


December 18, 2025
Public Meeting – Draft Integrated Feasibility Report and Environmental Evaluation

# Central & Southern Florida System Flood Resiliency Study (Section 203) for Broward Basins



Public Meeting – Draft Integrated Feasibility Report and Environmental Evaluation

## **Welcome and Introductions**

Steven A. Geller, Commissioner, Broward County Carolina Maran, Division Director, SFWMD

Central & Southern Florida System
Flood Resiliency Study (Section 203) for Broward Basins



#### **MEETING AGENDA**



#### South Florida Water Management District

# CENTRAL AND SOUTHERN FLORIDA (C&SF) FLOOD RESILIENCY (SECTION 203) STUDY - BROWARD BASINS DRAFT INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL EVALUATION AGENDA

December 18, 2025 10:00 AM Broward County Government Center West 1st Floor MAP Meeting Area 1 North University Drive, Suite 1400A Plantation, FL 33324

Zoom Registration Link: https://broward-org.zoomgov.com/meeting/register/ivVA3eigS5uBevgf55JOgQ#/registration

- Welcome and Introduction Steven A. Geller, Commissioner, Broward County; and Carolina Maran, Ph.D., P.E., Division Director of Flood Control and Water Supply Planning, Chief of District Resiliency, SFWMD
- Tentatively Selected Plan Walter Wilcox, Bureau Chief of Water Resources Systems Modeling, SFWMD
- Draft Integrated Feasibility Report and Environmental Evaluation David Griffin, CFM, PWS, Resiliency Project Manager, SFWMD
- 4. Next Steps David Griffin, CFM, PWS, Resiliency Project Manager, SFWMD
- Public Comment
- Closing Remarks Carolina Maran, Ph.D., P.E., Division Director of Flood Control and Water Supply Planning, Chief of District Resiliency, SFWMD
- Adjourn





Public Meeting – Draft Integrated Feasibility Report and Environmental Evaluation

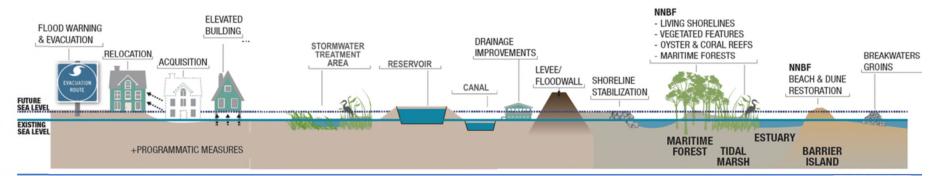
# **Tentatively Selected Plan**

Walter Wilcox, Bureau Chief of Water Resources Systems Modeling, SFWMD

Central & Southern Florida System
Flood Resiliency Study (Section 203) for Broward Basins

# Resiliency Initiatives Coordination

Integrating Inland and Coastal Flood Mitigation Strategies


Counties Studies/ Projects Water Control Districts and Municipalities Projects

USACE Studies/ Projects Regional Climate Compacts

**Other Partners** 

#### POTENTIAL MEASURES TO IMPROVE RESILIENCE AND SUSTAINABILITY

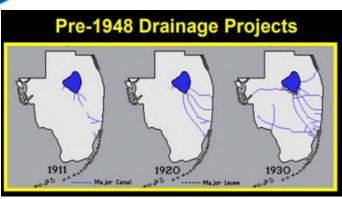
Graphic modified from https://ewn.el.erdc.dren.mil/nnbf/other/5\_ERDC-NNBF\_Brochure.pdf

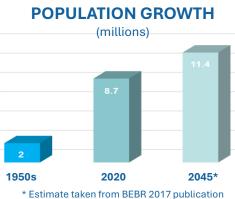






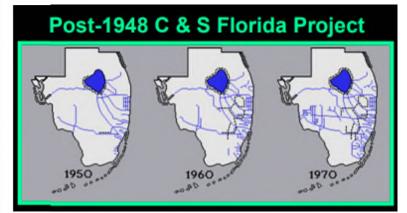



- ➤ Flood Control Act of 1948 Congress authorizes the U.S. Army Corps of Engineers (USACE) to design and construct water management infrastructure
- South Florida Water Management District (SFWMD) is the local sponsor and 50/50 partner on the C&SF Project
- Projected to serve a population of 2 million people
- Authorized purposes: flood control, water supply, navigation, prevention of saltwater intrusion, and protection of fish and wildlife resources









### **RECOGNIZING CHANGED CONDITIONS**

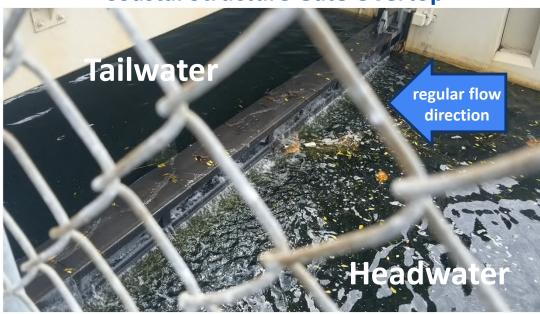




(Median, SFWMD boundaries)










### **CHANGING CONDITIONS: SEA LEVEL RISE**

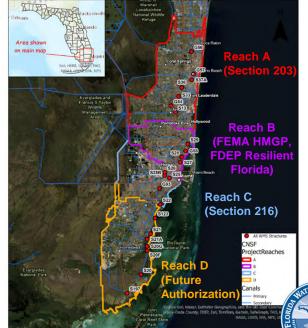
# 

#### **Coastal Structure Gate Overtop**



Saltwater moving inland, bypassing the top of the gate of the salinity coastal structure during a High Tide event in 2019. Similar conditions were observed during recent King Tide peaks.



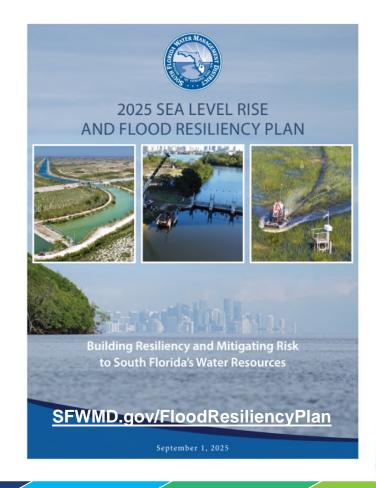

## **SECTION 203**

#### **C&SF FLOOD RESILIENCY STUDY FOR BROWARD BASINS**

**Project Goals:** To develop, evaluate and recommend flood risk management measures and adaptation strategies to build flood resiliency in the communities served by the C&SF system, now and in the future

**Study Objective:** Enhance C&SF Project water control structures' functionality and capacity to reduce flood damages and improve resiliency caused by inundation and changed conditions within the Study Area over the 50-year period of analysis of 2035–2085

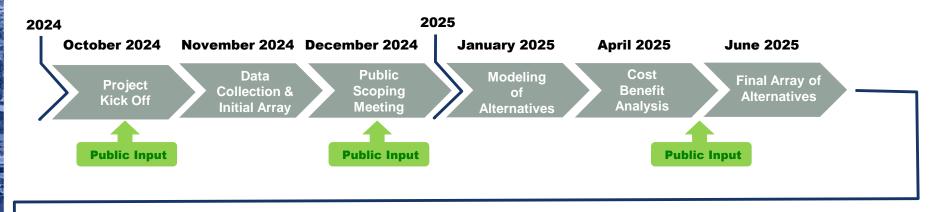
- Study using WRDA 1986 Section 203 process to complete an integrated Flood Resiliency Study and required NEPA documentation for Broward Basins
- SFWMD is the Non-Federal Sponsor in partnership and with funding support from FDEP and Broward County
- Study focuses on the primary canals and coastal water control structures in the managed watersheds that are part of the C&SF Project
- Leveraging C&SF Flood Resiliency Study (216 Study) Milestones Reach A
- Project management, modeling, and evaluations completed by SFWMD
- Consulting services providing technical, policy, modeling, and engineering support services
- Federal assistance from the USACE Jacksonville District
- Targeting authorization in WRDA 2026




#### PLAN FORMULATION AND STUDY APPROACH

#### **Where Our Study Foundation Came From:**

To build this project study, we pulled together resources and information from many places, including:


- C&SF Flood Resiliency Study (Section 216)
- SFWMD Sea Level Rise and Flood Resiliency Plan
- SFWMD Flood Protection Level of Service Program
- Broward County's resiliency planning efforts
- Comments from the scoping meeting and scoping letters
- Feedback from public meetings

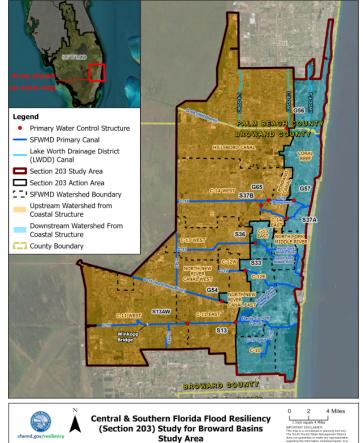




#### **BB-203 PROJECT SCHEDULE**

Targeting June 2026 - Deliver Final Integrated Feasibility Report and Environmental Assessment (EA) to ASA Civil Works








# **Project Study Area – Managed Basins**

- Nine (9) Upstream Inland Managed Watershed Basins
- Seven (7) Primary Canals
- Nine (9) Water Control Structures

| MANAGED<br>BASIN                    | PRIMARY<br>CANAL                  | PRIMARY WATER CONTROL STRUCTURE      |
|-------------------------------------|-----------------------------------|--------------------------------------|
| Hillsboro Canal Basin               | G-08 (Hillsboro) Canal            | G-56 Gated Spillway                  |
| Pompano Canal Basin                 | G-16 (Pompano) Canal              | G-57 Gated Spillway                  |
| C-14 West Basin                     | C-14 (Cypress Creek) Canal        | S-37B Gated Spillway                 |
| C-14 East Basin                     | C-14 (Cypress Creek) Canal        | S-37A Gated Spillway                 |
| C-13 West Basin                     | C-13 (West Middle River)<br>Canal | S-36 Gated Spillway                  |
| C-12 West Basin                     | C-12 (Plantation) Canal           | S-33 Gated Spillway                  |
| North New River<br>Canal West Basin | G-15 (North New River)<br>Canal   | G-54 Gated Spillway                  |
| C-11 West Basin                     | C-11 (South New River)<br>Canal   | S-13AW Gated Culvert                 |
| C-11 East Basin                     | C-11 (South New River)<br>Canal   | S-13 Pump Station and Gated Spillway |





#### STUDY APPROACH

#### Study Goal

To develop, evaluate, and recommend flood risk management measures and adaptation strategies to build flood resiliency in the communities served by the C&SF system, now and in the future.

Section 216 Process
Section 203 Process
Modeling/Data Analysis

Section 216
Public Involvement

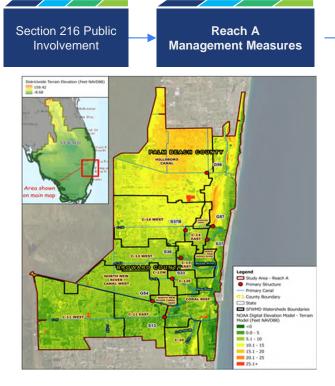
#### **Problems**

The existing C&SF system was not designed to manage the combination of runoff, storm surge, high tides and a high groundwater table, which is exacerbated by sea level rise, extreme rainfall events, and land development patterns. Therefore, natural, agricultural, and highly-dense urban areas in south Florida are currently experiencing significant flooding and conditions are expected to worsen in the future. Enhancements to the existing C&SF infrastructure are necessary to provide flood protection and water supply to more than 9 million people.

#### **Opportunities**

- Manage life safety risk caused by inundation.
- · Manage risk to historical and cultural resources.
- Unify coordination and build trust with stakeholders and the public.

#### **Objectives**


Enhance the C&SF system water control and salinity structures' functionality and capacity to reduce flood damages and improve resiliency caused by inundation and changed conditions within Broward Basins over the 50-year period of analysis from 2035-2085.

#### **Constraints**

- Avoid, minimize, and/or mitigate induced flood risk to other areas within the Study Area over the period of analysis.
- Avoid, minimize, and/or mitigate impacts to objectives and authorized benefits of other Federal studies and projects within the Study Area.

USACE Risk Informed Planning Guidance (ER 1105-2-103)

#### **STUDY APPROACH**



**Structural Management Measures:** 

- Expanding canal cross sections
- Raising canal banks
- Adding gates
- Moving existing gates
- Adding pump stations
- Upgrading existing pump stations
- Constructing flood barriers
- Hardening structures
- Removing coastal water control structures
- Relocating coastal water control structures
- Creating inter-basin transfers
- Creating well injection sites

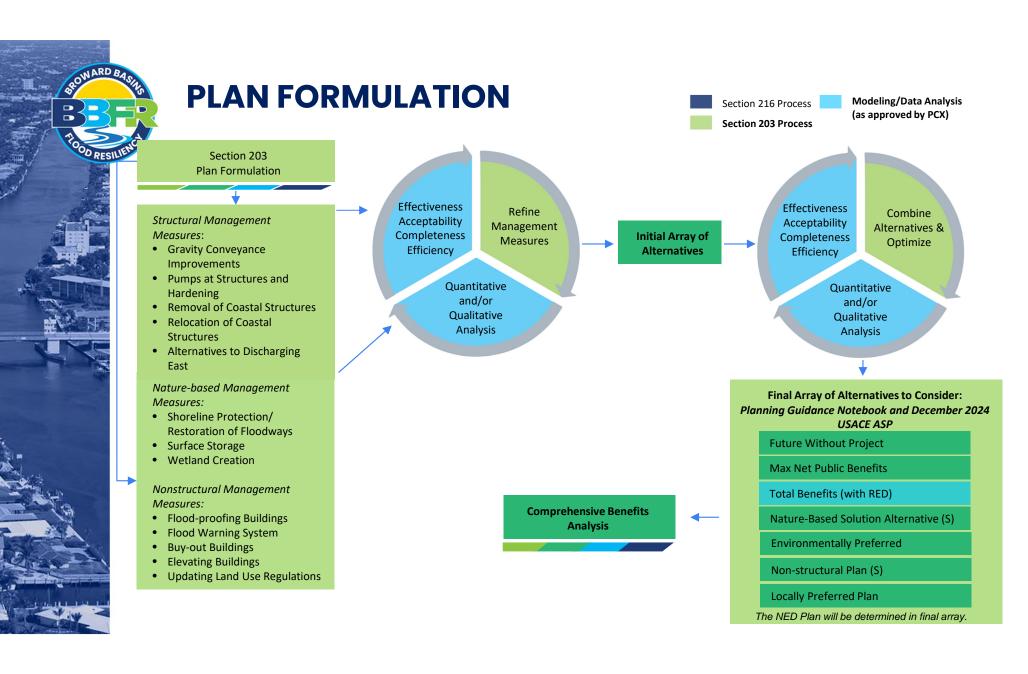
#### **Nature-based Management Measures:**

- Enhancing floodplain restoration
- Freshwater wetlands
- Rain gardens / Bio-swales

