Application of the Lake Okeechobee Regulation Schedule (LORS2008) on 1/28/2019 (ENSO Neutral Condition)

Lake Okeechobee Net Inflow Outlook:

The Lake Okeechobee Net Inflow Outlook has been computed using 4 methods: Croley's method¹, the SFWMD empirical method², a sub-sampling of Neutral years³ and a sub-sampling of warm years of the Atlantic Multi-decadal Oscillation (AMO) in combination with La Nina ENSO years⁴. The results for Croley's method and the SFWMD empirical method are based on the <u>CPC Outlook</u>.

Table of the Lake Okeechobee Net Inflow Outlooks in feet of equivalent depth. All methods are updated on a weekly basis with observed net inflow for the current month.

Season		oley's ethod ^{1*}	En	FWMD npirical ethod ²	Neutr	ampling of al ENSO ears ³	Sub-sampling of AMO Warm + Neutral ENSO Years ⁴		
	Value (ft)	<u>Condition</u>	Value (ft)	<u>Condition</u>	Value (ft)	<u>Condition</u>	Value (ft)	<u>Condition</u>	
Current (Jan- Jun)	N/A	N/A 0.56		Dry	1.16	Normal	0.22	Dry	
Multi Seasonal (Jan-Oct)	N/A	N/A	3.08	Wet	3.56	Wet	2.16	Normal	

*Croley's Method Not Produced for This Report

See <u>Seasonal</u> and <u>Multi-Seasonal</u> tables for the classification of Lake Okeechobee Outlooks.

The recommended methods and values for estimating the Lake Okeechobee Net Inflow Outlook are shaded and should be used in the LORS2008 Release Guidance Flow Charts.

**Sub-sampling is a weighted average of ENSO conditions based on the ENSO forecast used.

Tributary Hydrologic Conditions Graph:

1415 cfs 14-day running average for Lake Okeechobee Net Inflow through 1/28/2019. According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Normal.

-1.20 for Palmer Index on 1/26/2019.

According to the classification in <u>Tributary Hydrologic Conditions</u> table, this condition is Normal.

The wetter of the two conditions above is Normal.

LORS2008 Classification Tables:

Lake Okeechobee Stage on 1/28/2019

Lake Okeechobee Stage: 12.45 feet

USACE Report for Lake Okeechobee

Lake Okeechobee Stage Hydrograph

Lake Okeechob Zone	ee Management /Band	Bottom Elevation (feet, NGVD)	Current Lake Stage
High Lake Manage	ement Band	17.25	
	High sub-band	16.77	
Operational Band	Intermediate sub-band	16.03	
	Low sub-band	13.71	
Base Flow sub-ba	nd	12.60	
Beneficial Use sub	o-band		← 12.45
Water Shortage M	lanagement Band	12.02	

Part C of LORS2008: Discharge to WCA's

Lake Okeechobee stage is within the Beneficial Use Sub-band therefore, no releases to the WCAs to manage lake stages.

Part D of LORS2008: Discharge to Tidewater

Lake Okeechobee stage is within the Beneficial Use Sub-band therefore, no releases to the St. Lucie or Caloosahatchee Estuaries to manage lake stages.

Adaptive Protocol's Release Guidance: Caloosahatchee Estuary

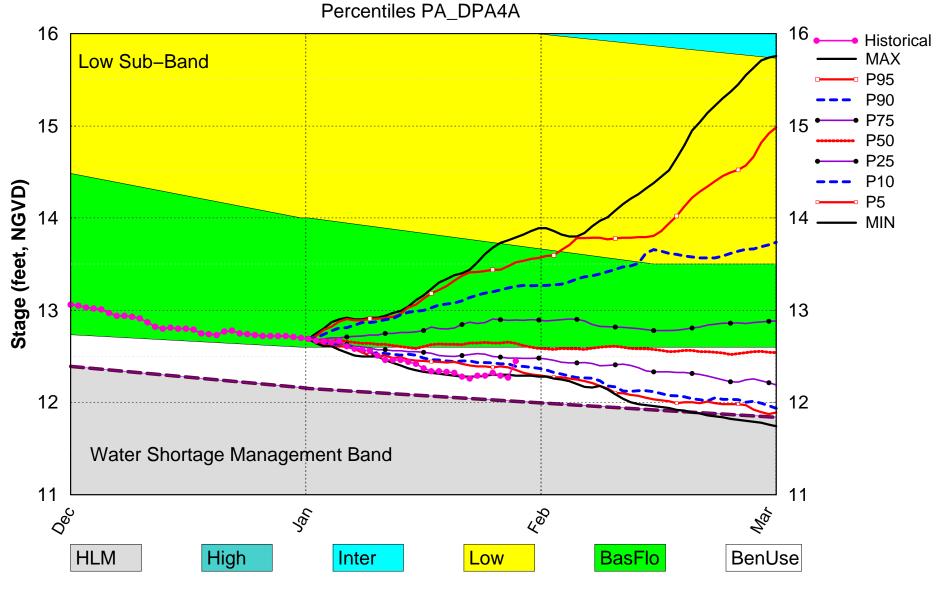
Release Guidance Flow Chart Outcome: No releases.

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers LORSS Homepage

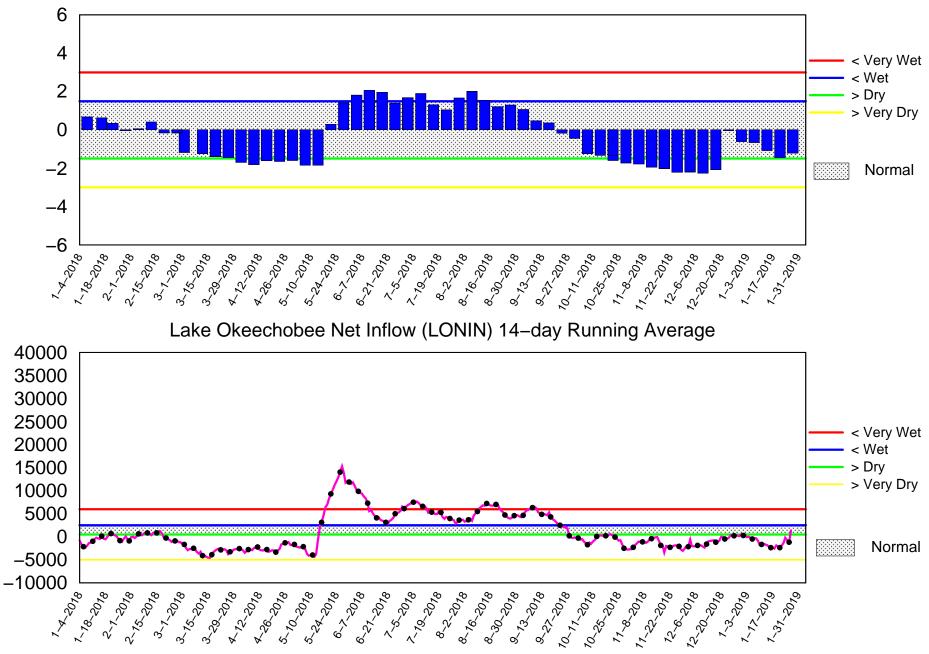
LORS2008 Implementation on 01/28/2019 (ENSO Neutral Condition):

