APPENDIX B

COST ENGINEERING AND RISK ANALYSIS

TABLE OF CONTENTS

B COST ESTIMATES B-1
B. 1 General Information B-1
B.1.1 Plan Formation and Cost Estimates B-1
B.1.2 Project Scope for Recommended Plan B-1
B. 2 Estimating Methodology B-2
B.2.1 Quantities B-2
B.2.2 Work Breakdown Structure B-3
B.2.3 MCACES Cost Item Development B-3
B.2.4 Contracting Plan B-3
B.2.5 Cost Estimate Productivities and Markups B-4
B.2.6 Non-Construction Costs B-4
B.2.7 Tentative Project Schedule B-4
B.2.8 MCACES Summary B-4
B. 3 Risk and Uncertainty Analysis B-5
B.3.1 Risk Analysis Methods B-5
B.3.2 Risk Analysis Results B-5
B. 4 Total Project Cost Summary B-7
B.4.1 Cost Agency Technical Review Certification B-7
LIST OF ATTACHMENTS
1 - Quantity Take-offs
2 - Production Rate Calculations
3 - Tentative Project Schedule
4 - MCACES Summary Printout
5 - Cost and Schedule Risk Analysis Risk Register6 - Total Project Cost Summary
7 - Design Maturity Determination for Cost Certification

B COST ESTIMATES

B. 1 General Information

U.S. Army Corps of Engineers (Corps) cost estimates for planning purposes are prepared in accordance with the following guidance:

- Engineer Regulation (ER) 1110-1-1300, Cost Engineering Policy and General Requirements (March 26, 1993);
- ER 1110-2-1302, Civil Works Cost Engineering (June 30, 2016);
- ER 1110-2-1150, Engineering and Design for Civil Works Projects (August 31, 1999);
- ER 1105-2-100, Planning Guidance Notebook (April 22, 2000, as amended);
- Engineer Manual (EM) 1110-2-1304 (Tables revised September 30, 2018), Civil Works Construction Cost Index System (September 30, 2018);
- CECW-CP Memorandum for Distribution, Subject: Initiatives to Improve the Accuracy of Total Project Costs in Civil Works Feasibility Studies Requiring Congressional Authorization (September 19, 2007);
- CECW-CE Memorandum for Distribution, Subject: Application of Cost Risk Analysis Methods to Develop Contingencies for Civil Works Total Project Costs (July 3, 2007); and
- Cost and Schedule Risk Analysis Process (March 2008).

The goal of the planning level cost estimate for the Lake Okeechobee Component A Storage Reservoir (LOCAR) study (Project) is to present a total project cost (i.e., construction and non-construction cost) for the selected plan, in today's dollars, for Project justification/authorization. Additionally, the total Project cost summary sheet calculates a fully funded estimate (escalated for inflation through Project completion) for budgeting purposes. The intent of these costing efforts is to produce a final product (i.e., cost estimate) that is reliable and accurate and that supports the definition of the government's and the non-federal sponsor's obligations based on the current design plan. This estimate was prepared with the Project at the primary level and the Civil Works Breakdown Structure (CWBS) features code at the secondary Level and is supported by labor, equipment, and materials for most cost items. Additionally, some cost items are priced based on recent bid result data from ongoing, similar reservoir projects in the area. A risk analysis was prepared that addresses uncertainties in the Project and sets contingencies for selected plan cost items. A discussion of the risk analysis is included at the end of this appendix.

B.1.1 Plan Formation and Cost Estimates

The plan formulation is described in the main report and Appendix E. The final alternative considered includes a 200,000-acre-foot (ac-ft) reservoir, Alternative 1.

B.1.2 Project Scope for Recommended Plan

Alternative 1, the Recommended Plan, includes a 200,000 ac-ft aboveground storage reservoir north of the C-41A. The reservoir would cover an area of approximately 13,000 acres (ac) and be designed to have an average storage depth of 18 feet (ft) at its normal full-storage level. The reservoir would include two
pump stations, two outflow culverts, an outflow canal, an interior divider dam with a gated control structure, and two ungated overflow spillways.

Construction. The reservoir would be constructed with a perimeter dam and an interior divider dam, with each having an average height of approximately 33 ft above the ground. The perimeter dam would be approximately 18 miles (mi) around, allowing for recreational opportunities. Material from the Project footprint and the surrounding seepage canal would be used to construct the dams. A gated outflow culvert would be constructed on the west side of the reservoir to discharge water into $\mathrm{C}-41 \mathrm{~A}$ upstream of $\mathrm{S}-83$, while another gated culvert would be constructed near the southeast side of the reservoir to discharge water into C-41A, downstream of S-83.

The reservoir would be constructed to have two storage cells (i.e., east and west) split by an interior divider dam to reduce wave runup. The interior divider dam would include a 1,500-cubic-foot-per-second (cfs), gated water-control structure to allow for controlled conveyance of water between the two cells. Each cell would include an ungated overflow spillway designed to discharge into C-41A.

A seepage canal would be constructed outside the perimeter dam of the reservoir. Seepage from the reservoir would collect in the canal and be returned to the reservoir via seepage pump stations. If the seepage pump stations were not operational, the seepage collected in the canal would eventually overflow into the C-41A via overflow weir structures.

Operations. Two pump stations would be used to fill the reservoir at 1,500 cfs. One pump station would be located downstream of S-84 and move water from C-38 into C-41A, upstream of S-84. The second pump would be located on the C-41A canal upstream of State Highway 70 to pump water from C-41A directly into the reservoir. Water would be conveyed to the reservoir in one of two ways: (1) full or partial diversion of flow in C-41A downstream of S-83, or (2) back-pumping water from Lake Okeechobee via pumping from C-41A, downstream of S-84, into C-41A between S-83 and S-84. Water would be returned to Lake Okeechobee by discharging from the reservoir to C-41A upstream and/or downstream of S-83. The location of the reservoir outflow culverts would allow for water to be conveyed south to provide opportunities for storage in surrounding canals (e.g., C-41A, C-41, C-40, and C-39A).

B. 2 Estimating Methodology

The Micro-Computer Aided Cost Estimating System (MCACES)/Second Generation (MII) cost estimate for the Selected Plan is based on the pre-final Engineering Appendix and Annex C-1 (Plans) provided. The estimate is formatted following the CWBS.

B.2.1 Quantities

Detailed quantity take-offs have been prepared for each of the primary features of the project and are consistent with the current level of design. Attachment 1 includes all quantity calculations currently developed for use in the estimate, sorted by proposed construction contract. These quantities include assumptions and sources of data used for the quantity development.

B.2.2 Work Breakdown Structure

The estimate includes both construction and non-construction costs. The construction costs, developed in MCACES, fall under the following feature codes:

- 03 Reservoirs;
- 08 Roads, Railroads, and Bridges;
- 09 Channels and Canals;
- 11 Levees and Floodwalls;
- 13 Pumping Plant;
- 14 Recreation Facilities; and
- 15 Flood Control and Diversion Structures.

The non-construction costs, included in the total project cost summary, fall under the following feature codes:

- 01 Lands and Damages;
- 30 Planning, Engineering, and Design; and
- 31 Construction Management.

B.2.3 MCACES Cost Item Development

The direct cost for Project elements identified in the plans and scope of work were developed in the MCACES/MII estimate using detailed labor, equipment, and materials for most of the cost items. Some cost items are priced using recent bids and quotes received on other similar reservoir projects in the area. The database line item productivities have been used where possible, with productivity adjustments made, as necessary. Where required, new crews have been created using the appropriate number of equipment, size of equipment, and labor trades to fit the work activity, and detailed production rate calculation have been developed (see Attachment 2). A majority of the costs have been compared with contractor bid prices from other reservoir projects in the area for reasonableness of use in this estimate.

B.2.3.1 Labor Rates

Federal wage determination rates have been used in the estimate. The wage rates for various counties were compared for use in the estimate. Most of the region had similar rates, as such, Palm Beach county rates were selected for the wage and fringe rates. Additionally, a separate value of $\$ 12.50$ an hour has been added to account for potential incentivization that may be required, as well as for lodging costs that the labor would need. Recommended values for these issues ranged from $\$ 5$ to $\$ 15$ dollars per hour beyond the current wage and fringe values.

B.2.4 Contracting Plan

Due to the size of the project, the estimate assumes this work would be broken out into eight (8) separate construction contracts. The prime contractors would be a heavy civil contractor and would self-perform embankment placement, excavation, and foundation drain installation for embankment and canal work.

Primary subcontractor work in each contract has been assumed to include dewatering, landscaping, reinforced concrete, pile driving, asphalt, and pump installation.

B.2.5 Cost Estimate Productivities and Markups

Crew productivities were adjusted as necessary to be consistent with other ongoing and completed reservoir projects in the area, as well as to account for efficiency factors/weather delays. In addition, a 7 percent material sales tax and a 17 percent overtime markup have been included in the estimate.

The following prime contractor's markups were applied to the direct and subcontractor's costs:

- Job Office Overhead - Prime contractor job office overhead (JOOH) values are based on calculated values for each of the proposed construction contracts. Subcontractor JOOH is assumed to be 7.5 percent.
- Home Office Overhead - 8 percent prime contractor and 12.5 percent subcontractor.
- Profit - Prime contractor profits have been calculated using the profit weighted guidelines for each contract. Subcontractor profit is assumed to be 10 percent.
- Performance Bond - These have been calculated using Table B for each of the proposed contracts.

B.2.6 Non-Construction Costs

Non-construction costs include real estate, planning, engineering, and design (PED), and construction management (supervision and administration [S\&A]). Real estate costs were taken from the Appendix D Real Estate. The total real estate cost input in the total project cost summary spreadsheet includes all costs for land payments, administrative costs, condemnations, relocation assistance and contingencies.

PED cost was calculated based upon a percentage of 25 percent of construction costs.
Construction management cost was calculated based upon a percentage of 9.2 percent of construction costs.

B.2.7 Tentative Project Schedule

A tentative project schedule was prepared to present a reasonable schedule for the work that could be used in estimating durations for job office overhead calculations within the cost estimate. The construction duration and sequence were established based on productivities from recent and ongoing reservoir projects in the area. The construction schedule will be updated as the design of the Project proceeds into plans and specifications phase. Once the contract is award, the contractor will provide a construction schedule that may be different from this draft schedule based on historical data. The Project schedule is provided in Attachment 3.

B.2.8 MCACES Summary

A detailed printout of the MCACES cost estimate is provided in Attachment 4. This summary presents the current construction costs of the project based on the assumptions and information discussed above.

Any estimate of total project and/or construction costs prepared by Tetra Tech represents its professional judgment at the time of this submittal and is supplied for the guidance of the client. Tetra Tech has
developed the current construction cost estimate per USACE cost estimating guidance, along with the best available information, and Tetra Tech's cost estimating experience. But Tetra Tech does not have control over the cost of contractor labor and material, or over competitive bidding or market conditions. As such, Tetra Tech is not able to guarantee the accuracy of such estimates as compared to contractor bids or actual costs to the client at some future date.

B. 3 Risk and Uncertainty Analysis

B.3.1 Risk Analysis Methods

The risk analysis process for this study followed the Corps requirements as well as the guidance provided by the Cost Engineering Directory of Expertise for Civil Works (Cost Engineering DX). The risk analysis process reflected within this report uses probabilistic cost and schedule risk analysis methods within the framework of the Oracle Crystal Ball software application. First, members of the Project Delivery Team (PDT) met to identify risk items for both the construction cost estimate and the construction schedule. Then, the risk register was completed (see Attachment 5). After that, the risk model was customized using commercially available Oracle Crystal Ball software. The most likely "high" and "low" values were assigned to estimate items using the software's "Assumption" function and the triangular distribution. "Forecasts" were then defined and the model was run.

After the model was run, the results were extracted from the sensitivity chart, the forecast chart, and the percentiles table for major items. The percentiles were then used to determine the contingency at the 80 percent confidence level. The appropriate contingency was then input in the total project cost summary spreadsheet.

B.3.2 Risk Analysis Results

The current risk analysis calculated a 55 percent contingency for costs and a 33 percent contingency on the schedule, which is based on the 80 percent confidence level. The current sensitivity charts, which provide an assessment of the contribution to the contingency calculation, are presented below.

Figure 1 - Sensitivity Chart, Construction Contingency

Figure 2 - Sensitivity Chart, Schedule Contingency

B. 4 Total Project Cost Summary

The TPCS addresses inflation through Project completion (accomplished by escalation to midpoint of construction per ER 1110-2-1302, Appendix C). It is based on the scope of the Recommended Plan and the Project schedule. The TPCS includes federal and non-federal costs for lands and damages, all construction features, PED, and S\&A, along with the appropriate contingencies and escalation associated with each of these activities as discussed above. The current TPCS is provided in Attachment 6.

B.4.1 Cost Agency Technical Review Certification

WALLA WALLA COST ENGINEERING MANDATORY CENTER OF EXPERTISE

COST AGENCY TECHNICAL REVIEW

CERTIFICATION STATEMENT

For Project No. 511864

North of Lake Okeechobee Storage Reservoir (LOCAR) Section 203 Feasibility Study

The Lake Okeechobee (LOCAR) Section 203 Feasibility Study, as presented by the Non-Federal Interest South Florida Water Management District, has undergone a successful Cost AgencyTechnical Review (Cost ATR), performed by the Walla Walla District Cost Engineering Mandatory Center of Expertise (Cost MCX) team. The Cost ATR included study of the project scope, report, cost estimates, schedules, escalation, and risk-based contingencies. This certification signifies the products meet the quality standards as prescribed in ER 1110-2-1150 Engineering and Design for Civil Works Projects and ER 1110-2-1302 Civil Works Cost Engineering.

As of February 8, 2024, the Cost MCX certifies the estimated total project cost:
FY24 Project First Cost: \$3,544,488,000
Fully Funded Amount: $\$ 4,257,100,000$
Cost Certification assumes Efficient Implementation (Funding). It remains the responsibility of the District to correctly reflect these cost values within the Final Report and to implement effective project management controls and implementation procedures including risk management through the period of Federal Participation.
for Michael P. Jacobs, PE, CCE Chief, Cost Engineering MCX Walla Walla District

LOCATION: Lake Okeechobee, FL
This Estimate reflects the scope and schedule in report;
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)						TOTAL PROJECT COST (FULLY FUNDED)				
		COST	CNTG	CNTG	TOTAL	Program Year (Budget EC): Effective Price Level Date:1 OCT 2024						INFLATED	COST	CNTG	FULL	
WBS	Civil Works					ESC	COST	CNTG	TOTAL	Spent Thru: 1-Oct-23 (\$K)	total first COST					
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)				(\$K)	(\%)	(\$K)	(\$K)	(\$K)	
A	B	c	D	E	F	G	H	1	J		K	L	M	N	0	
03	RESERVOIRS	\$1,306,218	\$718,420	55.0\%	\$2,024,638	0.0\%	\$1,306,218	\$718,420	\$2,024,638	\$0	\$2,024,638	24.9\%	\$1,631,796	\$897,488	\$2,529,285	
09	CHANNELS \& CANALS	\$3,966	\$2,181	55.0\%	\$6,148	0.0\%	\$3,966	\$2,181	\$6,148	\$0	\$6,148	19.3\%	\$4,734	\$2,603	\$7,337	
11	LEVEES \& FLOODWALLS	\$5,410	\$2,975	55.0\%	\$8,385	0.0\%	\$5,410	\$2,975	\$8,385	\$0	\$8,385	26.1\%	\$6,822	\$3,752	\$10,574	
13	PUMPING PLANT	\$171,569	\$94,363	55.0\%	\$265,932	0.0\%	\$171,569	\$94,363	\$265,932	\$0	\$265,932	17.4\%	\$201,411	\$110,776	\$312,187	
14	RECREATION FACILITIES	\$1,426	\$784	55.0\%	\$2,210	0.0\%	\$1,426	\$784	\$2,210	\$0	\$2,210	38.0\%	\$1,967	\$1,082	\$3,048	
15	FLOODWAY CONTROL \& DIVERSION STRL	\$110,010	\$60,506	55.0\%	\$170,516	0.0\%	\$110,010	\$60,506	\$170,516	\$0	\$170,516	20.3\%	\$132,309	\$72,770	\$205,078	
	CONSTRUCTION ESTIMATE TOTALS:	\$1,598,599	\$879,229		\$2,477,828	0.0\%	\$1,598,599	\$879,229	\$2,477,828	\$0	\$2,477,828	23.8\%	\$1,979,039	\$1,088,471	\$3,067,510	
01	LANDS AND DAMAGES	\$130,005	\$89,238	68.6\%	\$219,243	0.0\%	\$130,005	\$89,238	\$219,243	\$0	\$219,243	6.9\%	\$138,987	\$95,404	\$234,391	
30	PLANNING, ENGINEERING \& DESIGN	\$399,650	\$219,807	55.0\%	\$619,457	0.0\%	\$399,650	\$219,807	\$619,457	\$0	\$619,457	10.1\%	\$440,138	\$242,076	\$682,214	
31	CONSTRUCTION MANAGEMENT	\$147,071	\$80,889	55.0\%	\$227,960	0.0\%	\$147,071	\$80,889	\$227,960	\$0	\$227,960	19.8\%	\$176,120	\$96,866	\$272,986	
	PROJECT COST TOTALS:\|		\$2,275,325	1,269,164	55.8\%	\$3,544,488		\$2,275,325	\$1,269,164	\$3,544,488	\$0	\$3,544,488	20.1\%	\$2,734,284	\$1,522,817	\$4,257,100

\qquad CHIEF, COST ENGINEERING, xxx
\qquad PROJECT MANAGER, $x x x$
\qquad CHIEF, REAL ESTATE, xxx
\qquad CHIEF, PLANNING, xxx
\qquad CHIEF, ENGINEERING, xxx
\qquad CHIEF, OPERATIONS, $x x x$
\qquad CHIEF, CONSTRUCTION, xxx
\qquad CHIEF, CONTRACTING,xxx
\qquad CHIEF, PM-PB, $x x x x$
\qquad CHIEF, DPM, xxx
Filename: CUI_EXEMPT_1190713ab_LOCAR_TPCS_20240130.xlsx

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC): Effective Price Level Date:			$\begin{aligned} & 2024 \\ & 1 \text { OCT } 23 \end{aligned}$					
		RISK BASED												
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	COST	CNTG	FULL
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)
A	BHASE 1 or CONTRACT 1	c	D	E	F	G	H	I	J	P	L	M	N	0
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$63,588	\$34,973	55.0\%	\$98,561	0.0\%	\$63,588	\$34,973	\$98,561	2029Q1	13.8\%	\$72,366	\$39,801	\$112,167
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$14,471	\$7,959	55.0\%	\$22,430	0.0\%	\$14,471	\$7,959	\$22,430	2029Q1	13.8\%	\$16,468	\$9,058	\$25,526
	CONSTRUCTION ESTIMATE TOTALS:	\$78,059	\$42,932	55.0\%	\$120,991		\$78,059	\$42,932	\$120,991			\$88,834	\$48,859	\$137,693
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2026Q2	5.0\%	\$1,639	\$902	\$2,541
2.0\%	Planning \& Environmental Compliance	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2026Q2	5.0\%	\$1,639	\$902	\$2,541
9.0\%	Engineering \& Design	\$7,025	\$3,864	55.0\%	\$10,889	0.0\%	\$7,025	\$3,864	\$10,889	2026Q2	5.0\%	\$7,377	\$4,058	\$11,435
2.0\%	Reviews, ATRs, IEPRs, VE	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2026Q2	5.0\%	\$1,639	\$902	\$2,541
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2026Q2	5.0\%	\$1,639	\$902	\$2,541
1.0\%	Contracting \& Reprographics	\$781	\$429	55.0\%	\$1,210	0.0\%	\$781	\$429	\$1,210	2026Q2	5.0\%	\$820	\$451	\$1,271
4.0\%	Engineering During Construction	\$3,122	\$1,717	55.0\%	\$4,840	0.0\%	\$3,122	\$1,717	\$4,840	2029Q1	11.5\%	\$3,481	\$1,915	\$5,396
2.0\%	Planning During Construction	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2029Q1	11.5\%	\$1,741	\$957	\$2,698
0.5\%	Adaptive Management \& Monitoring	\$390	\$215	55.0\%	\$605	0.0\%	\$390	\$215	\$605	2029Q1	11.5\%	\$435	\$239	\$674
0.5\%	Project Operations	\$390	\$215	55.0\%	\$605	0.0\%	\$390	\$215	\$605	2026Q2	5.0\%	\$410	\$225	\$635
31	CONSTRUCTION MANAGEMENT													
7.2\%	Construction Management	\$5,620	\$3,091	55.0\%	\$8,711	0.0\%	\$5,620	\$3,091	\$8,711	2029Q1	11.5\%	\$6,266	\$3,446	\$9,713
1.0\%	Project Operation:	\$781	\$429	55.0\%	\$1,210	0.0\%	\$781	\$429	\$1,210	2029Q1	11.5\%	\$870	\$479	\$1,349
1.0\%	Project Management	\$781	\$429	55.0\%	\$1,210	0.0\%	\$781	\$429	\$1,210	2029Q1	11.5\%	\$870	\$479	\$1,349
	CONTRACT COST TOTALS:	\$104,755	\$57,615		\$162,370		\$104,755	\$57,615	\$162,370			\$117,663	\$64,715	\$182,378