#### **Nonstructural Management Measures:**

- Elevating properties
- Flood proofing
- Floodplain management

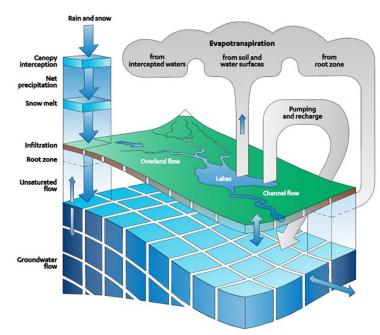
Section 203 Study (Reach A) Plan


**Formulation** 

Section 216 Process

Section 203 Process

Modeling/Data Analysis


Informed by management measures collected from previous studies and presented in public engagement and kickoff meeting (included at the December 2024 Scoping Meeting)

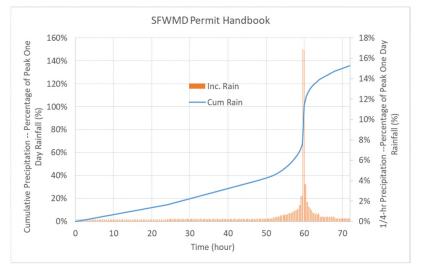


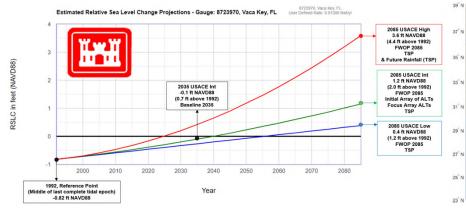
#### **H&H MODELING APPROACH & IMPLEMENTATION**

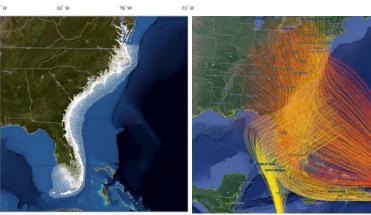
Utilize available MIKE SHE/HYDRO models with successful application history in the SFWMD Flood Protection Level of Service and Broward County Resiliency planning efforts

- These models are also "approved for use" by USACE
- Available models have been extended to include the downstream coastal areas and updated with the latest available data
  - Assumed land use is a combination of SFWMD 2014-2016 Land Use dataset and the 2019 Broward County Current Conditions model, which was developed from the SFWMD Land Use Land Cover data with minor changes based on satellite imagery from 2015 with 2018.
  - The future conditions land use map was developed by modifying the current conditions land use map to reflect projected future conditions land use maps for 2040 from the Broward County Planning Council, Palm Beach County Planning, Zoning and Building Department.
- The focus of this study is on the primary system; however, the models include a high level of detail within the secondary/tertiary canal systems





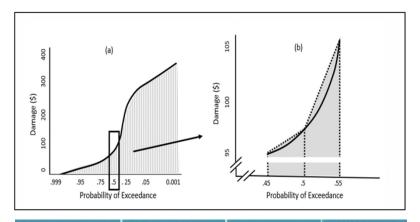





#### **MODEL INPUT ASSUMPTIONS: RAINFALL & TIDE**

#### Rainfall

- Spatially distributed gridded input derived from National Oceanic and Atmospheric Administration (NOAA) Atlas 14 rainfall depths
- > Temporally distributed based on SFWMD 72hour distribution
- > Sea Level Rise (USACE Low, Int, High Curves)
- Coastal Boundary
  - The South Atlantic Coastal Study (SACS) Coastal Hazard System (CHS) provides numerical and probabilistic modeling results for coastal forcings, including storm surge
  - > The CHS stage-hydrographs will be applied as a downstream boundary condition








#### **USACE APPROVED ECONOMIC MODEL: HEC-FDA**

Hydrologic Engineering Center's Flood Damage Analysis software (HEC-FDA)

- Developed by USACE Hydrologic Engineering Center, Institute for Water Resources
- Integrates hydrology/hydraulics/ economics in a single model
- Incorporates risk analysis and uncertainty
- Incorporates flood state data for eight distinct probability events from MIKE-SHE outputs to estimate Expected Annual Damage (EAD)
- Support from UCF on determining joint probabilities



| Coastal Water Level<br>Return Period (CHS<br>Data) | Rainfall Return<br>Period (NOAA<br>Atlas 14 Data) | Joint Probability (%) | Joint Recurrent<br>Frequency<br>(years) |  |  |
|----------------------------------------------------|---------------------------------------------------|-----------------------|-----------------------------------------|--|--|
| 2-year                                             | 5-year                                            | 0.125                 | 8                                       |  |  |
| 2-year                                             | 10-year                                           | 0.0714                | 14                                      |  |  |
| 2-year                                             | 25-year                                           | 0.0333                | 30                                      |  |  |
| 10-year                                            | 10-year                                           | 0.0313                | 32                                      |  |  |
| 20-year                                            | 25-year                                           | 0.0133                | 75                                      |  |  |
| 2-year                                             | 100-year                                          | 0.0091                | 110                                     |  |  |
| 100-year                                           | 100-year                                          | 0.0023                | 430                                     |  |  |
| 2-year                                             | 500-year                                          | 0.0019                | 538                                     |  |  |

## **INITIAL ARRAY OF ALTERNATIVES**

| ENC                                                                                                               |                                                                                | Decision Criteria                           | Acceptability                                                                                                                                                                       | Efficiency                                                                                                            | Effectiveness                                                          | Completeness                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Management<br>Measures                                                                                            | Initial Array of<br>Alternatives                                               | The alternative meets the study objectives. | The alternative is consistent with existing federal laws, authorities, and public policies and does not include local or regional preferences for solutions or political expediency | The alternative alleviates<br>the specified problems<br>and realizes the specified<br>opportunities at the least cost | The alternative alleviates the problems and achieves the opportunities | The alternative provides and accounts for all features, investments, and actions to realize the planned effects, including actions by others |
| Gravity Conveyance<br>Improvements                                                                                | Alternative 1<br>Gravity Conveyance<br>Improvements (Canals and<br>Structures) | <b>Ø</b>                                    |                                                                                                                                                                                     | <b>Ø</b>                                                                                                              | <b>Ø</b>                                                               | 0                                                                                                                                            |
| Pumps at Structures and<br>Hardening                                                                              | <b>Alternative 2</b><br>Pumps at Structures &<br>Hardening                     |                                             |                                                                                                                                                                                     |                                                                                                                       |                                                                        |                                                                                                                                              |
| Removal of Coastal Structures                                                                                     | <b>Alternative 3</b><br>Removal of Coastal<br>Structures                       | 8                                           | 8                                                                                                                                                                                   | 8                                                                                                                     | 8                                                                      | 8                                                                                                                                            |
| Relocation of Coastal Structures                                                                                  | Alternative 4 Relocation of Coastal Structures (to the East)                   |                                             | 8                                                                                                                                                                                   | 8                                                                                                                     | 8                                                                      | 8                                                                                                                                            |
| Alternatives to Discharging East                                                                                  | Alternative 5 Alternatives to Discharging East on Peak                         |                                             | 8                                                                                                                                                                                   |                                                                                                                       | 0                                                                      | 8                                                                                                                                            |
| Shoreline Protection-Restoration<br>of Floodways<br>Surface Storage<br>Wetland Creation                           | <b>Alternative 6</b><br>Natural & Nature Based<br>Only                         | 8                                           |                                                                                                                                                                                     | 8                                                                                                                     | 8                                                                      | 8                                                                                                                                            |
| Flood-proofing Buildings Flood Warning System Buy-out Buildings Elevating Buildings Updating Land Use Regulation  | Alternative 7a<br>Non-Structural Only                                          | 8                                           | •                                                                                                                                                                                   | 8                                                                                                                     | 0                                                                      | 8                                                                                                                                            |
| Flood-proofing Buildings Flood Warning System Buy-out Buildings Elevating Buildings Updating Land Use Regulations | <b>Alternative 7b</b><br>Nonstructural for Residual<br>Risk                    | 8                                           | <b>⊘</b>                                                                                                                                                                            | 0                                                                                                                     | 0                                                                      | 0                                                                                                                                            |



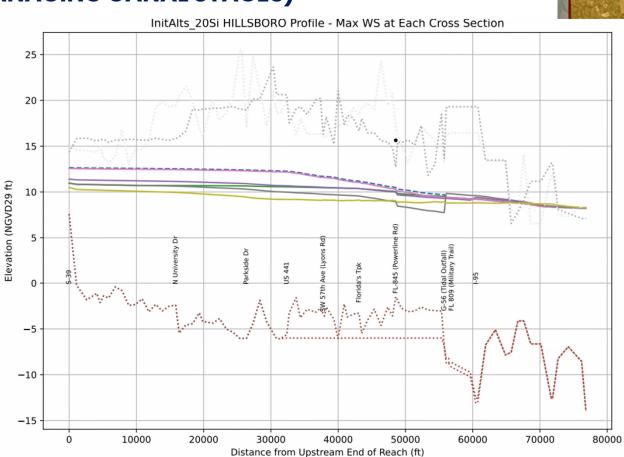


Carry Forward to Final Array

# **ALT 1 – EXAMPLE RESULTS**

(MANAGING CANAL STAGES)

- 20S25R85i\_FWOP\_baseline

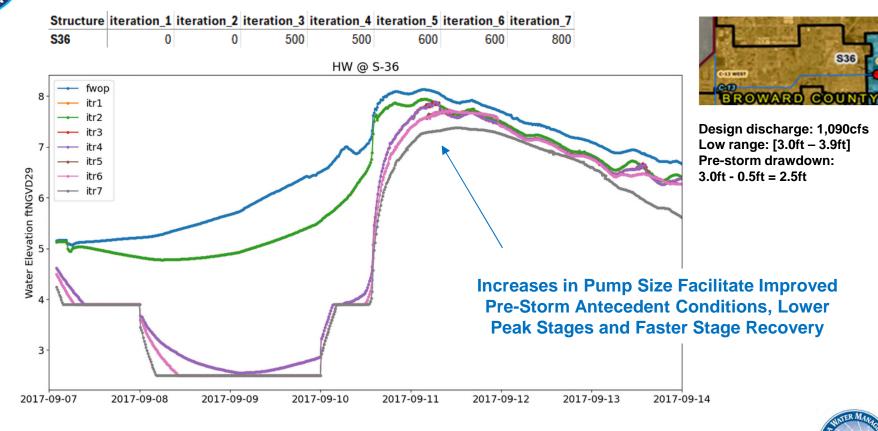

--- Alt1\_XS flow line

20S25R85i\_Alt5\_prelim\_v6

--- Alt2\_XS flow line

20S25R85i\_Alt4\_hardening\_v6

--- Base\_XS flow line

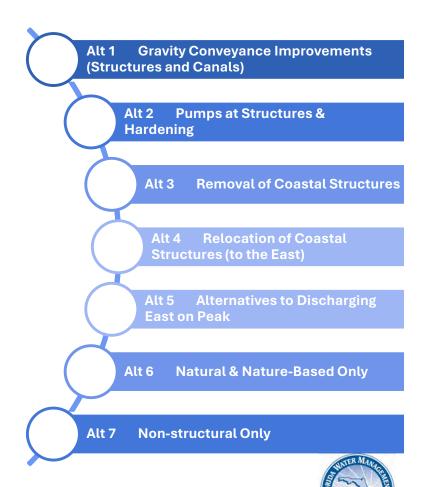



20S25R85i\_Alt2\_hardening\_v6

20S25R85i\_Alt1\_prelim



## **ALT 2 – EXAMPLE PUMP SIZING SENSITIVITY TESTING**




#### **INITIAL ARRAY TO FINAL ARRAY**

The **Initial Array of Alternatives** underwent **detailed assessments** to determine the best solution to meet the project objectives. The detailed assessments and analyses included but were not limited to:

- Historic and Cultural Resource Assessments
- Environmental Assessments
- Geotechnical Investigations
- Topographic Surveys
- Additional Hydrology and Hydraulics Studies
- Initial Economic, Social, and Environmental Benefits Analysis
- Real Estate Evaluations

The results of these assessments were used to **narrow down the Final Array**, which was then further analyzed to identify a Tentatively Selected Plan.





#### **FINAL ARRAY OF ALTERNATIVES**

Alternatives proposed in the Final Array:

- Alternatives A, B, and C; compared to No Action (Future Without Project)
- Each increasing in complexity or level of intervention (and associated cost)
- Alternatives focus on improvements to the inland watersheds; targeted coastal watershed modifications may be considered when optimizing the selected plan Infrastructure modifications proposed in Final Array:
  - Tidal gate structure improvements
    - Hardening, capacity (gravity or pump)
    - Changes to pre-storm operation levels
  - Primary C&SF canal conveyance capacity improvements
    - Channel improvements to improve areas of constricted flow; not intended to represent large-scale, uniform canal expansion or widening
    - Bridges and/or culvert enhancements to address significant constrictions
  - Storage and Nature-based Features
  - Secondary structures changes to pre-storm operation

#### New Gated Spillway (Existing Spillway New Gated Spillway (Existing New Gated Spillway (Existing Spillway Capacity) and Site Hardening ■ Spillway Capacity) and Site Capacity) and Site Hardening New Gated Spillway (Increased Spillway Capacity) and Site Hardening New Gated Spillway (Increased Spillway Capacity) and Site Hardening New Gated Spillway (Increased New Forward Pump Station (New/ ■ Spillway Capacity) and Site New Forward Pump Station (New/Increased New Forward Fump Sudden (1.5.1, 2.1.) Pumping Capacity) and Site Hardening Increased Pumping Capacity) and Site New Forward Pump Station (New/ ■ Hardening of Existing Structure and/or Site Hardening of Existing Structure and/or Site O Increased Pumping Capacity) and Culvert Conveyance Improvement Site Hardening Culvert Conveyance Improvement Primary Canal Bridge Conveyance Improvement >>> Canal Conveyance Improvement Watershed Boundary Culvert Conveyance Improvement Storage Area C&SF Flood Resiliency Planning Reach A \*\*\* Canal Conveyance Improvement County Boundary County Boundary Storage Area ☐ County Boundary Central & South Florida Resiliency Flood Study Central & South Florida Resiliency Flood Study Central & South Florida Resiliency Flood Study Final Array Mitigation Model - Alternative A Final Array Mitigation Model - Alternative B Final Array Mitigation Model - Alternative C

**Alternative B** 

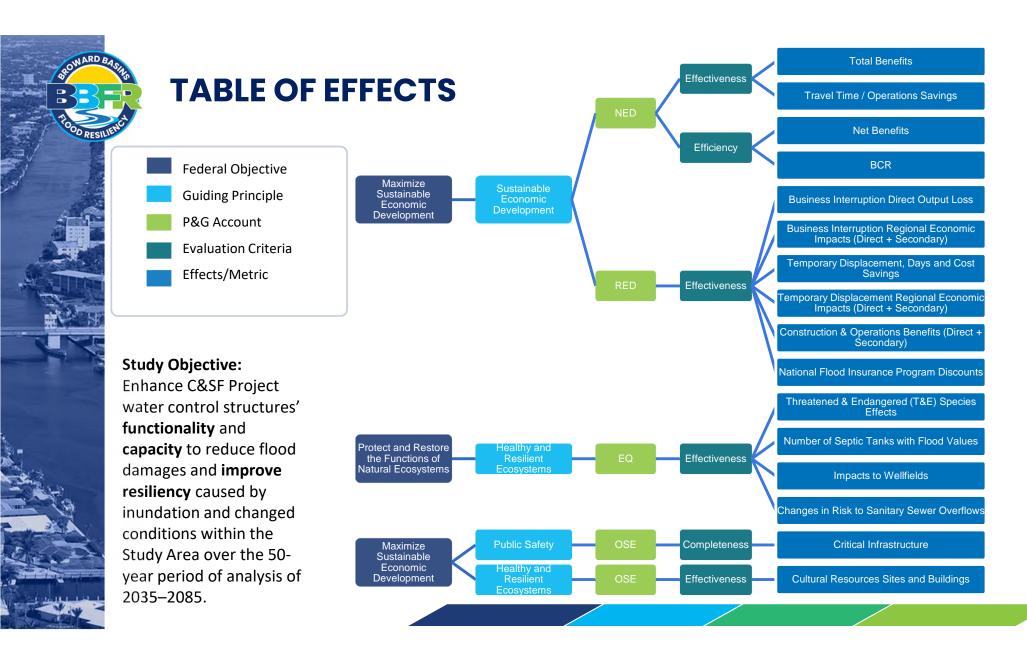
## **Final Array of Alternatives**

Alternative A

Note: A test case (C1) exploring the addition of nonstructural elements into Alternative C to reduce residual risk was also performed.