Status for week ending 01/28/2019:


District wide, Raindar rainfall was 3.64 inches for the week. Lake stage on 01/28/2019 was12.45 ft, NGVD, up 0.17 ft from last week .The updated January 2019 SFWMM Dynamic Position Analysis percentile graph for Lake Okeechobee show that the current lake stage is in the Beneficial Use Sub-band. The LORS2008 Tributary Hydrologic Condition (THC) is classified as **Normal.** The PDSI indicates normal conditions and the LONIN is normal. The THC classification is based on the wetter of the two indices

Area	Indicator	Value	Color Coded Scoring Scheme
	Projected LOK Stage for the next two months	Beneficial Use Sub Band	М
	Palmer Index for LOK Tributary Conditions	-1.20 (Dry)	М
	CPC Presinitation Outlook	1 month: Normal	L
LOK	CPC Precipitation Outlook	3 months: Above Normal	L
	LOK Seasonal Net Inflow Outlook ENSO Forecast (positive)	1.16 ft (Normal)	L
	LOK Multi-Seasonal Net Inflow Outlook	3.56 ft (Wet)	L
	ENSO Forecast (positive) WCA 1: Site 1-7, Site 1-8T, & Site 1-9 Average	Above Line 1 (16.52 ft)	L
WCAs	WCA 2A: Site 2-17 HW	Above Line 1 (11.97 ft)	L
	WCA-3A: 3 Station Average (Site 63, 64 and 65)	Above Line 1 (9.56 ft)	L
	Service Area 1	Year-Round Irrigation Rule in effect	L
LEC	Service Area 2	Year-Round Irrigation Rule in effect	L
	Service Area 3	Year-Round Irrigation Rule in effect	L

Water Supply Risk Evaluation

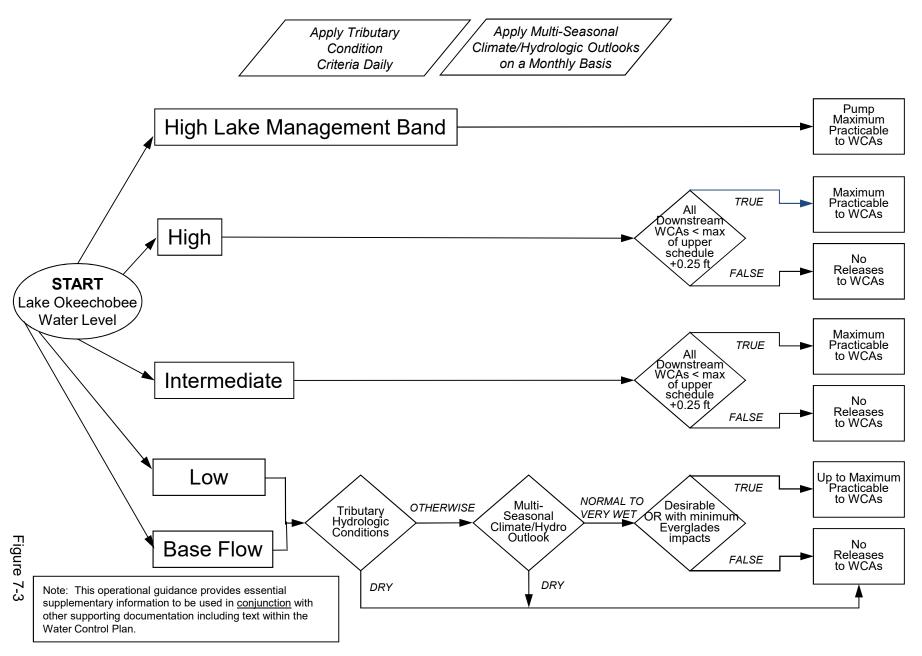

Note: The water supply risk classification based on the Palmer index, as well as the LOK seasonal and multi-seasonal net inflow outlooks use slightly different classification intervals than those used by the 2008-LORS.

Lake Okeechobee SFWMM Jan 2019 Position Analysis

(See assumptions on the Position Analysis Results website)

