

Water Quality Analysis – Outline

History of Exceedances	Exceedance Frequency and Magnitude Water Management Changes
Hydrodynamics of WCA-3A	Western Inflows – S190 & S140 Miami Canal Inflows – S8, S339, S340 Eastern Inflows – S150, S11A-C, S9/S9A
Local Drivers	S333HW Stage – TP Concentration Relationship Low-Stage Water Deliveries

LTL Trending Down, FWMC Not Increasing

Series	Kendall's т	p-value ***	Sen's slope (µg/L/yr)
LTL	-0.42	0.0225	-0.119
FWMC	-0.02	0.9341	<0.001

Data from WY 2007-2023

- TP FWMCs have no trend
- LTL has trended significantly downward (p=0.02)
 - At minimum limit (7.6 µg/L) since WY 2021

Increased flows as a result of COP have driven the LTL down to the minimum and the frequency of exceedances has increased

SRS Total Flows & Flows Under 9.2 ft Increasing

Series	Kendall's т	p-value	Sen's slope (kac-ft/yr)
Total Flow	0.40	0.0273	51
Low-Stage Flow	0.35	0.0518	15

Data from WY 2007-2023

- Total flow has trended upward (p=0.03)
 - Above maximum LTL equation input (1,061 kac-ft) for 5 of last 8 years
- S333HW stage < 9.2 ft flow has also trended upward (p=0.05)***
 - Stage < 9.2 ft associated with higher TP concentrations

The lower the stage, the higher the FWMC – recent years had significant flow at lower stages

Combined Operational Plan (COP)

- COP was designed to...
 - Improve water deliveries (timing, location, volume) into ENP.
 - Increase flows through Taylor Slough and coastal creeks.
 - Increase dry season flows into eastern Shark River Slough to improve ecological health.
- COP Final Environmental Impact Statement acknowledged that changed operations would...
 - Result in increased TP FWMC and decreased LTL.
 - Increase the risk of LTL exceedances.
- As anticipated...
 - Dry season water deliveries have been extremely beneficial ecologically to SRS.
 - Exceedances of Appendix A have occurred with increased frequency since COP implementation.

Exceedances of Appendix A have occurred annually since COP implementation

Exceedance Magnitude Increasing Since WY 2019

The rolling 5-year average FWMC was less than the LTL until WY 2020

Westerr Inflows

WCA-3A

ENP

Inflow Site
Outflow Site
Canal

Flow Vector WCA-3 Tribal Land BCNP WMA

Western Inflows: Marsh Interaction

Mullet Slough

7-mile-wide gap within the L-28 canal.

S-190 and S-140

 High-TP inflows that enter the marsh via S190 and S140 reduced before reaching the nearest marsh site.

Station	Class	5-Yr TP Geomean (µg/L)	5-Yr WRF TP Geomean (µg/L)
S190	Inflow	40.0 ± 24.9	59.3 ± 38.9
S140	Inflow	52.2 ± 21.5	54.9 ± 23.0
CA311	Marsh	4.4 ± 1.3	N/A
CA325	Marsh	4.7 ± 1.7	N/A
3ASMESO	Marsh	4.2 ± 1.7	N/A
S344	Outflow	25.1 ± 17.2	*
S12A	Outflow	18.0 ± 10.2	11.1 ± 4.8

S12A has Minimal Flow to ENP

- S12A flows make up a small proportion of total flows to SRS.
- S12A is closed during the dry season and does not contribute flow when S333HW < 9.2 ft.
 - Vast majority of low-stage flows are through S333 & S333N

S12A contributes a small proportion of total flow to the LTL equation S12A contributed no flow when S333HW < 9.2 ft for 12 out of 17 years

Note: Flows from S356/S335 were only counted for years using App. A SRS Method 1.5 (WY2021-2023).

Miami Canal Inflows

WCA-3A

Inflow Site

Outflow Site

Barrier to Flow

─ Canal→ Flow Vector

WCA-3 Tribal Land

BCNP

WMA

STA

ENP

Miami Canal Inflows: Marsh Interaction

Miami Canal

- Cut nearly perpendicular to topographical contours through WCA-3A
 - High canal-marsh interaction

Station	Class	5-Yr TP Geomean (μg/L)	5-Yr WRF TP Geomean (μg/L)
S8	Inflow	15.1 ± 4.6	16.9 ± 5.6
CA35	Marsh	5.7 ± 1.3	N/A
CA33	Marsh	9.2 ± 2.8	N/A
CA36*	Marsh	13.2 ± 5.2	N/A
CA38	Marsh	5.0 ± 1.9	N/A
CA34	Marsh	7.3 ± 2.3	N/A
C123SR84**	Inflow	20.4 ± 7.4	N/A

Seasonally screened data from WY 2019-2023; WRF = When recorded flow

^{*} CA36 values based on 5 samples from single valid year

^{**} C123SR84 WQ surrogate for S339 & S340

Eastern Inflows

WCA-3A

Inflow Site

Outflow Site

Barrier to Flow

Tribal Land BCNP WMA

ENP

Canal

Flow Vector

S9XN

C-11W

Eastern Inflows: S150 & S11A-C

S150

 2020 plug blocks flows from traveling down L-38W, instead flows into NE WCA-3A marsh