**Alternative C** 

# FINAL ARRAY OF ALTERNATIVES: STRUCTURE DETAILS

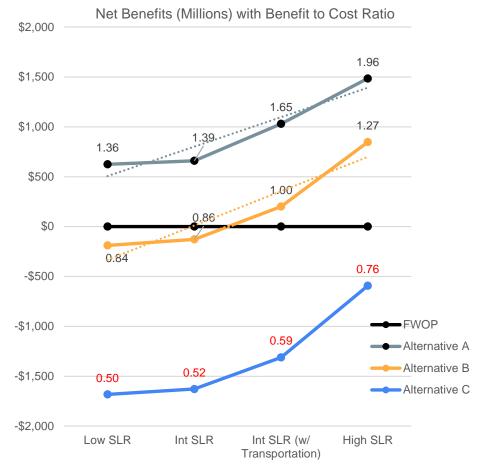

|             |                              |                                                                                                                 |                                                  | Alternate A                                                         |                                  |              | A                                                        | Iternate B                                                          |                                            | Alternate C  |                          |                                                                     |                                                     |  |
|-------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|----------------------------------|--------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|--------------|--------------------------|---------------------------------------------------------------------|-----------------------------------------------------|--|
|             |                              | New Pur                                                                                                         | np Sta.                                          |                                                                     |                                  | New Pum      | p Sta.                                                   |                                                                     |                                            | New Pun      | ıp Sta.                  |                                                                     |                                                     |  |
| Site        | Canal                        | Canal Design Pumping Capacity (cfs)  Design Pumping Capacity (cfs)  Mix of Pumps (nominal gate widths provided) | (nominal gate widths                             | Local Canal<br>Improvements / Storage<br>& Nature Based<br>Features | Design Pumping<br>Capacity (cfs) | Mix of Pumps | New Gated Structure<br>(nominal gate widths<br>provided) | Local Canal<br>Improvements / Storage<br>& Nature Based Features    | Design Pumping<br>Capacity (cfs)           | Mix of Pumps |                          | Local Canal Improvements<br>/ Storage & Nature Based<br>Features    |                                                     |  |
| G56         | G-08<br>(Hillsboro)          | N/A                                                                                                             | N/A                                              | N/A                                                                 | N/A                              | N/A          | N/A                                                      | Gated Spillway w/ (4)<br>25' wide roller gates                      | Hillsboro Canal<br>Improvement             | 1,005        | (3) 335 cfs<br>pumps     | Gated Spillway w/ (4) 25' wide roller gates                         | Hillsboro Canal<br>Improvement<br>Hillsboro Storage |  |
| G57         | G-16<br>(Pompano)            | N/A                                                                                                             | N/A                                              | U/S Culvert 10"                                                     | N/A                              | N/A          | N/A                                                      | Gated Spillway w/ (2)<br>21' wide roller gates<br>+ U/S Culvert 10" | N/A                                        | 300          | (3) 100 cfs<br>pumps     | Gated Spillway w/ (2) 21'<br>wide roller gates<br>+ U/S Culvert 10" |                                                     |  |
| S37B        | C-14<br>(Cypress<br>Creek)   | N/A                                                                                                             | N/A                                              | N/A                                                                 | N/A                              | N/A          | N/A                                                      | Gated Spillway w/ (3)<br>25' wide roller gates                      | C14 West Canal<br>Improvement              | N/A          | N/A                      | N/A                                                                 | C14 West Canal<br>Improvement                       |  |
| S37A        | C-14<br>(Cypress<br>Creek)   | 1,200<br>(+ aux.)                                                                                               | (3) 400 cfs<br>pumps<br>(1) 400 cfs<br>aux. pump | Gated Spillway w/ (4)<br>25' wide roller gates                      | N/A                              | 1,500        | (3) 500 cfs<br>pumps                                     | N/A                                                                 | N/A                                        | 1,200        | (3) 400 cfs<br>pumps     | Gated Spillway w/ (4) 25'<br>wide roller gates                      | C14East Canal<br>Improvement                        |  |
| <b>S</b> 36 | C-13<br>(Middle<br>River)    | N/A                                                                                                             | N/A                                              | Gated Spillway w/ (2)<br>25' wide roller gates                      | N/A                              | 510          | (3) 170 cfs<br>pumps                                     | N/A                                                                 | N/A                                        | 600          | (3) 200 cfs<br>pumps     | Gated Spillway w/ (2) 25' wide roller gates                         | C13West Canal<br>Improvement                        |  |
|             | 0.40                         | 540                                                                                                             | (3) 170 cfs<br>pumps                             |                                                                     |                                  |              | (3) 170 cfs<br>pumps                                     | 0 ( 10 11 ( (0)                                                     |                                            |              | (3) 235 cfs<br>pumps     | 0 / 10 /// //01 001                                                 | C12 West Canal                                      |  |
| S33         | C-12<br>(Plantation)         | 510<br>(+ aux.)                                                                                                 | (1) 170 cfs<br>aux. pump                         | N/A                                                                 | N/A                              | 510          | (1) 170 cfs<br>aux. pump                                 | Gated Spillway w/ (2)<br>20' wide roller gates                      | N/A                                        | 705          | (1) 235 cfs aux.<br>pump | Gated Spillway w/ (2) 20'<br>wide roller gates                      | Improvement                                         |  |
| G54         | G-15<br>(North<br>New River) | N/A                                                                                                             | N/A                                              | N/A                                                                 | N/A                              | N/A          | N/A                                                      | Gated Spillway w/ (4)<br>20' wide roller gates                      | NNR West Storage                           | 810          | (3) 270 cfs<br>pumps     | Gated Spillway w/ (4) 20'<br>wide roller gates                      | NNR Canal Improvement<br>NNR West Storage           |  |
|             |                              |                                                                                                                 | (2) 115 cfs<br>pumps                             |                                                                     |                                  |              | (2) 180 cfs<br>pumps                                     |                                                                     |                                            |              | (2) 250 cfs<br>pumps     |                                                                     |                                                     |  |
| S13         | C-11<br>(South<br>New River) | 700<br>(+ aux.)                                                                                                 | (2) 235 cfs<br>pumps                             | Gated Box Culvert w/<br>(1) 25' wide roller gate                    | N/A                              | 1,080        | (2) 360 cfs<br>pumps                                     | Gated Box Culvert w/<br>(1) 25' wide roller gate                    | C-11 West / C-11 East<br>Canal Improvement | 1,500        | (2) 500 cfs<br>pumps     | Gated Box Culvert w/ (1)<br>25' wide roller gate                    | C-11 West / C-11 East<br>Canal Improvement          |  |
|             |                              |                                                                                                                 | (1) 235 cfs<br>aux. pump                         |                                                                     |                                  |              | (1) 360 cfs<br>aux. pump                                 |                                                                     |                                            |              | (1) 500 cfs aux.<br>pump |                                                                     | STORY MARKET                                        |  |

## FINAL ARRAY OF ALTERNATIVES: ADDITIONAL MEASURES

- Implementing operational activities that draw down water in SFWMD-managed primary canals upstream of WCS prior to a storm (i.e., pumping water from the upstream to the downstream side of the WCS).
- Deploying monitoring stations to track canal stage (i.e., water height) at each WCS. Stations would be tied to an enhanced monitoring strategy.










# Central & Southern Florida Broward Basins Flood Resiliency Study NED Account – Net Benefits and Benefit to Cost Ratio (BCR)



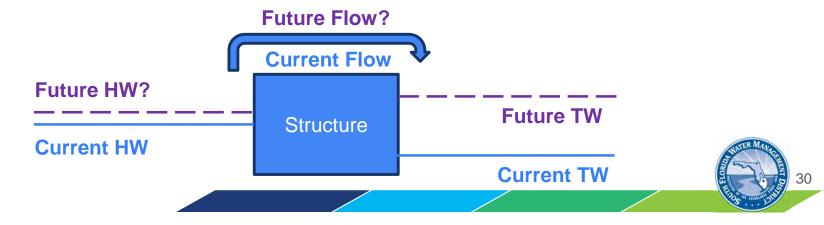
|     | Federal Objectives &<br>Policy Requirements<br>of the Region | Maximize Sustainable Economic Development |                                            |          |         |                                            |          |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------|-------------------------------------------|--------------------------------------------|----------|---------|--------------------------------------------|----------|--|--|--|--|--|--|--|
|     | Guiding Principles                                           | Sustainable Economic Development          |                                            |          |         |                                            |          |  |  |  |  |  |  |  |
|     | P&G Accounts                                                 |                                           | NED                                        |          |         |                                            |          |  |  |  |  |  |  |  |
| Fo  | ormulation & Evaluation<br>Criteria                          |                                           | Efficiency                                 |          |         |                                            |          |  |  |  |  |  |  |  |
|     |                                                              | r                                         | Net Benefits (Millions)                    |          | BCR     |                                            |          |  |  |  |  |  |  |  |
|     | Metrics                                                      | Low SLR                                   | Int. SLR<br>(+ Transportation<br>Benefits) | High SLR | Low SLR | Int. SLR<br>(+ Transportation<br>Benefits) | High SLR |  |  |  |  |  |  |  |
| i i | No Action Alternative                                        |                                           |                                            |          |         |                                            |          |  |  |  |  |  |  |  |
| W   | Alternative A                                                | \$482                                     | \$514 (\$863)                              | \$1,278  | 1.36    | 1.39 (1.65)                                | 1.96     |  |  |  |  |  |  |  |
|     | Alternative B                                                | -\$363                                    | -\$307 (\$3)                               | \$597    | 0.84    | 0.86 (1.00)                                | 1.27     |  |  |  |  |  |  |  |
|     | Alternative C                                                | -\$1,945                                  | -\$1,896 (-\$1,596)                        | -\$937   | 0.50    | 0.52 (0.59)                                | 0.76     |  |  |  |  |  |  |  |



**BCR < 1**  $\rightarrow$  Project is not cost-effective

**BCR > 1**  $\rightarrow$  Project is cost-effective and economically justified

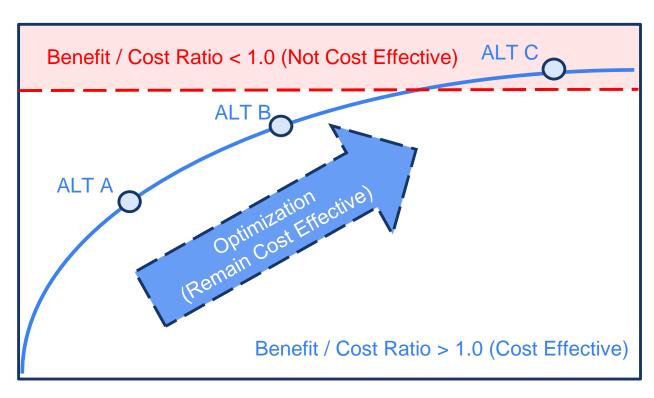
## **RESULTS**


| Benefit Metric                                                          | Alternative with Greatest<br>Benefit | Explanation                                                                                                                                                         |
|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Benefits                                                          | Alternative C                        | Greatest avoided equivalent annual damages across three sea level rise scenarios                                                                                    |
| Travel Time / Operations Savings                                        | Alternative A                        | Greatest travel time and operations savings                                                                                                                         |
| Net Benefits                                                            | Alternative A                        | Greatest net benefits across three sea level rise scenarios                                                                                                         |
| Benefit-to-cost Ratio (BCR)                                             | Alternative A                        | Greatest benefit to cost ratio across three sea level rise scenarios                                                                                                |
| Business Interruption, Direct Output<br>Loss                            | Alternative C                        | Lowest observable direct output loss across three frequency events, intermediate and high sea level rise                                                            |
| Business Interruption Regional Economic Impacts (Direct and Secondary)  | Alternative B                        | Greatest regional benefits across three frequency events, high sea level rise                                                                                       |
| Temporary Displacement, Days and Cost Savings                           | Alternative C                        | Greatest number of days saved and valued saved across three frequency events, intermediate and high sea level rise                                                  |
| Temporary Displacement Regional Economic Impacts (Direct and Secondary) | Alternative C                        | Greatest regional benefits across three frequency events, intermediate and high sea level rise                                                                      |
| Construction and Operations Benefits (Direct and Secondary)             | Alternative C                        | Greatest regional benefits across three frequency events, intermediate and high sea level rise                                                                      |
| National Flood Insurance Program Discounts                              | Alternative C                        | Greatest likelihood of insurance discounts across three frequency events, intermediate and high sea level rise                                                      |
| Threatened and Endangered Species                                       | Alternative A                        | Lowest insignificant impacts to the environment                                                                                                                     |
| Wellfield Effects                                                       | Alternative C                        | Greatest operational enhancements that are protective to wellfield resources                                                                                        |
| Change in Risk to Septic Tanks                                          | Alternative C                        | Lowest number of septic tanks with flood values across three frequency events, intermediate and high sea level rise                                                 |
| Change in Risk to Sanitary Sewer Overflow Incidents                     | Alternative C                        | Greatest percent change in flood depths in areas of recurring sanitary sewer overflow incidents across three frequency events, intermediate and high sea level rise |
| Change in Risk to Critical Infrastructure                               | Alternative C                        | Lowest number of critical infrastructure with flood values across three frequency events, intermediate and high sea level rise                                      |
| Change in Risk to Cultural Resources Sites and Buildings                | Alternative C                        | Lowest number of cultural resources sites and buildings with flood values across three frequency events, intermediate and high sea level rise                       |