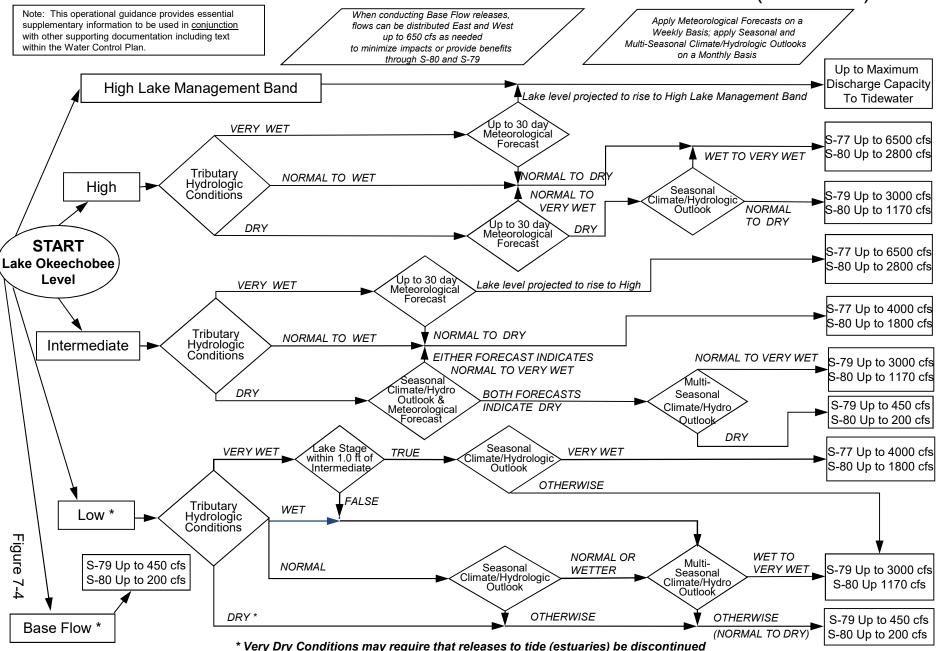
Mon Jan 28 16:12:41 EST 2019

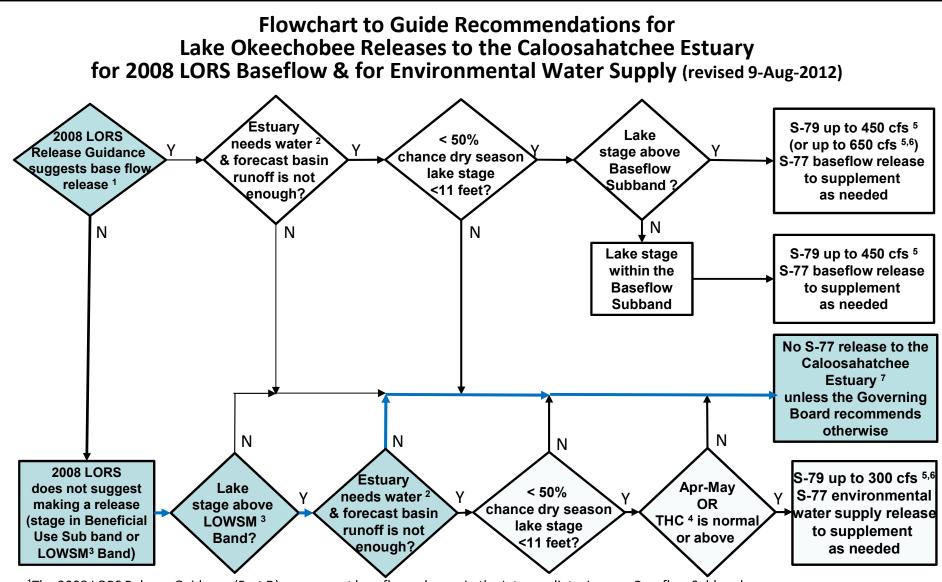
Tributary Basin Condition Indicators as of January 28 2019


Palmer Index

Mon Jan 28 16:11:54 EST 2019

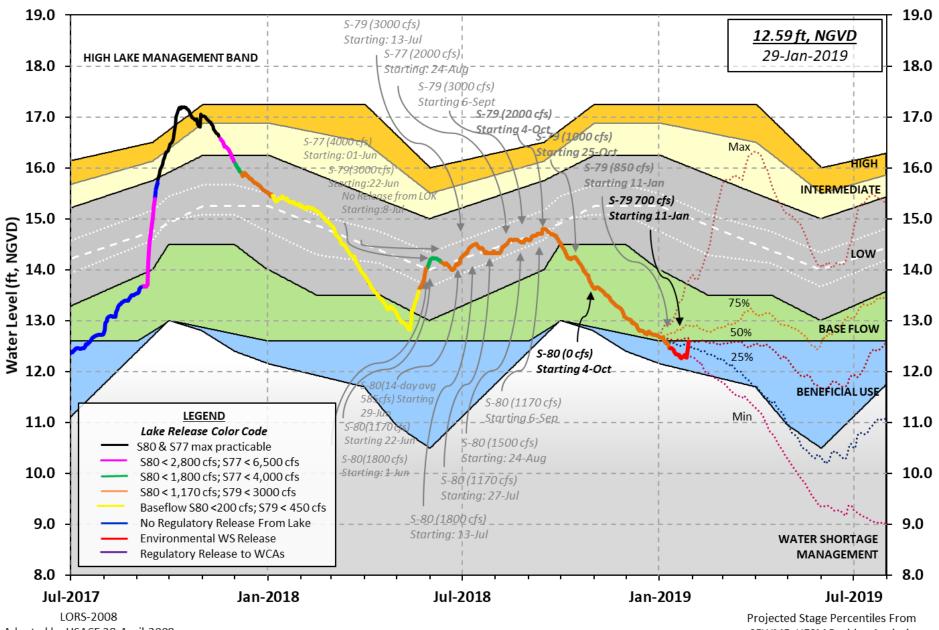
Flow (cfs)


2008 LORS


Part C: Establish Allowable Lake Okeechobee Releases to the Water Conservation Areas

2008 LORS

Part D: Establish Allowable Lake Okeechobee Releases to Tide (Estuaries)



¹The 2008 LORS Release Guidance (Part D) can suggest baseflow releases in the Intermediate, Low, or Baseflow Subbands. ²Estuary "needs" water when the 30-day moving average salinity at I-75 bridge is projected to exceed 5 practical salinity units (psu) within 2 weeks. ³LOWSM = Lake Okeechobee Water Shortage Management.

⁴Tributary Hydrologic Condition (THC) is based on classification of Lake Okeechobee Net Inflow and Palmer Index.

⁵Can release less than the "up to" limit if lower release is sufficient to reach or sustain desired estuary salinity; cfs = cubic feet per second. ⁶After reviewing conditions in Water Conservation Areas (WCAs), Stormwater Treatment Areas (STAs), ENP, St. Lucie Estuary and Lake Okeechobee. ⁷Should this condition be reached, the Governing Board will be briefed at their next regularly scheduled meeting as part of the State of the Water Resources agenda item.

Lake Okeechobee Water Level History and Projected Stages

Adopted by USACE 28-April-2008

SFWMD-HESM Position Analysis

U. S. Army Corps of Engineers, Jacksonville District Lake Okeechobee and Vicinity Report ** Preliminary Data - Subject to Revision **

Data Ending 2400 hours 27 JAN 2019

Okeechobee Lake Regulation Elevation Last Year 2YRS Ago (ft-NGVD) (ft-NGVD) (ft-NGVD) 13.90 (Official Elv) *Okeechobee Lake Elevation 12.45 15.27 Bottom of High Lake Mngmt= 17.25 Top of Water Short Mngmt= 12.02 Currently in Operational Management Band Simulated Average LORS2008 [1965-2000] - NR -Difference from Average LORS2008 -NR-27JAN (1965-2007) Period of Record Average 14.69 Difference from POR Average -2.24 Today Lake Okeechobee elevation is determined from the 4 Int & 4 Edge stations ++Navigation Depth (Based on 2007 Channel Condition Survey) Route 1 ÷ 6.39' ++Navigation Depth (Based on 2008 Channel Condition Survey) Route 2 ÷ 4.59' Bridge Clearance = 50.23' 4 Interior and 4 Edge Okeechobee Lake Average (Avg-Daily values): L001 L005 L006 LZ40 S4 S352 S308 S133 12.16 12.46 12.70 12.50 12.84 12.47 12.02 - NR -*Combination Okeechobee Avg-Daily Lake Average = 12.45 (*See Note) Okeechobee Inflows (cfs): S65E 1287 S65EX1 0 Fisheating Cr 9 S154 0 S191 0 S135 Pumps 0 S84 0 S133 Pumps 0 S2 Pumps 0 S84X 89 S127 Pumps 0 S3 Pumps 0 S71 476 S129 Pumps 128 S4 Pumps 0 S131 Pumps 17 0 S72 0 C5 Total Inflows: 2006 Okeechobee Outflows (cfs): S135 Culverts S354 0 S77 1 0 S127 Culverts 0 S351 0 S308 -283 S129 Culverts S352 1 0 S131 Culverts 5 L8 Canal Pt -146 Total Outflows: -423 ****S77 structure flow is being used to compute Total Outflow. ****S308 structure flow is being used to compute Total Outflow. Okeechobee Pan Evaporation (inches): S77 0.00 S308 0.00 Average Pan Evap x 0.75 Pan Coefficient = 0.00" = 0.00'

