Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method\(^1\), the SFWMD empirical method\(^2\), a sub-sampling of Neutral years\(^3\) and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with La Nina ENSO years\(^4\). The results for Croley's method and the SFWMD empirical method are based on the CPC Outlook.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

<table>
<thead>
<tr>
<th>Season</th>
<th>Croley’s Method(^1)</th>
<th>SFWMD Empirical Method(^2)</th>
<th>Sub-sampling of Neutral ENSO Years(^3)</th>
<th>Sub-sampling of AMO Warm + Neutral ENSO Years(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (ft)</td>
<td>Condition</td>
<td>Value (ft)</td>
<td>Condition</td>
<td>Value (ft)</td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current (Jul-Dec)</td>
<td>N/A</td>
<td>2.39</td>
<td>Very Wet</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.73</td>
</tr>
<tr>
<td>Multi Seasonal (Jul-Apr)</td>
<td>N/A</td>
<td>2.84</td>
<td>Wet</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.98</td>
</tr>
</tbody>
</table>

*Croley’s Method Not Produced for This Report

See **Seasonal** and **Multi-Seasonal** tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

**Sub-sampling is a weighted average of ENSO conditions based on the ENSO forecast used.**
**Tributary Hydrologic Conditions Graph:**

2150 cfs 14-day running average for Lake Okeechobee Net Inflow through 7/14/2019. According to the classification in *Tributary Hydrologic Conditions* table, this condition is Normal.

-1.04 for Palmer Index on 7/13/2019. According to the classification in *Tributary Hydrologic Conditions* table, this condition is Normal.

The wetter of the two conditions above is Normal.

**LORS2008 Classification Tables:**

**Lake Okeechobee Stage on 7/15/2019**

Lake Okeechobee Stage: **11.48 feet**

- [USACE Report for Lake Okeechobee](#)
- [Lake Okeechobee Stage Hydrograph](#)

<table>
<thead>
<tr>
<th>Lake Okeechobee Management Zone/Band</th>
<th>Bottom Elevation (feet, NGVD)</th>
<th>Current Lake Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Lake Management Band</td>
<td>16.20</td>
<td></td>
</tr>
<tr>
<td>Operational Band</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High sub-band</td>
<td>15.76</td>
<td></td>
</tr>
<tr>
<td>Intermediate sub-band</td>
<td>15.31</td>
<td></td>
</tr>
<tr>
<td>Low sub-band</td>
<td>13.41</td>
<td></td>
</tr>
<tr>
<td>Base Flow sub-band</td>
<td>12.60</td>
<td></td>
</tr>
<tr>
<td>Beneficial Use sub-band</td>
<td></td>
<td>11.48</td>
</tr>
<tr>
<td>Water Shortage Management Band</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part C of LORS2008: Discharge to WCA's

Lake Okeechobee stage is within the Beneficial Use Sub-band therefore, no releases to the WCAs to manage lake stages

Part D of LORS2008: Discharge to Tidewater

Lake Okeechobee stage is within the Beneficial Use Sub-band therefore, no releases to the St. Lucie or Caloosahatchee Estuaries to manage lake stages.

Adaptive Protocol's Release Guidance: Caloosahatchee Estuary


Back to Lake Okeechobee Operations Main Page
Back to U.S. Army Corps of Engineers LORSS Homepage
LORS2008 Implementation on 07/15/2019 (ENSO El Niño Condition):

Status for week ending 07/15/2019:
District wide, Raindar rainfall was 1.09 inches for the week. Lake stage on 7/15/2019 was 11.47 ft, NGVD, up 0.13 ft from last week. The updated July 2019 SFWMM Dynamic Position Analysis percentile graph for Lake Okeechobee show that the current lake stage is in the Beneficial Use Sub-band. The LORS2008 Tributary Hydrologic Conditions (THC) are classified as Normal. The PDI indicates normal conditions and the LONIN is normal. The THC classification is based on the wetter of the two indices.