# ALTERNATIVES COMPARISON AND OPTIMIZATION STRATEGY

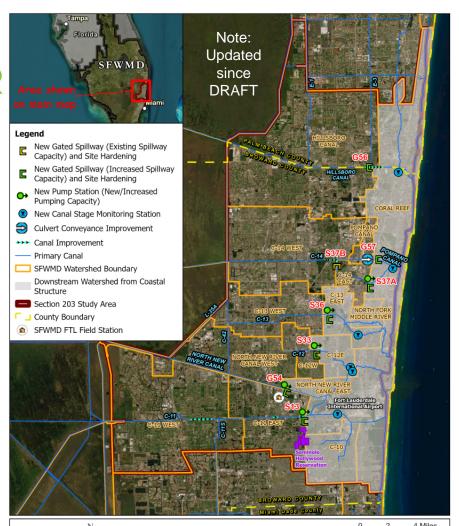
Focusing in on the performance of the "primary" infrastructure, a normalized index examining structure headwater (HW) and volume conveyed gives additional insight:


|                                  |           |      | 2085L |      |      |      | 2085i |      |      |      | 2085h |      |      |      |
|----------------------------------|-----------|------|-------|------|------|------|-------|------|------|------|-------|------|------|------|
| Basin                            | Structure | ECB  | FWOPL | AltA | AltB | AltC | FWOPi | AltA | AltB | AltC | FWOPH | AltA | AltB | AltC |
| Hillsboro Canal                  | G-56      | 1.00 | 0.98  | 0.95 | 0.96 | 0.95 | 0.93  | 0.91 | 0.92 | 0.92 | 0.71  | 0.77 | 0.77 | 0.78 |
| Pompano Canal                    | G-57      | 1.00 | 0.96  | 0.95 | 0.95 | 0.96 | 0.88  | 0.89 | 0.89 | 0.90 | 0.60  | 0.57 | 0.55 | 0.75 |
| C-14 West Basin                  | S-37B     | 1.00 | 0.98  | 0.99 | 1.00 | 1.00 | 0.93  | 0.94 | 1.00 | 0.98 | 0.73  | 0.83 | 0.87 | 0.85 |
| C-14 East Basin                  | S-37A     | 1.00 | 0.95  | 0.99 | 0.99 | 0.99 | 0.86  | 0.90 | 0.92 | 0.94 | 0.45  | 0.68 | 0.72 | 0.67 |
| C-13 West Basin                  | S-36      | 1.00 | 0.94  | 0.98 | 1.00 | 1.00 | 0.80  | 0.91 | 0.93 | 0.98 | 0.35  | 0.40 | 0.70 | 0.83 |
| C-12 Basin                       | S-33      | 1.00 | 0.97  | 0.97 | 0.97 | 0.99 | 0.90  | 0.93 | 0.94 | 0.97 | 0.65  | 0.83 | 0.83 | 0.92 |
| North New River Canal West Basin | G-54      | 1.00 | 0.91  | 0.96 | 0.98 | 1.00 | 0.77  | 0.87 | 0.82 | 0.97 | 0.26  | 0.37 | 0.25 | 0.79 |
| C-11 East and West Basins        | S-13      | 1.00 | 0.95  | 0.94 | 0.93 | 0.92 | 0.87  | 0.88 | 0.87 | 0.86 | 0.49  | 0.68 | 0.66 | 0.65 |





Increasing Benefits


#### **ALTERNATIVES OPTIMIZATION STRATEGY**



**Increasing Features and Cost** 







# TENTATIVELY SELECTED PLAN (TSP) IS <u>ALTERNATIVE RO</u>



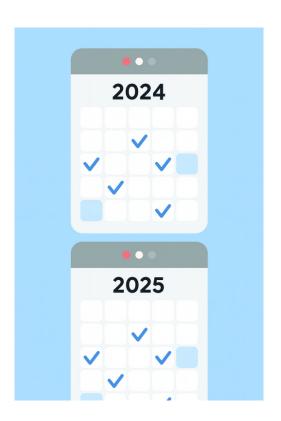
DRAFT Presented to Stakeholders in Broward County on September 9, public comments received, follow up meetings were held to discuss recommendations



User Name: aduecast

Central & Southern Florida Flood Resiliency (Section 203) Study for Broward Basins Tentatively Selected Plan (TSP)

I Inch equals 4 Miles


APPORTANT DISCLAMBRE:
The map is a conceptual or planning fool only. The South Florate Water Management District. The state of the second formation of the second formation contained being a first of the second formation containing, and does not affect the interests of any persons or propriette, include the interests of any persons or propriette, include the second formation of the second

Date Saved: 11/9/2025



#### **PUBLIC ENGAGEMENT**

- First Public Planning Meeting was hosted on **October 24, 2024**
- National Environmental Policy Act (NEPA)
   Scoping Meetings were hosted on **December 10**,
   2024
- Project Alternatives / Comp. Benefits Public
   Meeting was hosted on April 29, 2025
- Draft Tentatively Selected Plan Public Meeting was hosted on **September 9, 2025**
- Follow up meetings were hosted to address all main comments received
- Draft Integrated Feasibility Report and Environmental Evaluation Public Meeting is on December 18, 2025







# PUBLIC ENGAGEMENTS: THANKS FOR YOUR COMMENTS!

BROWARD

MONICA CEPERO, County Administrator

115 S. Andrews Avenue, Room 409 • Fort Lauderdale, Florida 33301 • 954-357-7354 • FAX 954-357-7360

December 12, 2025

The Honorable Adam R. Telle Assistant Secretary of the Army for Civil Works Department of the Army 108 Army Pentagon Washington, DC 20310-0108

RE: Broward County Support for Draft Tentatively Selected Plan – Cer Florida Flood Resiliency Study, Broward Basins

Dear Secretary Telle

On behalf of Broward County, I am writing to express our strong support for Isselected Plan (TSP) developed under Section 203 of the Water Resources 1986, as amended, for the Central and Southern Florida Flood Resilienc Basins. This collaborative effort, supported by the South Florida Water N (SFWMD), the Florida Department of Environmental Protection, Broward C assistance from the U.S. Army Corps of Engineers — Jacksonville Distinct, step forward in addressing the unique and growing flood risks faced by our C.

Broward County has actively contributed to the development of this plan thro engagement in the initial study phases, public planning and scoping meeting this local and regional knowledge, combined with federal and technical essential in shaping a Draft TSP that is technically sound, resilient in design, community is flood risk reduction needs.

Broward County was a direct contributor in the finalization of project elements and wishes to underscore the importance of each of the included plan element operations. The TSP (alternative RO) provides the highest level of t management and is shown to both maintain and improve system funct discharge capacity and managing peak headwater levels for each of the coas in the county, while providing a positive benefit-cost ratio.

Alternative RO reflects a superior level of system and component optimis spatial variability and intensity of rainfall distribution within the large Brown robust and flexible system for reliable flood risk protection for individual and or This TSP delivers on this need while achieving an overall positive benefit cost, superior refinement of elements for optimisal plan performance and cost-benefit. The Hounzible Adam E. Telle, Assistant Secretary of the Army for Civil Works, Department of the Army Broward County Support for Draft Tentatively Selected Plan – Central and Southern Florida Flood Resiliency Stud Broward Basim. Page 2 of 2

As a cost-share partner in the plan's development, we strongly endorse the components highlighted in the Draft TSP. Experience dictates that these elements are vital to ensuring the plan achieves the level of performance necessary to protect our residents, infrastructure, and environment. The Draft TSP reflects a level of resilience and forward-hinking design that is fundamental to the flood risk reductions upon which our community relies.

The public presentation of the Draft TSP on September 9, 2025, and subsequent refirements through conversations with local governments, further underscore the plan's responsiveness and alignment with community needs and priorities. Broward County emphasizes the importance of moving forward with this pian as a top priority. The County's ongoing partnership and collaboration with SFYMID, the Florida Department of Environmental Protection, and the U.S. Army Corps of Engineers reflects our shared commitment and obligation to building a more resilient, safe, and sustainable future for all residents. This plan will provide a major and positive advancement in delivering on this shared objective and responsibility.

In closing, Broward County celebrates and fully endones this Tentatively Selected Plan. The projected benefits, resilience-embedded design, and the collaborative process integrated in each element of the recommended improvements provide the high-performance flood risk reduction plan our community needs in the face of increasing environmental challenges. We urge the Corps' advancement of this plan and remain committed as a collaborative partner in its implementation.

Thank you for your consideration.

Sincerely,

Monica Cepero County Administrator

cc: Broward County Board of County Commissioners
Kevirn Kelleher, Deputy County Administrator
Isami Ayala-Coltazo, Asistant County Administrator
Michael Ruiz, Assistant County Administrator
Michael Ruiz, Assistant County Administrator
Lenny Walpando, Director, Public Works & Environmental Services Department
Jennifer Jurado, Deputy Director, Public Works & Environmental Services Department
Marty Cassini Director, Interconvernmental Affairs

Thanks to all who provided comments!

A special thanks to the Broward Municipalities that reached out for follow up discussions:

- Fort Lauderdale
- Dania Beach
- Oakland Park

A special thanks also to the Seminole Tribe of Florida for your comments.

Comments responses are included in the project report.

Broward County Board of County County Sone Service Service P. Davis - Lamar P. Father - Beam Furr - Sleve Getter - Robert McKindle - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service Service - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service Service - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Robert - Nan H. Rich - Hazelle P. Rogers - Michael Udin mark Dr. Service - Robert - Robe

Page 1 of





# **ALTERNATIVES COMPARISON AND OPTIMIZATION STRATEGY**

Justification:

- Statistically significant observed trends Water and Climate Metrics
- Ensures C&SF system remains robust and adaptive
- Addresses changing conditions: SLR, extreme rainfall, and flood risk
- Supports long-term performance

#### Policy framework:

- Aligns with federal and state mandates
- Guides long-term investment decisions
- Encourages adaptive management

Emerging Trends in Regional Resiliency







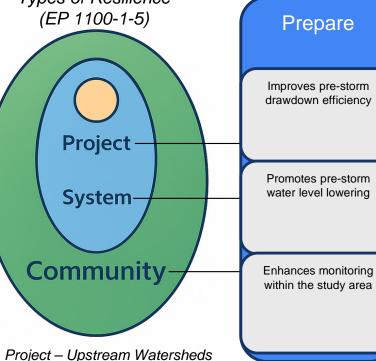











# RESILIENCE ASSESSMENT OF FINAL ARRAY, INCLUDING ALTERNATIVE RO

Types of Resilience
(EP 1100-1-5)

Prepare

Alternatives evaluated against the Four Principles of Resilience (EP 1100-1-5)

Recover

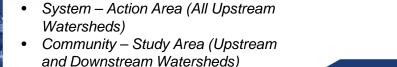


Increases capacity to control peak water levels in primary canals in upstream watersheds

Improves upstream

stage management

Evaluates capacity to control peak water levels in upstream watersheds with consideration of downstream effects Enhances operations to modernize drawdown and recovery time


Reduces recovery time in the action area

Enhances flexibility to recover from and reduce flood impacts

Reduces O&M demands and improves operational flexibility

Enhances performance in action area to adapt to changing conditions

Reduces risk to downstream watersheds in changing conditions





# RESILIENCE ASSESSMENT OF FINAL ARRAY, INCLUDING **ALTERNATIVE RO**

Alternatives listed in order of highest to lowest performance ranking. Overall score out of 92 in each category.

# Types of Resilience (EP 1100-1-5) **Project** System-**Community**

- Project Upstream Watersheds
- System Action Area (All Upstream Watersheds)
- Community Study Area (Upstream and Downstream)

### **Prepare**

- Alternative C
- Alternative RO
- Alternative B
- Alternative A
- Alternative B/C/RO (equal)
- Alternative A
- Alternative RO
- Alternative A/B/C (equal)
- Alternative A 42 Alternative B – 69 Alternative C – 75
- Alternative RO 85

### **Absorb**

- Alternative C
- Alternative RO
- Alternative A/B (equal)
- Alternative B/C/RO (equal)
- Alternative A
- Alternative RO
- Alternative B/C (equal)
- Alternative A
- Alternative A 34 Alternative B - 64
- Alternative C 69
- Alternative RO 86

### Adapt

- Alternative C
- Alternative RO
- Alternative B
- Alternative A
- Alternative B/C/RO (equal)
- Alternative A
- Alternative RO
- Alternative C
- Alternative A/B (equal)
- Alternative A 40
- Alternative B 64 Alternative C – 78
- Alternative RO 86

### Recover

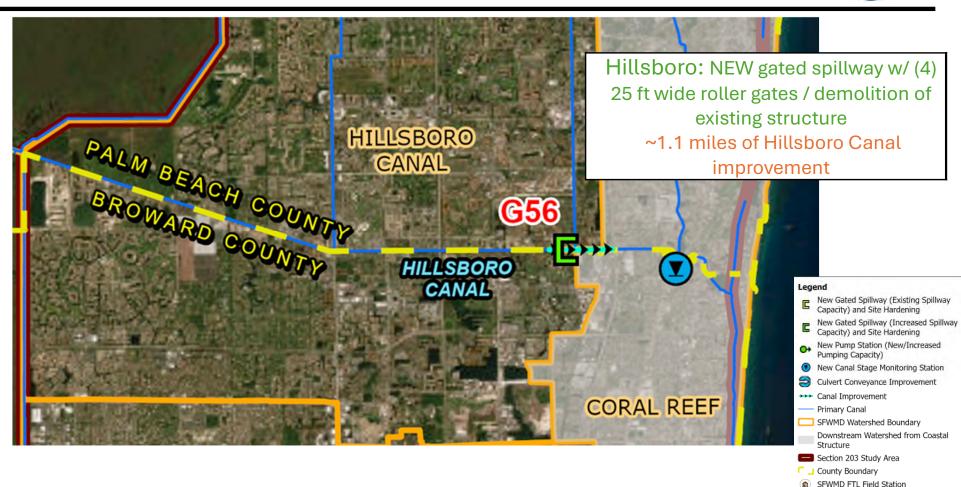
- Alternative C
- Alternative RO
- Alternative A/B (equal)
- Alternative B/C/RO (equal)
- Alternative A
- Alternative RO
- Alternative A/B/C (equal)