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC): Effective Price Level Date:			$\begin{gathered} 2024 \\ 1 \text { OCT } 23 \end{gathered}$	Mid-Point Date P	INFLATED$(\%)$	$\begin{aligned} & \text { COST } \\ & \frac{(\$ K)}{\boldsymbol{M}} \end{aligned}$	$\begin{aligned} & \text { CNTG } \\ & \frac{(\$ K)}{N} \end{aligned}$	$\begin{aligned} & \text { FULL } \\ & \frac{(\$ K)}{0} \end{aligned}$
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL					
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)					
A	BHASE 2 or CONTRACT 2	c	D	E	F	G	H	1	J					
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	
09	CHANNELS \& CANALS	\$3,234	\$1,779	55.0\%	\$5,013	0.0\%	\$3,234	\$1,779	\$5,013	2031Q1	19.8\%	\$3,874	\$2,131	\$6,005
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$95,155	\$52,335	55.0\%	\$147,490	0.0\%	\$95,155	\$52,335	\$147,490	2031Q1	19.8\%	\$113,995	\$62,697	\$176,692
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$15,918	\$8,755	55.0\%	\$24,672	0.0\%	\$15,918	\$8,755	\$24,672	2031Q1	19.8\%	\$19,069	\$10,488	\$29,557
	CONSTRUCTION ESTIMATE TOTALS:	\$114,307	\$62,869	55.0\%	\$177,175		\$114,307	\$62,869	\$177,175			\$136,939	\$75,316	\$212,255
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
$30 \begin{aligned} & \\ & \\ & 2.0 \% \\ & 2.0 \% \\ & 9.0 \% \\ & 2.0 \% \\ & 2.0 \% \\ & 1.0 \% \\ & 4.0 \% \\ & 2.0 \% \\ & 0.5 \% \\ & 0.5 \%\end{aligned}$	PLANNING, ENGINEERING \& DESIGN													
	Project Management	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2027Q2	7.3\%	\$2,454	\$1,349	\$3,803
	Planning \& Environmental Compliance	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2027Q2	7.3\%	\$2,454	\$1,349	\$3,803
	Engineering \& Design	\$10,288	\$5,658	55.0\%	\$15,946	0.0\%	\$10,288	\$5,658	\$15,946	2027Q2	7.3\%	\$11,041	\$6,073	\$17,114
	Reviews, ATRs, IEPRs, VE	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2027Q2	7.3\%	\$2,454	\$1,349	\$3,803
	Life Cycle Updates (cost, schedule, risks)	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2027Q2	7.3\%	\$2,454	\$1,349	\$3,803
	Contracting \& Reprographics	\$1,143	\$629	55.0\%	\$1,772	0.0\%	\$1,143	\$629	\$1,772	2027Q2	7.3\%	\$1,227	\$675	\$1,902
	Engineering During Construction	\$4,572	\$2,515	55.0\%	\$7,087	0.0\%	\$4,572	\$2,515	\$7,087	2031Q1	16.5\%	\$5,325	\$2,929	\$8,253
	Planning During Construction	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2031Q1	16.5\%	\$2,662	\$1,464	\$4,127
	Adaptive Management \& Monitoring	\$572	\$314	55.0\%	\$886	0.0\%	\$572	\$314	\$886	2031Q1	16.5\%	\$666	\$366	\$1,032
	Project Operations	\$572	\$314	55.0\%	\$886	0.0\%	\$572	\$314	\$886	2027Q2	7.3\%	\$613	\$337	\$951
$31 \begin{aligned} & \\ & 7.2 \% \\ & 1.0 \% \\ & 1.0 \%\end{aligned}$	CONSTRUCTION MANAGEMENT													
	Construction Management	\$8,230	\$4,527	55.0\%	\$12,757	0.0\%	\$8,230	\$4,527	\$12,757	2031Q1	16.5\%	\$9,584	\$5,271	\$14,856
	Project Operation:	\$1,143	\$629	55.0\%	\$1,772	0.0\%	\$1,143	\$629	\$1,772	2031Q1	16.5\%	\$1,331	\$732	\$2,063
	Project Management	\$1,143	\$629	55.0\%	\$1,772	0.0\%	\$1,143	\$629	\$1,772	2031Q1	16.5\%	\$1,331	\$732	\$2,063
	CONTRACT COST TOTALS:	\$153,400	\$84,370		\$237,769		\$153,400	\$84,370	\$237,769			\$180,533	\$99,293	\$279,826

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC): Effective Price Level Date:			$\begin{aligned} & 2024 \\ & 1 \text { OCT } 23 \end{aligned}$	Mid-Point	INFLATED	COST	CNTG	FULL
$\begin{aligned} & \text { WBS } \\ & \text { NUMBER } \end{aligned}$	Civil Works		CNTG	CNTG	TOTAL		cost	CNTG	total					
	Feature \& Sub-Feature Description	$(\$ K)$	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(SK)	$\frac{(\$ K)}{0}$
A	B PHASE 3 or CONTRACT 3	c	D ${ }^{\text {d }}$	$\frac{\text { E }}{}$	$\frac{\text { ck }}{}$	G	$\xrightarrow{+}$	1	J	P	L	M	N	
03	RESERVOIRS	\$170,499	\$93,774	55.0\%	\$264,273	0.0\%	\$170,499	\$93,774	\$264,273	2030Q2	17.3\%	\$200,067	\$110,037	\$310,104
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	
	CONSTRUCTION ESTIMATE TOTALS:	\$170,499	\$93,774	55.0\%	\$264,273		\$170,499	\$93,774	\$264,273			\$200,067	\$110,037	\$310,104
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$3,410	\$1,875	55.0\%	\$5,285	0.0\%	\$3,410	\$1,875	\$5,285	2027Q1	6.7\%	\$3,640	\$2,002	\$5,642
2.0\%	Planning \& Environmental Compliance	\$3,410	\$1,875	55.0\%	\$5,285	0.0\%	\$3,410	\$1,875	\$5,285	2027Q1	6.7\%	\$3,640	\$2,002	\$5,642
9.0\%	Engineering \& Design	\$15,345	\$8,440	55.0\%	\$23,785	0.0\%	\$15,345	\$8,440	\$23,785	2027Q1	6.7\%	\$16,380	\$9,009	\$25,389
2.0\%	Reviews, ATRs, IEPRs, VE	\$3,410	\$1,875	55.0\%	\$5,285	0.0\%	\$3,410	\$1,875	\$5,285	2027Q1	6.7\%	\$3,640	\$2,002	\$5,642
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$3,410	\$1,875	55.0\%	\$5,285	0.0\%	\$3,410	\$1,875	\$5,285	2027Q1	6.7\%	\$3,640	\$2,002	\$5,642
1.0\%	Contracting \& Reprographics	\$1,705	\$938	55.0\%	\$2,643	0.0\%	\$1,705	\$938	\$2,643	2027Q1	6.7\%	\$1,820	\$1,001	\$2,821
4.0\%	Engineering During Construction	\$6,820	\$3,751	55.0\%	\$10,571	0.0\%	\$6,820	\$3,751	\$10,571	2030Q2	14.6\%	\$7,813	\$4,297	\$12,110
2.0\%	Planning During Construction	\$3,410	\$1,875	55.0\%	\$5,285	0.0\%	\$3,410	\$1,875	\$5,285	2030Q2	14.6\%	\$3,907	\$2,149	\$6,055
0.5\%	Adaptive Management \& Monitoring	\$852	\$469	55.0\%	\$1,321	0.0\%	\$852	\$469	\$1,321	2030Q2	14.6\%	\$977	\$537	\$1,514
0.5\%	Project Operations	\$852	\$469	55.0\%	\$1,321	0.0\%	\$852	\$469	\$1,321	2027Q1	6.7\%	\$910	\$501	\$1,411
31	CONSTRUCTION MANAGEMENT													
7.2\%	Construction Management	\$12,276	\$6,752	55.0\%	\$19,028	0.0\%	\$12,276	\$6,752	\$19,028	2030Q2	14.6\%	\$14,064	\$7,735	\$21,799
1.0\%	Project Operation:	\$1,705	\$938	55.0\%	\$2,643	0.0\%	\$1,705	\$938	\$2,643	2030Q2	14.6\%	\$1,953	\$1,074	\$3,028
1.0\%	Project Management	\$1,705	\$938	55.0\%	\$2,643	0.0\%	\$1,705	\$938	\$2,643	2030Q2	14.6\%	\$1,953	\$1,074	\$3,028
	CONTRACT COST TOTALS:	\$228,809	\$125,845		\$354,655		\$228,809	\$125,845	\$354,655			\$264,404	\$145,422	\$409,826

This Estimate reflects the scope and schedule in report;
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)					
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \hline \hline \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC):Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE					
WBS	Civil Works	cost	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	cost	CNTG	FULL	
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)	
A	PHASE 4 or CONTRACT 4	C	D	E	F	G	H	1	J	P	L	M	N	0	
03	RESERVOIRS	\$1,119,282	\$615,605	55.0\%	\$1,734,887	0.0\%	\$1,119,282	\$615,605	\$1,734,887	2033Q1	26.1\%	\$1,411,526	\$776,339	\$2,187,865	
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
11	LEVEES \& FLOODWALLS	\$5,410	\$2,975	55.0\%	\$8,385	0.0\%	\$5,410	\$2,975	\$8,385	2033Q1	26.1\%	\$6,822	\$3,752	\$10,574	
13	PUMPING PLANT	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
15	FLOODWAY CONTROL \& DIVERSION STRL	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
	CONSTRUCTION ESTIMATE TOTALS:	\$1,124,692	\$618,580	55.0\%	\$1,743,272		\$1,124,692	\$618,580	\$1,743,272			\$1,418,348	\$780,091	\$2,198,439	
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
30	PLANNING, ENGINEERING \& DESIGN														
2.0\%	Project Management	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2027Q1	6.7\%	\$24,011	\$13,206	\$37,218	
2.0\%	Planning \& Environmental Compliance	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2027Q1	6.7\%	\$24,011	\$13,206	\$37,218	
9.0\%	Engineering \& Design	\$101,222	\$55,672	55.0\%	\$156,894	0.0\%	\$101,222	\$55,672	\$156,894	2027Q1	6.7\%	\$108,051	\$59,428	\$167,479	
2.0\%	Reviews, ATRs, IEPRs, VE	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2027Q1	6.7\%	\$24,011	\$13,206	\$37,218	
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2027Q1	6.7\%	\$24,011	\$13,206	\$37,218	
1.0\%	Contracting \& Reprographics	\$11,247	\$6,186	55.0\%	\$17,433	0.0\%	\$11,247	\$6,186	\$17,433	2027Q1	6.7\%	\$12,006	\$6,603	\$18,609	
4.0\%	Engineering During Construction	\$44,988	\$24,743	55.0\%	\$69,731	0.0\%	\$44,988	\$24,743	\$69,731	2033Q1	21.6\%	\$54,721	\$30,096	\$84,817	
2.0\%	Planning During Construction	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2033Q1	21.6\%	\$27,360	\$15,048	\$42,409	
0.5\%	Adaptive Management \& Monitoring	\$5,623	\$3,093	55.0\%	\$8,716	0.0\%	\$5,623	\$3,093	\$8,716	2033Q1	21.6\%	\$6,840	\$3,762	\$10,602	
0.5\%	Project Operations	\$5,623	\$3,093	55.0\%	\$8,716	0.0\%	\$5,623	\$3,093	\$8,716	2027Q1	6.7\%	\$6,003	\$3,302	\$9,304	
31	CONSTRUCTION MANAGEMENT														
7.2\%	Construction Management	\$80,978	\$44,538	55.0\%	\$125,516	0.0\%	\$80,978	\$44,538	\$125,516	2033Q1	21.6\%	\$98,497	\$54,173	\$152,671	
1.0\%	Project Operation:	\$11,247	\$6,186	55.0\%	\$17,433	0.0\%	\$11,247	\$6,186	\$17,433	2033Q1	21.6\%	\$13,680	\$7,524	\$21,204	
1.0\%	Project Management	\$11,247	\$6,186	55.0\%	\$17,433	0.0\%	\$11,247	\$6,186	\$17,433	2033Q1	21.6\%	\$13,680	\$7,524	\$21,204	
	CONTRACT COST TOTALS:\|		\$1,509,336	\$830,135		\$2,339,471		\$1,509,336	\$830,135	\$2,339,471			\$1,855,231	\$1,020,377	\$2,875,609

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)					
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \hline \hline \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC): 2024 Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE					
WBS	Civil Works	cost	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	cost	CNTG	FULL	
NUMBER	Feature \& Sub-Feature Description	$\xrightarrow{(\$ K)}$	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	$\xrightarrow{(\$ K)}$	(\$K)	(\$K)	
A	B PHASE 5 or CONTRACT 5	c	D	E	F	G	H	1	J	P	L	M	N	0	
03	RESERVOIRS	\$16,437	\$9,041	55.0\%	\$25,478	0.0\%	\$16,437	\$9,041	\$25,478	2032Q1	22.9\%	\$20,204	\$11,112	\$31,316	
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
13	PUMPING PLANT	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
15	FLOODWAY CONTROL \& DIVERSION STRL	\$59,958	\$32,977	55.0\%	\$92,935	0.0\%	\$59,958	\$32,977	\$92,935	2032Q1	22.9\%	\$73,697	\$40,533	\$114,230	
	CONSTRUCTION ESTIMATE TOTALS:	\$76,396	\$42,018	55.0\%	\$118,413		\$76,396	\$42,018	\$118,413			\$93,901	\$51,646	\$145,546	
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
30	PLANNING, ENGINEERING \& DESIGN														
2.0\%	Project Management	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2027Q2	7.3\%	\$1,640	\$902	\$2,542	
2.0\%	Planning \& Environmental Compliance	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2027Q2	7.3\%	\$1,640	\$902	\$2,542	
9.0\%	Engineering \& Design	\$6,876	\$3,782	55.0\%	\$10,657	0.0\%	\$6,876	\$3,782	\$10,657	2027Q2	7.3\%	\$7,379	\$4,059	\$11,438	
2.0\%	Reviews, ATRs, IEPRs, VE	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2027Q2	7.3\%	\$1,640	\$902	\$2,542	
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2027Q2	7.3\%	\$1,640	\$902	\$2,542	
1.0\%	Contracting \& Reprographics	\$764	\$420	55.0\%	\$1,184	0.0\%	\$764	\$420	\$1,184	2027Q2	7.3\%	\$820	\$451	\$1,271	
4.0\%	Engineering During Construction	\$3,056	\$1,681	55.0\%	\$4,737	0.0\%	\$3,056	\$1,681	\$4,737	2032Q1	19.0\%	\$3,637	\$2,000	\$5,637	
2.0\%	Planning During Construction	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2032Q1	19.0\%	\$1,818	\$1,000	\$2,819	
0.5\%	Adaptive Management \& Monitoring	\$382	\$210	55.0\%	\$592	0.0\%	\$382	\$210	\$592	2032Q1	19.0\%	\$455	\$250	\$705	
0.5\%	Project Operations	\$382	\$210	55.0\%	\$592	0.0\%	\$382	\$210	\$592	2027Q2	7.3\%	\$410	\$225	\$635	
31	CONSTRUCTION MANAGEMENT														
7.2\%	Construction Management	\$5,500	\$3,025	55.0\%	\$8,526	0.0\%	\$5,500	\$3,025	\$8,526	2032Q1	19.0\%	\$6,546	\$3,601	\$10,147	
1.0\%	Project Operation:	\$764	\$420	55.0\%	\$1,184	0.0\%	\$764	\$420	\$1,184	2032Q1	19.0\%	\$909	\$500	\$1,409	
1.0\%	Project Management	\$764	\$420	55.0\%	\$1,184	0.0\%	\$764	\$420	\$1,184	2032Q1	19.0\%	\$909	\$500	\$1,409	
	CONTRACT COST TOTALS:\|		\$102,523	\$56,388		\$158,910		\$102,523	\$56,388	\$158,910			\$123,344	\$67,839	\$191,183

This Estimate reflects the scope and schedule in report;
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)					
		Estimate Prepared: Effective Price Level:			$\begin{aligned} & \hline \hline \text { 7-Jan-24 } \\ & \text { 1-Oct-23 } \end{aligned}$	Program Year (Budget EC): Effective Price Level Date: 2024 1 OCT 23 ,				FULLY FUNDED PROJECT ESTIMATE					
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	COST	CNTG	FULL	
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)	
A	B PHASE 6 or CONTRACT 6	C	D	E	F	G	H	1	J	P	L	M	N	0	
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
09	CHANNELS \& CANALS	\$732	\$403	55.0\%	\$1,135	0.0\%	\$732	\$403	\$1,135	2030Q2	17.3\%	\$859	\$473	\$1,332	
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
13	PUMPING PLANT	\$12,826	\$7,054	55.0\%	\$19,880	0.0\%	\$12,826	\$7,054	\$19,880	2030Q2	17.3\%	\$15,050	\$8,278	\$23,328	
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
15	FLOODWAY CONTROL \& DIVERSION STRL	\$19,664	\$10,815	55.0\%	\$30,479	0.0\%	\$19,664	\$10,815	\$30,479	2030Q2	17.3\%	\$23,074	\$12,691	\$35,764	
CONSTRUCTION ESTIMATE TOTALS:		\$33,222	\$18,272	55.0\%	\$51,494		\$33,222	\$18,272	\$51,494			\$38,983	\$21,441	\$60,424	
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
30	PLANNING, ENGINEERING \& DESIGN														
2.0\%	Project Management	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2027Q2	7.3\%	\$713	\$392	\$1,105	
2.0\%	Planning \& Environmental Compliance	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2027Q2	7.3\%	\$713	\$392	\$1,105	
9.0\%	Engineering \& Design	\$2,990	\$1,644	55.0\%	\$4,634	0.0\%	\$2,990	\$1,644	\$4,634	2027Q2	7.3\%	\$3,209	\$1,765	\$4,974	
2.0\%	Reviews, ATRs, IEPRs, VE	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2027Q2	7.3\%	\$713	\$392	\$1,105	
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2027Q2	7.3\%	\$713	\$392	\$1,105	
1.0\%	Contracting \& Reprographics	\$332	\$183	55.0\%	\$515	0.0\%	\$332	\$183	\$515	2027Q2	7.3\%	\$357	\$196	\$553	
4.0\%	Engineering During Construction	\$1,329	\$731	55.0\%	\$2,060	0.0\%	\$1,329	\$731	\$2,060	2030Q2	14.6\%	\$1,522	\$837	\$2,360	
2.0\%	Planning During Construction	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2030Q2	14.6\%	\$761	\$419	\$1,180	
0.5\%	Adaptive Management \& Monitoring	\$166	\$91	55.0\%	\$257	0.0\%	\$166	\$91	\$257	2030Q2	14.6\%	\$190	\$105	\$295	
0.5\%	Project Operations	\$166	\$91	55.0\%	\$257	0.0\%	\$166	\$91	\$257	2027Q2	7.3\%	\$178	\$98	\$276	
$31 \begin{aligned} & \\ & 7.2 \% \\ & 1.0 \% \\ & 1.0 \%\end{aligned}$	CONSTRUCTION MANAGEMENT														
	Construction Management	\$2,392	\$1,316	55.0\%	\$3,708	0.0\%	\$2,392	\$1,316	\$3,708	2030Q2	14.6\%	\$2,740	\$1,507	\$4,248	
	Project Operation:	\$332	\$183	55.0\%	\$515	0.0\%	\$332	\$183	\$515	2030Q2	14.6\%	\$381	\$209	\$590	
	Project Management	\$332	\$183	55.0\%	\$515	0.0\%	\$332	\$183	\$515	2030Q2	14.6\%	\$381	\$209	\$590	
	CONTRACT COST TOTALS:\|		\$44,584	\$24,521		\$69,105		\$44,584	\$24,521	\$69,105			\$51,555	\$28,355	\$79,910

This Estimate reflects the scope and schedule in report;
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{aligned} & \hline \hline \text { 7-Jan-24 } \\ & \text { 1-Oct-23 } \end{aligned}$	Program Year (Budget EC): 2024 Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE				
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	cost	CNTG	FULL
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)
A	PHASE 7 or CONTRACT 7	c	D	E	F	G	H	1	J	P	L	M	N	0
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
14	RECREATION FACILITIES	\$1,426	\$784	55.0\%	\$2,210	0.0\%	\$1,426	\$784	\$2,210	2036Q3	38.0\%	\$1,967	\$1,082	\$3,048
15	FLOODWAY CONTROL \& DIVERSION STRL	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
CONSTRUCTION ESTIMATE TOTALS:		\$1,426	\$784	55.0\%	\$2,210		\$1,426	\$784	\$2,210			\$1,967	\$1,082	\$3,048
01	LANDS AND DAMAGES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2030Q4	15.8\%	\$33	\$18	\$51
2.0\%	Planning \& Environmental Compliance	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2030Q4	15.8\%	\$33	\$18	\$51
9.0\%	Engineering \& Design	\$128	\$71	55.0\%	\$199	0.0\%	\$128	\$71	\$199	2030Q4	15.8\%	\$149	\$82	\$230
2.0\%	Reviews, ATRs, IEPRs, VE	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2030Q4	15.8\%	\$33	\$18	\$51
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2030Q4	15.8\%	\$33	\$18	\$51
1.0\%	Contracting \& Reprographics	\$14	\$8	55.0\%	\$22	0.0\%	\$14	\$8	\$22	2030Q4	15.8\%	\$17	\$9	\$26
4.0\%	Engineering During Construction	\$57	\$31	55.0\%	\$88	0.0\%	\$57	\$31	\$88	2036Q3	31.1\%	\$75	\$41	\$116
2.0\%	Planning During Construction	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2036Q3	31.1\%	\$37	\$21	\$58
0.5\%	Adaptive Management \& Monitoring	\$7	\$4	55.0\%	\$11	0.0\%	\$7	\$4	\$11	2036Q3	31.1\%	\$9	\$5	\$14
0.5\%	Project Operations	\$7	\$4	55.0\%	\$11	0.0\%	\$7	\$4	\$11	2030Q4	15.8\%	\$8	\$5	\$13
$31 \begin{aligned} & \\ & \\ & 7.2 \% \\ & 1.0 \% \\ & 1.0 \%\end{aligned}$	CONSTRUCTION MANAGEMENT													
	Construction Management	\$103	\$56	55.0\%	\$159	0.0\%	\$103	\$56	\$159	2036Q3	31.1\%	\$135	\$74	\$209
	Project Operation:	\$14	\$8	55.0\%	\$22	0.0\%	\$14	\$8	\$22	2036Q3	31.1\%	\$19	\$10	\$29
	Project Management	\$14	\$8	55.0\%	\$22	0.0\%	\$14	\$8	\$22	2036Q3	31.1\%	\$19	\$10	\$29
	CONTRACT COST TOTALS:\|	\$1,913	\$1,052		\$2,965		\$1,913	\$1,052	\$2,965			\$2,566	\$1,411	\$3,977

This Estimate reflects the scope and schedule in report;
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)					
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \hline \hline \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC): 2024 Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE					
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	COST	CNTG	FULL	
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)	
A	B	c	D	E	F	G	H	I	J	P	L	M	N	0	
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
13	PUMPING PLANT	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
15	FLOODWAY CONTROL \& DIVERSION STRL	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
CONSTRUCTION ESTIMATE TOTALS:		\$0	\$0	0.0\%	0		\$0	\$0	\$0			\$0	\$0	\$0	
01	LANDS AND DAMAGES	\$130,005	\$89,238	68.6\%	\$ 219,243	0.0\%	\$130,005	\$89,238	\$219,243	2026Q4	6.9\%	\$138,987	\$95,404	\$234,391	
30	PLANNING, ENGINEERING \& DESIGN														
2.0\%	Project Management	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
2.0\%	Planning \& Environmental Compliance	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
9.0\%	Engineering \& Design	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
2.0\%	Reviews, ATRs, IEPRs, VE	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
1.0\%	Contracting \& Reprographics	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
4.0\%	Engineering During Construction	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
2.0\%	Planning During Construction	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
0.5\%	Adaptive Management \& Monitoring	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
0.5\%	Project Operations	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
$31 \begin{aligned} & \\ & \\ & 7.2 \% \\ & 1.0 \% \\ & 1.0 \%\end{aligned}$	CONSTRUCTION MANAGEMENT														
	Construction Management	\$0	\$0	55.0\%	0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
	Project Operation:	\$0	\$0	55.0\%	0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
	Project Management	\$0	\$0	55.0\%	0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0	
	CONTRACT COST TOTALS:\|		\$130,005	\$89,238		219,243		\$130,005	\$89,238	\$219,243			\$138,987	\$95,404	\$234,391

Design Maturity Determination for Cost Certification

Date: $1 / 23 / 24$
P2 Designation/Project Name: Lake Okeechobee Component A Reservoir (LOCAR) Section 203 Feasibility Study
The Chief of Engineering is responsible for the technical content and engineering sufficiency for all engineering products produced by the command. As such, I have performed the Management Control Evaluation per Engineer Regulation (ER) 1110-2-1150, Engineering and Design for Civil Works Projects, Appendix H, Internal Management Control Review Checklist.