Water Supply Risk Evaluation

<table>
<thead>
<tr>
<th>Area</th>
<th>Indicator</th>
<th>Value</th>
<th>Color Coded Scoring Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOK</td>
<td>Projected LOK Stage for the next two months</td>
<td>Beneficial Use Sub-Band</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Palmer Index for LOK Tributary Conditions</td>
<td>-1.04 (Dry)</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>CPC Precipitation Outlook</td>
<td>1 month: Normal</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 months: Normal</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>LOK Seasonal Net Inflow Outlook</td>
<td>2.67 ft (Normal to Extremely Wet)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>ENSO Forecast (positive)</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOK Multi-Seasonal Net Inflow Outlook</td>
<td>3.12 ft (Normal)</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>ENSO Forecast (positive)</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>WCAs</td>
<td>WCA 1: Canal Gauge (Site 1-8C)</td>
<td>Above Line 1 (16.33 ft)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>WCA 2A: Site 2-17 HW</td>
<td>Above Line 1 (12.15 ft)</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>WCA-3A: 3 Station Average (Site 63, 64, and 65)</td>
<td>Above Line 1 (9.55 ft)</td>
<td>L</td>
</tr>
<tr>
<td>LEC</td>
<td>Service Area 1</td>
<td>Year-Round Irrigation Rule in effect</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Service Area 2</td>
<td>Year-Round Irrigation Rule in effect</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Service Area 3</td>
<td>Year-Round Irrigation Rule in effect</td>
<td>L</td>
</tr>
</tbody>
</table>

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow outlooks use slightly different classification intervals than those used by the 2008-LORS.
2008 LORS
Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas

START
Lake Okeechobee Water Level

High Lake Management Band

High

Intermediate

Low

Base Flow

Apply Tributary Condition Criteria Daily

Apply Multi-Seasonal Climate/Hydrologic Outlooks on a Monthly Basis

All Downstream WCAs < max of upper schedule +0.25 ft

TRUE

Maximum Practicable to WCAs

FALSE

No Releases to WCAs

All Downstream WCAs < max of upper schedule +0.25 ft

TRUE

Maximum Practicable to WCAs

FALSE

No Releases to WCAs

Tributary Hydrologic Conditions

OTHERWISE

Multi-Seasonal Climate/Hydrologic Outlook

NORMAL TO VERY WET

OR

Desirable with minimum Everglades impacts

TRUE

Up to Maximum Practicable to WCAs

FALSE

No Releases to WCAs

DRY

DRY

Note: This operational guidance provides essential supplementary information to be used in conjunction with other supporting documentation including text within the Water Control Plan.
Note: This operational guidance provides essential supplementary information to be used in conjunction with other supporting documentation including text within the Water Control Plan.

When conducting Base Flow releases, flows can be distributed East and West up to 650 cfs as needed to minimize impacts or provide benefits through S-80 and S-79.

Apply Meteorological Forecasts on a Weekly Basis; apply Seasonal and Multi-Seasonal Climate/Hydrologic Outlooks on a Monthly Basis.

Up to Maximum Discharge Capacity To Tidewater.

S-77 Up to 6500 cfs
S-80 Up to 2800 cfs
S-77 Up to 4000 cfs
S-80 Up to 1800 cfs
S-79 Up to 3000 cfs
S-80 Up to 1170 cfs
S-77 Up to 6500 cfs
S-80 Up to 2800 cfs
S-77 Up to 4000 cfs
S-80 Up to 1800 cfs
S-79 Up to 4000 cfs
S-80 Up to 1800 cfs
S-79 Up to 450 cfs
S-80 Up to 200 cfs

* Very Dry Conditions may require that releases to tide (estuaries) be discontinued.
Flowchart to Guide Recommendations for Lake Okeechobee Releases to the Caloosahatchee Estuary for 2008 LORS Baseflow & for Environmental Water Supply (revised 9-Aug-2012)

1. The 2008 LORS Release Guidance (Part D) can suggest baseflow releases in the Intermediate, Low, or Baseflow Subbands.
2. Estuary “needs” water when the 30-day moving average salinity at I-75 bridge is projected to exceed 5 practical salinity units (psu) within 2 weeks.
3. LOWSM = Lake Okeechobee Water Shortage Management.
4. Tributary Hydrologic Condition (THC) is based on classification of Lake Okeechobee Net Inflow and Palmer Index.
5. Can release less than the “up to” limit if lower release is sufficient to reach or sustain desired estuary salinity; cfs = cubic feet per second.
6. After reviewing conditions in Water Conservation Areas (WCAs), Stormwater Treatment Areas (STAs), ENP, St. Lucie Estuary and Lake Okeechobee.
7. Should this condition be reached, the Governing Board will be briefed at their next regularly scheduled meeting as part of the State of the Water Resources agenda item.
Lake Okeechobee Water Level History and Projected Stages

