /- (-)	
Okeechobee Inflows (cfs): S65E 939 S65EX1 0	Fisheating Cr 13
S154 0 S191 0	S135 Pumps 0
S84 1 S133 Pumps 0	S2 Pumps 0
S84X 0 S127 Pumps 0	S3 Pumps 0
S71 0 S129 Pumps 0	S4 Pumps 0
S72 0 S131 Pumps 0	C5 0
Total Inflows: 952	
Okeechobee Outflows (cfs):	
S135 Culverts 0 S354 0	S77 1257
S127 Culverts 0 S351 395	S308 471
S129 Culverts 0 S352 0	3300 4/1
S131 Culverts 0 L8 Canal Pt -NR-	
Total Outflows: 2123	
****C77 -t	Tatal Out(law
****S77 structure flow is being used to compute	
Okeechobee Pan Evaporation (inches):	
S77 0.18 S308 0.30	

Lake Average Precipitation using NEXRAD: = -NR-" = -NR-"

Evaporation - Precipitation: = -NR-" = -NR-" Evaporation - Precipitation using Lake Area of 730 square miles is equal to -NR-Lake Okeechobee (Change in Storage) Flow is -6504 cfs or -12900 AC-FT

	Headwater	Tailwater	^			- Gat	te Pos	sitio	ns		
	Elevation	Elevation	n Disch	#1	#2	#3	#4	#5	#6	#7	#8
	(ft-msl)	(ft-msl)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
		((I) see	note at	bott	om					
North East S	hore		, ,								
S133 Pumps	: 13.56	14.46	0	0	0	0	0	0	(cfs)	
S193:									`	•	
S191:	19.02	14.51	0	0.0	-NR-	0.0					
S135 Pumps	: 13.40	14.66	0	0	0	0	0		(cfs)	
S135 Culve			0	0.0			_		(,	
0100 00110			•	• • • • • • • • • • • • • • • • • • • •							
North West S	hore										
S65E:	20.95	14.25	939	0.4	0.4	0.5	0.5	0.3	0.5		
S65EX1:	20.95	14.25	0								
S127 Pumps		14.73	0	0	0	0	0	0	(cfs)	
S127 Culve		14.75	0	0.0	Ŭ	Ū	Ŭ	·	(0.5	,	
Jiz/ Caive			U	0.0							
S129 Pumps	: 12.88	15.03	0	0	0	0			(cfs	١	
S129 Culve		13.03	0	0.0	Ŭ	Ū			(0.5	,	
JIZJ CUIVC			U	0.0							
S131 Pumps	: 12.92	15.02	0	0	0				(cfs	١	
S131 Culve		13.02	0	Ū	Ŭ				(0.5	,	
JIJI CUIVC			U								
Fisheating	Creek										
nr Palmd		28.61	13								
		20.01	13								
nr Lakep C5:	טוינ	-NR-	0	ME	RNF) NII	,				
C3.		-1417	Ø	- 1417	(INF	VINI	ν-				
South Shore											
S4 Pumps:	11.70	15.67	0	0	0	0			(cfs	١	
S169:	15.85	11.76	97		0.0	-			(613	,	
S310:	15.69	11.70	93	0.0	0.0	0.0					
		16 00	93	0	0	0			(c£c	`	
S3 Pumps:	10.36	16.09	-	0	0	0			(cfs)	
S354:	16.09	10.36	0	0.0		_	_		/ - C -		
S2 Pumps:	10.54	-NR-	0	0	0	0	0		(cfs)	
S351:	-NR-	10.54	395	0.2		0.2					
S352:	15.39	10.35	0	0.0		_	_	_			
C10A:	-NR-	14.13		8.0	8.8	8	.0 (0.0	0.0		
L8 Canal P	Т		- NR -								
	S35	1 and S352	2 Tempor	ary Pum	ips/S3	354 Sp	oillwa	ау			
C2E4 :	10 54	ND	305	ND :	ID 115		ND	ND			
S351:	10.54	-NR-	395	-NRN				-NK-			
S352:	10.35	15.39	0	-NRN							
S354:	10.36	16.09	0	-NRN	IK – – NF	k – – NR ·	-				
Calaacabatab	00 Direct /	C77 C70	C70\								
Caloosahatch			3/9)	4 ^	4 -						
S47B:	14.32	12.41		1.0	1.5						
S47D:	12.46	11.31	50	0.0							

```
S77:
   Spillway and Sector Preferred Flow:
              15.11
                        11.15
                                 1250 0.0 2.5 2.5 0.0
   Flow Due to Lockages+:
                                    7
 S78:
   Spillway and Sector Flow:
                                 1478
                                         2.0 0.0 2.5 0.0
              11.15
                       2.89
   Flow Due to Lockages+:
                                    8
 S79:
   Spillway and Sector Flow:
                                 2336
                                         1.0 1.0 1.0 1.0 1.0 1.0 0.5
               3.03
                         0.77
   Flow Due to Lockages+:
                                   11
   Percent of flow from S77
                                   54%
   Chloride
                       (ppm)
St. Lucie Canal (S308, S80)
 S308:
   Spillway and Sector Preferred Flow:
              15.21
                        14.49
                                  469 0.0 0.0 3.5 0.0
   Flow Due to Lockages+:
                                    2
 S153:
              18.64
                        14.15
                                   46
                                        0.0 0.0
 S80:
   Spillway and Sector Flow:
              14.38
                                  380
                                         0.0 0.0 0.5 0.0 0.5 0.0 0.0
                         0.85
   Flow Due to Lockages+:
                                  15
   Percent of flow from S308
                                  123%
                              (mg/ml) ****
 Steele Point Top Salinity
 Steele Point Bottom Salinity (mg/ml) ****
                              (mg/ml) ****
 Speedy Point Top Salinity
 Speedy Point Bottom Salinity (mg/ml) ****
```

- + Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.
- ++ Preferred flow is determined from either the spillway discharge or the below flow meter daily

				Wi	nd
Daily Precipitation Totals	1-Day	3-Day	7-Day	Directio	n Speed
	(inches)	(inches)	(inches)	(Deg�)	(mph)
S133 Pump Station:	- NR -	0.00	0.00		
S193:	- NR -	0.00	0.00	-NR-	-NR-
Okeechobee Field Station:	- NR -	0.00	0.00		
S135 Pump Station:	- NR -	0.00	0.00		
S127 Pump Station:	- NR -	0.00	0.00		
S129 Pump Station:	- NR -	0.00	0.00		
S131 Pump Station:	- NR -	0.00	0.00		
S77:	0.22	0.23	0.23	27	9
S78:	10.51	10.87	10.88	6	2
S79:	-0.07	0.41	0.47	305	6
S4 Pump Station:	- NR -	0.00	0.00		
Clewiston Field Station:	- NR -	0.00	0.00		
S3 Pump Station:	- NR -	0.00	0.00		
S2 Pump Station:	- NR -	0.00	0.00		
S308:	15.47	16.14	16.25	9	8
S80:	2.91	3.32	3.32	67	1
Okeechobee Average	7.85	1.26	1.27		

(Sites S78, S79 and S80 not included)

Oke Nexrad Basin Avg	-NR-	0.00	0.00

Okeechobee Lake Elevations	07 MAR 2021	15.18 Differ	ence from 07MAR21
07MAR21 -1 Day =	06 MAR 2021	15.21	0.03
07MAR21 -2 Days =	05 MAR 2021	15.23	0.05
07MAR21 -3 Days =	04 MAR 2021	15.26	0.08
07MAR21 -4 Days =	03 MAR 2021	15.32	0.14
07MAR21 -5 Days =	02 MAR 2021	15.31	0.13
07MAR21 -6 Days =	01 MAR 2021	15.32	0.14
07MAR21 -7 Days =	28 FEB 2021	15.33	0.15
07MAR21 -30 Days =	05 FEB 2021	15.36	0.18
07MAR21 -1 Year =	07 MAR 2020	12.46	-2.72
07MAR21 -2 Year =	07 MAR 2019	12.54	-2.64

Long Term Mean 30day Avearge ET for Lake Alfred (Inches) = -NR-

	Lake C	keechobee	Net Inflo	w (LONIN)	
	Average Flow			` '.	Avg-Daily Flow
07MAR21 Toda	•	MAR 2021	-581	MON	-4191
07MAR21 -1 Day	= 06	MAR 2021	-961	SUN	-2039
07MAR21 -2 Day	s = 05	MAR 2021	-1648	SAT	-3638
07MAR21 -3 Day	s = 04	MAR 2021	-1297	FRI	-9497
07MAR21 -4 Day	s = 03	MAR 2021	282	THU	5175
07MAR21 -5 Day	s = 02	MAR 2021	191	WED	849
07MAR21 -6 Day	s = 01	MAR 2021	440	TUE	848
07MAR21 -7 Day	s = 28	FEB 2021	633	MON	985
07MAR21 -8 Day	s = 27	FEB 2021	1097	SUN	-1766
07MAR21 -9 Day	s = 26	FEB 2021	1485	SAT	-3715
07MAR21 -10 Day	s = 25	FEB 2021	1854	FRI	1239
07MAR21 -11 Day	s = 24	FEB 2021	1741	THU	-1319
07MAR21 -12 Day	s = 23	FEB 2021	1799	WED	4897
07MAR21 -13 Day	s = 22	FEB 2021	1472	TUE	4042