The current design DOES NOT . require HQ approval (ie., engineering waivers), requiring a deviation from mandatory requirements and mandatory standards, as defined in ERs, Engineering Manuals, Engineering Technical letters, and Engineering Circulars.

The current hydrology and hydraulics modeling is at $\underline{20 \quad \%}$ design maturity, per reference (h) below.
The current geotechnical data and subsurface investigations are at $\underline{20} \%$ design maturity, per reference (h) below. Subsurface investigations shall also include investigations of potential borrow and spoil areas.

The current survey data is at $\underline{20 ~ \% ~ d e s i g n ~ m a t u r i t y, ~ p e r ~ r e f e r e n c e ~(h) ~ b e l o w . ~}$
Other major technical and/or scope assumptions and risks include the following, which will be refined as the design progresses.

Many design assumptions are based on SFWMD standard design practice and past construction experience for several other recent similar projects in similar geologic/construction settings. While data collection for survey and geotechnical are considered preliminary, confidence in concept design details presented are appropriate for feasibility level cost estimating for the project. Please refer to the risk register for additional identified risk items.

Due to potential conservative assumptions in overwash rates and the elimination of the wave wall feature from the proposed design, the embankment height estimates at this stage are considered to be conservative. Stability and seepage analysis indicate the proposed dam geometry is conservative. It is expected, during PED, that refinements in embankment height are possible for potential future cost savings during design.

The aggregate for all features is $\underline{20} \%$ design maturity. Therefore, per the CECW-EC memorandum dated 05-June-2023, I certify that the design deliverables used to generate the cost products for this project and the estimate meet the requirements for a CLASS 3 estimate, as per reference (a) below. Design risks, impacts and remaining efforts are summarized on page 2.

Considering risks and assumptions noted above, along with all other concerns documented in the Risk Register, the Cost and Schedule Risk Analysis has developed a contingency of $\underline{55} \%$ at the
\qquad \% confidence level for the defined project scope.

Chief of Engineering \& Construction

Lucina Dadrian 1/24/24

Printed Name

Morion

Design Maturity Determination for Cost Certification, Remaining Work

If an engineering waiver is required, list the risks and remaining design work needed to mitigate this issue in the current design. Identify remaining effort to complete the design required for 100% design. N/A at this time.

Identify remaining effort to complete geotechnical design effort required for 100% design. List the risks and cost and schedule impacts needed to mitigate this issue in the current design.
Additional geotechnical investigations/program, materials testing, along with pump testing to verify seepage assumptions on the 12,000-acre reservoir footprint are required to finalize the Geotechnical Design. The schedule for the additional site investigations are programmed into the cost estimate and are presented in the Feasibility Study. It has been determined that sufficient quantities of materials are available on-site for construction of the dam. Rip rap slope protection and drain materials will be imported in from off-site sources. The final geotechnical investigations are expected to confirm current assumptions.

Identify remaining effort required to complete H\&H required for 100% design. List the risks and cost and schedule impacts needed to mitigate this issue in the current design.
Due to limited geotechnical data for seepage and groundwater conditions adjacent to the reservoir, additional 3D groundwater seepage modeling will be required to finalize the seepage management system design and establish operations to maintain compliance with the Savings Clause requirements. The current design incorporates sufficient operational flexibility to accommodate variations in anticipated seepage impacts around the reservoir. Final H\&H conveyance analysis is also required to verify compliance with the Savings Clause. The schedule for the final $\mathrm{H} \& \mathrm{H}$ modeling are programmed into the cost estimate and are presented in the Feasibility Study.
Identify remaining effort needed to complete survey data required for 100% design. List the risks and cost and schedule impacts needed to mitigate this issue in the current design.

 the Reservoir being built on existing ground. Minor elevation differences will only impact structures adjacent to the canal and the appropriate contingency is added to the risk register.

If the project is anticipated to be executed in parts, provide a design assessment (percent complete) of each part/phase below.
N/A

References:

a. ER 1110-2-1302 - Civil Works Cost Engineering
b. CECW-EC memorandum dated 05-June-2023MFR, Guidance on Cost Engineering Products update for Civil Works Projects in accordance with Engineer Regulation 1110-2-1302 - Civil Works Cost Engineering
c. ER 1165-2-217 - Civil Works Review Policy
d. ER 1110-2-1150 - Engineering and Design for Civil Works Projects
e. ER 1110-3-12 - Quality Management
f. ER 1110-345-700 - Design Analysis, Drawings and Specifications
g. EM 5-1-11 - Project Delivery Business Process (PDBP)
h. Engineering and Construction Bulletin (ECB) 2023-9 - Civil Works Design Milestone Checklists

Design Maturity Determination for Cost Certification - Instructions

Paragraph 1 - Design Date: Use the drop-down menu to populate the date of the design.
Paragraph 1 - Project Information: Enter the P2 Project number and Project name.
Paragraph 3 - Engineering Waivers: Use the drop-down menu to populate this field with either "Does," or "Does not." If an engineering waiver is needed, or anticipated to be needed, provide the specific waiver required for the Project. A waiver is any deviation from current mandatory standards, as indicated.

Paragraph 4 - Hydrology and Hydraulics: Populate this field with the \% design maturity.
Paragraph 5 - Geotechnical Information: Populate this field with the \% design maturity.
Paragraph 6 - Survey Data: Populate this field with the \% design maturity.
Paragraph 7 - Other Technical Assumptions and/or Scope: Enter any other major technical assumptions or scope assumptions here. Only include assumptions that pertain to design. Template discussion fields are provided as a courtesy. Please include additional pages as necessary.

Paragraph 8 - Signature: Print the name and title and provide the signature for the District's Chief of Engineering. This authority cannot be delegated; however, the Deputy Chief of Engineering and Design may sign the form in the absence of the Chief of Engineering. All fillable fields must be populated (use N/A if not applicable) in order for the document to be signed.

Page 2 - Remaining Work: Identify the current baseline design assumptions and the remaining design effort and risks to complete 100% design for the authorized project. If the project is to be broken into parts or phases, provide details on the aggregate design level of each phase and anticipated timeline for completion.

[^0]
ATTACHMENT 1

QUANTITY TAKE-OFFS

Appendix

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR) FEASIBILITY STUDY

Cost Estimate Scope Assumptions, Representative Drawings, and Quantity Takeoffs

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR) FEASIBILITY STUDY

CONTRACT 1 - S-84 SITE

- Demo Spillway S-84 and S-84X
- Construct Spillway S-84+
- Construct Pump Station PS-1

Feature of Work: STRUCTURE S-84: EXISTING SPILLWAY DEMO AND RE-CONSTRUCTION
Quantity Take Off:

User Input \quad Row Calculation Sum of Values above

Sheetpile Dewatering				
	Dewatering Pumps	$=$	TBD EA	Size to be determined
	Width	$=$	210.0 FT	Assume 20' from top of excavation
Length	$=$	200.0 FT	Assume 20' from length of excavation	
	Depth	$=$	50.0 FT	Approx. from As-Built
	Total Perimeter	$=$	820.0 LF	Sheetpile perimeter
	Area	$=$	$42,000.0 \mathrm{SF}$	

Spillway Excavation

Assume Spillway Excavation will be partially performed during canal excavation, if no canal exists

Length	$=$		160.0 FT		Add'l 40 ' assumed for wingwall installation each way		
Total Depth	=		40.0 FT				
Thickness of Organic	=		2.0 FT				
Thickness of Cap Rock	$=$		8.0 FT				
Thickness of Fort Thompson	$=$		30.0 FT				
Canal Slope			1.5 :1		From Typical Sections		
					Canal bottom: 80' wide, Canal	16	
Bottom Width	$=$		50.0 FT				
Top Width	$=$		170.0 FT		Assumes slope same as canal		
Cross Section	$=$		2,000.0 SF				
Cross Section Organic	=		0.0 SF		Removed due to Existing		
Cross Section of Cap Rock	=		0.0 SF		Removed due to Existing		
Cross Section of Fort Thompson	$=$		0.0 SF		Removed due to Existing		
Organic Cut Volume	=		0.0 CF	=	- BCY	=	LCY
Cap Rock Cut Volume	=		0.0 CF	=	- BCY	=	LCY
Fort Thompson Cut Volume	$=$		0.0 CF	=	- BCY	=	LCY
EXCAVATION		TOTAL		$=$	- BCY	=	LCY

Structure Dimensions and Volumes

Units Underwater Concrete Seal Volume (Unreinforced concrete)	=	-	EA	For use only if existing canal is located where structure is to be placed, tremie pour below area of structure, approx. 20 ft past structure dimensions, 5 ft thick				
	=	CF						
Tremie Volume	=	-	CF	=		CY	Tremie	ncrete
Structure	1		Length	80	ft	Width	50	ft
Gate Openings	2		Height	40	ft	Width	25	ft
Number of Gates	=	2.	EA					

Foundation			
Depth	$=$	4.0 FT	Assumed
Length	$=$	80.0 FT	
Width	$=$	50.0 FT	
Volume	$=$	$16,000.0 \mathrm{CF}$	$=$

Superstructure/Gate Structure

Number of Towers	$=$	3.0 EA
Tower Cross-Section	$=$	129.5 SF
Tower Width	$=$	3.0 FT
Volume	$=$	$1,165.5 \mathrm{CF}$

[^1]

Wing Walls and Cutoff

Assume same for US and DS sides

Cutoff Walls

| Number | $=$ | 2.0 EA |
| ---: | :--- | ---: | :--- |
| Depth | $=$ | 15.0 FT |
| Width | $=$ | 50.0 FT |

Min. 10' required

Area of Sheet Pile	$=$	$1,500.0 \mathrm{SF}$	
TOTAL SHEETPILE			
Anchor Rod Length	$=$	60.0 FT	
spacing	$=$	4.0 FT	
number of rods	$=$	96.0 EA	

RIP RAP

Lengths and depths assumed, and similar on US and DS		
Number	$=$	2.0 EA
Length	$=$	50.0 FT
Width	$=$	160.0 FT
Depth	$=$	3.0 FT
Volume	$=$	$48,000.0 \mathrm{CF}$

Average from As-Built (70'/30')
Assume full Canal Width
Average depth

Geotextile Filter Fabric $=\quad 9,000.0 \mathrm{SF} \quad$ Fabric

NEW GATES

Assumptions borrowed from As-Built or Similar Structure
Gate weight calculations

Gate embeds/seal lengths

Gate Dimensions				
Width	=	22.0	FT	
Height	=	12.0	FT	
Gate Well Height	=	40.0	FT	
Gate Well Embed	=	102.0	FT	
Total Embed Length	=	204.0	FT	2 gates
Seal Length	=	46.0	FT	seal length is the perimeter of bottom and both sides
Total Seal Length	=	138.0	FT	total of 3 gates
US and DS Bulkhead Slot	$=$	180.0	FT	6 times vertical plus width of new gate per slot
Bulkheads	=	29,601.9	LB EA	Assume same size as gates

Number	$=$	4.0 EA	$\times 2$ per gate needed
Total Length of embeds	$=$	384.0 FT	
Total Weight of Stoplogs	$=$	$118,407.7 \mathrm{LB}$	$=$

TOTAL J BULB for GATES AND STOP LOGS = 567.0 FT

Backfill

Assume structure/wingwalls are backfilled as part of levee construction

Railings and Ladders				
Railing				
Length	$=$	540.0	FT	Assumed 4 time the length of a wing wall and 6 times the
Heigh	=	3.5	FT	width of the structure and twice the length
Ladders				
Coun	=	6.0	EA	Assumed ladders on each side of the structure
Heigh	=	18.5	FT	average of all three types
Total Heigh	=	111.0	FT	
Boat Barrier				
Numbe	=	2.0	EA	
Piles for Buoy	=	3.0	EA	Assume barrier has 3 points (2 at shore, 1 at canal)
Length	=	180.0	FT/EA	Assumed
Total Length	=	360.0	FT	Buoy style barrier
Total Pile	=	6.0	EA	
Site Fencing				
Lengt	$=$	1,000.0	FT	Approx. chainlink fence required ${ }^{\text {2 }} 600$ ', assume 1,000'
Gate	$=$	4.0	EA	Assumed
SWPPP				
Lengt	$=$	1,000.0	LF	Assumed
Floating Silt Boom	$=$	250.0	LF	Assumed
Control Building				
Size	$=$	288.0	SF	12×24
Electrica	=			
Communication	=			
Modular Precast Concrete Structure				
Exterior Walls				
Heigh	$=$	12.0	FT	
Perimeter Length	$=$	72.0	FT	
Thicknes	$=$	4.0	IN	
Volume	$=$	288.0		10.7 CY
Interior Wall				
Heigh	$=$	12.0	FT	

Coffer dam:	820.0	LF	
Coffer dam:	42,000.0	SF	
Tremie Concrete:	0.0	CY	
Excavation:	-	CY	
Concrete:	1,736.1	CY	
Steel Rebar:	20.8	CY (?)	
Steel Rebar:	137.7	TONS	
Sheetpile:	5,100.0	SF	160' Wall length x 30' Long sheets
Cap:	11.9	CY	
Railing:	540.0	LF	
Ladders:	6.0	EA	
Gates:	2.0	EA	$12^{\prime} \times 22$ '
Total steel gate wt	29.6	Tons	
Stoplogs	4.0	EA	
Total stoplog wt	59.20	Tons	
Seals:	138.0	LF	
Backfill:	-	LCY	
Rip-rap:	1,777.8	CY	
Geofabric:	9,000.0	SF	
Boat Barrier:	360.0	LF	
Barrier Piles:	6.0	EA	
Floating Curtain:	250.0	LF	
Silt Fence:	1,000.0	LF	
Control bldg.:	25.8	CY	Concrete
Total Doors	2.0	EA	Size 4'-0" x 7'-0"
Conduit Boxes	1.0	EA/DOOR	
Lock Boxes	1.0	EA/DOOR	
Fire Extinguishers	2.0	EA	
$26^{\prime \prime} \times 26^{\prime \prime}$ Exhaust Hoods	1.0	EA	
$30^{\prime \prime} \times 30$ " Exhaust Hoods	1.0	EA	
30 x x 30"Intake Hoods	2.0	EA	
18" x 18" Intake Air Hood	1.0	EA	
18" x 18" Exhaust Hood	1.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	
CTRL BLDG Gravel Pad	8.0	CY	
CTRL BLDG Pad Fabric	472.0	SF	
DEMO			
12"x15' Timber Pile Supports	162	ea	Approx. from As-Built
NEW			
1.5 'x30' SQ Concrete Piles	160	ea	Approx. @ 5' Spacing

Feature of Work: STRUCTURE S-84X: EXISTING SPILLWAY DEMO (assume similar to S-84, 1 gate)
Quantity Take Off:

User Input \quad Row Calculation Sum of Values above

Sheetpile Dewatering				
	Dewatering Pumps	$=$	TBD EA	Size to be determined
	Width	$=$	176.0 FT	Assume 20' from top of excavation
	Length	$=$	192.0 FT	Assume 20' from length of excavation
	Depth	$=$	50.0 FT	Approx. from As-Built
	Total Perimeter	$=$	736.0 LF	Sheetpile perimeter
	Area	$=$	$33,792.0 \mathrm{SF}$	

Spillway Excavation

Assume Spillway Excavation will be partially performed during canal excavation, if no canal exists

Length	$=$		152.0 FT		Add'l 40 assumed for wingwall installation each way		
Total Depth	$=$		40.0 FT				
Thickness of Organic	=		2.0 FT				
Thickness of Cap Rock	$=$		8.0 FT				
Thickness of Fort Thompson	$=$		30.0 FT				
Canal Slope			1.5 :1		From Typical Sections		
					Canal bottom: 80' wide, Canal	p: 16	
Bottom Width	$=$		16.0 FT				
Top Width	$=$		136.0 FT		Assumes slope same as canal		
Cross Section	$=$		640.0 SF				
Cross Section Organic	$=$		0.0 SF		Removed due to Existing		
Cross Section of Cap Rock	$=$		0.0 SF		Removed due to Existing		
Cross Section of Fort Thompson	$=$		0.0 SF		Removed due to Existing		
Organic Cut Volume	$=$		0.0 CF	$=$	- BCY	=	LCY
Cap Rock Cut Volume	$=$		0.0 CF	$=$	- BCY	=	LCY
Fort Thompson Cut Volume	$=$		0.0 CF	$=$	- BCY	=	LCY
EXCAVATION		TOTAL		$=$	BCY	$=$	LCY

Structure Dimensions and Volumes

Foundation				
Depth	$=$	6.0 FT	Assumed	
Length	$=$	72.0 FT		
Width	$=$	16.0 FT		
Volume	$=$	$6,912.0 \mathrm{CF}$	$=$	256.0 CY

Superstructure/Gate Structure

Number of Towers	$=$	$2.0 \quad \mathrm{EA}$	
Tower Cross-Section	$=$	129.5	SF
Tower Width	$=$	3.0	FT
Volume	$=$	777.0	CF

Wing Walls and Cutoff

Assume same for US and DS sides

Wingwalls			
Number	$=$	4.0 EA	
Length	$=$	60.0 FT	
Depth	$=$	47.0 FT	
Area of Sheet Pile to reach past riprap banks			
	$=$	$11,280.0 \mathrm{SF}$	
Pile Cap bottom of structure of slab			

Cutoff Walls

| Number | $=$ | 2.0 EA |
| ---: | :--- | ---: | :--- |
| Depth | $=$ | 15.0 FT |
| Width | $=$ | 16.0 FT |

 Width \(=16.0\) FT
 Min. 10' required

Area of Sheet Pile		480.0 SF	
TOTAL SHEETPILE			
Anchor Rod Length	$=$	60.0 FT	
spacing	$=$	4.0 FT	
number of rods	$=$	96.0 EA	

RIP RAP

Lengths and depths assumed, and similar on US and DS		
Number	$=$	2.0 EA
Length	$=$	50.0 FT
Width	$=$	160.0 FT
Depth	$=$	3.0 FT
Volume	$=$	$48,000.0 \mathrm{CF}$

Average from As-Built (70'/30')
Assume full Canal Width
Average depth

Geotextile Filter Fabric $=\quad 9,000.0$ SF \quad Fabric

GATES

Assumptions borrowed from As-Built or Similar Structure

Gate weight calculations

Gate embeds/seal lengths

Gate Dimensions				
Width	$=$	22.0	FT	
Height	=	12.0	FT	
Gate Well Height	$=$	40.0	FT	
Gate Well Embed	=	102.0	FT	
Total Embed Length	$=$	102.0	FT	2 gates
Seal Length	$=$	46.0	FT	seal length is the perimeter of bottom and both sides
Total Seal Length	$=$	138.0	FT	total of 3 gates
US and DS Bulkhead Slot	$=$	180.0	FT	6 times vertical plus width of new gate per slot
Bulkheads	$=$	29,601.9	LB EA	Assume same size as gates