Lake Average Precipitation using NEXRAD: = 1.71" = 0.14'

Evaporation - Precipitation: = -1.71" = -0.14' Evaporation - Precipitation using Lake Area of 730 square miles is equal to 33565 cfs into the lake. Lake Okeechobee (Change in Storage) Flow is 34888 cfs or 69200 AC-FT

Headwater Tailwater Elevation Elevation Disch #1 #2 #3 #4 #5 #6 #7 #8 (ft-msl) (ft-msl) (cfs) (ft)										
$ \begin{array}{c} (\text{ft-msl}) & (\text{ft}) & (f$		Headwater	Tailwater				- Gat	e Pos	itior	ıs
(I) see note at bottom North East Shore \$133 Pumps: 13.10 11.43 0		Elevation	Elevation	Disch						
(I) see note at bottom North East Shore \$133 Pumps: 13.10 11.43 0		(ft-msl)	(ft-msl)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft) (ft) (ft)
North East Shore S133 Pumps: 13.10 11.43 0			(. ,	
S193:18.8511.5700.00.00.0S135 Pumps:12.7211.9800000S135 Culverts:00.00.00.000North West ShoreS65EX:20.7311.140S65EX:20.7311.1400000S127 Pumps:13.0611.62000000S129 Pumps:13.0611.620000000S129 Pumps:13.0611.891700(cfs)S131 Culvert:555555Fisheating Creek nr Palmdale nr Lakeport C5:-NR-0-NRNR-South ShoreNR-0000(cfs)S130:13.4113.320000(cfs)S130:13.4613.46-855.05.05.0S109:13.4613.46-855.05.05.0S120:13.21-200000(cfs)S351:-12.02-NR-00000S2 Pumps:11.0013.9600.00.00S351:-NR-12.02-NR-000.00.0S351:-NR-13.458.08.08.00.00.0S351:-NR-13.27-146-146	North East Sł	nore		•						
S191: 18.85 11.57 0 0.0 0.0 0.0 S135 Pumps: 12.72 11.98 0 <td>S133 Pumps</td> <td>13.10</td> <td>11.43</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>(cfs)</td>	S133 Pumps	13.10	11.43	0	0	0	0	0	0	(cfs)
S135 Pumps: 12.72 11.98 0 11.89 17 0<	S193:									
S135 Culverts: 0 0.0 0.0 0.0 North West Shore S65E: 20.73 11.14 1287 0.3 0.3 0.3 0.4 0.0 0.0 S125 Culvert: 20.73 11.62 0	S191:	18.85	11.57	0	0.0	0.0	0.0			
North West Shore 565E: 20.73 11.14 1287 0.3 0.3 0.4 0.0 0.0 S65E: 20.73 11.14 0	S135 Pumps:	12.72	11.98	0	0	0	0	0		(cfs)
S65E: 20.73 11.14 1287 0.3 0.3 0.4 0.0 0.0 S65EX1: 20.73 11.14 0<	S135 Culver	rts:		0	0.0	0.0				
S65E: 20.73 11.14 1287 0.3 0.3 0.4 0.0 0.0 S65EX1: 20.73 11.14 0<										
S65EX1: 20.73 11.14 0 S127 Pumps: 13.06 11.62 0	North West Sh	nore								
S127 Pumps: 13.06 11.62 0	S65E:		11.14	1287	0.3	0.3	0.3	0.4	0.0	0.0
S127 Culvert: 0 0.0 S129 Pumps: 12.73 13.93 128 12 25 97 (cfs) S129 Culvert: 1 0.0 0 (cfs) S131 Pumps: 13.01 11.89 17 0 0 (cfs) S131 Culvert: 5 5 5 5 5 Fisheating Creek nr Palmdale 28.81 9 9 nr Lakeport 6 -NR- 0 -NRNR- South Shore 54 Pumps: 13.41 13.32 0 0 0 (cfs) S169: 13.46 13.46 -85 5.0 5.0 5.0 5.0 S101: 13.21 -200 -200 0 0 0 (cfs) S351: 13.00 13.96 0 0 0 (cfs) S351: -NR- 0 0.0 0.0 0 0 (cfs) S351: -NR- 13.45 8.0 8.0 0.0 0.0 0 S351: -1.82 0 0	S65EX1:	20.73	11.14	0						
S129 Pumps: 12.73 13.93 128 12 25 97 (cfs) S129 Culvert: 1 0.0 0 (cfs) S131 Pumps: 13.01 11.89 17 0 0 (cfs) S131 Culvert: 5 5 0 (cfs) (cfs) Fisheating Creek nr Palmdale 28.81 9 nr Lakeport -NR- C5: - -NR- 0 -NRNR- South Shore S4 Pumps: 13.41 13.32 0 0 0 (cfs) S101: 13.41 13.96 0 0 0 (cfs) S102: 13.96 0 0 0 (cfs) S310: 13.21 -200 5.0 5.0 5.0 S32 Pumps: 11.00 13.96 0 0 0 (cfs) S351: 12.02 -NR- 0 0 0 (cfs) S351: -NR- 13.45 8.0 8.0 8.0 0.0 0.0 I8 Canal PT 13.	S127 Pumps:	13.06	11.62	0	0	0	0	0	0	(cfs)
S129 Culvert: 1 0.0 S131 Pumps: 13.01 11.89 17 0 0 (cfs) S131 Culvert: 5 5 0 0 (cfs) Fisheating Creek nr Palmdale 28.81 9 nr Lakeport 9 C5: -NR- 0 -NR- -NR- South Shore S4 Pumps: 13.41 13.32 0 0 0 (cfs) S100: 13.41 13.32 0 0 0 0 (cfs) S100: 13.21 -200 -200 -200 -200 -200 -200 S3 Pumps: 11.00 13.96 0 0 0 0 (cfs) S351: 13.06 10.00 0.00 0.00 0 (cfs) S351: -NR- 12.02 -NR- 0 0 0 0 (cfs) S351: -NR- 12.02 -NR- 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	S127 Culver	rt:		0	0.0					
S129 Culvert: 1 0.0 S131 Pumps: 13.01 11.89 17 0 0 (cfs) S131 Culvert: 5 5 0 0 (cfs) Fisheating Creek nr Palmdale 28.81 9 nr Lakeport 9 C5: -NR- 0 -NR- -NR- South Shore S4 Pumps: 13.41 13.32 0 0 0 (cfs) S100: 13.41 13.32 0 0 0 0 (cfs) S100: 13.21 -200 -200 -200 -200 -200 -200 S3 Pumps: 11.00 13.96 0 0 0 0 (cfs) S351: 13.06 10.00 0.00 0.00 0 (cfs) S351: -NR- 12.02 -NR- 0 0 0 0 (cfs) S351: -NR- 12.02 -NR- 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<										
S131 Pumps: 13.01 11.89 17 0 0 (cfs) S131 Culvert: 5 5 0 (cfs) Fisheating Creek nr Palmdale 28.81 9 9 nr Lakeport - C5: -NR- 0 -NR- -NR- -NR- South Shore 54 9 0 0 0 (cfs) S131: 13.41 13.32 0 0 0 0 (cfs) S109: 13.46 13.46 -85 5.0 5.0 5.0 5.0 S310: 13.21 -200 -200 -200 -200 -200 -200 S354: 13.96 11.00 0 0 0 0 (cfs) S351: -NR- 12.02 -NR- 0 0 0 0 (cfs) S351: -NR- 13.45 8.0 8.0 8.0 0.0 0.0 L8 Canal PT 13.27 -146 -146			13.93	128	12	25	97			(cfs)
S131 Culvert: 5 Fisheating Creek nr Palmdale 28.81 9 nr Lakeport -NR- 0 -NRNR- C5: -NR- 0 -NRNR- South Shore 54 9 0 0 0 (cfs) S169: 13.41 13.32 0 0 0 0 (cfs) S169: 13.46 13.46 -85 5.0 5.0 5.0 S310: 13.21 -200 -200 53 9 0 0 0 (cfs) S310: 13.21 -200 -200 53 5.0 5.0 5.0 S351: 13.96 11.00 0 0.0 0.0 0 6 7	S129 Culver	rt:		1	0.0					
S131 Culvert: 5 Fisheating Creek nr Palmdale 28.81 9 nr Lakeport -NR- 0 -NRNR- C5: -NR- 0 -NRNR- South Shore 54 9 0 0 0 (cfs) S169: 13.41 13.32 0 0 0 0 (cfs) S169: 13.46 13.46 -85 5.0 5.0 5.0 S310: 13.21 -200 -200 53 9 0 0 0 (cfs) S310: 13.21 -200 -200 53 5.0 5.0 5.0 S351: 13.96 11.00 0 0.0 0.0 0 6 7										