S11A-C

Majority inflow volume to WCA-3A via marsh

Station	Class	5-Yr TP Geomean (μg/L)	5-Yr WRF TP Geomean (μg/L)
S150	Inflow	12.2 ± 3.2	12.0 ± 2.7
CA324	Marsh	13.7 ± 4.6	N/A
S11A	Inflow	9.4 ± 3.8	7.2 ± 1.5
S11B	Inflow	9.0 ± 3.3	8.5 ± 3.0
S11C	Inflow	10.4 ± 3.5	9.9 ± 3.3
CA32	Marsh	4.8 ± 1.4	N/A
CA316	Marsh	6.8 ± 1.2	N/A

Eastern Inflows: S9 & S9A

S9 & S9A

- Flood control pump stations
- Operations generally occur during wet periods when WCA-3A stages are elevated.
- TP concentrations slightly lower and less variable than at S333 & S333N.

Station	Class	5-Yr TP Geomean (μg/L)	5-Yr WRF TP Geomean (µg/L)
S9	Inflow	12.5 ± 4.0	13.3 ± 4.3
S9A	Inflow	13.0 ± 4.8	13.0 ± 5.1
S333	Outflow	14.0 ± 6.4	14.0 ± 6.5
S333N	Outflow	15.3 ± 7.7	14.8 ± 7.0

Mean Weekly TP Concentrations at S333s & S9s

TP Grab Concentrations by Stage

- Above 9.2 ft, S333s TP grabs are on average 36% lower than S9s TP grabs.
- Below 9.2 ft, S333s TP grabs are on average <u>9% higher</u> than S9s TP grabs.

TP concentrations at S333s tend to be higher than at S9s when stage is low (the critical period) – when stage is high, concentrations at S9s tend to be higher than at S333s

Inverse Correlation between S9 TP Load & S333 FWMC

No positive correlation between S9 cumulative TP loads and S333 TP FWM concentrations could be established, regardless of any lag time

High S333 TP Concentration Correlates to Low S333HW Stage

S333 TP Concentration-Stage Correlation (WY2007-2023)

Stage	Kendall's т	p-value	Sen's slope (µg/L/ft)
≥ 9.2 ft	-0.21	< 0.001	-1.3
< 9.2 ft	-0.36	< 0.001	-7.6

- Above 9.2 ft, TP concentration increases by <u>1.3 μg/L</u> for each foot of recession.
- Below 9.2 ft, TP concentration increases by <u>7.6 µg/L</u> for each foot of recession.

The rate of TP concentration increase compounds six-fold under 9.2 ft

Exceedance Years Appear to Have Higher Proportion of Flows when S333HW < 9.2 ft.

Note: S333s = S333 + S333N - S334

^{*} Exceedance year; ** Provisional data; x – Exceptional circumstances (2011 – S333 flows routed around SRS; 2017 – drought year)

Water Quality Analysis – Conclusions

History of Recent Exceedances	 LTL has trended down, SRS FWMC has no trend Frequency & magnitude of exceedances have increased More water is being delivered, especially during dry conditions
Hydrodynamics of WCA-3A	 Marsh data doesn't support S190, S140, S150, & S11A-C TP loads reaching SRS outflows Miami Canal water entering L-67A has been highly influenced by marsh interaction S9 TP loads appear to be inversely correlated with S333 TP FWMCs – marsh interaction along L-67A influences TP concentrations
Local Drivers	 TP concentration rate of increase is six times higher when S333HW stage recedes under 9.2 ft Higher annual proportions of low-stage SRS deliveries are strongly associated with exceedance years

Future Influences on WCA-3A Hydrodynamics

Central Everglades Planning Project (CEPP)

- CEPP North
 - Removal of L-4 & Miami canal sections will promote hydration in NW WCA-3A
- CEPP South
 - Blue Shanty Levee will be constructed in WCA-3B to create a new flow-way from the L-67A into NE SRS
 - L-67C, L-67 Ext., & L-29 will be partially or wholly backfilled to remove barriers to flow

Western Everglades Planning Project (WERP)

Note: Scheduled for WRDA 2024 authorization

- L-28 Canal Backfill/Levee Degrade
 - Removal & plugging of L-28N, L-28 Int., L-28 Tieback, & L-28S canal sections will separate S190 from WCA-3A & restore hydrology
- North Feeder STA
 - New water treatment in feeder canal basin will improve Western WCA-3A inflow WQ from L-3 canal

Broward County Water Preserve Areas (BCWPA)

 Impoundments to capture untreated runoff from the C-11 and C-9 basins instead of discharging directly into WCA 3A

Terminology

SRS: Shark River Slough

WCA: Water Conservation Area

LTL: Long-Term Limit for Total Phosphorus

FWMC, FWM: Flow-Weighted Mean [Concentration]

TPC, **TP**: Total Phosphorus [Concentration]

μg/L: Micrograms per liter – equivalent to parts per billion (ppb)

S333HW: S333 Headwater Stage Elevation

WY: Federal Water Year (Oct 1 – Sep 30)

COP: Combined Operations Plan

Low-Stage: S333HW < 9.2 ft