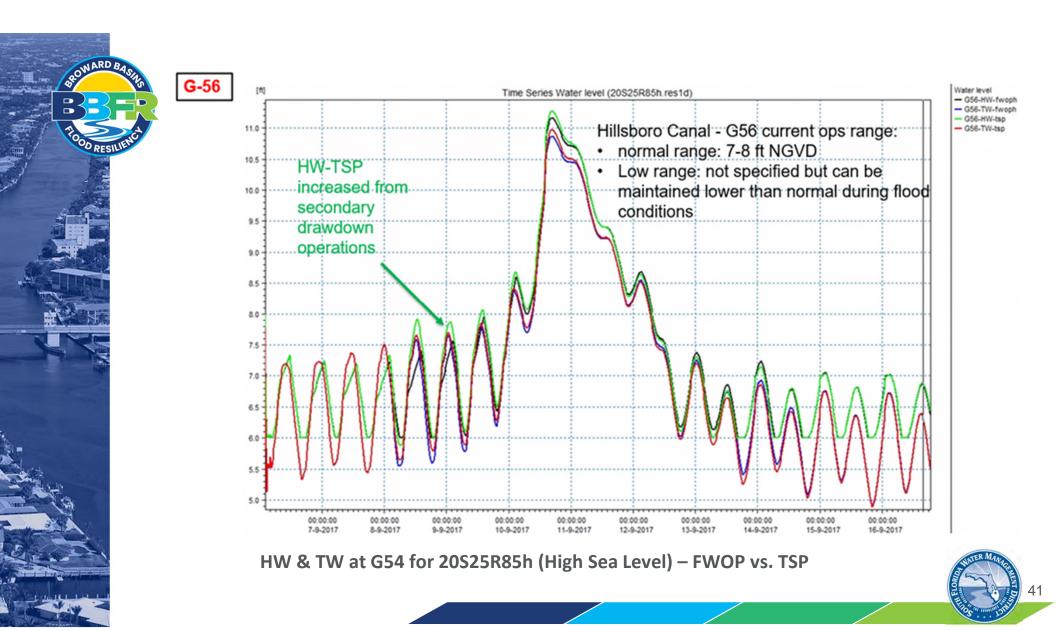
Alternative A – 44 Alternative B - 64

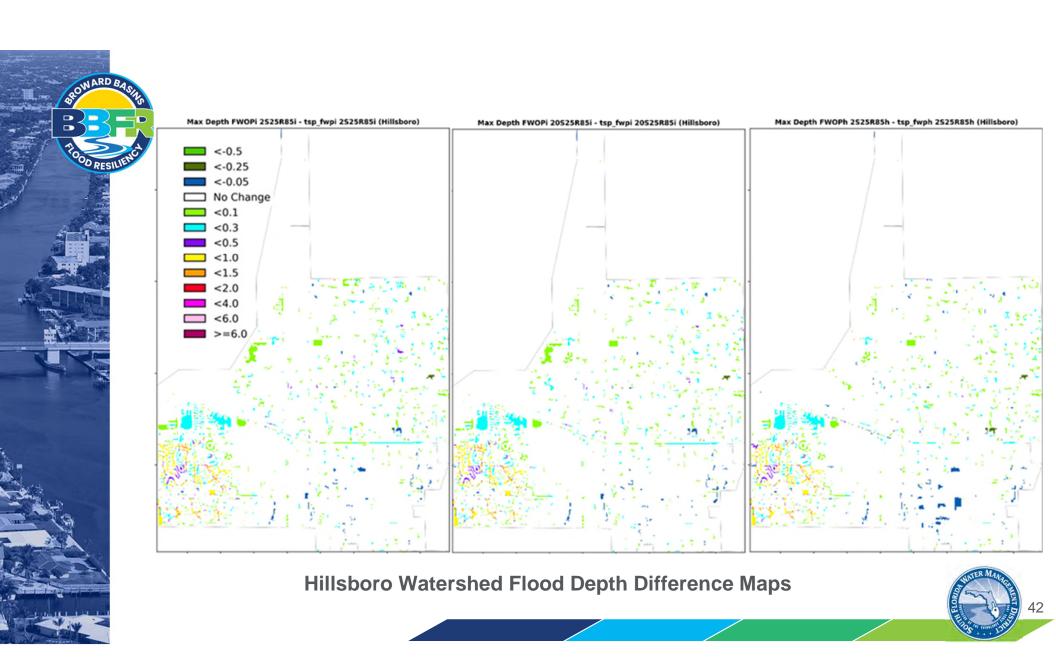
Alternative C – 69

Alternative RO - 85

# **ALTERNATIVES OPTIMIZATION: TSP / ALT RO**


|   |      |                              | Alternate A                         |                                                  |                                                          | Alternate B                                                         |                                               |                                            |                                                                     | Alternate C                                                      |                                                  |                                            |                                                                     |                                                                  |
|---|------|------------------------------|-------------------------------------|--------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|
|   |      |                              | New Pump Sta.                       |                                                  |                                                          | New Pump Sta.                                                       |                                               |                                            |                                                                     | New Pump Sta.                                                    |                                                  |                                            |                                                                     |                                                                  |
|   | Site | Canal                        | Design<br>Pumping<br>Capacity (cfs) | Mix of Pumps                                     | New Gated Structure<br>(nominal gate widths<br>provided) | Local Canal<br>Improvements / Storage<br>& Nature Based<br>Features | Design Pumping<br>Capacity (cfs)              | Mix of Pumps                               | New Gated Structure<br>(nominal gate widths<br>provided)            | Local Canal<br>Improvements / Storage<br>& Nature Based Features | Design Pumping<br>Capacity (cfs)                 | Mix of Pumps                               | New Gated Structure<br>(nominal gate widths<br>provided)            | Local Canal Improvements<br>/ Storage & Nature Based<br>Features |
|   | G56  | G-08<br>(Hillsboro)          | N/A                                 | N/A                                              | N/A                                                      | N/A                                                                 | N/A                                           | N/A                                        | Gated Spillway w/ (4)<br>25' wide roller gates                      | Hillsboro Canal<br>Improvement                                   | 1,005                                            | (3) 335 cfs<br>pumps                       | Gated Spillway w/ (4) 25' wide roller gates                         | Hillsboro Canal<br>Improvement<br>Hillsboro Storage              |
|   | G57  | G-16<br>(Pompano)            | N/A                                 | N/A                                              | U/S Culvert 10"                                          | N/A                                                                 | N/A                                           | N/A                                        | Gated Spillway w/ (2)<br>21' wide roller gates<br>+ U/S Culvert 10" | N/A                                                              | 300                                              | (3) 100 cfs<br>pumps                       | Gated Spillway w/ (2) 21'<br>wide roller gates<br>+ U/S Culvert 10" |                                                                  |
| : | S37B | C-14<br>(Cypress<br>Creek)   | N/A                                 | N/A                                              | N/A                                                      | N/A                                                                 | N/A                                           | N/A                                        | Gated Spillway w/ (2)<br>25' wide roller gates                      | C14 West Canal<br>Improvement                                    | N/A                                              | N/A                                        | N/A                                                                 | C14West Canal<br>Improvement                                     |
| ; | S37A | C-14<br>(Cypress<br>Creek)   | 1,200<br>(+ aux.)                   | (3) 400 cfs<br>pumps<br>(1) 400 cfs<br>aux. pump | Gated Spillway w/ (3)<br>25' wide roller gates           | N/A                                                                 | 1,500                                         | (3) 500 cfs<br>pumps                       | N/A                                                                 | N/A                                                              | 1,200                                            | (3) 400 cfs<br>pumps                       | Gated Spillway w/ (4) 25'<br>wide roller gates                      | C14 East Canal<br>Improvement                                    |
|   | S36  | C-13<br>(Middle<br>River)    | N/A                                 | N/A                                              | Gated Spillway w/ (2)<br>16' wide roller gates           | N/A                                                                 | 510                                           | (3) 170 cfs<br>pumps                       | N/A                                                                 | N/A                                                              | 600                                              | (3) 200 cfs<br>pumps                       | Gated Spillway w/ (2) 25' wide roller gates                         | C13West Canal<br>Improvement                                     |
|   | 000  | C-12<br>(Plantation<br>)     | 510<br>(+ aux.)                     | (3) 170 cfs<br>pumps                             |                                                          |                                                                     | 510                                           | (3) 170 cfs<br>pumps                       | Gated Spillway w/ (2)<br>20' wide roller gates                      | N/A                                                              | 705                                              | (3) 235 cfs<br>pumps                       | Gated Spillway w/ (2) 20<br>. wide roller gates                     | , C12West Canal<br>Improvement                                   |
|   | S33  |                              |                                     | (1) 170 cfs<br>aux. pump                         | N/A                                                      | N/A                                                                 |                                               | (1) 170 cfs<br>aux. pump                   |                                                                     |                                                                  |                                                  | (1) 235 cfs aux.<br>pump                   |                                                                     |                                                                  |
|   | G54  | G-15<br>(North<br>New River) | N/A                                 | N/A                                              | N/A                                                      | N/A                                                                 | N/A                                           | N/A                                        | Gated Spillway w/ (4)<br>20' wide roller gates                      | NNR West Storage                                                 | 810                                              | (3) 270 cfs<br>pumps                       | Gated Spillway w/ (4) 20' wide roller gates                         | NNR Canal Improvement<br>NNR West Storage                        |
|   |      | C-11<br>(South<br>New River) |                                     | (2) 115 cfs<br>pumps                             |                                                          |                                                                     |                                               | (2) 180 cfs<br>pumps                       |                                                                     |                                                                  |                                                  | (2) 250 cfs<br>pumps                       |                                                                     |                                                                  |
|   | S13  |                              | 700<br>(+ aux.)                     | N/A                                              | 1,080                                                    | (2) 360 cfs<br>pumps                                                | Gated Spillway w/ (2)<br>14' wide roller gate | C-11 West / C-11 East<br>Canal Improvement | 1,500                                                               | (2) 500 cfs<br>pumps                                             | Gated Box Culvert w/ (1)<br>25' wide roller gate | C-11 West / C-11 East<br>Canal Improvement |                                                                     |                                                                  |
|   |      |                              |                                     | (1) 235 cfs<br>aux. pump                         |                                                          |                                                                     | (1) 360 cfs<br>aux. pump                      |                                            |                                                                     |                                                                  | (1) 500 cfs aux.<br>pump                         | Į.                                         | SUITER MANAGE                                                       |                                                                  |
|   |      |                              |                                     |                                                  |                                                          |                                                                     |                                               |                                            |                                                                     |                                                                  |                                                  |                                            | (                                                                   |                                                                  |


# TENTATIVELY SELECTED PLAN (TSP / ALT RO)


| 7 | Basin                                 | Structure                                          | Existing Condition                                                                                                        | Final Array                 | Tentatively Selected Plan (TSP)                                                                                                                                                                                 |  |  |  |
|---|---------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   |                                       |                                                    |                                                                                                                           | Alternative                 |                                                                                                                                                                                                                 |  |  |  |
| н | illsboro Canal                        | G-56 Gated Spillway                                | (3) 20 ft wide spillway gates                                                                                             | Alternative B               | NEW gated spillway w/ (4) 25 ft wide roller gates / demolition of existing structure ~1.1 miles of Hillsboro Canal improvement                                                                                  |  |  |  |
| P | ompano Canal                          | G-57 Gated Spillway                                | <ul><li>(2) 14 ft wide spillway gates</li><li>(1) 1400 linear ft 10 ft diam.</li><li>culvert (upstream of G-57)</li></ul> | Alternative B               | NEW gated spillway w/ (2) 21 ft wide roller gates / demolition of existing structure 2 NEW 1400 linear ft 10 ft diam. culverts (upstream of G-57)                                                               |  |  |  |
| С | -14 West Basin                        | S-37B Gated<br>Spillway                            | (2) 25 ft wide spillway gates                                                                                             | Alternative A<br>(modified) | NEW gated spillway w/ (2) 25 ft wide roller gates / demolition of existing structure ~1.2 miles of C-14 Canal improvement                                                                                       |  |  |  |
| С | :-14 East Basin                       | S-37A Gated Spillway (2) 25 ft wide spillway gates |                                                                                                                           | Alternative A<br>(modified) | NEW gated spillway w/ (3) 25 ft wide roller gates / demolition of existing structure NEW 1200 CFS pump station w/ 400 CFS auxiliary pump                                                                        |  |  |  |
| С | -13 West Basin                        | S-36 Gated Spillway                                | (1) 25 ft wide spillway gate                                                                                              | Alternative B<br>(modified) | NEW gated spillway w/ (2) 16 ft wide roller gates /<br>demolition of existing structure<br>NEW 510 CFS pump station                                                                                             |  |  |  |
|   | C-12 Basin                            | S-33 Gated Spillway                                | ated Spillway (1) 20 ft wide spillway gate                                                                                |                             | NEW gated spillway w/ (2) 20 ft wide roller gates / demolition of existing structure NEW 510 CFS pump station w/ 170 CFS auxiliary pump                                                                         |  |  |  |
| N | orth New River<br>Canal West<br>Basin | G-54 Gated Spillway                                | (3) 16 ft wide spillway gates                                                                                             | Alternative B<br>(modified) | NEW gated spillway w/ (4) 20 ft wide roller gates /<br>demolition of existing structure<br>NEW 810 CFS pump station                                                                                             |  |  |  |
|   | C-11 East and<br>West Basins          | S-13 Pump Station<br>and Gated Spillway            | 540 CFS pump station with<br>(1) 16 ft wide spillway gate                                                                 | Alternative B<br>(modified) | NEW gated spillway w/ (2) 14 ft wide roller gates / demolition of existing structure NEW 1080 CFS pump station w/360 CFS auxiliary pump ~2.0 miles of C-11 Canal improvement (1.5 miles stabilized with riprap) |  |  |  |