LEGEND

Lake Release Color Code
- S80 & S77 max practicable
- S80 < 2,800 cfs; S77 < 6,500 cfs
- S80 < 1,800 cfs; S77 < 4,000 cfs
- S80 < 1,170 cfs; S79 < 3000 cfs
- Baseflow S80 <200 cfs; S79 < 450 cfs
- No Regulatry Release From Lake
- Environmental WS Release
- Regulatory Release to WCAs

Project Stage Percentiles From
SFWMD-HESM Position Analysis

LORS-2008
Adopted by USACE 28-April-2008

11.47 ft, NGVD
16-Jul-2019
U. S. Army Corps of Engineers, Jacksonville District
Lake Okeechobee and Vicinity Report
** Preliminary Data - Subject to Revision **

Data Ending 2400 hours 14 JUL 2019

Okeechobee Lake Regulation

<table>
<thead>
<tr>
<th>Elevation (ft-NGVD)</th>
<th>Last Year (ft-NGVD)</th>
<th>2YRS Ago (ft-NGVD)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Okeechobee Lake Elevation</em></td>
<td>11.48</td>
<td>14.51</td>
</tr>
<tr>
<td>Bottom of High Lake Mngmt= 16.20</td>
<td>Top of Water Short Mngmt= 11.39</td>
<td></td>
</tr>
</tbody>
</table>

Currently in Operational Management Band

Difference from Average LORS2008 -0.99

14JUL (1965-2007) Period of Record Average 13.58
Difference from POR Average -2.10

Today Lake Okeechobee elevation is determined from the 4 Int & 4 Edge stations

++Navigation Depth (Based on 2007 Channel Condition Survey) Route 1 ÷ 5.42'
++Navigation Depth (Based on 2008 Channel Condition Survey) Route 2 ÷ 3.62'
Bridge Clearance = 49.69'

4 Interior and 4 Edge Okeechobee Lake Average (Avg-Daily values):

<table>
<thead>
<tr>
<th>Station</th>
<th>L001</th>
<th>L005</th>
<th>L006</th>
<th>LZ40</th>
<th>S4</th>
<th>S352</th>
<th>S308</th>
<th>S133</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
<td>11.42</td>
<td>11.75</td>
<td>11.44</td>
<td>11.44</td>
<td>11.55</td>
<td>-NR-</td>
<td>11.36</td>
<td>11.37</td>
</tr>
</tbody>
</table>

*Combination Okeechobee Avg-Daily Lake Average = 11.48
(*See Note)

Okeechobee Inflows (cfs):

<table>
<thead>
<tr>
<th>Station</th>
<th>S65E</th>
<th>S65EX1</th>
<th>S154</th>
<th>S84</th>
<th>S84X</th>
<th>S71</th>
<th>S72</th>
<th>Fisheating Cr</th>
<th>S354</th>
<th>S135 Pumps</th>
<th>S127 Pumps</th>
<th>S133 Pumps</th>
<th>S129 Pumps</th>
<th>S352</th>
<th>S131 Pumps</th>
<th>C5</th>
<th>Total Inflows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>788</td>
<td>382</td>
<td>0</td>
<td>656</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S354</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1905</td>
</tr>
</tbody>
</table>

Okeechobee Outflows (cfs):

<table>
<thead>
<tr>
<th>Station</th>
<th>S135 Culverts</th>
<th>S127 Culverts</th>
<th>S129 Culverts</th>
<th>S131 Culverts</th>
<th>L8 Canal Pt</th>
<th>Total Outflows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-48</td>
<td>-52</td>
</tr>
</tbody>
</table>

Total Outflows: -52
Okeechobee Pan Evaporation (inches):
 S77 0.26  S308 0.31
Average Pan Evap x 0.75 Pan Coefficient = 0.21" = 0.02'

Lake Average Precipitation using NEXRAD: = NR = NR'
Evaporation - Precipitation: = NR = NR'
Evaporation - Precipitation using Lake Area of 730 square miles is equal to NR
Lake Okeechobee (Change in Storage) Flow is 0 cfs or 0 AC-FT