Number	$=$	2.0 EA	x2 per gate needed
Total Length of embeds	$=$	282.0 FT	
Total Weight of Stoplogs	$=$	$59,203.8 \mathrm{LB}$	$=$

TOTAL J BULB for GATES AND STOP LOGS = 567.0 FT

Backfill

Assume structure/wingwalls are backfilled as part of levee construction

Railings and Ladders					
	Railing				
	Length	=	480.0	FT	Assumed 4 time the length of a wing wall and 6 times the
	Height	=	3.5	FT	width of the structure and twice the length
	Ladders				
	Count	=	6.0	EA	Assumed ladders on each side of the structure
	Height	=	18.5	FT	average of all three types
	Total Height	=	111.0	FT	
Boat Barrier					
	Number	$=$	2.0	EA	
	Piles for Buoys	=	3.0	EA	Assume barrier has 3 points (2 at shore, 1 at canal)
	Length	=	180.0	FT/EA	Assumed
	Total Length	=	360.0	FT	Buoy style barrier
	Total Piles	=	6.0	EA	
Site Fencing					
	Length	=	1,000.0	FT	Approx. chainlink fence required ~ 600 ', assume 1,000'
	Gates	=	4.0	EA	Assumed
SWPPP					
	Length	=	1,000.0	LF	Assumed
	Floating Silt Boom	$=$	250.0	LF	Assumed

Quantities Summary

Coffer dam:	736.0		
Coffer dam:	33,792.0	SF	
Tremie Concrete:	1,161.5	CY	
Excavation:	-	CY	
Concrete:	839.1	CY	
Steel Rebar:	10.1	CY (?)	
Steel Rebar:	66.6	TONS	
Sheetpile:	11,760.0	SF	160' Wall length x 30' Long sheets
Cap:	35.6	CY	
Railing:	480.0	LF	
Ladders:	6.0	EA	
Gates:	1.0	EA	$12^{\prime} \times 22$ '
Total steel gate wt	14.8	Tons	
Stoplogs	2.0	EA	
Total stoplog wt	29.60	Tons	
Seals:	138.0	LF	
Backfill:	-	LCY	
Rip-rap:	1,777.8	CY	
Geofabric:	9,000.0	SF	
Boat Barrier:	360.0	LF	
Barrier Piles:	6.0	EA	
Floating Curtain:	250.0	LF	
Silt Fence:	1,000.0	LF	
1.5 'x30' SQ Concrete Piles	70	ea	Approx. @ 4' Spacing

Feature of Work:	STRUCTURE PS-1: 1,500 CFS DIESEL ELECTRIC PUMP STATION
Scope Given:	1,500 CFS diesel pump station (by-pass not required for construction). Pump Station PS-1 (S-84) will pump water from the C-41A Canal toward the LOCAR Site, South of .the S-83 Structure.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure Pump Station G-508 with a smaller capacity. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Assume there will be a total of four 375 cfs pumps. - Assume discharge of pumps will be piped by 6-8' diameter pipes. - Assume the discharge structure will consist of a concrete headwall full height of the canal 30 ft wide 18 inch thick reinforced concrete, 20'x30' apron 18 inch thick reinforced concrete, wing walls extending 30ft up and downstream of the discharge point sloping from full height of the canal to bottom of canal 18 inch thick reinforced concrete and riprap lining 136 ft beyond the concrete apron. - Assume the excavation will extend 3 feet below the inflow canal bottom elevation. - Assume pump station will be constructed of reinforced concrete below grade and a combination of cast-inplace columns and reinforced CMU walls. - Assume a fuel pad will be required for storage tanks for the diesel pump and the diesel generator, assumed 2 feet thick reinforced concrete.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *Updated with some features shown on site planning documents.
Sequence of Work:	Cap slab will be placed in bottom of excavation. Structure will be built and excavation for the inlet basin will commence. Suction apron will be placed along with excavation for discharge piping and discharge headwall/discharge apron. Excavate out discharge piping and backfill levee.
Key Challenges, Risks, and Opportunities	

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR)		

Quantity Take Off:

User Input Row Calculation Sum of Values above

Sheetpile Dewatering				
	Dewatering Pumps	$=$	TBD EA	Size to be determined
	Width	$=$	294.0 FT	Assume 20' from top of excavation
Length	$=$	306.0 FT	Assume 20' from length of excavation	
Depth	$=$	46.0 FT	Assumed	
	Total Perimeter	$=$	$1,200.0 \mathrm{LF}$	Sheetpile perimeter
	Area	$=$	$89,964.0 \mathrm{SF}$	

Pump Station Excavation

Discharge Wall Length	$=$	218.0	FT			
Discharge Wall Height	$=$	45.0	FT			
Volume	$=$	44,244.0	CF	=	1,638.7	CY
Beam Cross-Section	$=$	6.0	SF		Borrowed from	m similar
Beam Length	$=$	210.0	FT			
volume of elevated beam	=	1,260.0	CF	=	46.7	CY
Cross-Section of Bridge and Ctrl Bldg Slab	$=$	162.0	SF			
Width	$=$	214.0	FT			
Volume	$=$	34,668.0	CF	$=$	1,284.0	CY

Wing Walls		
Number	$=$	2.0 EA
Depth	$=$	12.5 FT
Length	$=$	80.0 FT
Width	$=$	2.0 FT
Volume	$=$	$4,000.0 \mathrm{CF}$

Average depth
Borrowed from similar
Borrowed from similar
148.1

Piles for Buoys	$=$	3.0 EA	Assume barrier has 3 points (2 at shore, 1 at canal)
Length	$=$	$170.0 \mathrm{FT} / \mathrm{EA}$	
Total Length	$=$	170.0 FT	Buoy style barrier
Total Piles	$=$	3.0 EA	

Station and Building Equipment

Coffer dam:	1,200.0	LF	
Coffer dam:	89,964.0	SF	
Excavation:	51,741.9	CY	
Concrete:	12,178.4	CY	
Steel Rebar:	146.1	CY (?)	
Steel Rebar:	965.9	TONS	
Backfill:	64,677.4	LCY	
6' Discharge Pipe	1,600.0	LF	0.75" thick
6' Steel 45-bend	16.0	EA	0.75 " thick
375 CFS Pump	4.0	EA	
Rip-rap:	3,294.2	CY	
Geofabric:	32,368.0	SF	
Boat Barrier:	170.0	LF	
Barrier Piles:	3.0	EA	
Control bld.:	65.1	CY	
Trash Rack	9,180.0	SF	
Roll Up Garage Door:	168.0	SF	Concrete
Total Doors	4.0	EA	
Conduit Boxes	1.0	EA/DOOR	$12^{\prime} \times 14^{\prime}$
Lock Boxes	1.0	EA/DOOR	Size 4'-0" x 7'-0"
Louver Openings	8.0	EA	
Overhead Crane	2.0	EA	
Power Line Connection	2,500.0	LF	
Generator Fuel Tank	2,000.0	GALLONS	
Septic Tank System	1.0	EA	Assume available 2500LF
Potable Water Well	1.0	EA	
Steel Grate	548.0	SF	
Ladders	9.0	EA	
Concrete:	65.1	CY	
Chainlink Fence	2,280.0	LF	38' EA
Silt Fence	3,700.0	LF	Fuel pad, bollards, barrier
Silt Boom	600.0	LF	
Fire Extinguishers	2.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR) FEASIBILITY STUDY

CONTRACT 2 - RESERVOIR INFLOW PUMP STATION

SITE

- Construct Pump Station PS-2
- Construct Pump Station SPS-1
- Construct Res. Inflow-Outflow Canal CNL-2
- Construct Gated Outflow Culvert CU-1B
- Construct Canal Overflow Structure PCOS-1

Feature of Work:	STRUCTURE PS-2: 1,500 CFS DIESEL ELECTRIC PUMP STATION
Scope Given:	1,500 CFS diesel pump station (by-pass not required for construction). Pump Station PS-2 will be the inflow pump Station near C-41A to pump water from the Canal into the Reservoir East Cell.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure Pump Station G-508 with a smaller capacity. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Assume there will be a total of four 375 cfs pumps. - Assume discharge of pumps will be piped by 6-8' diameter pipes. - Assume the discharge structure will consist of a concrete headwall full height of the canal 30 ft wide 18 inch thick reinforced concrete, 20'x30' apron 18 inch thick reinforced concrete, wing walls extending 30ft up and downstream of the discharge point sloping from full height of the canal to bottom of canal 18 inch thick reinforced concrete and riprap lining 136 ft beyond the concrete apron. - Assume the excavation will extend 3 feet below the inflow canal bottom elevation. - Assume pump station will be constructed of reinforced concrete below grade and a combination of cast-inplace columns and reinforced CMU walls. - Assume a fuel pad will be required for storage tanks for the diesel pump and the diesel generator, assumed 2 feet thick reinforced concrete.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *As part of an RFI, the structures heights were increased by $6-\mathrm{ft}$, also changing the estimated length. *Updated with some features shown on site planning documents.
Sequence of Work:	Cap slab will be placed in bottom of excavation. Structure will be built and excavation for the inlet basin will commence. Suction apron will be placed along with excavation for discharge piping and discharge headwall/discharge apron. Excavate out discharge piping and backfill levee.
Key Challenges, Risks, and Opportunities	

Quantity Take Off:

User Input Row Calculation Sum of Values above

Sheetpile Dewatering				
	Dewatering Pumps	$=$	TBD EA	Size to be determined
	Width	$=$	294.0 FT	Assume 20' from top of excavation
Length	$=$	306.0 FT	Assume 20' from length of excavation	
Depth	$=$	46.0 FT	Assumed	
	Total Perimeter	$=$	$1,200.0 \mathrm{LF}$	Sheetpile perimeter
	Area	$=$	$89,964.0 \mathrm{SF}$	

Pump Station Excavation

Discharge Wall Length	$=$	218.0	FT			
Discharge Wall Height	$=$	45.0	FT			
Volume	$=$	44,244.0	CF	=	1,638.7	CY
Beam Cross-Section	$=$	6.0	SF		Borrowed from	m similar
Beam Length	$=$	210.0	FT			
volume of elevated beam	=	1,260.0	CF	=	46.7	CY
Cross-Section of Bridge and Ctrl Bldg Slab	$=$	162.0	SF			
Width	$=$	214.0	FT			
Volume	$=$	34,668.0	CF	$=$	1,284.0	CY

Wing Walls		
Number	$=$	2.0 EA
Depth	$=$	12.5 FT
Length	$=$	80.0 FT
Width	$=$	2.0 FT
Volume	$=$	$4,000.0 \mathrm{CF}$

Average depth
Borrowed from similar
Borrowed from similar
148.1

Piles for Buoys	$=$	3.0 EA	Assume barrier has 3 points (2 at shore, 1 at canal)
Length	$=$	$170.0 \mathrm{FT} / \mathrm{EA}$	
Total Length	$=$	170.0 FT	Buoy style barrier
Total Piles	$=$	3.0 EA	

Station and Building Equipment

Coffer dam:	1,200.0	LF	
Coffer dam:	89,964.0	SF	
Excavation:	51,741.9	CY	
Concrete:	12,178.4	CY	
Steel Rebar:	146.1	CY (?)	
Steel Rebar:	965.9	TONS	
Backfill:	64,677.4	LCY	
6' Discharge Pipe	1,600.0	LF	0.75" thick
6' Steel 45-bend	16.0	EA	0.75 " thick
375 CFS Pump	4.0	EA	
Rip-rap:	3,294.2	CY	
Geofabric:	32,368.0	SF	
Boat Barrier:	170.0	LF	
Barrier Piles:	3.0	EA	
Control bld.:	65.1	CY	
Trash Rack	9,180.0	SF	
Roll Up Garage Door:	168.0	SF	Concrete
Total Doors	4.0	EA	
Conduit Boxes	1.0	EA/DOOR	$12^{\prime} \times 14^{\prime}$
Lock Boxes	1.0	EA/DOOR	Size 4'-0" x 7'-0"
Louver Openings	8.0	EA	
Overhead Crane	2.0	EA	
Power Line Connection	2,500.0	LF	
Generator Fuel Tank	2,000.0	GALLONS	
Septic Tank System	1.0	EA	Assume available 2500LF
Potable Water Well	1.0	EA	
Steel Grate	548.0	SF	
Ladders	9.0	EA	
Concrete:	65.1	CY	
Chainlink Fence	2,280.0	LF	38' EA
Silt Fence	3,700.0	LF	Fuel pad, bollards, barrier
Silt Boom	600.0	LF	
Fire Extinguishers	2.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	

Feature of Work:	STRUCTURE SPS-1: 100 CFS DIESEL ELECTRIC PUMP STATION
Scope Given:	100 CFS diesel pump station (by-pass not required for construction). Seepage Pump Station SPS-1 will function as seepage pump station for the East Cells.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure Pump Station G-725 with a smaller capacity. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Assume there will be a total of two 50 cfs pumps and one 50 cfs auxiliary pump. - Assume pump station will be constructed of reinforced concrete below grade and a combination of cast-inplace columns and reinforced CMU walls. - Assume a fuel pad will be required for storage tanks for the diesel pump and the diesel generator, assumed 2 feet thick reinforced concrete.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *As part of an RFI, the structures heights were increased by $6-\mathrm{ft}$, also changing the estimated length. *Updated with some features shown on site planning documents
Sequence of Work:	Cap slab will be placed in bottom of excavation. Structure will be built and excavation for the inlet basin will commence. Suction apron will be placed along with excavation for discharge piping and discharge headwall/discharge apron. Excavate out discharge piping and backfill levee.
Key Challenges, Risks, and Opportunities	

Quantity Take Off:
User Input Row Calculation Sum of Values above

Sheetpile Dewatering				
	Dewatering Pumps			
	Width	$=$	TBD EA	Size to be determined
	Length	$=$	204.0 FT	Assume 20' from top of excavation
Depth	$=$	166.0 FT	Assume 20' from length of excavation	
	Total Perimeter	$=$	46.0 FT	Assumed
	Area	$=$	740.0 LF	Sheetpile perimeter
		$33,864.0 \mathrm{SF}$		

Pump Station Excavation

Discharge Wall Length	$=$	75.0	FT			
Discharge Wall Height	$=$	27.0	FT			
Volume	=	9,234.0	CF	=	342.0	CY
Beam Cross-Section	=	6.0	SF		Borrowed from	m similar
Beam Length	$=$	69.0	FT			
volume of elevated beam	=	414.0	CF	=	15.3	CY
Cross-Section of Bridge and Ctrl Bldg Slab	$=$	162.0	SF			
Width	$=$	71.0	FT			
Volume	$=$	11,502.0	CF	$=$	426.0	CY

Wing Walls		
Number	$=$	2.0 EA
Depth	$=$	12.5 FT
Length	$=$	56.0 FT
Width	$=$	2.0 FT
Volume	$=$	$2,800.0 \mathrm{CF}$

Average depth
Borrowed from similar
Borrowed from similar
103.7

Number	$=$	1.0 EA	
Piles for Buoys	$=$	3.0 EA	Assume barrier has 3 points (2 at shore, 1 at canal)
Length	$=$	$170.0 \mathrm{FT} / \mathrm{EA}$	
Total Length	$=$	170.0 FT	Buoy style barrier
Total Piles	$=$	3.0 EA	

Station and Building Equipment

Trash Rack Surface Area (total)	=	9,180.0	SF	Assume Trash rake is 60 ft tall and covers the width of the operating floor (153')
Roll Up Garage Door	=	168.0	SF	Assume Roll up garage door 12 'x14'
\# of Doors	=	4.0	ea	Assume 1 set of double doors and two other doors
\# louver openings	=	8.0	ea	Assume 8 louver openings 7'-4" square
Overhead Crane	=	2.0	ea	Assume 2 overhead cranes @ 25 tons each
Power Line Connection	=	2,500.0	LF	Assume power available 2500 If from site
Septic tank system	=	1.0	ea	Assume 1 septic tank system
Potable water	=	1.0	ea	Assume 1 potable water well will be required
Generator Fuel Tank	=	2000 Gallon	ea	Assume five 2000 gallon fuel tanks required
Fuel Pad dimensions	=	500.0	SF	Assume two 25'x20'x8" thick reinforced concrete slab on grade pad
		1,333.3	CF	$=\quad 49.4 \mathrm{CY}$
Floor Steel Grating	=	548.0	SF	Assume Wdith Bay (13'x5+18'x4) by 4'
Ladders	=	342.0	VLF	Assume 38 ft per pump bay (9 bays)
				of the operating floor
Concrete bollard	=	3.3	CF	8" DIA. Bollard, 56" tall, x1 per bay
Concrete barrier	=	419.6	CF	FDOT Inex 415, N.J. Shape Barrier
	SUM	422.9	CF	$=\quad 15.7 \mathrm{CY}$
CONCRETE				65.0 CY Concrete

Chain link Fence	=	2,280.0	LF	Ass	Similar to Merritt Pump Station
Silt Fence	=	3,700.0	LF	Ass	similar to Merritt Pump Station
Silt Boom	=	600.0	LF	Ass	similar to Merritt Pump Station
Conduit Boxes	=	1.0	EA/DO		
Lock Boxes	=	1.0	EA/DO		
Fire Extinguishers	=	2.0	EA		
20" Exhaust Fan	$=$	1.0	EA		Coolair CBA20L, 1 HP, 4702 CF
12" Exhaust Fan	=	1.0	EA		Coolair CDU12F17, 1/6 HP, 12

Quantities Summary

Coffer dam:	740.0	LF	
Coffer dam:	33,864.0	SF	
Excavation:	13,589.3	CY	
Concrete:	2,060.4	CY	
Steel Rebar:	24.7	CY (?)	
Steel Rebar:	163.4	TONS	
Backfill:	16,986.7	LCY	
x^{\prime} Discharge Pipe	300.0	LF	0.75" thick
x^{\prime} Steel 45-bend	12.0	EA	0.75" thick
185 CFS Pump	2.0	EA	
125 CFS Auxilliary Pump	1.0	EA	
Rip-rap:	1,133.3	CY	
Geofabric:	12,920.0	SF	
Boat Barrier:	170.0	LF	
Barrier Piles:	3.0	EA	
Control bld.:	65.0	CY	
Trash Rack	9,180.0	SF	Concrete
Roll Up Garage Door:	168.0	SF	
Total Doors	4.0	EA	$12^{\prime} \times 14^{\prime}$
Conduit Boxes	1.0	EA/DOOR	Size 4'-0" x 7'-0"
Lock Boxes	1.0	EA/DOOR	
Louver Openings	8.0	EA	
Overhead Crane	2.0	EA	
Power Line Connection	2,500.0	LF	
Generator Fuel Tank	2,000.0	GALLONS	Assume available 2500LF
Septic Tank System	1.0	EA	
Potable Water Well	1.0	EA	
Steel Grate	548.0	SF	
Ladders	9.0	EA	
Concrete:	65.0	CY	38' EA
Chainlink Fence	2,280.0	LF	Fuel pad, bollards, barrier
Silt Fence	3,700.0	LF	
Silt Boom	600.0	LF	
Fire Extinguishers	2.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	

Feature of Work:	STRUCTURES CU-1B: 280 LF DOUBLE GATED 13^{\prime} Wx12'H BOX CULVERT WITH ENDWALLS, 12’x24' CONTROL BUILDING
Scope Given:	556 LF double gated $13^{\prime} \times 12^{\prime}$ box culvert w/ endwalls w/ $12^{\prime} \times 24^{\prime}$ control building and HW/TW monitoring stations w/ walkways (by-pass not required for construction). Structures CU-1B is a gated box culvert which allows for outflow from the Seepage Canal CNL-1 Reach 7, discharging to the Inflow-Outflow Canal CNL-2.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure S-276 and S-277 as a double barrel culvert. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Assume Excavation will be to the same depth below finished grade as shown in contract drawings for similar projects with a slope of 1:2 for construction. - Assume material as 2 ft of organic, 8 ft of blastable cap rock, and 10 ft of Fort Thompson layer for the remainder of the excavation - until indicated otherwise. - Assume power will be provided from power lines in the area. - Assume that a diesel generator is needed for backup power.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *As part of an RFI, the structures heights were increased by $6-\mathrm{ft}$, also changing the estimated length.
Sequence of Work:	Excavation/blasting of limestone rock will be required to allow space for the foundation for the gated culvert structure. Culverts, foundations and structures will then be placed. Control structures for the culverts will be installed and a standalone Control station will be built in the area. An additional backup generator will be required along with local utility power. Apron, wing wall, and riprap placement will occur after Culverts have been placed. Backfill and compaction around the structure will occur, the plugs will be removed.
Key Outstanding Questions/Issues:	

Feature of Work:	STRUCTURE CU-1B: 556 LF DOUBLE GATED 13^{\prime} Wx12’H BOX CULVERT WITH ENDWALLS, 12'x24' CONTROL BUILDING		
Quantity Take Off:			
User Input		Row Calculation	Sum of Values above
Sheetpile Dewatering			
Dewatering Pumps	=	TBD EA	Size to be determined
Width	=	255.7 FT	Assume 20' from top of excavation
Length	=	356.0 FT	Assume 20 ' from length of excavation
Depth	=	46.0 FT	Assumed
Total Perimeter	=	1,223.3 LF	Sheetpile perimeter
Area	=	91,017.3 SF	