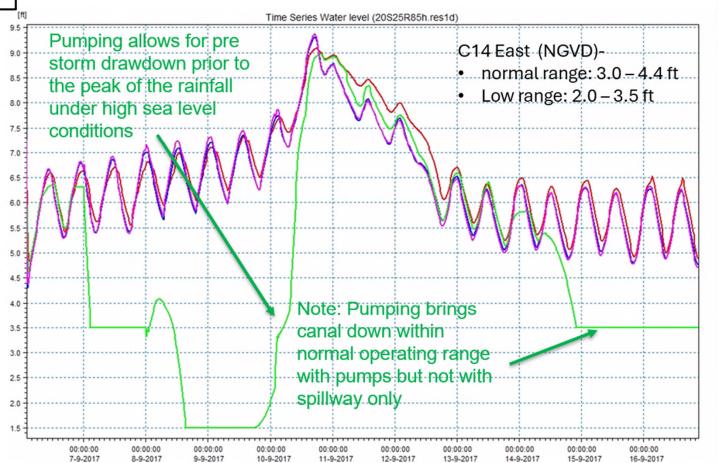
# **HILLSBORO**











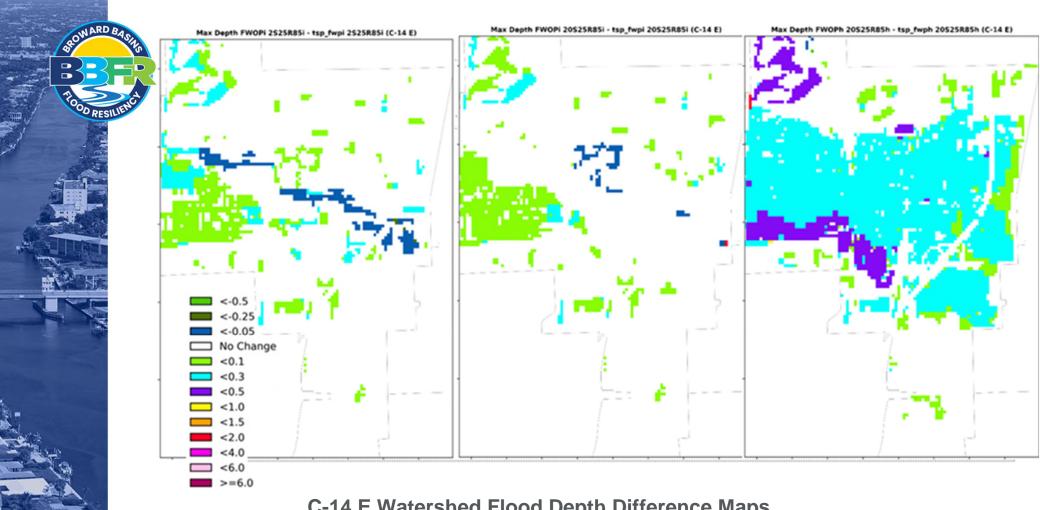

# C-14, POMPANO CANAL / S-37A & S-37B AND G-57





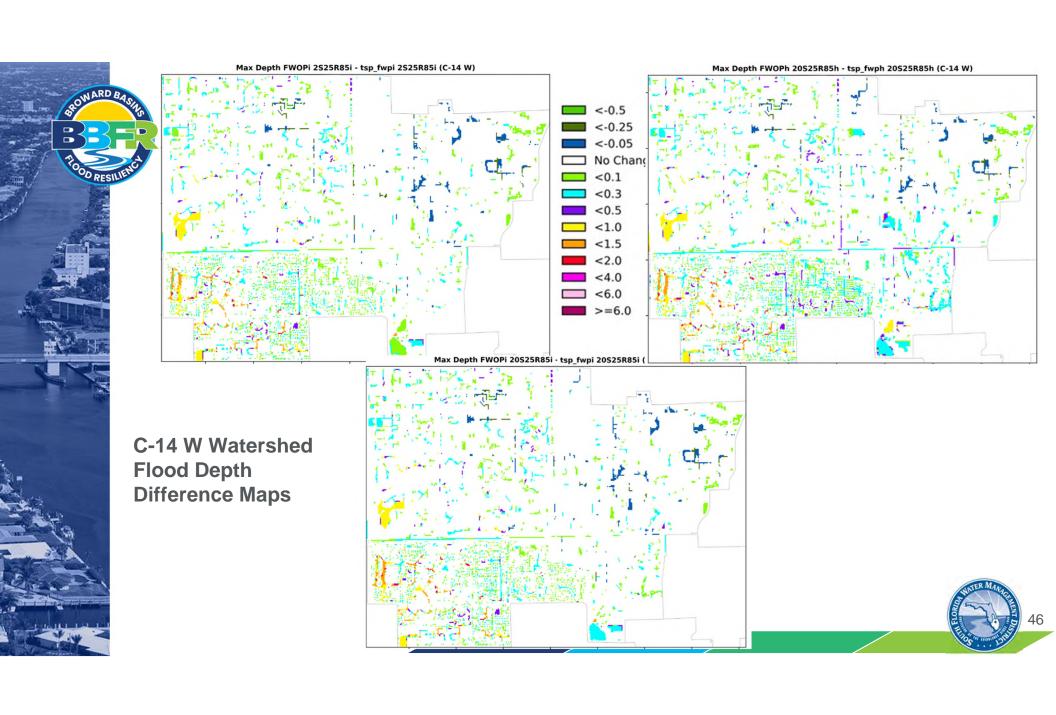
S-37A




HW & TW at S-37A for 20S25R85h (High Sea Level) – FWOP vs. TSP

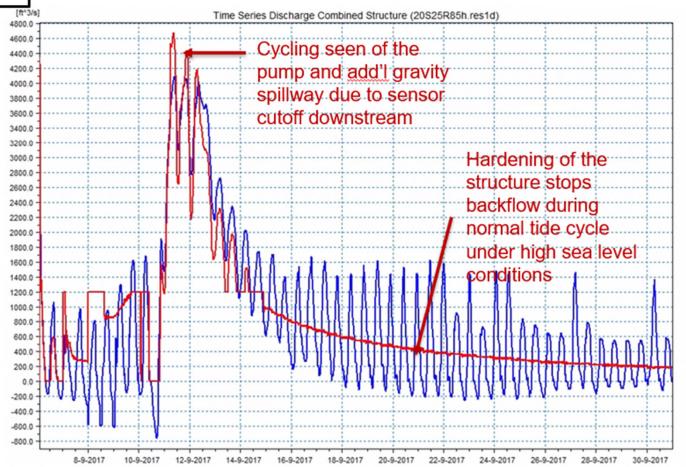


- S37A-HW-fwoph


S37A-TW-fwoph S37A-HW-tsp

S37A-TW-tsp




**C-14 E Watershed Flood Depth Difference Maps** 





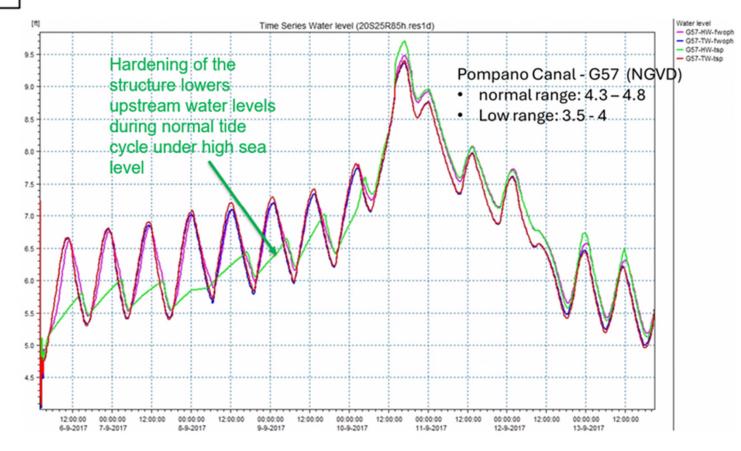


S-37A

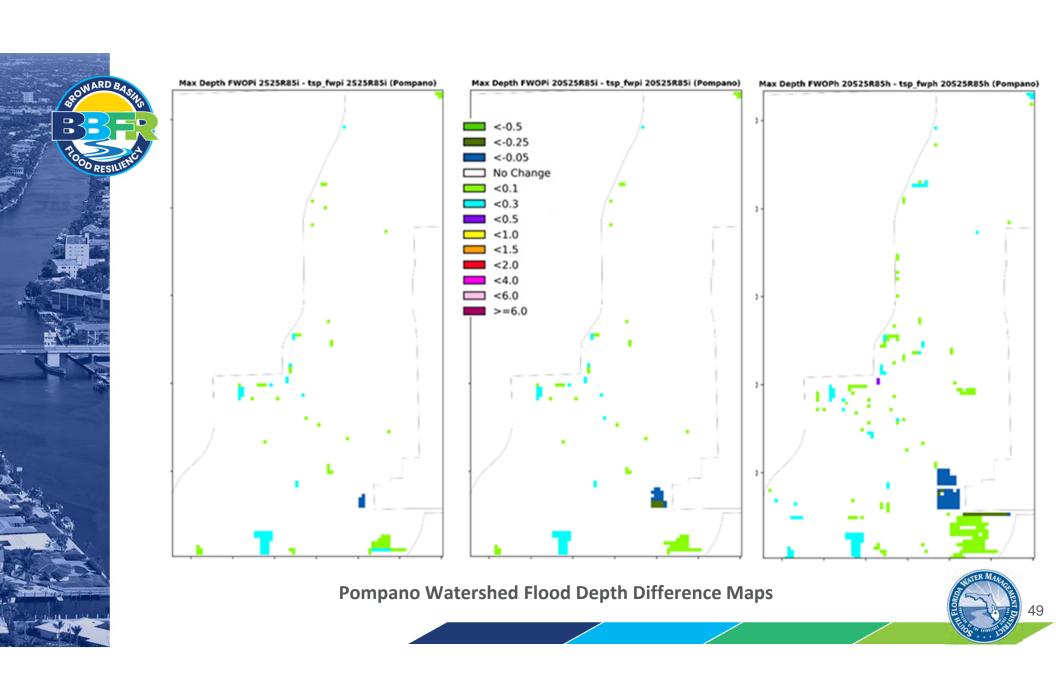


Flow at S-37A for 20S25R85h (High Sea Level) – FWOP vs. TSP



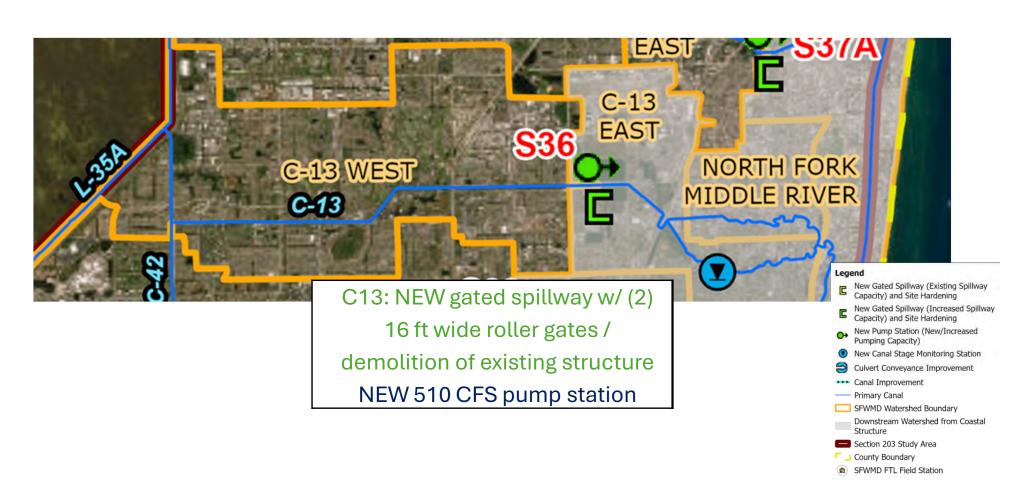

Discharge Combined Structure

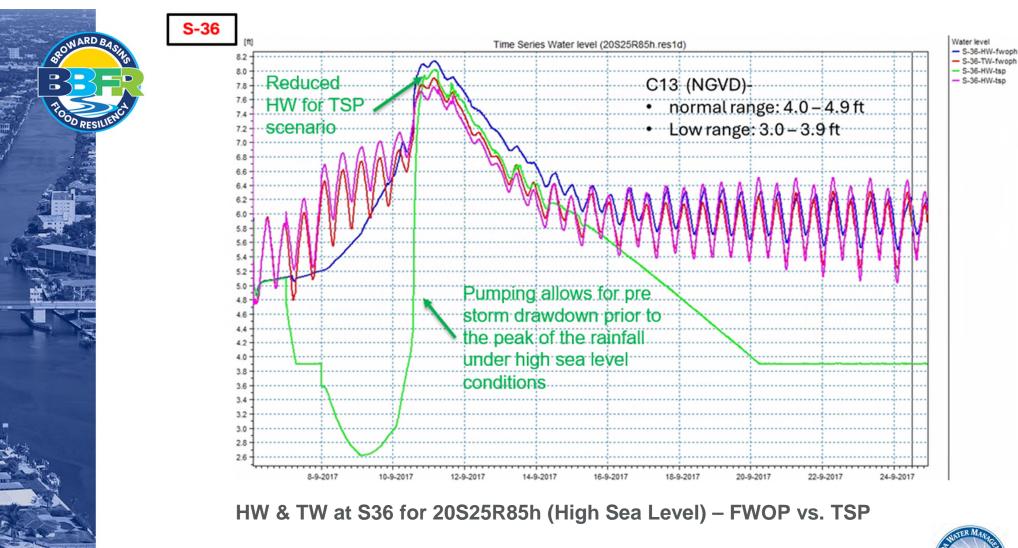
— \$37A-Q-fwoph


— \$37A-Q-tsp

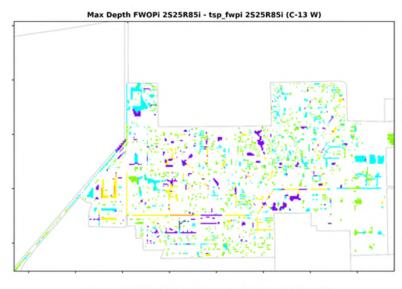


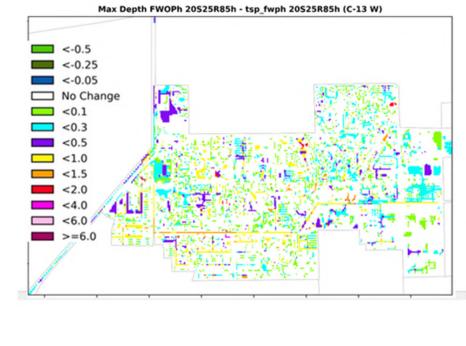
G-57

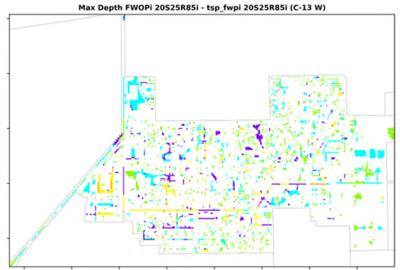




HW & TW at G57 for 20S25R85h (High Sea Level) – FWOP vs. TSP




# C-13 CANAL / S-36



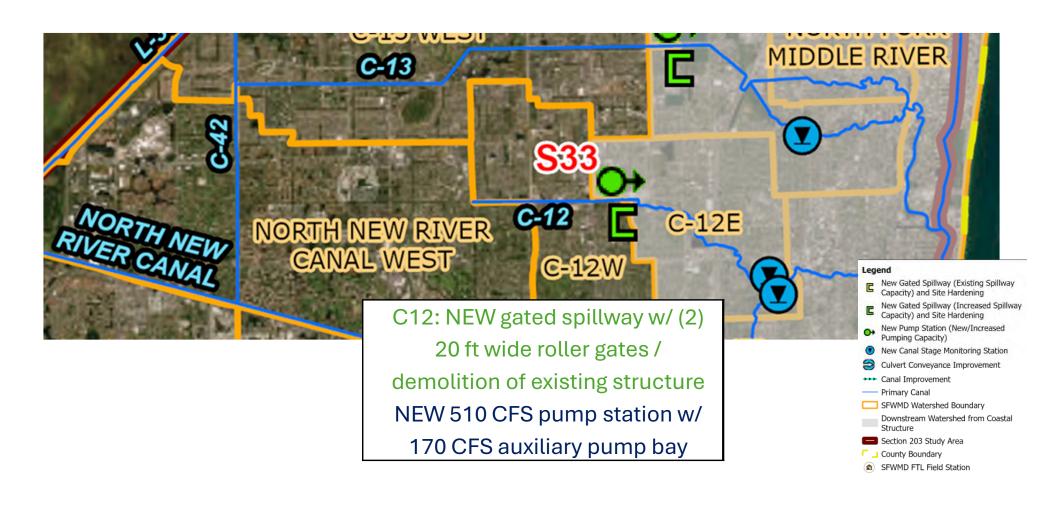





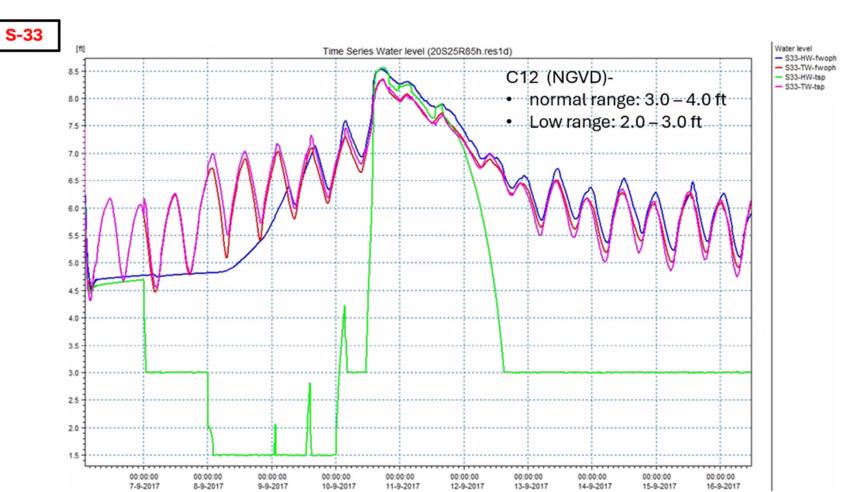




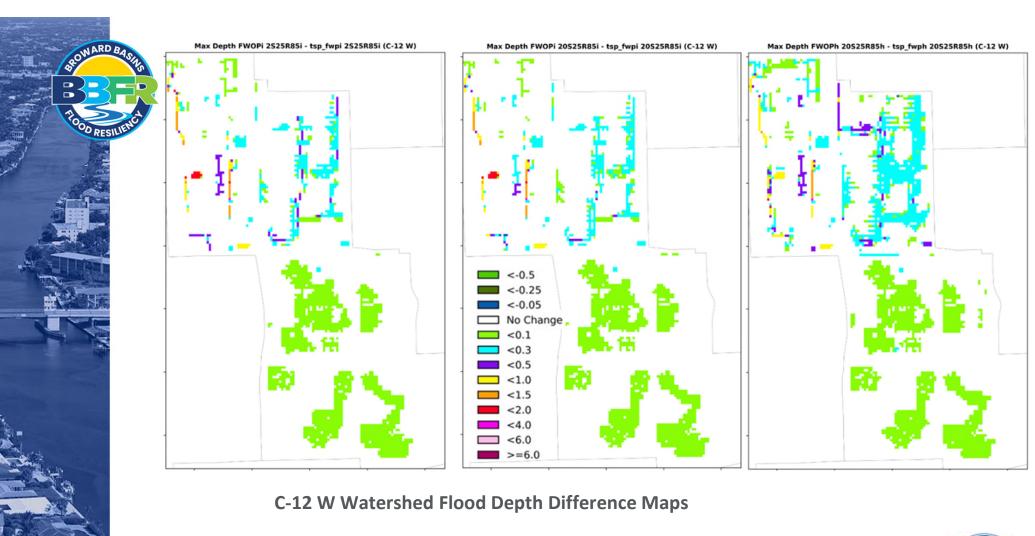



**C-13 W Watershed Flood Depth Difference Maps** 







# C-12, NORTH FORK NEW RIVER/ S-33



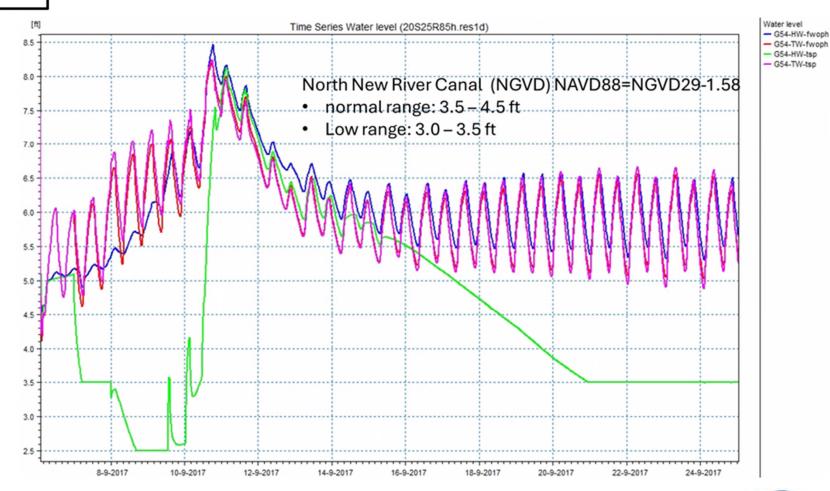




HW & TW at S33 for 20S25R85h (High Sea Level) – FWOP vs. TSP



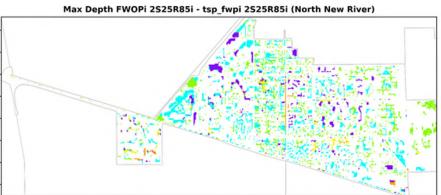


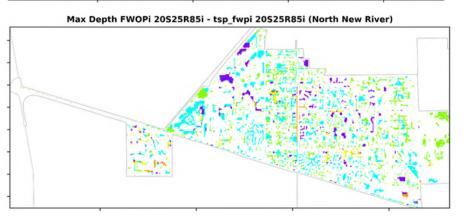


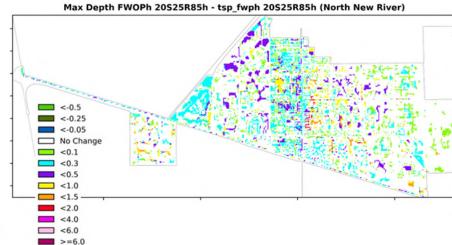

# **NORTH NEW RIVER CANAL /G-54**






G-54



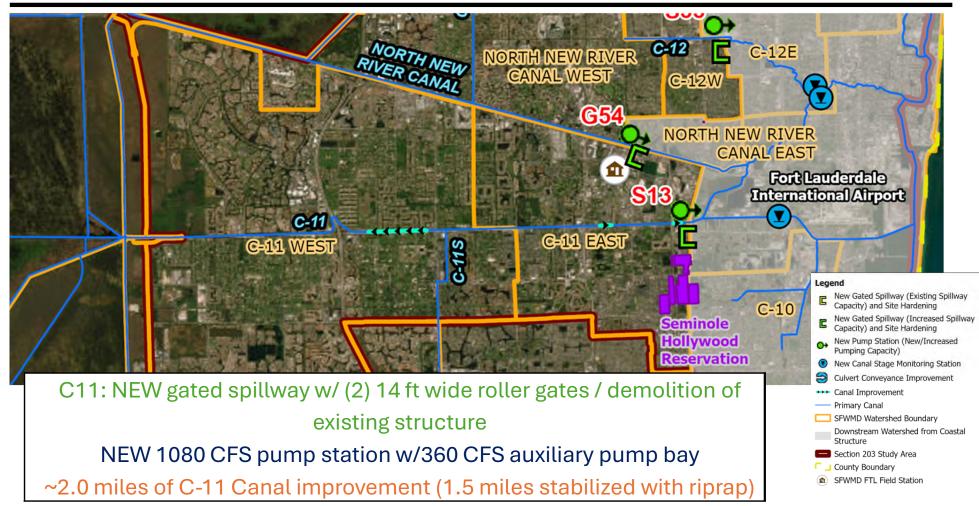


HW & TW at G54 for 20S25R85h (High Sea Level) - FWOP vs. TSP

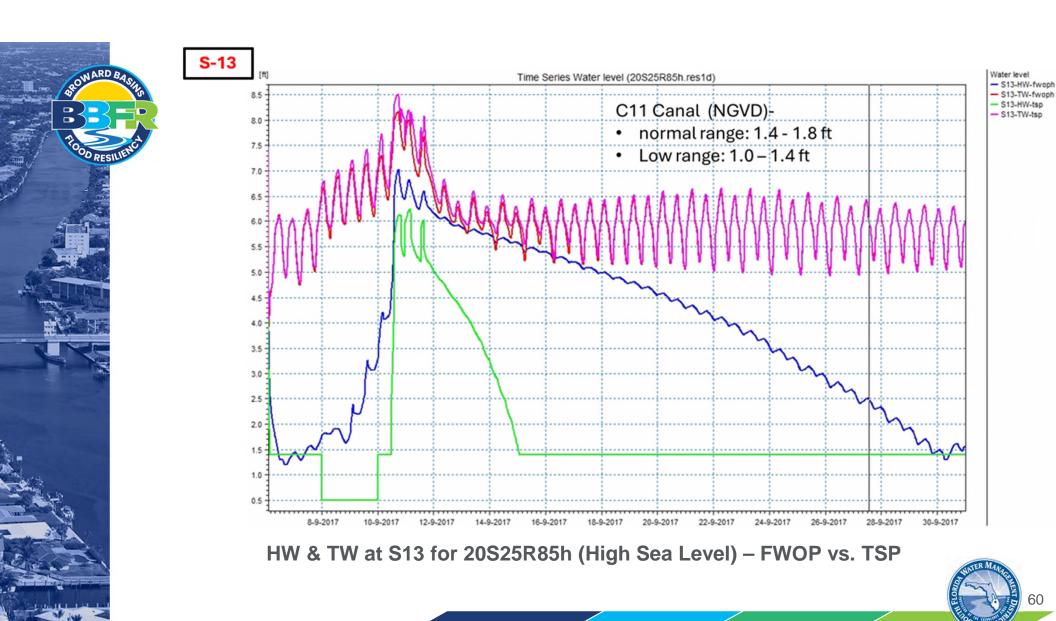




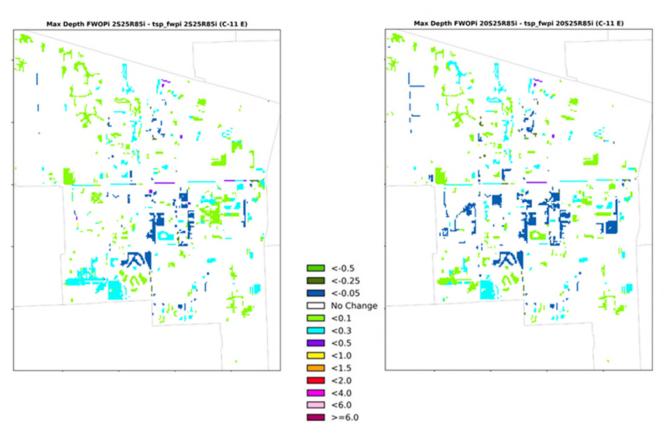


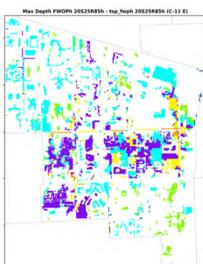






North New River Canal West Watershed Flood Depth Difference Maps





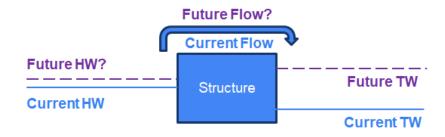



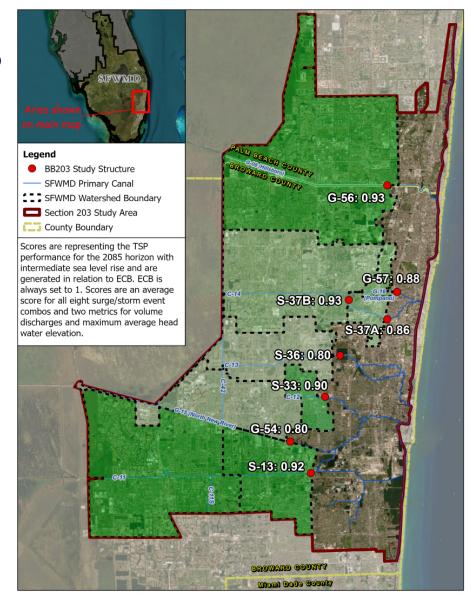










**C-11 E Watershed Flood Depth Difference Maps** 



# **RESILIENCE OPTIMIZED TSP**

- Returning to the evaluation of the hydraulic performance of the primary canal infrastructure, the TSP scores highly (i.e. >= 0.8 on a scale of 0 to 1) for every basin in the project area.
- This indicates that recommended infrastructure will be effective at maintaining current canal levels and discharge rates.
- Features in the TSP also have redundancy to help ensure reliable future operation.









|                                    | Low SLR         | Intermediate SLR | High SLR        |
|------------------------------------|-----------------|------------------|-----------------|
| Total<br>Benefits                  | \$1,922 Million | \$2,630 Million  | \$2,675 Million |
| Net<br>Benefits                    | -\$359 Million  | \$350 Million    | \$394 Million   |