Headwater Tailwater

<table>
<thead>
<tr>
<th>Elevation (ft-msl)</th>
<th>Elevation (ft-msl)</th>
<th>Disch (cfs)</th>
<th>#1 (ft)</th>
<th>#2 (ft)</th>
<th>#3 (ft)</th>
<th>#4 (ft)</th>
<th>#5 (ft)</th>
<th>#6 (ft)</th>
<th>#7 (ft)</th>
</tr>
</thead>
</table>

North East Shore
S133 Pumps: 13.37 11.34 0 0 0 0 0 0 (cfs)
S193: ___________
S191: 18.93 11.34 0 0.0 0.0 0.0
S135 Pumps: 13.36 11.25 0 0 0 0 0 0 (cfs)
S135 Culverts: 0 0.0 0.0

North West Shore
S65E: 20.93 11.31 788 0.0 0.0 0.0 0.5 0.5 0.5
S65EX1: 20.93 11.31 382
S127 Pumps: 13.60 11.47 0 0 0 0 0 0 0 (cfs)
S127 Culvert: 0 0.0
S129 Pumps: 13.14 12.69 0 0 0 0 (cfs)
S129 Culvert: 0 0.0
S131 Pumps: 13.02 11.88 0 0 0 (cfs)
S131 Culvert: 0

Fisheating Creek
nr Palmdale 30.40 80
nr Lakeport __________
C5: ___________ -NR- 0 -NR- -NR- -NR-

South Shore
S4 Pumps: 11.57 11.57 0 0 0 0 (cfs)
S169: 11.58 11.58 30 4.9 4.9 4.9
S310: 11.49 18
<table>
<thead>
<tr>
<th></th>
<th>10.18</th>
<th>11.49</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>(cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S354:</td>
<td>11.49</td>
<td>10.18</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2 Pumps:</td>
<td>9.63</td>
<td>-NR-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S351:</td>
<td>-NR-</td>
<td>9.63</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>S352:</td>
<td>______</td>
<td>9.41</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10A:</td>
<td>-NR-</td>
<td>11.65</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>L8 Canal PT</td>
<td>11.51</td>
<td>-48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**S351 and S352 Temporary Pumps/S354 Spillway**

<table>
<thead>
<tr>
<th></th>
<th>9.63</th>
<th>-NR-</th>
<th>0</th>
<th>-NR-</th>
<th>-NR-</th>
<th>-NR-</th>
<th>-NR-</th>
<th>-NR-</th>
<th>-NR-</th>
</tr>
</thead>
<tbody>
<tr>
<td>S352:</td>
<td>9.41</td>
<td>______</td>
<td>0</td>
<td>-NR-</td>
<td>-NR-</td>
<td>-NR-</td>
<td>-NR-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S354:</td>
<td>10.18</td>
<td>11.49</td>
<td>0</td>
<td>-NR-</td>
<td>-NR-</td>
<td>-NR-</td>
<td>-NR-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Caloosahatchee River (S77, S78, S79)**

<table>
<thead>
<tr>
<th></th>
<th>11.70</th>
<th>11.13</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S77:</td>
<td>11.14</td>
<td>11.14</td>
<td>23</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillway and Sector Preferred Flow:</td>
<td>11.49</td>
<td>11.04</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Due to Lockages+:</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**S78:**

<table>
<thead>
<tr>
<th></th>
<th>10.95</th>
<th>2.82</th>
<th>829</th>
<th>0.0</th>
<th>2.5</th>
<th>0.0</th>
<th>0.0</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spillway and Sector Flow:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Due to Lockages+:</td>
<td>-NR-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**S79:**

<table>
<thead>
<tr>
<th></th>
<th>3.00</th>
<th>0.65</th>
<th>2927</th>
<th>2.0</th>
<th>2.0</th>
<th>2.0</th>
<th>2.0</th>
<th>2.0</th>
<th>1.0</th>
<th>1.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spillway and Sector Flow:</td>
<td></td>
</tr>
<tr>
<td>Flow Due to Lockages+:</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Percent of flow from S77</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Chloride (ppm)</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

**St. Lucie Canal (S308, S80)**

<table>
<thead>
<tr>
<th></th>
<th>11.31</th>
<th>13.81</th>
<th>0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S308:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillway and Sector Preferred Flow:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Due to Lockages+:</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**S153:**

<table>
<thead>
<tr>
<th></th>
<th>18.76</th>
<th>13.67</th>
<th>19</th>
<th>0.0</th>
<th>0.0</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S80:</td>
<td>13.90</td>
<td>1.27</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Spillway and Sector Flow:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Due to Lockages+:</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of flow from S308</td>
<td>NA %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Steele Point Top Salinity (mg/ml) ****
Steele Point Bottom Salinity (mg/ml) ****
Speedy Point Top Salinity (mg/ml) ****
Speedy Point Bottom Salinity (mg/ml) ****
Flow due to lockages is computed utilizing average daily headwater and tailwater along with the total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.