					Se	55E				
				Average	Flov	v over	previous	14 days		Avg-Daily Flow
07MAR21		Today	/=	07	MAR	2021	1112	MON		1072
07MAR21	-1	Day	=	06	MAR	2021	1121	SUN		1090
07MAR21	-2	Days	=	05	MAR	2021	1128	SAT	İ	1062
07MAR21	-3	Days	=	04	MAR	2021	1140	FRI	İ	1078
07MAR21	-4	Days	=	03	MAR	2021	1146	THU	ĺ	1066
07MAR21	-5	Days	=	02	MAR	2021	1156	WED	İ	1120
07MAR21	-6	Days	=	01	MAR	2021	1163	TUE	İ	1070
07MAR21	-7	Days	=	28	FEB	2021	1165	MON	ĺ	1037
07MAR21	-8	Days	=	27	FEB	2021	1175	SUN	İ	1100
07MAR21	-9	Days	=	26	FEB	2021	1171	SAT	İ	1173
07MAR21	-10	Days	=	25	FEB	2021	1155	FRI	ĺ	1163
07MAR21	-11	Days	=	24	FEB	2021	1144	THU	İ	1154
07MAR21	-12	Days	=	23	FEB	2021	1136	WED	ĺ	1218
07MAR21	-13	Days	=	22	FEB	2021	1124	TUE		1170
		-							-	

					Se	55EX1				
				Average	Flov	v over	previous	14 days	Avg-Daily Flow	
07MAR21		Toda	y =	07	MAR	2021	1	MON	0	
07MAR21	-1	Day	=	06	MAR	2021	1	SUN	0	
07MAR21	-2	Days	=	05	MAR	2021	1	SAT	0	

07MAR21	-3	Days	=	04	MAR	2021	1	FRI	0	
07MAR21	-4	Days	=	03	MAR	2021	1	THU	0	
07MAR21	-5	Days	=	02	MAR	2021	1	WED	0	
07MAR21	-6	Days	=	01	MAR	2021	1	TUE	0	
07MAR21	-7	Days	=	28	FEB	2021	1	MON	0	
07MAR21	-8	Days	=	27	FEB	2021	1	SUN	0	
07MAR21	-9	Days	=	26	FEB	2021	1	SAT	0	
07MAR21	-10	Days	=	25	FEB	2021	4	FRI	0	
07MAR21	-11	Days	=	24	FEB	2021	11	THU	0	
07MAR21	-12	Days	=	23	FEB	2021	11	WED	9	
07MAR21	-13	Days	=	22	FEB	2021	10	TUE	0	

Lake Okeechobee Outlets Last 14 Days

			-		
	S-77	Below S-77	S-78	S-79	
	Discharge	Discharge	Discharge	Discharge	
	(ALL DAY)	(ALL-DAY)	(ALL DAY)	(ALL DAY)	
DATE	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	
07 MAR 2021		2813	2946	4665	
06 MAR 2021		3612	2979	3694	
05 MAR 2021		3928	2982	3821	
04 MAR 2021		4070	2928	3943	
03 MAR 2021		3248	2545	2623	
02 MAR 2021		2710	2173	3215	
01 MAR 2021		2545	2261	3687	
28 FEB 2021		3427	2597	3903	
27 FEB 2021		3225	2563	3678	
26 FEB 2021		2836	2603	3823	
25 FEB 2021		3666	2602	4090	
24 FEB 2021		3128	2542	3961	
23 FEB 2021		1727	2544	3781	
22 FEB 2021		2459	2597	3574	
22 ILD 2021	1702	2433	2337	3374	
	S-310	S-351	S-352	S-354	L8 Canal Pt
	Discharge	Discharge	Discharge	Discharge	Discharge
	(ALL DAY)	(ALL DAY)	(ALL DAY)	(ALL DAY)	(ALL DAY)
DATE	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)	(AC-FT)
07 MAR 2021		783	0	0	-NR-
06 MAR 2021		541	18	0	-NR-
05 MAR 2021		1121	150	295	-NR-
04 MAR 2021		1290	489	553	-NR-
03 MAR 2021		1020	374	609	-NR -
02 MAR 2021		1451	434	639	-NR-
01 MAR 2021		620	406	2183	-NR -
28 FEB 2021		78	220	2243	-NR -
27 FEB 2021		20	231	2219	-NR-
26 FEB 2021		198	245	1980	-NR -
25 FEB 2021		157	427	1820	-NR -
24 FEB 2021		229	114	1475	-NR-
23 FEB 2021		346	407	1467	-NR-
22 FEB 2021		310	0	1352	-NR-
22 ILD 2021	110	310	0	1332	-1417
	S-308	Below S-30	8 S-80		
	Discharge	Discharge		Δ	
	(ALL DAY)	(ALL-DAY)		_	
DATE	(AC-FT)	(AC-FT)	(ALL-DAY (AC-FT)	,	
07 MAR 2021		935	786		
06 MAR 2021		398	343		
05 MAR 2021		142	343		
04 MAR 2021		439	33		
03 MAR 2021		-126	33 49		
02 MAR 2021		-126 44	58		
UZ MAR ZUZI	401	44	58		