| Benefit-to-<br>Cost Ratio<br>(BCR) | 0.84            | 1.15             | 1.17            |



RED

Business Interruption Direct Output Loss

Business
Interruption
Regional
Economic
Impacts

Temporary
Displacement
Annualized Net
Value Change
in Displacement
Days

Intermediate SLR

3.33% Probability | 0.91% Probability | Event | Event | Event |

\$0.4 Million Annual Reduction in Direct Output Loss

\$0.8 Million | \$0.6 Million | \$0.2 Million

**High SLR** 3.33% Probability 0.91% Probability 0.23% Probability **Event** Event Event \$2.0 Million Annual Reduction in Direct **Output Loss** Total Employment Savings – 30+ Jobs Total Labor Income Savings - \$2.1 Million Total Value Added Savings - \$2.4 Million Total Output Savings - \$3.3 Million \$2.3 Million \$1.5 Million \$0.5 Million





**Temporary Displacement** Regional **Economic Impacts** 

**NFIP Perspective** % Change in Structures with Flood Values Above FFE

Annual Construction Short-Term Regional **Economic Impacts** 

### Intermediate SLR

3.33% Probability Event

0.23% Probability 0.91% Probability I Event **Event** 

Total Employment Savings – 30+ Jobs Total Labor Income Savings - \$0.8 Million Total Value Added Savings - \$1.6 Million Total Output Savings - \$2.3 Million

Zone AO ↓12% Zone AH ↓12%

Zone AO 17% Zone AH ↓11%

Zone AO ↓12% Zone AH ↓9%

Zone AO 135% Zone AH ↓18%

Total Value Added Savings - \$4.5 Million

Total Output Savings - \$6.5 Million

Zone AO J22% Zone AH ↓21%

0.23% Probability

Total Employment - 1,274 Jobs Total Labor Income - \$87.4 Million Total Value Added - \$145.8 Million Total Output - \$246.8 Million

Annual **Operations** Short-Term Regional Economic **Impacts** 

**High SLR** 

0.91% Probability 3.33% Probability **Event** Event

**Event** Total Employment Savings - 40 Jobs Total Labor Income Savings - \$2.2 Million

Zone AO 151% Zone AH ↓16%

Total Employment - 25 Jobs Total Labor Income - \$1.7 Million Total Value Added - \$3.0 Million Total Output - \$5.6 Million





Number of Septic Tanks with Flood Values % Change

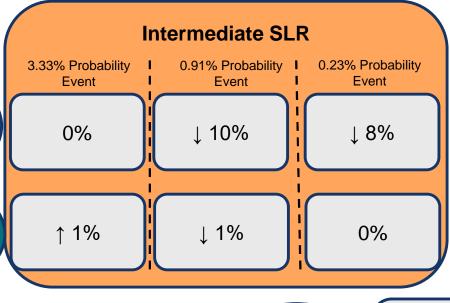
Flood
Depths in
Areas with
SSO
Occurrences
% Change

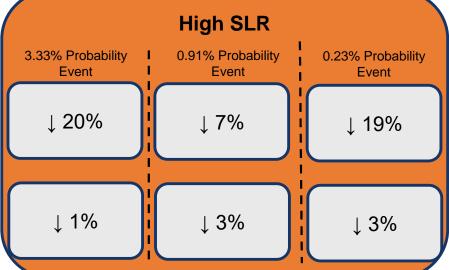
10

Headwater Stage Management with Indirect Benefits to Wellfields

Greater headwater stage management capacity than FWOP or Alternative A

Threatened & Endangered Species Effects


No Direct Effects



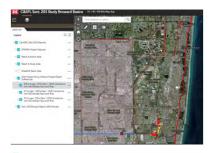

OSE

Critical Infrastructure % Change in Flooded Structures

Cultural
Resources
Sites
% Change in
Sites with Flood






Watershed
Approach –
Maintains
Integrity
Across
Subbasins

Moderate engineering complexity to reduce flooding in upstream watersheds; moderate tradeoffs in upstream and downstream watersheds.