Inlet and Outlet Works

Number	$=$	2.0 EA
Foundation		
Length	$=$	
Depth	$=$	20.0 FT
Width	$=$	2.0 FT

Imbeds for Gate	$=$	124.0 LF
Gate Seal Length	$=$	124.0 LF

Backfill

Assume Culvert is backfilled as part of levee construction
RIP RAP

Quantities Summary

Coffer dam:	1,223.3	LF	
Coffer dam:	91,017.3	SF	
Excavation:	49,803.2	CY	
Concrete:	3,457.5	CY	
Steel Rebar:	41.5	CY (?)	
Steel Rebar:	274.2	TONS	
Sheetpile:	4,800.0	SF	PZ27x160LFx30FT
Cap:	23.7	CY	
Railing:	404.0	LF	
Grate:	312.0	SF	
Ladders:	2.0	EA	25' EA
Gates:	2.0	EA	13'x12' w/ mechanical components
Seals:	124.0	LF	
Backfill:	62,254.0	LCY	
Rip-rap:	3,374.8	CY	
Geofabric:	16,546.7	SF	
Boat Barrier:	340.0	LF	
Barrier Piles:	6.0	EA	
Floating Curtain:	980.0	LF	
Silt Fence:	6,492.0	LF	
Control bld.:	25.8	CY	Concrete
Total Doors	2.0	EA	Size 4'-0" x 7'-0'
Conduit Boxes	1.0	EA/DOOR	
Lock Boxes	1.0	EA/DOOR	
Fire Extinguishers	2.0	EA	
$26^{\prime \prime} \times 26^{\prime \prime}$ Exhaust Hoods	1.0	EA	
$30^{\prime \prime} \times 30$ " Exhaust Hoods	1.0	EA	
30 x 30 "Intake Hoods	2.0	EA	
$18^{\prime \prime} \times 18{ }^{\prime \prime}$ Intake Air Hood	1.0	EA	
18" x 18" Exhaust Hood	1.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	
Generator Fuel Tank:	1,000.0	GALLONS	
CTRL BLDG Gravel Pad	8.0	CY	
CTRL BLDG Pad Fabric	472.0	SF	

Total Length (feet) of CNL-2 along its C/L									
Component	$\begin{gathered} \hline \text { Cross Sect. } \\ \text { Area } \\ \text { (sqft) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Cross Sect. } \\ \text { Length } \end{gathered}$ (ft)	Length of Component on Site Plan	Neat Vol. (cuyd)	Neat Area (sqft)	Neat Area (sqyd)	Neat Area (acres)	\qquad	Structure Quantities (No.)
Clearing \& Grubbing					130,526		3		
Excavation of Top 6" of Topsoil within CNL-2 site				2,417	130,526				
Upper Soil Excavation for CNL-2 (18" below initial 6" topsoil excavation)	351.77		293	4,226					
Remaining Soil Excavation for CNL-2	3,475.77		293	47,684					
6" Thick Topsoil Layer	87.71		329	1,067					
Levee Embankment Fill	471.00		329	5,732					
6" Bedding Stone	130.02		329	1,582					
18" Type B riprap	506.64		329	6,166					
Berm Drain: 15" HDPE Drainage Pipe								122	
Berm Drain: 15" HDPE Flared End Section									2
Berm Drain: 6' 6 $^{\prime} \times$ x two layers thick sand cement bag pad									2
Berm Drain: Delineateor on post (one on each side of drain)									4
Sodding		177.16	329				1		
Hydroseeding Beyond levees		40.00	329				0.3		

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR) FEASIBILITY STUDY

CONTRACT 3 - RESERVOIR DAM FOUNDATION

- Construct Perimeter and Divider Dam Soil Bentonite Wall Below Existing Ground
- Construct Soil Stabilization/Foundation Prep for Perimeter and Divider Dam

SECTION A - West \& East Cells									
Total Length (feet) of Perimeter Dam C/L Along West \& East Cells	96,799								
Component	Cross Sect. Area (sqft)	Cross Sect. Length (ft)	Length of Component on Site Plan (ft)	Neat Vol. (cuyd)	Neat Area (sqft)	Neat Area (sqyd)	Neat Area (acres)	Pipe Quantities (LF)	Structure Quantities (No.)
Excavation of Top 6" of Topsoil									

SECTION D - Divider Dam Between West \& East Cells

Total Length (feet) of Divider Dam C/L Between West \& East Cells									
Component	Cross Sect. Area (sqft)	Cross Sect. Length (ft)	Length of Component on Site Plan (ft)	Neat Vol. (cuyd)	Neat Area (sqft)	Neat Area (sqyd)	Neat Area (acres)	Pipe Quantities \qquad (LF)	Structure Quantities (No.)
Clearing \& Grubbing		347.88	14,392				115		
24 " Soil Excavation Below Dam \& 50' Beyond Each Toe	661.76		14,392	352,747					
Slurry Cutoff Wall	150.00	50.00	14,392	79,957	719,609				

LAKE OKEECHOBEE COMPONENT A RESERVOR (LOCAR)		

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR) FEASIBILITY STUDY

CONTRACT 4 - RESERVOIR EARTHWORK

- Construct Perimeter and Divider Dams
- Construct Toe Ditch and Toe Road
- Construct Perimeter Canal CNL-1 and Perimeter Maintenance Road
- Construct Reservoir Outflow Canal CNL-3
- Construct Lykes AGI Earthwork Features (Levee and Borrow Ditch)

SECTION A - West \& East Cells Total Length (feet) of Perimeter Dam C/L Along West \& East Cells			96,799						
Component	Cross Sect. Area (sqft)	Cross Sect. Length (ft)	Length of Component on Site Plan (ft)	Neat Vol. (cuyd)	Neat Area (sqft)	Neat Area (sqyd)	Neat Area (acres)	$\begin{gathered} \text { Pipe } \\ \text { Quantities } \\ \text { (LF) } \end{gathered}$	Structure Quantities (No.)
Barbed Wire Perimeter Fence (installed along entire perimeter except along C-41A)			73,763						
Abandonment of FAS Irrigation Wells									22
Abandonment of Monitoring Wells									2
Clearing of Citrus Trees									
Clearing \& Grubbing									
Leveling of Planting Beds \& Backfilling of Ditches									
Soil Inversion									
-									
Additional Soil Excavation for Soil Cement Toe	37.32		95,942	132,629					
Additional Soil Excavation for Perimeter Canal	1,597.40		98,211	5,811,708					
Excavation for Offsite Drainge Collection Ditch (ODCD) \& Access Rd	1,721.08		11,354	723,734					
6" Thick Topsoil Layer - Part 1	73.47		97,309	264,790					
6 6" Thick Topsoil Layer - Part 2	25.08		98,006	91,043					
6 6" Thick Topsoil Layer - Part 3	18.98		99,009	69,594					
$6{ }^{\text {" T Thick Topsoil Layer - Part } 4}$	9.30		99,338	34,215					
6" Thick Topsoil Layer - Shoulders of Access Rd Along Southwest Side of ODCD	28.28		12,004	12,573					
$6{ }^{\text {" }}$ Thick Limerock Base - Toe Road	8.00		97,801	28,984					
6" Thick Limerock Base - Perim. Maint. Road Parallel to Perim. Dam Alignment	12.00		99,203	44,099					
6" Thick Limerock Base - Access Road Along Southwest Side of ODCD	12.00		12,004	5,336					
Additional Embankment Fill for higher toe ditch \& roads along Reach 7 of P. Canal	205.44		35,380	269,204					
Toe Road Embankment Fill ((oreduction for MESs \& culverts)	436.80		97,817	1,582,459					
Perim. Maint. Road Embankment Fill	105.23		99,203	386,639					
ODCD Access Road Embankment Fill	194.30		12,004	86,386					
Dam Embankment Fill	5,023.11		96,799	18,008,538					
Slurry Cutoff Wall	70.50	23.40	96,733	252,580	2,263,544				
24 "Thick Clean Sand Layer Beneath Soil Cement	73.36		96,370	261,858					
24 "Thick Filter Sand Layer Beneath Soil Cement	88.54		96,131	315,235					
$30^{\prime \prime}$ Wide Filter Sand Chimney Drain	39.50		96,987	141,889					
18" Thick Filter Sand Blanket Drain	125.57		97,237	452,237					
24 " Thick Clean Sand Layer Beneath Blanket Drain	152.10		97,210	547,618					
-									
$16^{\prime \prime}$ Soil Cement Revetment	194.79	148.95	95,974	692,407		1,588,351			
Soil Cement Toe	37.32		95,942	132,629					
6" Bedding Stone	42.23		980	1,533					
18" Type B riprap	121.13		980	4,397					
-									
24" Drainage Pipe								7,840	
24 " Mitered End Section									98
$6^{\text {" }}$ Slotted PVC Collector Pipe for Inside Toe Drain								96,044	
6" Solid PVC Discharge Pipe for Inside Toe Drain								3,848	
6" Backflow Preventer for each Inside Toe Drain									481
12" Slotted PVC Collector Pipe for Outside Toe Drain								97,463	
12" Solid PVC Discharge Pipe for Outside Toe Drain								2,196	
12" FDOT U-Type Conc. Endwall for each Outside Toe Drain									488
Sodding - Part 1		146.94	97,309				328		
Sodding - Part 2		50.99	98,006				115		
Sodding - Part 3		38.79	99,009				88		
Sodding - Part 4		18.98	99,338				43		
Sodding - Access Road Along Southwest Side of ODCD		88.76	12,004				24		
Hydroseeding Beyond Perimeter Maintenance Rd.		10.00	99,368				23		

SECTION D - Divider Dam Between West \& East Cells

Total Length (feet) of Divider Dam C/L Between We			14,392
Component	Cross Sect. Area (sqft)	Cross Sect. Length (ft)	Length of Component on Site Plan (ft)
Additional Soil Excavation for Soil Cement Toe	71.49		14,392
Dam Embankment Fill	3,667.45		14,392
Slurry Cutoff Wall	99.60	33.20	14,392
24 "Thick Clean Sand Layer Beneath Soil Cement	147.99		14,392
24" Thick Filter Sand Layer Beneath Soil Cement	173.28		14,392
16" Soil Cement Revetment	313.07	239.24	14,392
Soil Cement Toe	71.49		14,392
6 6" Slotted PVC Collector Pipe for Toe Drains			
6" Solid PVC Discharge Pipe for Toe Drains			
6" Backflow Preventer for each Toe Drain			

Neat Vol. (cuyd)	Neat Area (sqft)	Neat Area (sqyd)	Neat Area (acres)	$\begin{gathered} \text { Pipe } \\ \text { Quantities } \end{gathered}$ (LF)	Structure Quantities (No.)
38,106					
1,954,913					
53,091	477,821				
78,888					
92,368					
166,881		382,571			
38,106					
				28,784	
				1,152	
					144

LAKE OKEECHOBEE COMPONENT A RESERVOR (LOCAR)		

TYPICAL SECTION - Reservoir West Inflow-Outflow Canal (CN Total Length (feet) of CNL-3 along its C/L			4,411						
Component	$\begin{gathered} \hline \text { Cross Sect. } \\ \text { Area } \\ \text { (sqft) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cross Sect. } \\ & \text { Length } \end{aligned}$ (ft)	Length of Component on Site Plan	Neat Vol. (cuyd)	Neat Area (sqft)	Neat Area (sqyd)	Neat Area (acres)	Pipe Quantities (LF)	Structure Quantities (No.)
Clearing \& Grubbing along CNL-3		510.00	4,411				52		
Clearing \& Grubbing along ODCD-2		80.00	3,016				6		
Excavation of Top 6" of Topsoil for CNL-3	231.72		4,411	37,859					
Upper Soil Excavation for CNL-3 (18" below initial 6" topsoil excavation)	272.91		4,411	44,591					
Remaining Soil Excavation for CNL-3	2,390.63		4,411	396,261					
Excavation of Top 6" of Topsoil for ODCD-2	19.25		3,016	2,150					
Remaining Soil Excavation for ODCD-2	105.75		3,016	11,811					
6" Thick Topsoil Layer	142.98		4,411	23,361					
Levee Embankment Fill	1,501.39		4,411	245,308					
6" Bedding Stone	114.24		1,592	6,737					
18" Type B riprap	335.05		1,592	19,758					
Berm Drain: 15" HDPE Drainage Pipe								1,062	
Berm Drain: 15 " HDPE Flared End Section									18
Berm Drain: 6' $\times 6$ ' \times two layers thick sand cement bag pad									18
Berm Drain: Delineateor on post (one on each side of drain)									36
Sodding		270.88	4,411				27		
Hydroseeding Beyond levees along CNL-3		40.00	4,411				4.1		
Hydroseeding Beyond levees along ODCD-2		80.00	3,016				5.5		

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR) FEASIBILITY STUDY

CONTRACT 5 - RESERVOIR DAM STRUCTURES

- Construct Overflow Spillways OS-1 and OS-2
- Construct Gated Outflow Culvert CU-1A
- Construct Gated Outflow Culvert CU-2
- Construct Divider Dam Structure DDS-1

Feature of Work:	STRUCTURES OS-1: EMERGENCY OVERFLOW UN-GATED WEIR/SPILLWAY
Scope Given:	Emergency overflow weir/spillway (by-pass not required for construction). Structure OS-1 is an overflow spillway for the East Cell, once it reaches the maximum crest $E L=50.6-\mathrm{ft}$ NAVD being utilized as the reservoir storage limit.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure plans and cross-sections provided as part of site planning documents. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Reservoir is not operational prior to overflow weir being constructed. - Assumed that levee is constructed to design grade of overflow weir. Minimal excavation is needed prior to placement of concrete. - Assumed that the weir will start at the toe of the levee then rise at a constant slope up to top of canal, be 14 ft wide, then back down to the opposite toe of the levee.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *As part of an RFI, the structures heights were increased by $6-\mathrm{ft}$, also changing the estimated length.
Sequence of Work:	- \quad Site survey and stake entire area of Emergency Overflow Weir. - Silt Fence the entire site. Silt fence maintenance will be ongoing during construction of the overflow weir. - Excavate site for keyed ends near the toe of the levee and the intersection of the levee crown and the weir. - Place filter fabric below future holes, set and tie reinforcing. Form, place, finish, and cure concrete. Saw cut joints. Strip forms backfill and compact at edges of concrete.
Key Outstanding Questions/Issues:	

Quantities Summary

Concrete:	$2,471.8$	CY
Steel Rebar:	29.7	$\mathrm{CY}(?)$
Steel Rebar:	196.0	TONS
Silt Fence:	857.5	LF

Feature of Work:	STRUCTURES OS-2: EMERGENCY OVERFLOW UN-GATED WEIR/SPILLWAY
Scope Given:	Emergency overflow weir/spillway (by-pass not required for construction). Structure OS-2 is an overflow spillway for the West Cell, once it reaches the maximum crest $E L=50.6-\mathrm{ft}$ NAVD being utilized as the reservoir storage limit.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure plans and cross-sections provided as part of site planning documents. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Reservoir is not operational prior to overflow weir being constructed. - Assumed that levee is constructed to design grade of overflow weir. Minimal excavation is needed prior to placement of concrete. - Assumed that the weir will start at the toe of the levee then rise at a constant slope up to top of canal, be 14 ft wide, then back down to the opposite toe of the levee.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *As part of an RFI, the structures heights were increased by $6-\mathrm{ft}$, also changing the estimated length.
Sequence of Work:	- \quad Site survey and stake entire area of Emergency Overflow Weir. - Silt Fence the entire site. Silt fence maintenance will be ongoing during construction of the overflow weir. - Excavate site for keyed ends near the toe of the levee and the intersection of the levee crown and the weir. - Place filter fabric below future holes, set and tie reinforcing. Form, place, finish, and cure concrete. Saw cut joints. Strip forms backfill and compact at edges of concrete.
Key Outstanding Questions/Issues:	

Quantities Summary

Concrete:	$2,471.8$	CY
Steel Rebar:	29.7	$\mathrm{CY}(?)$
Steel Rebar:	196.0	TONS
Silt Fence:	857.5	LF

Feature of Work:	STRUCTURES CU-1A: 556 LF DOUBLE GATED 13’Wx12'H BOX CULVERT WITH ENDWALLS, 12'x24' CONTROL BUILDING
Scope Given:	556 LF double gated $13^{\prime} \times 12^{\prime}$ box culvert w/ endwalls w/ $12^{\prime} \times 24^{\prime}$ control building and HW/TW monitoring stations w/ walkways (by-pass not required for construction). Structure CU-1A is a gated box culvert which allows for outflow from the East Cell, discharging to the Seepage Canal CNL-1 Reach 7.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure S-276 and S-277 as a double barrel culvert. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Assume Excavation will be to the same depth below finished grade as shown in contract drawings for similar projects with a slope of 1:2 for construction. - Assume material as 2 ft of organic, 8 ft of blastable cap rock, and 10 ft of Fort Thompson layer for the remainder of the excavation - until indicated otherwise. - Assume power will be provided from power lines in the area. - Assume that a diesel generator is needed for backup power.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *As part of an RFI, the structures heights were increased by $6-\mathrm{ft}$, also changing the estimated length.
Sequence of Work:	Excavation/blasting of limestone rock will be required to allow space for the foundation for the gated culvert structure. Culverts, foundations and structures will then be placed. Control structures for the culverts will be installed and a standalone Control station will be built in the area. An additional backup generator will be required along with local utility power. Apron, wing wall, and riprap placement will occur after Culverts have been placed. Backfill and compaction around the structure will occur, the plugs will be removed.
Key Outstanding Questions/Issues:	

Imbeds for Gate	$=$	124.0 LF
Gate Seal Length	$=$	124.0 LF

Backfill

Assume Culvert is backfilled as part of levee construction
RIP RAP

Quantities Summary

Coffer dam:	1,775.3	LF	
Coffer dam:	161,581.3	SF	
Excavation:	93,302.1	CY	
Concrete:	6,057.3	CY	
Steel Rebar:	72.7	CY (?)	
Steel Rebar:	480.4	TONS	
Sheetpile:	4,800.0	SF	PZ27x160LFx30FT
Cap:	23.7	CY	
Railing:	404.0	LF	
Grate:	312.0	SF	
Ladders:	2.0	EA	25' EA
Gates:	2.0	EA	$13^{\prime} \times 12$ ' w/ mechanical components
Seals:	124.0	LF	
Backfill:	116,627.7	LCY	
Rip-rap:	3,374.8	CY	
Geofabric:	16,546.7	SF	
Boat Barrier:	340.0	LF	
Barrier Piles:	6.0	EA	
Floating Curtain:	980.0	LF	
Silt Fence:	6,492.0	LF	
Control bld.:	25.8	CY	Concrete
Total Doors	2.0	EA	Size 4'-0" x 7'-0"
Conduit Boxes	1.0	EA/DOOR	
Lock Boxes	1.0	EA/DOOR	
Fire Extinguishers	2.0	EA	
26" x 26" Exhaust Hoods	1.0	EA	
30" x 30" Exhaust Hoods	1.0	EA	
30 x 30"Intake Hoods	2.0	EA	
18 " x 18" Intake Air Hood	1.0	EA	
18" x 18" Exhaust Hood	1.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	
Generator Fuel Tank:	1,000.0	GALLONS	
CTRL BLDG Gravel Pad	8.0	CY	
CTRL BLDG Pad Fabric	472.0	SF	

Feature of Work:	STRUCTURES CU-2: 556 LF DOUBLE GATED 13’Wx12'H BOX CULVERT WITH ENDWALLS, 12'x24' CONTROL BUILDING
Scope Given:	556 LF double gated $13^{\prime} \times 12^{\prime}$ box culvert w/ endwalls w/ 12’x24' control building and HW/TW monitoring stations w/ walkways (by-pass not required for construction). Structure CU-2 is a gated box culvert which allows for outflow from the West Cell, discharging to the Seepage Canal CNL-3.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure S-276 and S-277 as a double barrel culvert. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Assume Excavation will be to the same depth below finished grade as shown in contract drawings for similar projects with a slope of 1:2 for construction. - Assume material as 2 ft of organic, 8 ft of blastable cap rock, and 10 ft of Fort Thompson layer for the remainder of the excavation - until indicated otherwise. - Assume power will be provided from power lines in the area. - Assume that a diesel generator is needed for backup power.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *As part of an RFI, the structures heights were increased by 6-ft, also changing the estimated length.
Sequence of Work:	Excavation/blasting of limestone rock will be required to allow space for the foundation for the gated culvert structure. Culverts, foundations and structures will then be placed. Control structures for the culverts will be installed and a standalone Control station will be built in the area. An additional backup generator will be required along with local utility power. Apron, wing wall, and riprap placement will occur after Culverts have been placed. Backfill and compaction around the structure will occur, the plugs will be removed.
Key Outstanding Questions/Issues:	

Imbeds for Gate	$=$	124.0 LF
Gate Seal Length	$=$	124.0 LF

Backfill

Assume Culvert is backfilled as part of levee construction
RIP RAP

Quantities Summary

Coffer dam:	1,775.3	LF	
Coffer dam:	161,581.3	SF	
Excavation:	93,302.1	CY	
Concrete:	6,057.3	CY	
Steel Rebar:	72.7	CY (?)	
Steel Rebar:	480.4	TONS	
Sheetpile:	4,800.0	SF	PZ27x160LFx30FT
Cap:	23.7	CY	
Railing:	404.0	LF	
Grate:	312.0	SF	
Ladders:	2.0	EA	25' EA
Gates:	2.0	EA	$13^{\prime} \times 12$ ' w/ mechanical components
Seals:	124.0	LF	
Backfill:	116,627.7	LCY	
Rip-rap:	3,374.8	CY	
Geofabric:	16,546.7	SF	
Boat Barrier:	340.0	LF	
Barrier Piles:	6.0	EA	
Floating Curtain:	980.0	LF	
Silt Fence:	6,492.0	LF	
Control bld.:	25.8	CY	Concrete
Total Doors	2.0	EA	Size 4'-0" x 7'-0"
Conduit Boxes	1.0	EA/DOOR	
Lock Boxes	1.0	EA/DOOR	
Fire Extinguishers	2.0	EA	
26" x 26" Exhaust Hoods	1.0	EA	
30" x 30" Exhaust Hoods	1.0	EA	
30 x 30"Intake Hoods	2.0	EA	
18 " x 18" Intake Air Hood	1.0	EA	
18" x 18" Exhaust Hood	1.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	
Generator Fuel Tank:	1,000.0	GALLONS	
CTRL BLDG Gravel Pad	8.0	CY	
CTRL BLDG Pad Fabric	472.0	SF	