Fisheating Creek nr Palmdale 28.81 9 nr Lakeport $-NR - 0$ $-NR200 South Shore 54 Pumps: 13.46 13.46 -200 S310: 13.21 -200 -200 -200 S3 Pumps: 11.00 13.96 0 0 0 (cfs) S354: 13.96 11.00 0 0.0 0 0 (cfs) S351: -NR - 12.02 0 0.0 0.0 0.0 0.0 0.0 S351: -NR - 12.02 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S351: -NR - 13.45 8.0 8.0 8.0 8.0 0.0 0.0 0.0 L8 Canal PT 13.27 -146 -NR - NR $			11.89		0	0				(cfs)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S131 Culver	rt:		5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									
C5: $-NR- 0 -NRNRNR-$ South Shore S4 Pumps: 13.41 13.32 0 0 0 0 0 (cfs) S169: 13.46 -85 5.0 5.0 5.0 S310: 13.21 -200 S3 Pumps: 11.00 13.96 0 0 0 0 0 (cfs) S354: 13.96 11.00 0 0.0 0.0 S2 Pumps: 12.02 -NR- 0 0 0 0 0 0 (cfs) S351: -NR- 12.02 0 0.0 0.0 0.0 S352: 11.38 0 0.0 0.0 C10A: -NR- 13.45 8.0 8.0 8.0 0.0 0.0 L8 Canal PT 13.27 -146 S351: 12.02 -NR- 0 -NRNRNRNR- S351: 12.02 -NR- 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNRNR-		-	28.81	9						
South Shore S4 Pumps: 13.41 13.32 0 0 0 0 (cfs) S169: 13.46 13.46 -85 5.0 5.0 5.0 S310: 13.21 -200 S3 Pumps: 11.00 13.96 0 0 0 0 0 (cfs) S354: 13.96 11.00 0 0.0 0.0 S2 Pumps: 12.02 -NR- 0 0 0 0 0 0 (cfs) S351: -NR- 12.02 0 0.0 0.0 0.0 S352: 11.38 0 0.0 0.0 C10A: -NR- 13.45 8.0 8.0 8.0 0.0 0.0 L8 Canal PT 13.27 -146 S351 and S352 Temporary Pumps/S354 Spillway S351: 12.02 -NR- 0 -NRNRNRNRNR- S352: 11.38 0 -NRNRNRNRNR- S354: 11.00 13.96 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNRNR- S3554: 11.00 13.96 0 -NRNRNRNRNR- S3554: 11.00 13.96 0 -NRNRNRNRNR- S3554: 11.00 13.96 0 -NRNRNRNRNR- S3554: 11.00 13.96 0 -NRNRNRNRNRNR- S3554: 11.00 13.96 0 -NRNRNRNRNRNRNRNR- S3554: 11.00 13.96 0 -NRNRNRNRNRNRNRNRNRNR		ort								
S4 Pumps: 13.41 13.32 0 0 0 0 (cfs) S169: 13.46 13.46 -85 5.0 5.0 5.0 S310: 13.21 -200 S3 Pumps: 11.00 13.96 0 0 0 (cfs) S354: 13.96 11.00 0 0.0 0.0 0 S2 Pumps: 12.02 -NR- 0 0 0 0 (cfs) S351: -NR- 12.02 0 0.0 0.0 0.0 0.0 S352: 11.38 0 0.0 0.0 0.0 0.0 0.0 L8 Canal PT 13.27 -146 -146	C5:		-NR-	0	-NR	NR	t− −NF	{-		
S4 Pumps: 13.41 13.32 0 0 0 0 (cfs) S169: 13.46 13.46 -85 5.0 5.0 5.0 S310: 13.21 -200 S3 Pumps: 11.00 13.96 0 0 0 (cfs) S354: 13.96 11.00 0 0.0 0.0 0 S2 Pumps: 12.02 -NR- 0 0 0 0 (cfs) S351: -NR- 12.02 0 0.0 0.0 0.0 0.0 S352: 11.38 0 0.0 0.0 0.0 0.0 0.0 L8 Canal PT 13.27 -146 -146	South Shana									
S169: 13.46 13.46 -85 5.0 5.0 5.0 S310: 13.21 -200 S3 Pumps: 11.00 13.96 0 0 0 (cfs) S354: 13.96 11.00 0 0.0 0.0 0 (cfs) S354: 13.96 11.00 0 0.0 0.0 0 (cfs) S351: -NR- 12.02 -NR- 0 0.0 0.0 0.0 S351: -NR- 12.02 0 0.0 0.0 0.0 0.0 S352:		12 /1	12 22	Q	Q	0	Q			(cfc)
S310: 13.21 -200 S3 Pumps: 11.00 13.96 0 0 0 0 (cfs) S354: 13.96 11.00 0 0.0 0.0 0 (cfs) S351: -NR- 12.02 -NR- 0 0 0 0 (cfs) S351: -NR- 12.02 0 0.0 0.0 0.0 S352:							-			((15)
S3 Pumps: 11.00 13.96 0 0 0 0 (cfs) S354: 13.96 11.00 0 0.0 0.0 0.0 S2 Pumps: 12.02 -NR- 0 0 0 0 (cfs) S351: -NR- 12.02 0 0.0 0.0 0.0 (cfs) S351: -NR- 12.02 0 0.0 0.0 0.0 S352:			13.40		5.0	5.0	5.0			
S354: 13.96 11.00 0 0.0 0.0 S2 Pumps: 12.02 -NR- 0 0 0 0 0 S351: -NR- 12.02 0 0.0 0.0 0.0 0.0 S351: -NR- 12.02 0 0.0 0.0 0.0 0.0 S352:			13 06		Q	0	a			(cfs)
S2 Pumps: 12.02 -NR- 0							0			((13)
S351: -NR- 12.02 0 0.0 0.0 0.0 S352:				-			a	Q		(cfs)
S352:	•			-				0		((13)
C10A: -NR- 13.45 8.0 8.0 8.0 0.0 0.0 L8 Canal PT 13.27 -146 S351 and S352 Temporary Pumps/S354 Spillway S351: 12.02 -NR- 0 -NRNRNRNRNR- S352: 11.38 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNR- S354: 11.00 13.96 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNRNRNRNRNRNRNRNR		- NIX -					0.0			
L8 Canal PT 13.27 -146 S351 and S352 Temporary Pumps/S354 Spillway S351: 12.02 -NR- 0 -NRNRNRNRNR- S352: 11.38 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNR- S354: 11.00 13.96 0 -NRNRNR- S354: 13.03 12.32 3.0 3.5				0				0 0		0.0
S351 and S352 Temporary Pumps/S354 Spillway S351: 12.02 -NR- 0 -NRNRNRNRNR- S352: 11.38 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNR- Caloosahatchee River (S77, S78, S79) 3.0 3.5				-146	0.0	0.0	0.	.0 0		0.0
S351: 12.02 -NR- 0 -NRNRNRNRNR- S352: 11.38 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNR- Caloosahatchee River (S77, S78, S79) 3.0 3.5			13.27	-140						
S351: 12.02 -NR- 0 -NRNRNRNRNR- S352: 11.38 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNR- Caloosahatchee River (S77, S78, S79) 3.0 3.5										
S351: 12.02 -NR- 0 -NRNRNRNRNR- S352: 11.38 0 -NRNRNRNR- S354: 11.00 13.96 0 -NRNRNR- Caloosahatchee River (S77, S78, S79) 3.0 3.5		S35	1 and S352	Tempora	arv Pum	ps/S3	54 Sr	oillwa	iv	
S352: 11.38 0 -NRNRNR- S354: 11.00 13.96 0 -NRNRNR- Caloosahatchee River (S77, S78, S79) 3.0 3.5					,	F - ,			,	
S352: 11.38 0 -NRNRNR- S354: 11.00 13.96 0 -NRNRNR- Caloosahatchee River (S77, S78, S79) 3.0 3.5	S351:	12.02	- NR -	0	- NR N	IR – – NR	NR-	NR	NR-	
S354: 11.00 13.96 0 -NRNRNR- Caloosahatchee River (S77, S78, S79) S47B: 13.03 12.32 3.0 3.5										
Caloosahatchee River (S77, S78, S79) S47B: 13.03 12.32 3.0 3.5			13.96	0						
S47B: 13.03 12.32 3.0 3.5										
S47B: 13.03 12.32 3.0 3.5										
	Caloosahatche	ee River (S77, S78, S	S79)						
S47D: 11.56 11.50 90 6.5	S47B:	13.03	12.32		3.0	3.5				
	S47D:	11.56	11.50	90	6.5					