Preferred flow is determined from either the spillway discharge or the below flow meter daily.

<table>
<thead>
<tr>
<th>Daily Precipitation Totals</th>
<th>1-Day (inches)</th>
<th>3-Day (inches)</th>
<th>7-Day (inches)</th>
<th>Direction (Degø)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S133 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S193:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>Okeechobee Field Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S135 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S127 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S129 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S131 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S77:</td>
<td>19.80</td>
<td>19.80</td>
<td>23.27</td>
<td>125</td>
</tr>
<tr>
<td>S79:</td>
<td>18.23</td>
<td>18.45</td>
<td>20.23</td>
<td>112</td>
</tr>
<tr>
<td>S4 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>Clewiston Field Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S3 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S2 Pump Station:</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td>-NR-</td>
</tr>
<tr>
<td>S308:</td>
<td>17.12</td>
<td>17.12</td>
<td>17.69</td>
<td>76</td>
</tr>
<tr>
<td>S80:</td>
<td>14.14</td>
<td>14.14</td>
<td>15.96</td>
<td>144</td>
</tr>
<tr>
<td>Okeechobee Average</td>
<td>18.46</td>
<td>2.84</td>
<td>3.15</td>
<td></td>
</tr>
</tbody>
</table>

(Sites S78, S79 and S80 not included)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oke Nexrad Basin Avg</td>
<td>-NR-</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Okeechobee Lake Elevations

<table>
<thead>
<tr>
<th>Date</th>
<th>Difference from 14 JUL 2019 (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14JUL19 -1 Day</td>
<td>13 JUL 2019</td>
</tr>
<tr>
<td>14JUL19 -2 Days</td>
<td>12 JUL 2019</td>
</tr>
<tr>
<td>14JUL19 -3 Days</td>
<td>11 JUL 2019</td>
</tr>
<tr>
<td>14JUL19 -4 Days</td>
<td>10 JUL 2019</td>
</tr>
<tr>
<td>14JUL19 -5 Days</td>
<td>09 JUL 2019</td>
</tr>
<tr>
<td>14JUL19 -6 Days</td>
<td>08 JUL 2019</td>
</tr>
<tr>
<td>14JUL19 -7 Days</td>
<td>07 JUL 2019</td>
</tr>
<tr>
<td>14JUL19 -30 Days</td>
<td>14 JUN 2019</td>
</tr>
<tr>
<td>14JUL19 -1 Year</td>
<td>14 JUL 2018</td>
</tr>
<tr>
<td>14JUL19 -2 Year</td>
<td>14 JUL 2017</td>
</tr>
</tbody>
</table>

Long Term Mean 30 day Average ET for Lake Alfred (Inches) = 4.54

Lake Okeechobee Net Inflow (LONIN)

Average Flow over the previous 14 days | Avg-Daily Flow
### Lake Okeechobee Outlets Last 14 Days