Feature of Work:	STRUCTURE DDS-1: DIVIDER DAM TWO-WAY FLOW GATED SPILLWAY 1,500 CFS
Scope Given:	Gated spillway w/ (2) 10’Wx10'H Gates w/ 12’x24' Control Bldg. \& HW/TW Monitoring Stations w/ Walkways (by-pass not required for construction). Allows for flow between the East and West Cells through the Divider Dam.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to structure S-475. - Assume given dimensions in the engineering appendix govern over provided design documents for similar structure if no dimensions are given in the engineering appendix all dimensions will come from the similar structure. - Assume aprons are in addition to the concrete structure shown in the provided drawings. - Assume power for the structure will be provided from local power lines. - Assume that a diesel generator is needed for backup power. - Assume 50 KW Diesel Generator with 1000 gallon above ground tank.
Supporting Documentation: (by Cost Team)	Quantity Takeoff, Material Quotes
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized. Plans and specifications for recent similar work were utilized to capture the necessary scope and assumptions to construct the feature. *As part of an RFI, the structures heights were increased by 6 - ft , also changing the estimated length.
Sequence of Work:	Excavation of materials to allow for construction of the foundation of the cross canal gate structure and the canal apron/wingwall. Concrete work for structure followed by apron and wingwalls. Backfill suitable material around the structure and import riprap. Construct control station, diesel generator, and fuel storage. Place gates and other associated closure devices for the gate structure.
Key Outstanding Questions/Issues:	

Feature of Work:	STRUCTURE DDS-1: DIVIDER DAM TWO-WAY FLOW GATED SPILLWAY 1,500 CFS	
Quantity Take Off:		
User Input	Row Calculation	Sum of Values above
Sheetpile Dewatering		
Dewatering Pumps	TBD EA	Size to be determined
Width	152.5 FT	Assume 20' from top of excavation
Length	394.0 FT	Assume 20' from length of excavation
Depth	46.0 FT	Assumed
Total Perimeter	1,093.0 LF	Sheetpile perimeter
Area	60,085.0 SF	

Spillway Excavation

Assume Spillway Excavation will be partially performed during canal excavation, if no canal exists

Structure Dimensions and Volumes					
Units	$=$	1.0	EA	For use	ly if existing canal is lo
Underwater Concrete Seal Volume (Unreinforced concrete)	=	157,000.0	CF	tremie dimen	ur below area of structur ns, 5 ft thick
Tremie Volume	$=$	157,000.0	CF	=	5,814.8 CY
Structure	1		Length	274	ft
Gate Openings	1		Height	10	ft
Number of Gates	=	1.0	EA		
Superstructure/Gate Structure					
Number of Towers	=	2.0	EA		
Tower Cross-Section	=	160.0	SF		Assume from similar
Tower Width	=	3.0	FT		
Volume	=	960.0	CF	=	35.6 CY
Number of Piers	=	-	EA		
Pier Cross-Section	=	126.0	SF		Assume from similar
Pier Height	=	32.0	FT		Assume from similar
Volume	=	-	CF	=	CY
Abutment Walls	=	2.0	EA		

Lengths and depths assumed, and similar on US and DS

Number	$=$	2.0 EA		
Length	$=$	30.0 FT	Assume riprap will extend 30' from structure	
Width	$=$	167.5 FT	Assume canal width plus excavation width	
Depth	$=$	3.0 FT	Average depth	
Volume	$=$	$30,150.0 \mathrm{CF}$	$1,116.7 \mathrm{CY}$	Riprap
Geotextile Filter Fabric	$=$	$5,625.0 \mathrm{SF}$	Fabric	

NEW GATES

Assumptions borrowed from a similar design

Gate weight calculations

Height	$=$	12.0			Assume 2' taller than opening
Width	=	20.0			
3/8" Plate steel	=	15.3	$\mathrm{lb} / \mathrm{sq} \mathrm{ft}$		Given
1/2" Plate steel	=	20.4	$\mathrm{lb} / \mathrm{sq} \mathrm{ft}$		Given
1" Plate Steel	=	40.8	$\mathrm{lb} / \mathrm{sq} \mathrm{ft}$		Given
Gate Skin 3/8" Plate Steel	=	240.0	sq ft		Same size as gate dimensions above
3/8" Plate stiffeners and seal angles	=	87.0	sq ft		Assume 5 sq ft for seal angles and 82 for stiffeners
Horizontal C-Channels (1/2")	=	541.7	sq ft		Assume ea. channel is equivalent to 26"x25' (10 Channels).
Vertical C-Channels (1/2")	=	346.7	sq ft		Assume each vertical channel is 26"x16' (10 Channels).
Pull Pad eyes (1")	=	4.0	sq ft		Assume 4 pad eyes per gate @ 1 sq ft each
Total 3/8" Plus 10\% for misc. items	=	359.7	sq ft	=	5,503.4 lbs
Total 1/2" plus 15% for misc items	=	1,021.6	sq ft	=	20,840.3 lbs
Total 1" steel	=	4.0	sq ft	$=$	163.2 lbs
lbs/sq ft for 28'x14' gate	=	110.4	$\mathrm{lb} / \mathrm{sq} \mathrm{ft}$		
Area of single gate	=	240.0	sq ft		assumed 3 ft bigger then opening in each direction
Approximate weight of gate	=	26,506.9	lb		
Overweight factor for larger gates (10\%)	=	29,157.6	LB EA	=	29,157.6 LB Total
Total Steel Gate Weight				=	14.6 Tons

Gate embeds/seal lengths

[^2]
Backfill

Railings and Ladders

Coffer dam:	1,093.0	LF	
Coffer dam:	60,085.0	SF	
Tremie Concrete:	5,814.8	CY	
Excavation:	38,350.0	CY	
Concrete:	2,587.3	CY	
Steel Rebar:	31.0	CY (?)	
Steel Rebar:	205.2	TONS	
Sheetpile:	10,400.0	SF	160' Wall length $\times 30$ ' Long sheets
Cap:	29.6	CY	
Railing:	1,108.0	LF	
Ladders:	6.0	EA	
Gates:	1.0	EA	18'x25'
Total steel gate wt	14.6	Tons	
Stoplogs	2.0	EA	
Total stoplog wt	29.16	Tons	
Seals:	44.0	LF	
Backfill:	-	LCY	
Rip-rap:	1,116.7	CY	
Geofabric:	5,625.0	SF	
Boat Barrier:	340.0	LF	
Barrier Piles:	6.0	EA	
Floating Curtain:	250.0	LF	
Silt Fence:	1,000.0	LF	
Control bldg.:	25.8	CY	Concrete
Total Doors	2.0	EA	Size 4'-0" x 7'-0"
Conduit Boxes	1.0	EA/DOOR	
Lock Boxes	1.0	EA/DOOR	
Fire Extinguishers	2.0	EA	
26 " x 26" Exhaust Hoods	1.0	EA	
$30^{\prime \prime} \times 30$ " Exhaust Hoods	1.0	EA	
$30 " \times 30$ "Intake Hoods	2.0	EA	
18 " x 18" Intake Air Hood	1.0	EA	
18" x 18" Exhaust Hood	1.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	
CTRL BLDG Gravel Pad	8.0	CY	
CTRL BLDG Pad Fabric	472.0	SF	

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR) FEASIBILITY STUDY

CONTRACT 6 - RESERVOIR PERIMETER CANAL \& OUTFALL CANAL STRUCTURES

- Construct Perimeter Canal Overflow Structures PCOS-2 thru PCOS-4
- Construct Perimeter Canal Ungated Culvert PCCU-1 thru PCCU-4
- Construct Perimeter Canal (Manually) Adjustable Weir PCW-1 thru PCW-7
- Construct Ungated Outflow Culvert CU-3
- Construct Offsite Outfall Structures OOS-1 thru OOS-8
- Construct Lykes AGI Structures AGI-OS-1 and AGI-PS-1
- Demo 2 Lykes AGI R12 Pump Station
- Construct ODCD-OS-1

Feature of Work:	PERIMETER CANAL CULVERT UNGATED (PCCU-1 thru PCCU-4)
Scope Given:	PCCU-1 supports the unpaved roadway crossing of CNL-1 Reach 2, to be located near the Divider Dam crest road north access ramp. PCCU-2 will be located under the reservoir perimeter maintenance road and will connect CNL-1 Reach 7 to the east end of the ODCD. PCCU-3 supports the unpaved roadway crossing of CNL-1 Reach 7, to be located near the Divider Dam crest road south access ramp. PCCU-4 will be located under the reservoir perimeter maintenance road and will connect CNL-1 Reach 7 to the west end of the ODCD.
Reference for Scope Basis:	
Scope Assumptions:	- Assume 48" RCP under site roads
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized.
Sequence of Work:	
Key Outstanding Questions/Issues:	

Feature of Work:	PERIMETER CANAL CULVERT UNGATED (PCCU-1 thru PCCU-4)
Quantity Take Off:	

PCCU	$=$	4.0 ea	
PCCU (each)			
48" RCP pipe to CNL-1			
Length	$=$	40.0 LF	Assumed for road
Diameter	$=$	4.0 FT	Assumed 48"
Excavation			
Depth	$=$	8.0 FT	Assume Depth
Bottom Width	$=$	12.0 FT	Dia. + 4' each way
Top Width	$=$	44.0 FT	2:1 @ Depth
Volume	$=$	$8,960.0 \mathrm{CF}$	
Volume per OOS	$=$	331.9 CY	

Total all PCCU-1 thru PCCU-4
160.0 LF 48"RCP Pipe

1,327.4 CY Excavation

Feature of Work:	PERIMETER CANAL WEIR (PCW-1 thru PCW-10) - MANUALLY ADJUSTABLE WEIR
Scope Given:	Manually adjustable weirs located at various points along perimeter canal. Allowable range for adjustment of weir crest to be determined during the PED phase.
Reference for Scope Basis:	
Scope Assumptions:	- Assume similar to manually adjustable weir structure proposed at C139 Annex, Structure G765A-C
Class of Estimate	Class 3 -Baseline (Feasibility/DPR/LRR)
Estimate Methodology:	When possible a corollary approach to the estimate development was utilized.
Sequence of Work:	
Key Outstanding Questions/Issues:	

Gate Opening Concrete Frame (borrowed from similar concept)

Pile Cap Width	$=$	3.0	FT	
2.75 'x4' Risers x2	=	22.0	SF	Borrowed from similar concept
$12^{\prime} \times 2$ ' Top Slab	=	24.0	SF	Borrowed from similar concept
Stairs 4'x4'	=	8.0	SF	Borrowed from similar concept
Concrete Volume	=	6.0	CY	
Steel Rebar	=	0.1	CY	Assumed 1.2\% volume of concrete
Steel Rebar	=	0.5	TONS	
drail				
Length	$=$	150.0	FT	Assume x2 Length of Walkway

Riprap								
	Length	=	75.0	FT		Assume 1/2 width of canal		
	Width	=	6.0	FT		Assumed		
	Depth	=	2.5	FT		2-ft Type B and 0.5-ft bedding		
	Volume	=	1,125.0	CF	$=$	41.7	CY	Riprap
Geotextile	er Fabric	$=$	1,950.0	SF		Fabric		

Total all PCW-1 thru PCW-7

Sheetpile Area	$=$	$32,000.0 \mathrm{SF}$ Assume PZ-27	
Concrete Volume	$=$	226.7 CY	
Steel Rebar	$=$	18.0 TONS	
Weir Slide Gates	$=$	10.0	ea Assume 4' $\times 4^{\prime}$ Gate with Frame/Embeds/Seals
Riprap	$=$	416.7 CY Type B	
Geotextile Fabric	$=$	$19,500.0 \mathrm{SF}$	

Fire Extinguishers	$=$	2.0	EA	
26" x 26" Exhaust Hoods	=	1.0	EA	
$30 " \times 30$ " Exhaust Hoods	=	1.0	EA	
30" x 30"Intake Hoods	=	2.0	EA	
18 " x 18" Intake Air Hood	=	1.0	EA	
18 " x 18" Exhaust Hood	=	1.0	EA	
20" Exhaust Fan	=	1.0	EA	Coolair CBA20L, 1 HP, 4702 CFM @ 3/8" SP
12" Exhaust Fan	=	1.0	EA	Coolair CDU12F17, 1/6 HP, 1210 CFM @ 1/4" SP
Generator Fuel Tank	=	1,000.0	GALLON	
Gravel Pad	$=$	216.0	CF	Assume 50\% greater area than building, 6 " thick
	=	8.0	CY	
Filter Fabric		472.0	SF	

Quantities Summary

Coffer dam:	1,115.3	LF	
Coffer dam:	76,053.3	SF	
Excavation:	32,701.2	CY	
Concrete:	3,162.2	CY	
Steel Rebar:	37.9	CY (?)	
Steel Rebar:	250.8	TONS	
Sheetpile:	4,800.0	SF	PZ27x160LFx30FT
Cap:	23.7	CY	
Railing:	404.0	LF	
Grate:	384.0	SF	
Ladders:	2.0	EA	25' EA
Gates:	0	EA	
Seals:	0.0	LF	
Backfill:	40,876.5	LCY	
Rip-rap:	60.4	CY	
Geofabric:	1,632.0	SF	
Boat Barrier:	340.0	LF	
Barrier Piles:	6.0	EA	
Floating Curtain:	980.0	LF	
Silt Fence:	6,492.0	LF	
Control bld.:	25.8	CY	Concrete
Total Doors	2.0	EA	Size 4'-0" x 7'-0'
Conduit Boxes	1.0	EA/DOOR	
Lock Boxes	1.0	EA/DOOR	
Fire Extinguishers	2.0	EA	
$26^{\prime \prime} \times 26^{\prime \prime}$ Exhaust Hoods	1.0	EA	
$30^{\prime \prime} \times 30$ " Exhaust Hoods	1.0	EA	
$30 " \times 30$ "Intake Hoods	2.0	EA	
18" x 18" Intake Air Hood	1.0	EA	
18" $\times 18$ " Exhaust Hood	1.0	EA	
20" Exhaust Fan	1.0	EA	
12" Exhaust Fan	1.0	EA	
Generator Fuel Tank:	1,000.0	GALLONS	
CTRL BLDG Gravel Pad	8.0	CY	
CTRL BLDG Pad Fabric	472.0	SF	

Feature of Work:	OFFSITE OUTFALL STRUCTURES (OOS-1 thru OOS-8)					
Quantity Take Off:						

Quantity	$=$	8.0 ea		Total all OOS-1	OOS-5	
FDOT Type D Ditch Bottom Inlet with Bleed Orifice				8.0 ea	Type D Inlet	
Quantity	=	1.0 ea	Assume 10' deep			
Depth	=	10.0 FT				
36 " RCP pipe to CNL-1						
Length	=	100.0 LF		Assumed	800.0 LF	36" RCP Pipe
Diameter	=	3.0 FT	Assumed 36"			
Excavation						
Depth	=	12.0 FT	Assume Depth +2			
Bottom Width	=	11.0 FT	Dia. + 4' each way			
Top Width	$=$	59.0 FT	2:1 @ Depth			
Volume	=	42,000.0 CF				
Volume per OOS	=	1,555.6 CY		12,444.4 CY	Excavation	
Dewatering						
Area	=	9,480.0 SF		75,840.0 SF	Dewatering	
Assume Top Width x Length and 10' each way						

Feature of Work:	STRUCTURES AGI PS-1: AGRICTULTURAL PUMP STATION (DEMOLITION AND RE- CONSTRUCTION)
Quantity Take Off:	

Assume similar to Pump Station 356

Seepage Pump Station Excavation

Length	$=$	105.0	FT					
Total Depth	=	21.5	FT					
Thickness of Organic	=	7.0	FT					
Thickness of Rippable Rock	$=$	14.5	FT					
Slope1	=	1.0	:1					
Slope2	=	1.0	:1					
Bottom Width	=	15.0	FT					
Top Width	$=$	58.0	FT					
Cross Section	$=$	784.8	SF					
Cross Section Organic	$=$	357.0	SF					
Cross Section of Cap Rock	$=$	427.8	SF					
Organic Volume	=	37,485.0	CF	=	1,388.3	BCY	=	1,735.4 LCY
Cap Rock Volume	$=$	44,913.8	CF	$=$	1,663.5	BCY	$=$	2,495.2 LCY
Backfill	=	8,239.9	CF	$=$	305.2	BCY	$=$	423.1 LCY
is 10% of excavated quantity.								
lear and Grub similar to work	=	18.0	ACRE	$=$	87,120.0	SY		

Inflow and Outflow Canal Excavation

Length	=	700.0	FT						
Total Depth	=	17.0	FT						
Thickness of Organic	=	7.0	FT						
Thickness of Common	=	-	FT						
Thickness of Cap Rock	=	10.0	FT						
Slope1	=	2.0	:1						
Slope2	=	2.0	:1						
Bottom Width	=	40.0	FT						
Top Width	=	108.0	FT						
Surface Area of Canal	$=$	75,600.0	SF	=	1.7	ACRE	=	8,400.0	SY
Organic Volume	=	460,600.0	CF	=	17,059.3	BCY	=	21,324.1	LCY
Cap Rock Volume	=	420,000.0	CF	=	15,555.6	BCY	=	23,333.3	LCY

Levee Degrade

Length		730.0	FT		Assume Degrade of levee required due to location of			
Height		10.4	FT		new pump station			
Slope1		2.0	:1					
Slope2		2.0	:1					
Top width		10.0	FT					
Bottom width		51.6	FT					
Cross Section	$=$	320.3	SF					
Surface Area of Levee	=	39,946.6	SF	$=$	0.9 ACRE			
Volume	=	233,833.6	CF	$=$	8,660.5 BCY	=	9,786.4	LCY
base area of levee	=	37,668.0	SF	=	4,185.3 SY	=	0.9	Acre
side slopes of levee	=	32,646.6	SF	=	3,627.4 SY	=	0.7	Acre
roadway area	=	7,300.0	SF	=	811.1 SY	=	0.2	Acre

| Feature of Work: OFFSITE DRAINAGE COLLECTION DITCH OUTFALL STRUCTURE (ODCD-OS-1) |
| :---: | :---: |
| Quantity Take Off: |

ODCD-OS

LAKE OKEECHOBEE COMPONENT A RESERVOIR (LOCAR) FEASIBILITY STUDY

CONTRACT 7 - RESERVOIR RECREATION AMENITIES

- Construct Recreation Amenities

ATTACHMENT 2

PRODUCTION RATE CALCULATIONS

TITLE:	Lake Okeechobee Component A Reservoir (LOCAR)		
SUBJECT:	Laker Defined Production Rate Calculations MADE BY:	SKV CHECKED BY:	SM

CSI TASK:

PUSH MUCK TO PLACE, FROM STOCKPILE [Dozer]

Excavate Muck Crew

PRODUCTION	3 cy bucket
	0.85% fill
$55 \mathrm{~min} / \mathrm{hr}$	
	$0.70 \mathrm{cycle} / \mathrm{min}$

99 cy/crew hr

CSI TASK:
CANAL/CULVERT EXCAVATION TO STOCKPILE
[3.5-cy Hydraul. Excav.]
Excavate Canals Crew

PRODUCTION

3.5 cy bucket
0.85 \% fill $55 \mathrm{~min} / \mathrm{hr}$
0.75 cycle/min

3 no. of excavators

	$369 \mathrm{cy} / \mathrm{crew} \mathrm{hr}$
CSI TASK:	
FILL AND COMPACT RANDOM FILL, CANALS	
[Dozer, Compactors]	
Fill and Compact Crew [Canals]	
PRODUCTION	
4 cy bucket 0.85 \% fill $55 \mathrm{~min} / \mathrm{hr}$ 0.63 cycle/min	
	$116 \mathrm{cy} / \mathrm{crew} \mathrm{hr}$

CSI TASK

FILL AND COMPACT ROAD STONE

> Fill and Compact Road Base Crew

PRODUCTION

$$
\begin{aligned}
& 3 \text { cy bucket } \\
& 0.85 \% \text { fill } \\
& 55 \mathrm{~min} / \mathrm{hr} \\
& 1.25 \mathrm{cycle} / \mathrm{min}
\end{aligned}
$$

TITLE:	Lake Okeechobee Component A Reservoir (LOCAR)		
SUBJECT:	Laker Defined Production Rate Calculations MADE BY:	SKV CHECKED BY:	SM

CSI TASK:

HAUL COFFERDAM MATERIAL TO NEXT SITE
[2-mile approx.]
Off Highway Haul Crew
PRODUCTION
41 cy truck
0.95% fill
8.5 min . for loading
2 mi . to disposal location
15 mph haul speed
4.3 min. dump time
$55 \mathrm{~min} / \mathrm{hr}$
1 no. of trucks

QUANTITY PER TRUCK	$39.0 \mathrm{cy} / \mathrm{truck}$
DURATION OF HAULING	0.52 hr

$\xrightarrow{\xrightarrow{\text { CSI TASK: }}}$

HAUL EXCESS MATERIAL TO RESERVOIR STOCKPILE [5-mile approx.]