S77: Spillway and Sector Preferred Flow: 12.78 11.35 0 0.0 0.0 0.0 0.0 Flow Due to Lockages+: 1 \$78: Spillway and Sector Flow: 1797 0.5 2.5 2.5 2.5 11.20 3.23 Flow Due to Lockages+: 9 S79: Spillway and Sector Flow: 0.84 4151 2.0 2.0 2.0 3.0 3.0 3.0 2.0 2.0 3.20 Flow Due to Lockages+: 4 Percent of flow from S77 0% Chloride (ppm) 59 St. Lucie Canal (S308, S80) S308: Spillway and Sector Preferred Flow: 12.74 13.27 -283 0.0 0.0 0.0 0.0 Flow Due to Lockages+: 0 S153: 18.73 13.06 79 0.0 0.0 S80: Spillway and Sector Flow: 13.39 0.78 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Flow Due to Lockages+: 10 Percent of flow from S308 NA % Steele Point Top Salinity (mg/ml) **** Steele Point Bottom Salinity (mg/ml) **** (mg/ml) **** Speedy Point Top Salinity Speedy Point Bottom Salinity (mg/ml) ****

 + Flow Due to lockages is computed utilizing average daily headwater and tailwater along with total number of lockages for the day to calculate a volume which is then converted to an average discharge in cfs.
 ++ Preferred flow is determined from either the spillway discharge or the below flow meter daily