#### S65E

<table>
<thead>
<tr>
<th>Date</th>
<th>Flow over Previous 14 Days</th>
<th>Daily Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>14JUL19</td>
<td>14 JUL 2019 789 MON</td>
<td>905</td>
</tr>
<tr>
<td>14JUL19 -1 Day</td>
<td>13 JUL 2019 817 SUN</td>
<td>774</td>
</tr>
<tr>
<td>14JUL19 -2 Days</td>
<td>12 JUL 2019 839 SAT</td>
<td>872</td>
</tr>
<tr>
<td>14JUL19 -3 Days</td>
<td>11 JUL 2019 889 FRI</td>
<td>774</td>
</tr>
<tr>
<td>14JUL19 -4 Days</td>
<td>10 JUL 2019 945 THU</td>
<td>812</td>
</tr>
<tr>
<td>14JUL19 -5 Days</td>
<td>09 JUL 2019 990 WED</td>
<td>560</td>
</tr>
<tr>
<td>14JUL19 -6 Days</td>
<td>08 JUL 2019 1035 TUE</td>
<td>552</td>
</tr>
<tr>
<td>14JUL19 -7 Days</td>
<td>07 JUL 2019 1070 MON</td>
<td>581</td>
</tr>
<tr>
<td>14JUL19 -8 Days</td>
<td>06 JUL 2019 1102 SUN</td>
<td>575</td>
</tr>
<tr>
<td>14JUL19 -9 Days</td>
<td>05 JUL 2019 1135 SAT</td>
<td>675</td>
</tr>
<tr>
<td>14JUL19 -10 Days</td>
<td>04 JUL 2019 1151 FRI</td>
<td>867</td>
</tr>
<tr>
<td>14JUL19 -11 Days</td>
<td>03 JUL 2019 1152 THU</td>
<td>1126</td>
</tr>
<tr>
<td>14JUL19 -12 Days</td>
<td>02 JUL 2019 1120 WED</td>
<td>1057</td>
</tr>
<tr>
<td>14JUL19 -13 Days</td>
<td>01 JUL 2019 1081 TUE</td>
<td>914</td>
</tr>
</tbody>
</table>