Off Highway Haul Crew
PRODUCTION

QUANTITY PER TRUCK	$39.0 \mathrm{cy} / \mathrm{truck}$
DURATION OF HAULING	0.78 hr

CSI TASK:
MATERIAL SHORT HAUL
[1-mile approx.]
Off Highway Haul Crew
PRODUCTION
41 cy truck
0.95% fill
8.5 min. for loading
1 mi to disposal location
10 mph haul speed
4.3 min. dump time
$55 \mathrm{~min} / \mathrm{hr}$
1 no. of trucks
$39.0 \mathrm{cy} / \mathrm{truck}$
0.45 hr

TITLE:	Lake Okeechobee Component A Reservoir (LOCAR)			
SUBJECT:	User Defined Production Rate Calculations MADE BY:	SKV CHECKED BY:	SM	JOB NO.:

CSI TASK:

CLEARING AND GRUBBING

Clear and Grub Crew
PRODUCTION 480.0 min/acre
$\longrightarrow \longrightarrow$ 0.125 acre/hr

CSI TASK:
FILL AND COMPACT, SAND
[Front End Loader, Compactor]
Sand Fill Crew

PRODUCTION	
	3.0 cy per cycle
0.95% fill	
$55 \mathrm{~min} / \mathrm{hr}$	
	$1.6 \mathrm{cycle} / \mathrm{min}$
	1 no of excavators

		$250 \mathrm{cy} / \mathrm{crew} \mathrm{hr}$
CSI TASK:		
RIPRAP MATERIAL HAULING FROM OFFSITE		
[16-cy truck, 70-mile haul, $35-\mathrm{mph}$ avg.]		
	16-cy Truck Crew	
PRODUCTION		
	16 cy truck 0.90 \% fill 5.0 min . for loading 70 mi . to disposal location 35 mph haul speed 2.5 min . dump time $55 \mathrm{~min} / \mathrm{hr}$ 1 no. of trucks	
QUANTITY PER TRUCK	14.4 cy/truck	
DURATION OF HAULING	4.50 hr	
		$3.2 \mathrm{cy} / \mathrm{hr}$

CSI TASK:

RIPRAP PLACEMENT

Riprap Crew

PRODUCTION

3.0 cy per cycle
0.90 \% fill
$55 \mathrm{~min} / \mathrm{hr}$
0.3 cycle/min

1 no. of excavators

| TITLE: | Lake Okeechobee Component A Reservoir (LOCAR) | | |
| :--- | :--- | :--- | :--- | :--- |
| SUBJECT: | User Defined Production Rate Calculations | | |
| MADE BY: | SKV | JOB NO.: | |
| CHECKED BY: | SM | DATE: | $10 / 5 / 2023$ |

CSI TASK:

SOIL BENTONITE WALL, SPOILS SPREADING

[1-mile haul, on-site]
Spoils Disposal Crew
PRODUCTION
31.5 cy truck
0.90 \% fill
11.0 min. for loading
1 mi. to disposal location
5 mph haul speed
5.5 min. dump time
$45 \mathrm{~min} / \mathrm{hr}$
4 no. of trucks
QUANTITY PER TRUCK 28.4 cy/truck

DURATION OF HAULING 0.90 hr

ATTACHMENT 3

TENTATIVE PROJECT SCHEDULE

ATTACHMENT 4

MCACES SUMMARY PRINTOUT

Estimated by	Tetra Tech, Inc.
Designed by	Tetra Tech, Inc.
Prepared by	Tetra Tech, Inc
Preparation Date	$1 / 30 / 2024$
Effective Date of Pricing	$1 / 30 / 2024$
Estimated Construction Time	3,864 Days

This report is not copyrighted, but the information contained herein is For Official Use Only.

Description	Quantity	UOM	ContractCost	ProjectCost	CostOverride
Bid Item Summary Report			1,598,598,800	1,598,598,800	
Lake Okeechobee Component A Reservoir	1.00	LS	1,598,598,800	1,598,598,800	
CONTRACT 1 -S-84 Site	1.00	EA	$\begin{array}{r} 78,058,658.44 \\ \mathbf{7 8 , 0 5 8 , 6 5 8} \end{array}$	$\begin{gathered} 78,058,658.44 \\ \mathbf{7 8 , 0 5 8 , 6 5 8} \end{gathered}$	
011313 - Pumping Plants	1.00	EA	$\begin{aligned} & 63,587,852.95 \\ & \mathbf{6 3 , 5 8 7}, \mathbf{8 5 3} \end{aligned}$	$\begin{aligned} & 63,587,852.95 \\ & \mathbf{6 3 , 5 8 7}, \mathbf{8 5 3} \end{aligned}$	
011515 - Floodway Control/Diversion Structure	1.00	LS	14,470,805	14,470,805	
CONTRACT 2 - Reservoir Inflow Pump Station Site	1.00	EA	$\begin{aligned} & 114,306,636.18 \\ & \mathbf{1 1 4 , 3 0 6 , 6 3 6} \end{aligned}$	114,306,636.18 114,306,636	
020909 - Channels and Canals	1.00	LS	3,234,108	3,234,108	
021313 - Pumping Plants	1.00	EA	$\begin{aligned} & 95,154,896.75 \\ & \mathbf{9 5 , 1 5 4 , 8 9 7} \end{aligned}$	$\begin{aligned} & 95,154,896.75 \\ & \mathbf{9 5 , 1 5 4 , 8 9 7} \end{aligned}$	
021515 - Floodway Control/Diversion Structures	1.00	EA	$\begin{aligned} & 15,917,631.61 \\ & \mathbf{1 5 , 9 1 7 , 6 3 2} \end{aligned}$	$\begin{aligned} & 15,917,631.61 \\ & \mathbf{1 5 , 9 1 7 , 6 3 2} \end{aligned}$	
CONTRACT 3 - Reservoir Dam Foundation	1.00	EA	$\begin{aligned} & 170,498,798.47 \\ & \mathbf{1 7 0 , 4 9 8 , 7 9 8} \end{aligned}$	$\begin{aligned} & 170,498,798.47 \\ & \mathbf{1 7 0 , 4 9 8 , 7 9 8} \end{aligned}$	
030303 - Reservoirs	1.00	EA	$\begin{aligned} & 170,498,798.47 \\ & \mathbf{1 7 0 , 4 9 8 , 7 9 8} \end{aligned}$	$\begin{aligned} & 170,498,798.47 \\ & \mathbf{1 7 0 , 4 9 8 , 7 9 8} \end{aligned}$	
CONTRACT 4 - Reservoir Earthwork	1.00	EA	$\begin{array}{r} 1,124,691,638.26 \\ \mathbf{1 , 1 2 4 , 6 9 1 , 6 3 8} \end{array}$	$\begin{array}{r} 1,124,691,638.26 \\ \mathbf{1 , 1 2 4 , 6 9 1 , 6 3 8} \end{array}$	
040303 - Reservoirs	1.00	EA	$\begin{array}{r} 1,119,281,879.29 \\ \mathbf{1 , 1 1 9 , 2 8 1 , 8 7 9} \end{array}$	$\begin{array}{r} 1,119,281,879.29 \\ \mathbf{1 , 1 1 9 , 2 8 1 , 8 7 9} \end{array}$	
041111 - Levees \& Floodwalls	1.00	EA	$\begin{array}{r} 5,409,758.97 \\ \mathbf{5 , 4 0 9 , 7 5 9} \end{array}$	$\begin{array}{r} 5,409,758.97 \\ \mathbf{5 , 4 0 9 , 7 5 9} \end{array}$	
CONTRACT 5 - Reservoir Dam Structures	1.00	EA	$\begin{gathered} 76,395,521.08 \\ \mathbf{7 6 , 3 9 5 , 5 2 1} \end{gathered}$	$\begin{aligned} & 76,395,521.08 \\ & \mathbf{7 6 , 3 9 5 , 5 2 1} \end{aligned}$	
050303 - Reservoirs	1.00	EA	$\begin{aligned} & 16,437,413.65 \\ & \mathbf{1 6 , 4 3 7 , 4 1 4} \end{aligned}$	$\begin{aligned} & 16,437,413.65 \\ & \mathbf{1 6 , 4 3 7 , 4 1 4} \end{aligned}$	
051515 - Floodway Control/Diversion Structures	1.00	EA	$\begin{aligned} & 59,958,107.43 \\ & \mathbf{5 9 , 9 5 8}, \mathbf{1 0 7} \end{aligned}$	$\begin{aligned} & 59,958,107.43 \\ & \mathbf{5 9 , 9 5 8}, \mathbf{1 0 7} \end{aligned}$	

Description	Quantity	UOM	ContractCost	ProjectCost
			33,221,920.34	33,221,920.34
CONTRACT 6 - Reservoir Perimeter Canal \& Outfall Canal Structures	1.00	EA	33,221,920	33,221,920
060909 - Channels and Canals	1.00	LS	732,209	732,209
			12,825,976.83	12,825,976.83
061313 - Pumping Plants	1.00	EA	12,825,977	12,825,977
			19,663,734.20	19,663,734.20
061515 - Floodway Control/Diversion Structures	1.00	EA	19,663,734	19,663,734
			1,425,627.19	1,425,627.19
CONTRACT 7 - Recreation Features	1.00	EA	1,425,627	1,425,627
			1,425,627.19	1,425,627.19

ATTACHMENT 5

COST AND SCHEDULE RISK ANALYSIS RISK REGISTER

					Project Cost			Project Schec	
亗	Risk/Opportunity Event	Risk Event Description	PDT Discussions on Impact and Likelihood	$\begin{aligned} & \text { Likelihoodd } \\ & \text { (cost) } \end{aligned}$	$\underset{\substack{\text { (cost) }}}{\text { (coact }}$	$\begin{gathered} \text { Risk Level } \\ \text { (cost) } \end{gathered}$	$\begin{gathered} \text { Likelihood } \\ \text { (sched) } \end{gathered}$	$\begin{gathered} \text { Impact } \\ \text { (sched) } \end{gathered}$	Risk Level (sched)
Project \& Program Management (PM)									
PM1	Planning process review revisions	This project will require significant review and approvals from USACE and other entities.	The concern is during development of the required documents delays could be encountered post-submission to various parties. Hard dates are set, and current studies are on track to meet dates.	ver Likely	Nefigible	${ }^{\text {Low }}$	Uniliely	Moderate	Low
PM2	Multiple overlapping projects	There are multiple overlapping projects in the region, and accounting for costs and benefits may be overlapping. Overall system needs to work together to provide benefits.	There are numerous projects within the area that may have different purposes and overlapping features. This may cause accounting and authorization issues due to cost share and project purposes. Current schedule is over 13-years to fully complete, and any issues could be somewhat absorbed within current schedule timeline.	kelv	Moderate	Low	Likely	Moderate	Medium
PM3	PED start date	PED phase start date is undetermined, and could push out current schedules.	Currently estimated to start in beginning of FY25, likely calendar year 2025 start. But start date for design is key to begin construction on current timeline. Provided schedule has already been moved out, and local sponsors are relatively confident of current dates.	${ }_{\text {unely }}$	Moderate	Medi	Likely	Mod	Mediur
PM4	Funding Profile	Project implementation is dependent on both the federal and local sponsor being able to meet financial obligation to meet the project.	Equal contributions or cost share from the sponsor and from USACE will be needed for future work. Progress could vary based on actual financial contributions in funding the project. There have been no funding issues on any previous projects in the area. PDT does not think there will be any significant funding concerns as this project is needed for the area north of Lake Okeechobee.	niliely	Moderate	Low	Uniliely	Moderate	${ }^{\text {Low }}$
PM5	Escalation/nflation rates	When dealing with large multiple year projects there are concerns for Iocalized inflation above CWCCIS.	The concern was that due to funding restrictions and multiple contracts that inflation in CWCCIS will be outpaced in future years. However, inflation in this region is not anticipated to rise beyond regular inflation levels used in CWCCIS. Potential shocks to the economy could cause different inflation rates. Per recommendation of USACE, inflation is not to be included in this current risk analysis.	Unikely	Mod	Low	Uniliely	Moderate	${ }^{\text {Low }}$
PM6	Late, and/or during construction scope changes/requests from owners	Concern of late, or after award of contract, changes to scope or requests for betterments.	This has occurred on other projects in region, whether from regulation changes, or sponsor requests. But risk is not assumed to be significant impact overall to costs or schedule.	${ }_{\text {Likely }}$	Moderate	Medium	Likely	Marginal	Medium
Contract Acquisition (CA)									
cA1	Large project size/multiple projects and contracts	Most likely due to the large size of the project the project will be broken up into separate contracts. Labor availability is a high risk due to size of project.	Coordination and sequencing may change significantly due to acquisition approach. Some thought has been put into contract acquisition into base case estimate. How schedule and cost could change based on actual implementation. Also, large number of crews likely required could max out space available. Availability of contractors to oversee work could be limited as well. Overlapping contracts are currently assumed in cost and schedule.	kelv	Siginfiant	${ }^{\text {High }}$	${ }_{\text {Likely }}$	Significant	High
CA2	Borrow/placement conflicts with multiple contracts	Concern for scoping of projects to ensure that the backfill and excavation and structure modifications are in the same contract.	Certain features and structures likely require specific coordination for completion. Current estimate and schedule need more work to balance this risk. Borrow sites are currently assumed to run parallel to the placement locations. If contractors have to go further than currently assumed, haul distances could increase which could increase costs to place embankment materials.	Possible	Modente	Medium	Uniliely	Marginal	Low

Lake Okeechobee Component A Reservoir - Risk Register

				Project Cost			Project Schedule		
岁	Risk/Opportunity Event	Risk Event Description	PDT Discussions on Impact and Likelihood	Likelihood (cost)	$\begin{gathered} \text { Impact } \\ \text { (cost) } \end{gathered}$	$\begin{aligned} & \text { Risk Level } \\ & \text { (cost) } \end{aligned}$	$\begin{gathered} \text { Likelihood } \\ \text { (sched) } \end{gathered}$	$\begin{gathered} \text { (spact } \\ \text { (sched) } \end{gathered}$	Risk Level (sched)
сA3	Underbid project	Risk of contractor underbidding their work and requiring new contractors to take over..	This risk has already happened on other reservoir projects in area. Team needs to ensure contractor(s) is properly prepared, with detailed documents (plans, specs) to accurately bid project. Hard to build this risk into estimate/schedules at this time, but is an overall risk to budgeting and scheduling during construction. If project is underbid though, current cost estimate should still be sufficient to cover cost impacts. Likely a schedule risk only. Risk is also mitigated because project scope is broken up between multiple contracts, such that a single contract underbid should not delay the entire project significantly.	ely	Nefifible	Low	${ }_{\text {Likely }}$	Marginal	Medium
cA4	Modifications during construction	On-going projects in area have incurred significant modifications to their contracts.	Design changes slow construction and add delay/changes to complete mods, or work through claims. Properly detailed design documents and reports can help mitigate, but this is simply a moderate risk to most construction projects. Most mods seen on other similar projects in region have been due to different site conditions and caused remodeling and redesign efforts.	ely	Moderate	Medium	${ }^{\text {Likely }}$	Moderate	Medium
cAs	Bid Protest	Protest and contract does not go to low bidder and leads to legal issues	Protests could lead to legal issues that take significant time to resolve. This litigation could delay selection of contractor and notice to proceed on construction contracts. Risk is off-set some by breaking project into separate construction contracts (currently have seven contracts). Schedule impacts are further mitigated using current project float. Cost is not anticipated to be impacted by this risk, beyond potential schedule delays.	Possible	Marginal	Low	${ }^{\text {Likely }}$	Moderate	Medium
cas	Unplamned contractor activities	With multiple contracts underway at same time, working in close proximity, one contractor's unplanned deviation from schedule could have consequences.	Contractors will be coordinating often to coordinate near term work plans to try and plan around this issue. Deviations could have consequences. Risk is relatively small at beginning of project, however conflicts will have higher impacts as project compresses. Overall, this is considered a low risk due to overall scale of costs and current duration in schedule.	Pos	Marginal	Low	Possible	Einal	Low
Technical Design (TD) / Project Scope Growth									
TD1	Intemal water conveyance	Water comes from long distances (Kissimmee) to reach reservoirs.	There is the possibility of different conveyance needs being required as more design work is performed. Project could require additional piping through the proposed location of the perimeter levees, among other activities not currently included in estimate. Design has accounted for many ors anticipated conveyance needs. Also, the C -41 canal is part of a major regional stormwater management system, and system. Further review or analysis could change curren design assumptions and features used for conveyance	ssible	Sigificant	dium	ossible	Marginal	${ }^{\text {Low }}$
TD2	Seepage	Seepage from deeper storage can be significant and is based on limited geotechnical data at this time.	Relatively unknown geotechnical data. There is concern that there could be a need for additional work to mitigate seepage impacts based on current cutoff wall designs. Current design and estimate includes an assumed depth of cutoff wall that typically regulates seepage to manageable levels given typical contractor equipment means and methods. Seepage pumps may need to be resized to accommodate variability in flows.	Likely	Modeate	Medium	${ }^{\text {Luely }}$	Negilible	${ }^{\text {Low }}$
TD3	Flood control operations	Isolated area, dam failure is risk for flood control, and Seminole tribe is in the area.	The stormwater management systems of nearby lands are operational and independent of the reservoir once the project is completed. Project is located in FEMA $100-\mathrm{yr}$ floodplain, and current design takes into consideration compensated storage issues that would otherwise adversely impact surrounding land owners. As such, risk to project cost and schedule is considered low at this time.	Unikely	Einal	Low	Uniliely	Marginal	Low

Lake Okeechobee Component A Reservoir - Risk Register

				Project Cost			Project Schedule		
㟥	Risk/Opportunity Event	Risk Event Description	PDT Discussions on Impact and Likelihood	$\underset{\substack{\text { Likelihood } \\ \text { (oost) }}}{\text { den }}$	$\underset{\substack{\text { (mpast) } \\ \text { (cost) }}}{\text { and }}$	$\begin{aligned} & \text { Risk Level } \\ & \text { (cost) } \end{aligned}$	$\underset{\text { (sched) }}{\substack{\text { Likelihood }}}$	$\begin{gathered} \text { (smpact } \\ \text { (sched) } \end{gathered}$	Risk Level (sched)
T04	Pump Station Designs	Current pump station designs are based on previous work, and further design changes could occur.	The Engineering appendix does not provided sufficient information to determine detailed design info for some of the proposed pump stations. It is likely that the pump station design will need additional work to ensure that the pumps are capable of handling the required rates. As long as pump station redesign does impact procurement of long lead items (ex. pumps, motors, etc.), impact to schedule should be minimal. Current construction of similar sized pump stations should be constructable well within current schedule. Current quantities and costs for the pump station facilities are based on current design standards and pump sizing requirements. There is not a significant risk of the pump station or pump station or pump sizing increasing, but if further analysis requires increases, costs could be significantly impacted.	essible	Significant	Medium	ossible	Marginal	Low
T05	Global geo tech assumptions	The team used global assumptions for the material strata for entire project although past experience shows that these can vary throughout the region.	Clay layer is relatively thin, so risk of geotech issues is at bottom of cutoff walls, which is a seepage issue. Could significant cost impact if further geotech analysis shows changes to cutoff wall design is required. Additional geotech information will be developed in PED phase, which could lead to changes in dam cross section.	Likely	Sigificiant	High	${ }_{\text {Likely }}$	Nefigible	Low
T06	Disposal of excess on site material	Currently there is no design for location or technique of onsite disposal of excess material.	Estimate is based on reasonable assumptions for handling of excess material. Currently assumes wasting any excess on-site in borrow pits, or spread across reservoir. Changes in assumptions are not likely to significantly impact current cost or schedule.	Unikely	Marginal	Low	Posisile	Nefifible	Low
T07	System not performing as intended	There is a technical risk that the system may not perform as expected and that some additional work may be required.	Some reformulation, rework or changes may be required due to unforeseen issues. This will need to be monitored to ensure the system performs as intended and changes are efficiently incorporated into the project	kely	Significant	High	Uniliely	Nefifible	Low
TD8	Wave Wall designs	Wave walls have subsequently been removed from the project and replaced with increased embankment heights.	No risk of this, as it has already occurred and has been incorporated into design and cost products.	Uniklely	Nefligile	Low	Uniliely	Nefigible	Low
T09	Survey	Detailed topographic survey has not been completed.	Additional survey will be collected in PED phase which may cause changes to dam footprint and/or cross section. This could have significant impacts to cost and schedule.	ble	Significant	Medium	Possible	Siginifant	Medium
TD10	Reorientation of divider dam	Potential to change divider dam from north/south to east/west	Would create longer divider dam and could affect dam cross sections. Changes in fetch length could also impact design of dam cross sections. This is an item that has been discussed, but is considered unlikely to occur, but could see significant impacts to costs and schedule.	niliely	Signficant	Medium	Uniliely	Siginificant	Medium
TD11	S83 Relocated	S-83 would be relocated if real estate could not be purchased	If this risk occurs, the $\mathrm{S}-83$ would be in a different location. Cost and schedule already account for the construction of this facility, and no significant new features or issues would be anticipated. As such this is an overall low impact to cost and schedule.	niliely	Nefligile	Low	Unikely	Nefigible	Low
${ }_{\text {TD12 }}$	DCM Changes	DCM, district design standards, other standard changes.	DCM are not likely to change significantly year to year during the PED phase. Other design standards are considered unlikely to change as well. As such, this is a low risk to both cost and schedule.	nilely	Negligile	Low	Uniliely	Nefifible	Low
${ }_{\text {TD13 }}$	Internal drainage system	Potential for clogged drainage systems, may need redesign	There is an issue with iron ochre on site. Iron ochre can clog drainage systems. There is potential to change perforated drainage pipes currently in design. This is likely more of a maintenance issue long term.	Unikelv	Nefligile	Low	Unikely	Nefigible	Low
TD14	Added project features	Other added features to improve operation of project and improve recreation.	Possible changes will occur near the end of the project. But these changes will be smaller changes, and major dam components will be unaffected. As such, this is considered a low risk to cost and schedule.	nilely	Negligle	Low	Uniliely	Nefligble	Low