01	MAR	2021	3	-145	47
28	FEB	2021	10	30	66
27	FEB	2021	9	172	54
26	FEB	2021	773	945	53
25	FEB	2021	498	442	45
24	FEB	2021	712	-NR -	523
23	FEB	2021	7	-123	503
22	FEB	2021	9	44	57

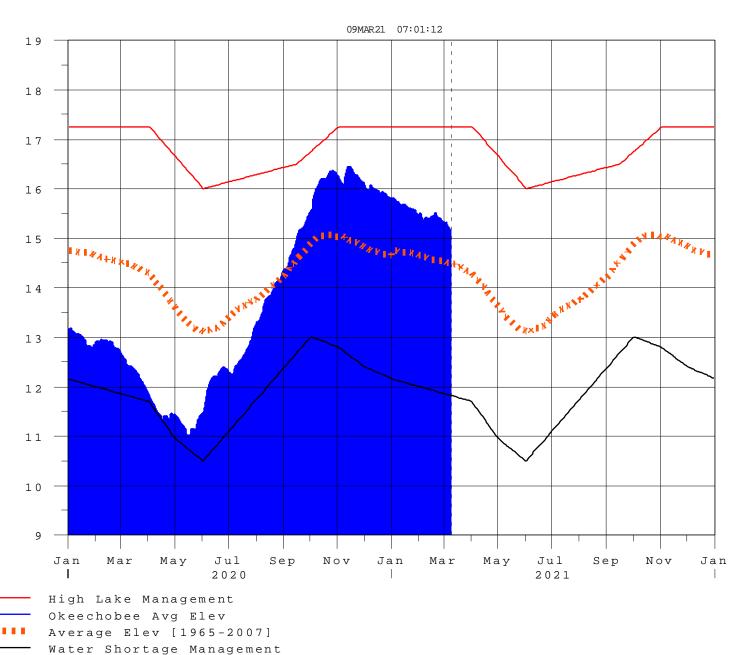
*** NOTE: Discharge (ALL DAY) is computed using Spillway, Sector Gate and Lockages Discharges from 0015 hrs to 2400 hrs.

(I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

* On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average.

On 14 Mar 2001, due to the isolation of various gages within the standard 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation.

On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level.


On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels.

Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations ++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/

\$ For information regarding Lake Okeechobee Service Area water restrictions
please refer to www.sfwmd.gov

Report Generated 08MAR2021 @ 18:15 ** Preliminary Data - Subject to Revision **

E 1 e

i n

F t N

G V D

Classification Tables

Supplemental Tables used in conjunction with the LORS2008

Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• 6-15 Day Precipitation Outlook Categories

Table ?? in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Seasonal

Outlook

Table K-3 in the Lake Okeechobee Water Control Plan

Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic	Palmer Index	2-wk Mean L.O. Net
Classification*	Class Limits	Inflow Class Limits
Very Wet	3.0 or greater	Greater >= 6000 cfs
Wet	1.5 to 2.99	2500 - 5999 cfs
Near Normal	-1.49 to 1.49	500 - 2499 cfs
Dry	-2.99 to -1.5	-5000 – 500 cfs
Very Dry	-3.0 or less	Less than -5000 cfs

^{*} use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee	
[million acre-feet]	[feet]	Net Inflow	
	2000	Seasonal Outlook	
> 0.93	> 2.0	Very Wet	
0.71 to 0.93	1.51 to 2.0	Wet	
0.35 to 0.70	0.75 to 1.5	Normal	
< 0.35	< 0.75	Dry	

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee Net Inflow	
[million acre-feet]	[feet]		
		Multi-Seasonal Outlook	
> 2.0	> 4.3	Very Wet	
1.18 to 2.0	2.51 to 4.3	Wet	
0.5 to 1.17	1.1 to 2.5	Normal	
< 0.5	< 1.1	Dry	

^{**}Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories	
Above Normal	Wet to Very Wet	
Normal	Normal	
Below Normal	Dry	

^{*} Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan

Under Construction