### **DOWNSTREAM EFFECTS ANALYSIS**

- Initial potential adverse effects, pending further analysis:
  - > G-56: Increased peak depth south of Palmetto Park Road to Hillsboro Blvd
  - G-57 and S37A: Increased flood depths in Boulevard Park and Cypress Creek Canal
  - S-36: Increased peak depth in a retention pond and near the intracoastal
  - S-33 and G-54: Increased peak depth near South River Canal and North New River Canal
  - > S-13: Increased peak depth along Dania Cut Off Canal and Hollywood Canal
- ➤ Total of 20 to 30 parcels with water stages exceeding finished floor elevation, ~600 parcels with adverse flooding impacts limited to yard areas and existing swales
- \$240M to \$330M estimated for real estate takings including 20% to 30% of land area for flowage easements
- Mitigation Alternative: \$250M to \$300M estimated for elevating properties potentially affected
- Detailed evaluation and further compensatory measures to be considered in the next steps

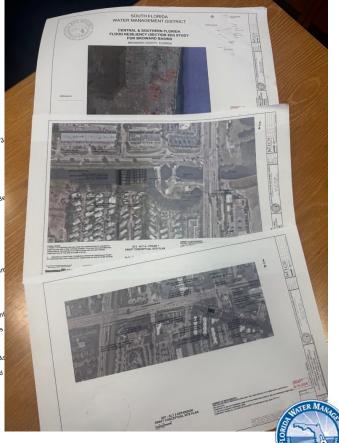











## **ENGINEERING STUDIES / CONCEPTUAL DESIGNS**





AGENDA
SENMD/USACE HQ Coordination
SENMD/USACE HQ STONARI Basins
Flood Resiliency (Sec 203) Study Broward Basins
July 29-31, 2025 Meet-and-Greet in Bridge Conference Room 3A Review 3-Day Meeting Agenda Tuesday July 29, 2025 Site Visits G-57, S-37A, S37B, S36 and G-54 9:00 AM - 9:15 AM 9:15 AM - 10:00 AM 10:00 AM - 4:00 PM Meet-and-Greet in Bridge Conference Room 3 Wednesday July 30, 2025 Site Visit Debrief 9:00 AM -9:10 AM Project Schedule Highlights 9:10 AM - 9:30 AM Final Array of Alternatives Benefits Analysis, Table of Effects and Be 9:30 AM - 9:45 AM







# STATUS OF ENGINEERING STUDIES / CONCEPTUAL DESIGN

|                                            | S33 | S36 | S37A | G57A | S13 | S37B | G54 | S56 |
|--------------------------------------------|-----|-----|------|------|-----|------|-----|-----|
| Geotechnical                               |     |     |      |      |     |      |     |     |
| Phase I Cultural and Historic *            |     |     |      |      |     |      |     |     |
| Hazardous, Toxic<br>& Radioactive<br>Waste |     |     |      |      |     |      |     |     |
| Final Site Plans                           |     |     |      |      |     |      |     |     |
| Survey                                     |     |     |      |      |     |      |     |     |

Completed 30% complete in January 2026

<sup>\*</sup> Ongoing coordination with SAJ USACE for consultation (Site G-54 Lock)



### SUMMARY - BBFR TENTATIVELY SELECTED PLAN

- > TSP (ALTRO) meets the project objectives and is cost effective
- ➤ Ensuring Flood Resilience: Every basin in the study contains project elements and all primary structures in the study are replaced or improved with hardening; canal modifications are also proposed
  - > 5 new or expanded pump stations
  - Significant improvements in gravity conveyance
  - Redundancy in pump bays and gates ensures operation even during maintenance or offline periods
- Adverse impacts on nearby areas are minimized and/or mitigated
- This project is focused on improving the primary system infrastructure, and these actions will be complemented by other efforts at the regional, county or local level



Public Meeting – Draft Integrated Feasibility Report and Environmental Evaluation

# **Draft Feasibility Report and Environmental Evaluation**

David Griffin, CFM, PWS, Resiliency Project Manager, SFWMD

Central & Southern Florida System
Flood Resiliency Study (Section 203) for Broward Basins



# DRAFT INTEGRATED FEASIBILITY REPORT AND **ENVIRONMENTAL EVALUATION**

Main Report: Draft Integrated Feasibility Report and Environmental Evaluation

Appendix A: Annex A-2.1 Model Documentation Report

**Appendix B**: Environmental Resources

**Appendix C**: Plan Formulation **Appendix D**: Benefits Analyses

**Appendix E**: Cost Engineering & Risk Analysis

**Appendix F**: Real Estate Plan

Appendix L: Hazardous, Toxic & Radioactive Waste

Appendix N: Public Involvement

**Appendix Q**: Air Quality Supporting Information



# **ENVIRONMENTAL ASSESSMENT, NEPA ACTIVITIES**

Federal activities currently under completion by USACE Jacksonville District:

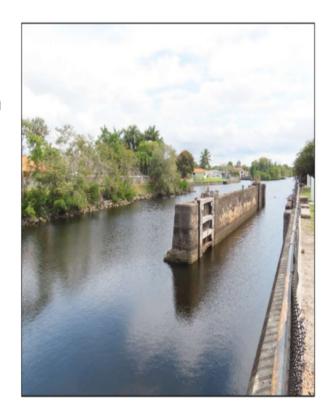
- Consultation with Tribes and State and Federal Agencies
- Publication of standalone Draft
   Environmental Assessment (EA)
   (Late 2025 or Early 2026)
- Public Notification and 30-Day
   Public Comment Period for the Draft
   EA

Disclosure note: "This document is a Draft Integrated Feasibility Report and Environmental Evaluation for the SFWMD Section 203 Study. A separate NEPA analysis will be released by the US Army Corps of Engineers evaluating the environmental effects of this SFWMD Section 203 Study."



Public Meeting – Draft Integrated Feasibility Report and Environmental Evaluation

# **Next Steps**


David Griffin, CFM, PWS, Resiliency Project Manager, SFWMD

Central & Southern Florida System Flood Resiliency Study (Section 203) for Broward Basins



## **SFWMD NEXT STEPS**

- Collect public comments on Integrated
   Feasibility Report and Environmental Evaluation
   (EE) Report (published Nov. 21)
- Incorporate environmental analysis from SAJ's Draft EA into Report
- Address public comments received on both Draft FR/EE and Draft EA
- Ensure effective communication with project stakeholders throughout the parallel review process (FR/EE and EA)
- Publish Final Integrated Feasibility Report and Environmental Assessment



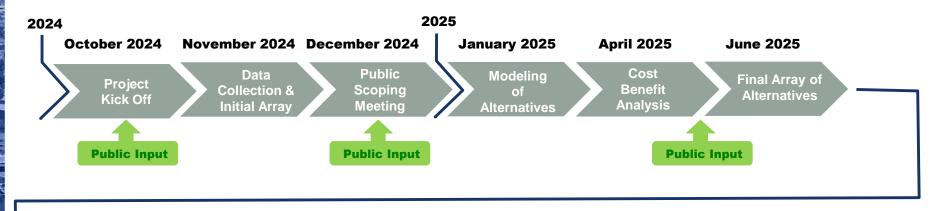




# AGENCY TECHNICAL AND INDEPENDENT REVIEWS (ATR AND IEPR)

### Agency Technical Review (ATR)

- Mandatory process within USACE that ensures the quality and credibility of USACE decision documents and supporting data.
- ATR Teams will be comprised of senior USACE personnel who have been vetted and certified by their respective Community of Practice (CoP) for their specific areas of expertise.


### Independent External Peer Review (IEPR)

- The Planning Centers of Expertise (PCX) produced Standard Operating Procedures for Districts to use in the conduct of IEPR.
- Involves an independent review conducted by a team of experts outside the project's home district to verify adherence to regulations, guidance, and best practices.



## **BB-203 PROJECT SCHEDULE**

Targeting June 2026 - Deliver Final Integrated Feasibility Report and Environmental Assessment (EA) to ASA Civil Works







Public Meeting – Draft Integrated Feasibility Report and Environmental Evaluation

# **Public Comment**

Central & Southern Florida System
Flood Resiliency Study (Section 203) for Broward Basins



# Central & Southern Florida Broward Basins Flood Resiliency Study

# **AROUND THE ROOM COMMENTS:**

Please use the mic

# **ZOOM COMMENTS:**

Please raise your hand





## Central & Southern Florida Broward Basins Flood Resiliency Study

# **DRAFT REPORT CAN BE ACCESSED HERE:**

https://www.sfwmd.gov/our-work/central-andsouthern-florida-flood-resiliency-study





## Central & Southern Florida Broward Basins Flood Resiliency Study

# **COMMENT OPPORTUNITIES**

Comment Period Extended Until December 29

Please email: <a href="mailto:resiliency@sfwmd.gov">resiliency@sfwmd.gov</a>

(additional upcoming opportunity to comment as part of Draft EA)



Public Meeting – Draft Integrated Feasibility Report and Environmental Evaluation

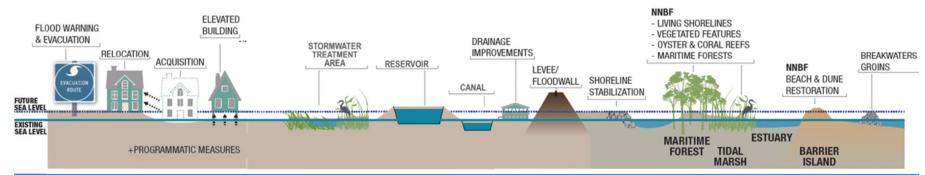
# **Closing Remarks**

Carolina Maran, Division Director - Flood Control and Water Supply Planning, Chief of Resiliency, SFWMD

Central & Southern Florida System
Flood Resiliency Study (Section 203) for Broward Basins

## RESILIENCY INITIATIVES COORDINATION

#### INTEGRATING INLAND AND COASTAL FLOOD MITIGATION STRATEGIES


Counties Studies/ Projects Water Control Districts and Municipalities Projects

USACE Studies/ Projects Regional Climate Compacts

**Other Partners** 

#### POTENTIAL MEASURES TO IMPROVE RESILIENCE AND SUSTAINABILITY

Graphic modified from https://ewn.el.erdc.dren.mil/nnbf/other/5\_ERDC-NNBF\_Brochure.pdf



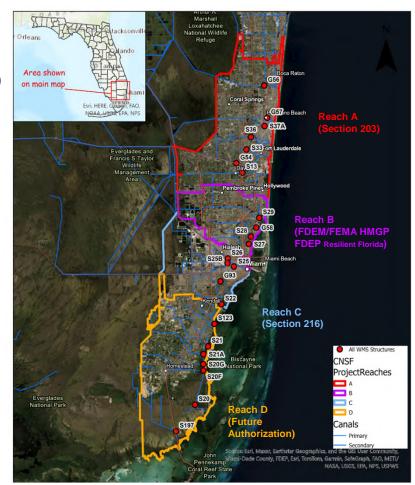


# C&SF FLOOD RESILIENCE: INTEGRATED PATH FORWARD

#### **Planning Reach A – Broward County Basins**

- Section 203 Feasibility Study: Target WRDA 26
- Funding support from FDEP and Broward County

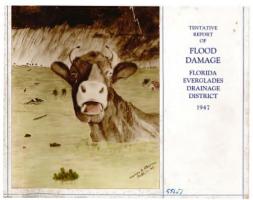
#### Planning Reach B - C-7, C-8, C-9 Basins


- FDEM / FEMA Hazard Mitigation
- Resilient Florida Grant
- Support from Miami Dade County

#### Planning Reach C - Miami River Basins

- C&SF Flood Resiliency Study Section 216
   Authorization Final VTAM Approval
- Feasibility Study: Target WRDA 28 or WRDA 30

#### Planning Reach D - South Dade Basins


C&SF Comprehensive Study or future planning studies

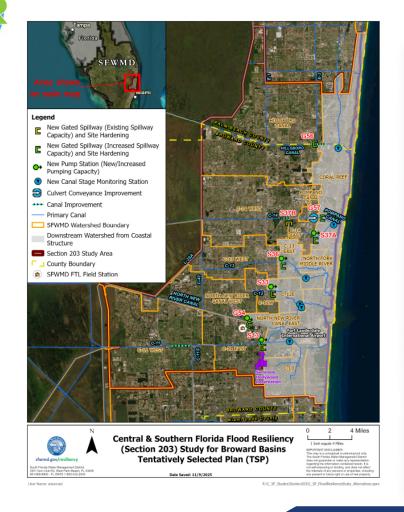


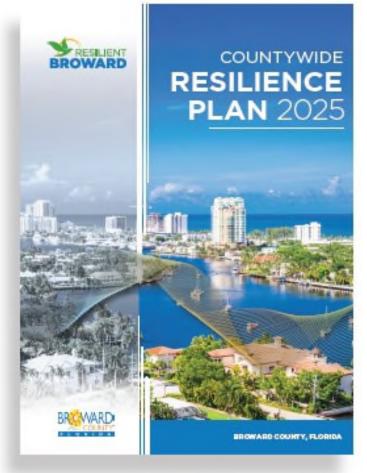


# **PAST: CENTRAL & SOUTHERN FLORIDA PROJECT**





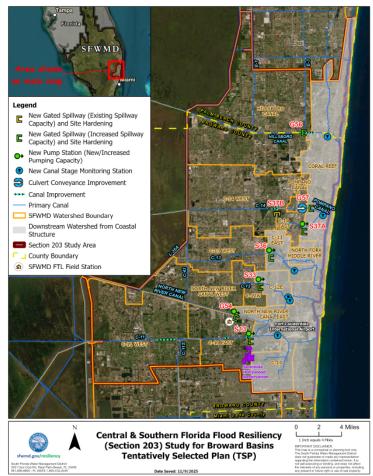







# **FUTURE: LOCAL AND OTHER STEPS TO COME**










## **FUTURE: CENTRAL & SOUTHERN FLORIDA PROJECT**



Robust, resilient infrastructure solution that continues to provide protection under significantly changing conditions

Balanced outcomes — flood resiliency while maintaining water supply reliability and ecosystem restoration

Informed by lessons learned in CERP, and a thorough, transparent NEPA process

Significant step forward to ensure Broward's communities and local businesses remain well served



R:\C\_SF\_Studies\Section200\C\_SF\_FloodResilienceStudy\_Alt



# Thanks for your participation!

Central & Southern Florida System
Flood Resiliency Study (Section 203) for Broward Basins

# **Happy Holidays!**