				Wi	.nd
Daily Precipitation Totals	1-Day	3-Day	7-Day	Directio	on Speed
	(inches)	(inches)	(inches)	(Degø)	(mph)
S133 Pump Station:	- NR -	0.00	0.00		
S193:	- NR -	0.00	0.00	– NR –	- NR -
Okeechobee Field Station:	- NR -	0.00	0.00		
S135 Pump Station:	- NR -	0.00	0.00		
S127 Pump Station:	- NR -	0.00	0.00		
S129 Pump Station:	- NR -	0.00	0.00		
S131 Pump Station:	- NR -	0.00	0.00		
S77:	0.00	0.00	0.00	341	13
S78:	5.78	7.27	7.91	355	7
S79:	6.88	8.97	9.60	354	4
S4 Pump Station:	- NR -	0.00	0.00		
Clewiston Field Station:	- NR -	0.00	0.00		
S3 Pump Station:	- NR -	0.00	0.00		
S2 Pump Station:	- NR -	0.00	0.00		
S308:	2.92	3.43	3.57	338	32
S80:	4.02	4.94	5.19	3	12
Okeechobee Average	1.46	0.26	0.27		

(Sites S78,	S79 ar	d S80 not	: included)	
-------------	--------	-----------	-------------	--

Oke Nexrad Basin Avg	1.71	3.15	3.81	

Okeechobee Lake Elevations	27 JAN 2019	12.45 Difference f	om 27JAN19
27JAN19 -1 Day =	26 JAN 2019	12.27 -0	0.18
27JAN19 -2 Days =	25 JAN 2019	12.29 -6	0.16
27JAN19 -3 Days =	24 JAN 2019	12.32 -0	0.13
27JAN19 -4 Days =	23 JAN 2019	12.29 -0	0.16
27JAN19 -5 Days =	22 JAN 2019	12.29 -0	0.16
27JAN19 -6 Days =	21 JAN 2019	12.26 -6	0.19
27JAN19 -7 Days =	20 JAN 2019	12.28 -0	9.17
27JAN19 -30 Days =	28 DEC 2018	12.72	9.27
27JAN19 -1 Year =	27 JAN 2018	15.27	2.82
27JAN19 -2 Year =	27 JAN 2017	13.90	1.45

Long Term Mean 30day Avearge ET for Lake Alfred (Inches) = 1.98

		L	ake 0	keed	hobee	Net Inflo	ow (LONIN)	
		Average	Flow	ove	er the	previous	14 days	Avg-Daily Flow
27JAN19	Today	y =	27	JAN	2019	1089	MON	34888
27JAN19	-1 Day	=	26	JAN	2019	-1699	SUN	-3910
27JAN19	-2 Days	s =	25	JAN	2019	-1514	SAT	-5744
27JAN19	-3 Day	s =	24	JAN	2019	-868	FRI	6122
27JAN19	-4 Days	s =	23	JAN	2019	-2052	THU	635
27JAN19	-5 Days	s =	22	JAN	2019	-2785	WED	-NR-
27JAN19	-6 Day	s =	21	JAN	2019	-2587	TUE	-2792
27JAN19	-7 Days	s =	20	JAN	2019	-2334	MON	-6221
27JAN19	-8 Days	s =	19	JAN	2019	-2068	SUN	632
27JAN19	-9 Day	s =	18	JAN	2019	-2801	SAT	463
27JAN19	-10 Days	s =	17	JAN	2019	-2385	FRI	2517
27JAN19	-11 Days	s =	16	JAN	2019	-2582	THU	-3306
27JAN19	-12 Day	s =	15	JAN	2019	-2350	WED	-7468
27JAN19	-13 Day	s =	14	JAN	2019	-1974	TUE	-1658

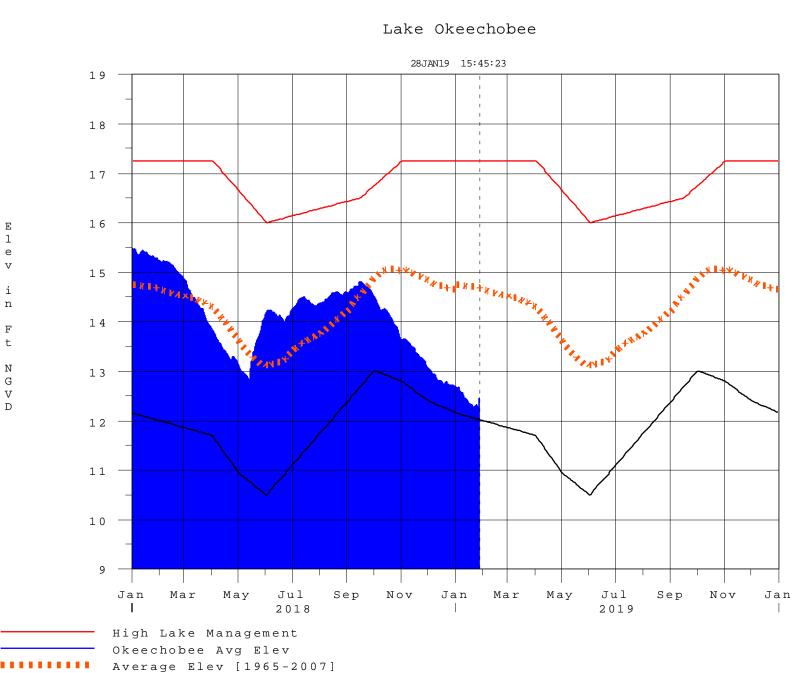
				Se	55E			
			Average	Flow	v over	previous	14 days	Avg-Daily Flow
27JAN19		Today=	27	JAN	2019	541	MON	1473
27JAN19	-1	Day =	26	JAN	2019	469	SUN	777
27JAN19	-2	Days =	25	JAN	2019	434	SAT	616
27JAN19	-3	Days =	24	JAN	2019	410	FRI	785
27JAN19	-4	Days =	23	JAN	2019	379	THU	517
27JAN19	-5	Days =	22	JAN	2019	360	WED	509
27JAN19	-6	Days =	21	JAN	2019	343	TUE	312
27JAN19	-7	Days =	20	JAN	2019	345	MON	402
27JAN19	-8	Days =	19	JAN	2019	334	SUN	344
27JAN19	-9	Days =	18	JAN	2019	330	SAT	354
27JAN19	-10	Days =	17	JAN	2019	324	FRI	373
27JAN19	-11	Days =	16	JAN	2019	317	THU	362
27JAN19	-12	Days =	15	JAN	2019	310	WED	394
27JAN19	-13	Days =	14	JAN	2019	297	TUE	358
				Se	55EX1			
			Average	Flow	v over	previous	14 days	Avg-Daily Flow
27JAN19		Today=	27	JAN	2019	0	MON	0
27JAN19	-1	Day =	26	JAN	2019	0	SUN	0
27JAN19	-2	Days =	25	JAN	2019	0	SAT	0