#### S65EX1

<table>
<thead>
<tr>
<th>Date</th>
<th>Flow over Previous 14 Days</th>
<th>Daily Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>14JUL19</td>
<td>14 JUL 2019 372 MON</td>
<td>382</td>
</tr>
<tr>
<td>14JUL19 -1 Day</td>
<td>13 JUL 2019 398 SUN</td>
<td>297</td>
</tr>
<tr>
<td>14JUL19 -2 Days</td>
<td>12 JUL 2019 429 SAT</td>
<td>317</td>
</tr>
<tr>
<td>14JUL19 -3 Days</td>
<td>11 JUL 2019 441 FRI</td>
<td>221</td>
</tr>
<tr>
<td>14JUL19 -4 Days</td>
<td>10 JUL 2019 446 THU</td>
<td>307</td>
</tr>
<tr>
<td>14JUL19 -5 Days</td>
<td>09 JUL 2019 451 WED</td>
<td>272</td>
</tr>
<tr>
<td>14JUL19 -6 Days</td>
<td>08 JUL 2019 462 TUE</td>
<td>262</td>
</tr>
<tr>
<td>14JUL19 -7 Days</td>
<td>07 JUL 2019 463 MON</td>
<td>320</td>
</tr>
<tr>
<td>14JUL19 -8 Days</td>
<td>06 JUL 2019 461 SUN</td>
<td>276</td>
</tr>
<tr>
<td>14JUL19 -9 Days</td>
<td>05 JUL 2019 462 SAT</td>
<td>380</td>
</tr>
<tr>
<td>14JUL19 -10 Days</td>
<td>04 JUL 2019 447 FRI</td>
<td>344</td>
</tr>
<tr>
<td>14JUL19 -11 Days</td>
<td>03 JUL 2019 437 THU</td>
<td>389</td>
</tr>
<tr>
<td>14JUL19 -12 Days</td>
<td>02 JUL 2019 432 WED</td>
<td>694</td>
</tr>
<tr>
<td>14JUL19 -13 Days</td>
<td>01 JUL 2019 406 TUE</td>
<td>744</td>
</tr>
<tr>
<td>DATE</td>
<td>S-77 Discharge (ALL DAY)</td>
<td>Below S-77 Discharge (ALL-DAY)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>14 JUL 2019</td>
<td>1</td>
<td>182</td>
</tr>
<tr>
<td>13 JUL 2019</td>
<td>0</td>
<td>545</td>
</tr>
<tr>
<td>12 JUL 2019</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>11 JUL 2019</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10 JUL 2019</td>
<td>-0</td>
<td>164</td>
</tr>
<tr>
<td>09 JUL 2019</td>
<td>-0</td>
<td>153</td>
</tr>
<tr>
<td>08 JUL 2019</td>
<td>0</td>
<td>89</td>
</tr>
<tr>
<td>07 JUL 2019</td>
<td>-0</td>
<td>81</td>
</tr>
<tr>
<td>06 JUL 2019</td>
<td>-1</td>
<td>50</td>
</tr>
<tr>
<td>05 JUL 2019</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>04 JUL 2019</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>03 JUL 2019</td>
<td>-0</td>
<td>-22</td>
</tr>
<tr>
<td>02 JUL 2019</td>
<td>-0</td>
<td>-277</td>
</tr>
<tr>
<td>01 JUL 2019</td>
<td>-0</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>S-310 Discharge (ALL DAY)</th>
<th>S-351 Discharge (ALL DAY)</th>
<th>S-352 Discharge (ALL DAY)</th>
<th>S-354 Discharge (ALL DAY)</th>
<th>L8 Canal Pt Discharge (ALL DAY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 JUL 2019</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-96</td>
</tr>
<tr>
<td>13 JUL 2019</td>
<td>-166</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-116</td>
</tr>
<tr>
<td>12 JUL 2019</td>
<td>-386</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-55</td>
</tr>
<tr>
<td>11 JUL 2019</td>
<td>-248</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-57</td>
</tr>
<tr>
<td>10 JUL 2019</td>
<td>-227</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-109</td>
</tr>
<tr>
<td>09 JUL 2019</td>
<td>-312</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-185</td>
</tr>
<tr>
<td>08 JUL 2019</td>
<td>-95</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-110</td>
</tr>
<tr>
<td>07 JUL 2019</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-13</td>
</tr>
<tr>
<td>06 JUL 2019</td>
<td>36</td>
<td>0</td>
<td>42</td>
<td>242</td>
<td>-4</td>
</tr>
<tr>
<td>05 JUL 2019</td>
<td>249</td>
<td>482</td>
<td>121</td>
<td>646</td>
<td>-1</td>
</tr>
<tr>
<td>04 JUL 2019</td>
<td>158</td>
<td>1174</td>
<td>0</td>
<td>549</td>
<td>0</td>
</tr>
<tr>
<td>03 JUL 2019</td>
<td>224</td>
<td>1535</td>
<td>0</td>
<td>520</td>
<td>-20</td>
</tr>
<tr>
<td>02 JUL 2019</td>
<td>59</td>
<td>715</td>
<td>0</td>
<td>424</td>
<td>-80</td>
</tr>
<tr>
<td>01 JUL 2019</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>161</td>
<td>-97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>S-308 Discharge (ALL DAY)</th>
<th>Below S-308 Discharge (ALL-DAY)</th>
<th>S-80 Discharge (ALL DAY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 JUL 2019</td>
<td>-9</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>13 JUL 2019</td>
<td>-8</td>
<td>244</td>
<td>19</td>
</tr>
<tr>
<td>12 JUL 2019</td>
<td>-15</td>
<td>41</td>
<td>34</td>
</tr>
<tr>
<td>11 JUL 2019</td>
<td>-8</td>
<td>-78</td>
<td>-NR-</td>
</tr>
<tr>
<td>10 JUL 2019</td>
<td>-4</td>
<td>90</td>
<td>1650</td>
</tr>
<tr>
<td>09 JUL 2019</td>
<td>-10</td>
<td>-45</td>
<td>1351</td>
</tr>
<tr>
<td>08 JUL 2019</td>
<td>-6</td>
<td>-217</td>
<td>532</td>
</tr>
<tr>
<td>07 JUL 2019</td>
<td>-7</td>
<td>-122</td>
<td>776</td>
</tr>
<tr>
<td>06 JUL 2019</td>
<td>-15</td>
<td>-114</td>
<td>877</td>
</tr>
<tr>
<td>05 JUL 2019</td>
<td>-8</td>
<td>-182</td>
<td>594</td>
</tr>
<tr>
<td>04 JUL 2019</td>
<td>-5</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>03 JUL 2019</td>
<td>-10</td>
<td>-104</td>
<td>19</td>
</tr>
<tr>
<td>02 JUL 2019</td>
<td>-16</td>
<td>-118</td>
<td>41</td>
</tr>
<tr>
<td>01 JUL 2019</td>
<td>-8</td>
<td>-75</td>
<td>23</td>
</tr>
</tbody>
</table>
*** NOTE: Discharge (ALL DAY) is computed using Spillway, Sector Gate and Lockages Discharges from 0015 hrs to 2400 hrs.

(I) - Flows preceded by "I" signify an instantaneous flow computed from the single value reported for the day

* On 11 May 1999, Lake Okeechobee Elevation was switched from Instantaneous 2400 value to an average-daily lake average. On 14 Mar 2001, due to the isolation of various gages within the standard 10 stations, the average of the interior 4 station gages was used as the Lake Okeechobee Elevation. On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage mix of interior and edge gages to obtain a more reliable representation of the lake level. On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage mix of interior and edge gages to obtain a more reliable representation of the lake level due to isolation of S135 from low lake levels. Today Lake Okeechobee elevation is determined from the 4 Int & 4 Edge stations

++ For more information see the Jacksonville District Navigation website at http://www.saj.usace.army.mil/

$ For information regarding Lake Okeechobee Service Area water restrictions please refer to www.sfwmd.gov

Report Generated 15JUL2019 @ 23:39 ** Preliminary Data - Subject to Revision **
Lake Okeechobee

High Lake Management
Okeechobee Avg Elev
Average Elev [1965-2007]
Water Shortage Management
Classification Tables

Supplemental Tables used in conjunction with the LORS2008 Release
Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions
Table K-2 in the Lake Okeechobee Water Control Plan

• 6-15 Day Precipitation Outlook Categories
Table ?? in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Seasonal Outlook
Table K-3 in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Multi-Seasonal Outlook
Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage
<table>
<thead>
<tr>
<th>Tributary Hydrologic Classification*</th>
<th>Palmer Index Class Limits</th>
<th>2-wk Mean L.O. Net Inflow Class Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Wet</td>
<td>3.0 or greater</td>
<td>Greater &gt;= 6000 cfs</td>
</tr>
<tr>
<td>Wet</td>
<td>1.5 to 2.99</td>
<td>2500 - 5999 cfs</td>
</tr>
<tr>
<td>Near Normal</td>
<td>-1.49 to 1.49</td>
<td>500 - 2499 cfs</td>
</tr>
<tr>
<td>Dry</td>
<td>-2.99 to -1.5</td>
<td>-5000 – 500 cfs</td>
</tr>
<tr>
<td>Very Dry</td>
<td>-3.0 or less</td>
<td>Less than -5000 cfs</td>
</tr>
</tbody>
</table>

* use the wettest of the two indicators
**Classification of Lake Okeechobee Net Inflow Seasonal Outlook***

<table>
<thead>
<tr>
<th>Lake Net Inflow Prediction [million acre-feet]</th>
<th>Equivalent Depth** [feet]</th>
<th>Lake Okeechobee Net Inflow Seasonal Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt; 0.93</td>
<td>&gt; 2.0</td>
<td>Very Wet</td>
</tr>
<tr>
<td>0.71 to 0.93</td>
<td>1.51 to 2.0</td>
<td>Wet</td>
</tr>
<tr>
<td>0.35 to 0.70</td>
<td>0.75 to 1.5</td>
<td>Normal</td>
</tr>
<tr>
<td>&lt; 0.35</td>
<td>&lt; 0.75</td>
<td>Dry</td>
</tr>
</tbody>
</table>

**Volume-depth conversion based on average lake surface area of 467,000 acres**
### Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

<table>
<thead>
<tr>
<th>Lake Net Inflow Prediction [million acre-feet]</th>
<th>Equivalent Depth** [feet]</th>
<th>Lake Okeechobee Net Inflow Multi-Seasonal Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt; 2.0</td>
<td>&gt; 4.3</td>
<td>Very Wet</td>
</tr>
<tr>
<td>1.18 to 2.0</td>
<td>2.51 to 4.3</td>
<td>Wet</td>
</tr>
<tr>
<td>0.5 to 1.17</td>
<td>1.1 to 2.5</td>
<td>Normal</td>
</tr>
<tr>
<td>&lt; 0.5</td>
<td>&lt; 1.1</td>
<td>Dry</td>
</tr>
</tbody>
</table>

**Volume-depth conversion based on average lake surface area of 467,000 acres**
### 6-15 Day Precipitation Outlook Categories*

<table>
<thead>
<tr>
<th>6-15 Day Precipitation Outlook Categories</th>
<th>WSE Decision Tree Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Normal</td>
<td>Wet to Very Wet</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Below Normal</td>
<td>Dry</td>
</tr>
</tbody>
</table>

* Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan
Under Construction