27JAN19	-3	Days	=	24	JAN	2019	0	FRI		6)
27JAN19	-4	Days	=	23	JAN	2019	2	THU		6	9
27JAN19	-5	Days	=	22	JAN	2019	2	WED		6	9
27JAN19	-6	Days	=	21	JAN	2019	2	TUE		6)
27JAN19	-7	Days	=	20	JAN	2019	2	MON		6)
27JAN19	-8	Days	=	19	JAN	2019	2	SUN		6)
27JAN19	-9	Days	=	18	JAN	2019	2	SAT		6)
27JAN19	-10	Days	=	17	JAN	2019	2	FRI		6)
27JAN19	-11	Days	=	16	JAN	2019	2	THU		e)
27JAN19	-12	Days	=	15	JAN	2019	2	WED		6)
27JAN19	-13	Days	=	14	JAN	2019	2	TUE		6)

Lake Okeechobee Outlets Last 14 Days

	111 477 1161 1233 1212 1186 2128 1634 1621 1661 1536	Below S-77 Discharge (ALL-DAY) (AC-FT) 327 207 203 488 856 1118 986 1001 1914 1459 1464 1382 1264 1546	S-78 Discharge (ALL DAY) (AC-FT) 3588 817 694 895 906 913 900 1219 1528 902 893 901 905 1083	S-79 Discharge (ALL DAY) (AC-FT) 8368 1671 1535 1059 1336 1687 2069 2422 1624 848 857 980 1395 1934	
DATE 27 JAN 2019 26 JAN 2019 25 JAN 2019 24 JAN 2019 23 JAN 2019 22 JAN 2019 21 JAN 2019 20 JAN 2019 19 JAN 2019 18 JAN 2019 17 JAN 2019 16 JAN 2019	-91 -6 -103 -126 -100 143 78 47 309 165 392	S-351 Discharge (ALL DAY) (AC-FT) 0 0 0 0 0 0 0 0 0 0 380 1255 1194 1553 1470 1470	S-352 Discharge (ALL DAY) (AC-FT) -NR- -NR- -NR- -NR- -NR- -NR- -NR- -NR	S-354 Discharge (ALL DAY) (AC-FT) 0 0 0 0 0 0 0 0 131 506 599 502 393	L8 Canal Pt Discharge (ALL DAY) (AC-FT) -290 44 -22 13 -4 -NR- 63 275 58 143 147 167 224
	288 S-308 Discharge (ALL DAY) (AC-FT) -561 -506 -415 52 149	1186 1126 Below S-308 Discharge (ALL-DAY) (AC-FT) -546 -34 47 242 618 200	-NR- -NR- Discharg (ALL-DAY (AC-FT) 20 30 31 17 29 16		224 159

21 JAN 2019	-1	85	21
20 JAN 2019	571	896	10
19 JAN 2019	-51	342	26
18 JAN 2019	-199	171	20
17 JAN 2019	-20	364	32
16 JAN 2019	-130	501	35
15 JAN 2019	-161	281	36
14 JAN 2019	-249	-112	27


^{***} NOTE: Discharge (ALL DAY) is computed using Spillway, Sector Gate and Lockages Discharges from 0015 hrs to 2400 hrs.

(I) - Flows preceeded by "I" signify an instantaneous
 flow computed from the single value reported for the day

*	On 11 May 1999, Lake Okeechobee Elevation was switched from
	Instantaneous 2400 value to an average-daily lake average.
	On 14 Mar 2001, due to the isolation of various gages within the standard
	10 stations, the average of the interior 4 station gages was used
	as the Lake Okeechobee Elevation.
	On 05 November 2010, Lake Okeechobee Elevation was switched to a 9 gage
	mix of interior and edge gages to obtain a more reliable representation
	of the lake level.
	On 09 May 2011, Lake Okeechobee Elevation was switched to a 8 gage
	mix of interior and edge gages to obtain a more reliable representation
	of the lake level due to isolation of S135 from low lake levels.
	Today Lake Okechobee elevation is determined from the 4 Int & 4 Edge stations
++	For more information see the Jacksonville District Navigation website
	at http://www.saj.usace.army.mil/

\$ For information regarding Lake Okeechobee Service Area water restrictions
please refer to www.sfwmd.gov

Report Generated 28JAN2019 @ 23:38 ** Preliminary Data - Subject to Revision **

Water Shortage Management

Classification Tables

Supplemental Tables used in conjunction with the LORS2008 Release

Guidance Flow Charts

• Class Limits for Tributary Hydrologic Conditions

Table K-2 in the Lake Okeechobee Water Control Plan

• <u>6-15 Day Precipitation Outlook Categories</u>

Table ?? in the Lake Okeechobee Water Control Plan

<u>Classification of Lake Okeechobee Net Inflow for Seasonal</u>

<u>Outlook</u>

 Table K-3 in the Lake Okeechobee Water Control Plan

• Classification of Lake Okeechobee Net Inflow for Multi-

Seasonal Outlook

 Table K-4 in the Lake Okeechobee Water Control Plan

Back to Lake Okeechobee Operations Main Page

Back to U.S. Army Corps of Engineers Lake Okeechobee Operations Homepage

Tributary Hydrologic Classification*	Palmer Index Class Limits	2-wk Mean L.O. Net Inflow Class Limits
Very Wet	3.0 or greater	Greater >= 6000 cfs
Wet	1.5 to 2.99	2500 - 5999 cfs
Near Normal	-1.49 to 1.49	500 - 2499 cfs
Dry	-2.99 to -1.5	-5000 – 500 cfs
Very Dry	-3.0 or less	Less than -5000 cfs

* use the wettest of the two indicators

Classification of Lake Okeechobee Net Inflow Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
[]		Seasonal Outlook
> 0.93	> 2.0	Very Wet
0.71 to 0.93	1.51 to 2.0	Wet
0.35 to 0.70	0.75 to 1.5	Normal
< 0.35	< 0.75	Dry

**Volume-depth conversion based on average lake surface area of 467,000 acres

Classification of Lake Okeechobee Net Inflow Multi-Seasonal Outlook*

Lake Net Inflow Prediction	Equivalent Depth**	Lake Okeechobee
[million acre-feet]	[feet]	Net Inflow
		Multi-Seasonal Outlook
> 2.0	> 4.3	Very Wet
1.18 to 2.0	2.51 to 4.3	Wet
0.5 to 1.17	1.1 to 2.5	Normal
< 0.5	< 1.1	Dry

**Volume-depth conversion based on average lake surface area of 467,000 acres

6-15 Day Precipitation Outlook Categories*

6-15 Day Precipitation Outlook Categories	WSE Decision Tree Categories
Above Normal	Wet to Very Wet
Normal	Normal
Below Normal	Dry

* Corresponds to Table 7-6 in the Lake Okeechobee Water Control Plan

Under Construction