				Project Cost			Project Schedule		
㝚	Risk/Opportunity Event	Risk Event Description	PDT Discussions on Impact and Likelihood	$\underset{\text { (cost) }}{\substack{\text { Likelihood }}}$	$\begin{gathered} \text { Impact } \\ \text { (cost) } \end{gathered}$	$\begin{aligned} & \text { Risk Level } \\ & \text { (cost) } \end{aligned}$		$\underset{\text { (sched) }}{\substack{\text { mpact }}}$	$\begin{gathered} \text { Risk Level } \\ \text { (sched) } \end{gathered}$
T015	Modifications to stormwater management system including Lykes Bros. site	Adverse conditions could impact surrounding agricultural operations if appropriate stormwater mitigation is not implemented	Current estimate includes efforts like above ground impoundments and agricultural pump stations for this issue. Other features and systems need to be designed and incorporated. These would include temporary drainage ditches and other features to be used until the permanent components are constructed. Overall costs for these temporary facilities are accounted for in current estimate and changes would be relatively minor compared to overall project cost.	asible	Moderate	Medium	Posisile	Nefifible	Low
T016	Potential switch from electric to diesel power pump stations	Current design assumes pump stations are electric, but change to diesel would increase overall construction and operation costs.	Project is not designed as a stormwater control facility, as such the need for diesel is not typically required. This reduces the risk of costs associated with having to construct and use diesel pumps. If diesel is required, then additional facility features (storage, containment, generators, etc.) would be required. Historically, electric as been used in similar situations, and it is unlikely the diesel will be required.	aikely	derate	Low	Uniliely	Marginal	Low
T017	Integrating tower and spillway	Combining overflow spillways with discharge structures.	Current design does not have discharge structures. Design only has spillways which have a higher failure risk. Therefore there is discussion for including additional discharge structures. Even with complete redesign to incorporate discharge structures, cost and schedule impacts are minor.	ery Likely	Sinal	Medium	Very Liely	Neifigble	Low
T018	Use of 1D hydrauic analysis	Potential of future 2D hydraulic model could change design features	There is small risk of 2 D model showing the need for perimeter canal and/or conveyance structure modifications. to the project even if necessary changes are implemented.	Unilely	ginal	Low	Uniliely	Marginal	Low
T019	Depth of cut-off wall	Potential increase in depth of cut-off wall.	This risk is accounted for in TD-2 and TD-5. As such this risk is not modeled.	Unikely	Nefigible	Low	Unilikely	Neiligble	Low
T020	Riprap material type (limestone vs. granite)	Changes in riprap material type assumptions would impact cost.	Current estimate assumes using 90% limestone and 10% granite for unit price development. Further analysis could ncrease the use of granite, which would increase material and hauling costs. It is unlikely that this change would occur, but overall impacts to the total project cost and schedule would be marginal relative to the total costs/schedule.	Possible	Moderate	Medium	Uniliely	Marginal	Low
Lands and Damages (LD)									
L01	Project Area HTRW	There is the possibility that the Farm Land may have HTRW in the area.	There is a small chance that areas will encounter HTRWs and need additional work to ensure that the area is free of hazardous material prior to starting the construction of the reservoir.	Unikely	Sinal	Low	yulively	Neiligble	Low
LD2	Land ownership	All of the land is privately owned and negotiations for sale are on-going. Risk of land owner not agreeing to sale.	Some land owners may be holding out for "right price" for their land. Also, other areas may only require $12,500-$ acres but owner may choose all or nothing approach for selling their property. These risks are critical, but would likely stop the project, as opposed to increase costs or schedule (so risk is not included in model at this time)	Likely	Eginal	Medium	Likely	critical	High
Regulatory \& Environmental (RE)									
RE1	Endangered species on levees and construction sites	Endangered species known to be in area- Snakes, Birds, etc.	Normal endangered species clauses should be included in construction contract to include nesting seasons, work windows, and monitoring plans. There is likely room in our current schedule to account for some species impacts, but overall it could be likely with moderate changes to cost/schedule.	Likely	Moderate	Medium	${ }^{\text {Likely }}$	Modeate	Medium
RE2	Water quality legal issues project wide	Water quality in system has been challenged before.	It is assumed that this will be resolved and water quality will be acceptable prior to the construction. Legal action or delays could significantly delay the project if this is not resolved the project will not move forward, this issue must be resolved prior to authorization of the project.	kely	Nefifible	Low	Unikely	critical	Medium

				Project Cost			Project Schedule		
蓖	Risk/Opportunity Event	Risk Event Description	PDT Discussions on Impact and Likelihood	Likelihood (cost)	$\begin{gathered} \text { Impact } \\ \text { (cost) } \end{gathered}$	Risk Level (cost)	$\begin{gathered} \text { Likelihood } \\ \text { (sched) } \end{gathered}$	$\underset{\substack{\text { (spmact } \\ \text { (sched) }}}{ }$	Risk Level (sched)
RE3	Cultural resources	Due to the nature of the area historical artifacts may be found during excavation.	During excavation there is the possibility of encountering cultural resources. Due to the small qty of top soil and the current usage of the land as agricultural may decrease the likelihood in this area. Although culturally sensitive material has been found in the area previously.	vervikly	Nefigible	Low	Ventikely	Nefigible	Low
RE4	Costs for cultural resources	Cultural Resource preservation.	Ensure adequate costs for cultural resource preservation are added to estimate. This is usually accounted for in PED and CM costs already, and as such is a low risk.	Unitiely	gible	Low	,ely	Nefigible	Low
Construction (CO)									
co1	Fuel price	Due to the large quantity of hauling that will take place on the job there is a chance that fuel prices increasing could impact the job.	It is unknown at this time what the future of fuel prices will do. This will be studied and determined what different increases in how fuel prices will effect the job.	Ven Liely	Modeate	High	ely	Iİble	Low
co2	Cut/fill quantities based on implementation	Cut/Fill quantities could vary from what is currently in estimate.	The concern is that you will need off site borrow or to create an excavation pit to ensure that all features have sufficient material. Additional processing of onsite materials could be needed. This could also change based once contractor is in field. However, previous projects have not seen significant variance in cutfill, but impacts of different hauling assumptions could have significant impact on cost.	Possible	Siginicant	Medium	ssible	Nefigible	Low
cos	Storm water management during construction	The concern is that there will be water influx to the area during a storm.	There is the possibility that the water will need to be pumped or allowed to dry. There is concern that during the process of scheduling the work there will be delays that adversely impact the operations of the features. Lessons learned from previous work also showed that rising groundwater and surface water due to storms is a high risk. Significant dewatering costs are included in estimate, but still a high risk due to variability of contractor pricing and current unknowns at site. Contractor should have built into contract sufficient features to build and maintain water management controls.	Luely	Moderate	Medium	Hiely	Moderate	Medium
co4	Weather impacts and delays	Extended wet weather and/or large storm events could impact the project.	Wet weather, large storms (hurricanes), flooding, and other weather risks are likely to occur during the construction. Contractor will likely prepare for typical weather impacts, but large events could cause significant delays and rework. Features need to be protected from storms, but contractors should have experience to account for reasonable delays in their overall project schedule	ely	Moderste	Medium	Hely	Moderate	Medium
Cost and Schedule (ES)									
ES1	Labor Rates	Local wage rate assumptions could vary from assumed and impact the estimate	Generally wage rates are low in the area however skilled workers generally can command higher wages similar to those in other areas. Wage rates in estimate are based on local market research with additional "incentive/subsistence" hourly add-ons.	ely	inal	Medium	Hely	Nefigible	Low
ES2	Estimate assumptions/like similar	Features were estimated using plans from similar structures with minimal design for the LOWRP. The assumption that local like similar features would be adequate to capture the necessary scope to construct the feature.	This concern has been somewhat addressed for this project. A detailed MCACES and BODR level design have been prepared. However, a significant uncertainty exists for procurement, permit and production rates utilized for project planning stage.	ely	Moderate	dium	Hely	Marginal	edium
ES3	Delays in fabrication equipment (supply chain issues)	Due to the number of specialty fabricated gates, pumps and motors, etc., there could be an impact to the project.	When dealing with specialty materials (gates, pumps etc.) there is always concern that the raw materials may not be available. The risk is either that a premium will have to be paid for the material or equipment or a delay to the delivery schedule of the material or equipment will cause a delay to the project. Primarily, pump fabrication has seen exceedingly long lead times. The current schedule has sufficient time to request, fabricate and install the pumps. But delays along this timeline could push out schedule and increase costs.	uthely	Sigificant	High	Hely	Significant	High

Lake Okeechobee Component A Reservoir - Risk Register

				Project Cost			Project Schedule		
岀	Risk/Opportunity Event	Risk Event Description	PDT Discussions on Impact and Likelihood	$\underset{\substack{\text { (cost) }}}{\text { Likelihod }}$	$\begin{gathered} \text { Impact } \\ \text { (cost) } \end{gathered}$	$\begin{gathered} \text { Risk Level } \\ \text { (cost) } \end{gathered}$	$\begin{gathered} \text { Likelihood } \\ \text { (scod) } \end{gathered}$	$\begin{gathered} \text { Impact } \\ \text { (sched) } \end{gathered}$	$\begin{gathered} \text { Risk Level } \\ \text { (sche } \end{gathered}$
Es4	Price quotes	Number of quotes received/used and accuracy of quotes used in current estimate.	The current MCACES uses many pricing sources, including recent bids on other reservoir projects in area. Risk that these bids and costs are simply low bids, or underbid, and thus current costs could be low. However, additional markups have been added to many quotes/bids to increase unit prices and ensure reasonable costs have been developed, and some quotes have been replaced with detailed labor, equipment and material developed cost items. Pump costs have been seeing significant price increases over recent years. Current pump pricing is based on vendor quote provided experienced fabricator. But still a high risk to cost and schedule from potential increases to the pumps. Due to the overall cost of primarily the pumps themselves, cost increases to key materials could be significant to the overall project cost.	ossible	Signifiant	Medium	Uniliely	Nefifible	Low
Es5	Productivity assumptions in estimate and schedule	Differing productivities between estimate and contractors in field.	Schedule has been formatted to account for reasonable productivities observed in similar projects in region. Estimate has been updated with same productivities Project has been prolonged to account for some conservative productivities. As such there is a likelihood of productivities differing but the impact would be moderate.	Ossible	Moderate	Ium	Posisile	Moderate	Medium
Es6	Concrete material and source	Availability and pricing of concrete materials could differ from those currently assumed.	The current estimate uses concrete pricing from on-going bid prices in the region, which does not necessarily define the source of the concrete (ex. ready-mix plant, batch plant, etc.). Further refinements to the estimating assumptions though could change the source of the concrete, which could have impacts on the cost and schedule. Due to the overall project cost, this is likely to have a marginal impact, and the schedule has sufficient time to account for potential hauling increases from changes to concrete source locations.	ble	Marginal	Low	Possible	Marginal	Low
External									
Ex1	Close out of other projects	Project dependencies may require successful and timely completion of predecessor projects.	Prioritization and closeout of other projects could effect the start and funding for this project. These effects could substantially change the project formulation and execution schedule. This risk will be noted but not modeled.	kely	Marginal	Medium	${ }^{\text {Likely }}$	Moderate	Medium
Ex2	Political or public opposition to project	There are many different agencies, organizations, and stakeholders in the project vicinity that could oppose portions of the project or its impacts real or perceived.	One public meeting held thus far, which received positive attendance and feedback. At this time, this risk is considered low, but should be continually monitored to gauge potential opposition issues. Local interested parties continue to be engaged during the feasibility process, and will continue to be engaged during PED process.	Unikely	Moderate	Low	Uniliely	Moderate	Low

ATTACHMENT 6

TOTAL PROJECT COST SUMMARY

This Estimate reflects the scope and schedule in report;
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)						TOTAL PROJECT COST (FULLY FUNDED)			
		COST	CNTG	CNTG	TOTAL	Program Year (Budget EC): Effective Price Level Date: 2024 1 OCT 23						INFLATED	COST	CNTG	FULL
WBS	Civil Works					ESC	COST	CNTG	TOTAL	$\begin{aligned} & \text { Spent Thru: } \\ & \text { 1-Oct-23 } \\ & (\$ K) \end{aligned}$	TOTAL FIRST cost (SK)				
$\frac{\text { NUMBER }}{A}$	$\frac{\text { Feature \& Sub-Feature Description }}{\boldsymbol{B}}$	$\frac{(\$ K)}{c}$	$\frac{(\$ K)}{D}$	$\frac{(\%)}{E}$	$\frac{(\$ K)}{F}$	$\frac{(\%)}{G}$	$\frac{(\$ K)}{H}$	$\frac{(\$ K)}{1}$	$\frac{(\mathrm{SK})}{\mathrm{J}}$	(\$K)	$\frac{(\$ K)}{K}$	$\frac{(\%)}{L}$	$\frac{(\$ K)}{M}$	$\frac{(\$ K)}{N}$	$\frac{(\$ K)}{0}$
03	RESERVOIRS	\$1,306,218	\$718,420	55.0\%	\$2,024,638	0.0\%	\$1,306,218	\$718,420	\$2,024,638	\$0	\$2,024,638	24.9\%	\$1,631,796	\$897,488	\$2,529,285
09	CHANNELS \& CANALS	\$3,966	\$2,181	55.0\%	\$6,148	0.0\%	\$3,966	\$2,181	\$6,148	\$0	\$6,148	19.3\%	\$4,734	\$2,603	\$7,337
11	LEVEES \& FLOODWALLS	\$5,410	\$2,975	55.0\%	\$8,385	0.0\%	\$5,410	\$2,975	\$8,385	\$0	\$8,385	26.1\%	\$6,822	\$3,752	\$10,574
13	PUMPING PLANT	\$171,569	\$94,363	55.0\%	\$265,932	0.0\%	\$171,569	\$94,363	\$265,932	\$0	\$265,932	17.4\%	\$201,411	\$110,776	\$312,187
14	RECREATION FACILITIES	\$1,426	\$784	55.0\%	\$2,210	0.0\%	\$1,426	\$784	\$2,210	\$0	\$2,210	38.0\%	\$1,967	\$1,082	\$3,048
15	FLOODWAY CONTROL \& DIVERSION STRL	\$110,010	\$60,506	55.0\%	\$170,516	0.0\%	\$110,010	\$60,506	\$170,516	\$0	\$170,516	20.3\%	\$132,309	\$72,770	\$205,078
	CONSTRUCTION ESTIMATE TOTALS:	\$1,598,599	\$879,229		\$2,477,828	0.0\%	\$1,598,599	\$879,229	\$2,477,828	\$0	\$2,477,828	23.8\%	\$1,979,039	\$1,088,471	\$3,067,510
01	LANDS AND DAMAGES	\$130,005	\$89,238	68.6\%	\$219,243	0.0\%	\$130,005	\$89,238	\$219,243	\$0	\$219,243	6.9\%	\$138,987	\$95,404	\$234,391
30	PLANNING, ENGINEERING \& DESIGN	\$399,650	\$219,807	55.0\%	\$619,457	0.0\%	\$399,650	\$219,807	\$619,457	\$0	\$619,457	10.1\%	\$440,138	\$242,076	\$682,214
31	CONSTRUCTION MANAGEMENT	\$147,071	\$80,889	55.0\%	\$227,960	0.0\%	\$147,071	\$80,889	\$227,960	\$0	\$227,960	19.8\%	\$176,120	\$96,866	\$272,986
	PROJECT COST TOTALS	\$2,275,325	1,269,164	55.8\%	\$3,544,488		\$2,275,325	\$1,269,164	\$3,544,488	\$0	\$3,544,488	20.1\%	\$2,734,284	\$1,522,817	\$4,257,100

\qquad CHIEF, COST ENGINEERING, xxx
\qquad PROJECT MANAGER, xxx
\qquad CHIEF, REAL ESTATE, xxx
\qquad CHIEF, PLANNING, xxx
\qquad CHIEF, ENGINEERING, xxx
\qquad CHIEF, OPERATIONS, xxx CHIEF, CONSTRUCTION, xxx
\qquad CHIEF, CONTRACTING,xxx
\qquad CHIEF, PM-PB, $x x x x$

Filename: LOCAR_TPCS_WORKING.xisx TPCS

This Estimate reflects the scope and schedule in report; LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC): Effective Price Level Date:			$\begin{aligned} & 2024 \\ & 1 \text { OCT } 23 \end{aligned}$					
		RISK BASED												
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	COST	CNTG	FULL
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)
A	PHASE 1 or CONTRACT 1	C	D	E	F	G	H	1	J	P	L	M	N	0
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$63,588	\$34,973	55.0\%	\$98,561	0.0\%	\$63,588	\$34,973	\$98,561	2029Q1	13.8\%	\$72,366	\$39,801	\$112,167
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$14,471	\$7,959	55.0\%	\$22,430	0.0\%	\$14,471	\$7,959	\$22,430	2029Q1	13.8\%	\$16,468	\$9,058	\$25,526
	CONSTRUCTION ESTIMATE TOTALS:	\$78,059	\$42,932	55.0\%	\$120,991		\$78,059	\$42,932	\$120,991			\$88,834	\$48,859	\$137,693
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2026 Q2	5.0\%	\$1,639	\$902	\$2,541
2.0\%	Planning \& Environmental Compliance	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2026 Q2	5.0\%	\$1,639	\$902	\$2,541
9.0\%	Engineering \& Design	\$7,025	\$3,864	55.0\%	\$10,889	0.0\%	\$7,025	\$3,864	\$10,889	2026Q2	5.0\%	\$7,377	\$4,058	\$11,435
2.0\%	Reviews, ATRs, IEPRs, VE	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2026Q2	5.0\%	\$1,639	\$902	\$2,541
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2026Q2	5.0\%	\$1,639	\$902	\$2,541
1.0\%	Contracting \& Reprographics	\$781	\$429	55.0\%	\$1,210	0.0\%	\$781	\$429	\$1,210	2026 Q2	5.0\%	\$820	\$451	\$1,271
4.0\%	Engineering During Construction	\$3,122	\$1,717	55.0\%	\$4,840	0.0\%	\$3,122	\$1,717	\$4,840	2029Q1	11.5\%	\$3,481	\$1,915	\$5,396
2.0\%	Planning During Construction	\$1,561	\$859	55.0\%	\$2,420	0.0\%	\$1,561	\$859	\$2,420	2029Q1	11.5\%	\$1,741	\$957	\$2,698
0.5\%	Adaptive Management \& Monitoring	\$390	\$215	55.0\%	\$605	0.0\%	\$390	\$215	\$605	2029Q1	11.5\%	\$435	\$239	\$674
0.5\%	Project Operations	\$390	\$215	55.0\%	\$605	0.0\%	\$390	\$215	\$605	2026 Q2	5.0\%	\$410	\$225	\$635
31	CONSTRUCTION MANAGEMENT													
7.2\%	Construction Management	\$5,620	\$3,091	55.0\%	\$8,711	0.0\%	\$5,620	\$3,091	\$8,711	2029Q1	11.5\%	\$6,266	\$3,446	\$9,713
1.0\%	Project Operation:	\$781	\$429	55.0\%	\$1,210	0.0\%	\$781	\$429	\$1,210	2029Q1	11.5\%	\$870	\$479	\$1,349
1.0\%	Project Management	\$781	\$429	55.0\%	\$1,210	0.0\%	\$781	\$429	\$1,210	2029Q1	11.5\%	\$870	\$479	\$1,349
	CONTRACT COST TOTALS:	\$104,755	\$57,615		\$162,370		\$104,755	\$57,615	\$162,370			\$117,663	\$64,715	\$182,378

LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{aligned} & \text { 7-Jan-24 } \\ & \text { 1-Oct-23 } \end{aligned}$	Program Year (Budget EC): Effective Price Level Date:			$\begin{aligned} & 2024 \\ & 1 \text { OCT } 23 \end{aligned}$	Mid-Point Date	INFLATED$(\%)$	COST		FULL (\$K)
WBS NUMBER	Civil Works	COST	CNTG		total		COST	CNTG	TOTAL (\$K)					
	$\frac{\text { Feature \& Sub-Feature Description }}{\boldsymbol{B}}$ PHASE 2 or CONTRACT 2			(\%)	(\$K)	(\%)							$\frac{(\$ K)}{N}$	
A		c	D	E	F	G	H	1	J	P	1	$\frac{(\$ K)}{\boldsymbol{M}}$		$\frac{(\$ K)}{0}$
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
09	CHANNELS \& CANALS	\$3,234	\$1,779	55.0\%	\$5,013	0.0\%	\$3,234	\$1,779	\$5,013	2031Q1	19.8\%	\$3,874	\$2,131	\$6,005
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$95,155	\$52,335	55.0\%	\$147,490	0.0\%	\$95,155	\$52,335	\$147,490	2031Q1	19.8\%	\$113,995	\$62,697	\$176,692
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$15,918	\$8,755	55.0\%	\$24,672	0.0\%	\$15,918	\$8,755	\$24,672	2031Q1	19.8\%	\$19,069	\$10,488	\$29,557
CONSTRUCTION ESTIMATE TOTALS:		\$114,307	\$62,869	55.0\%	\$177,175		\$114,307	\$62,869	\$177,175			\$136,939	\$75,316	\$212,255
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2027Q2	7.3\%	\$2,454	\$1,349	\$3,803
2.0\%	Planning \& Environmental Compliance	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2027Q2	7.3\%	\$2,454	\$1,349	\$3,803
9.0\%	Engineering \& Design	\$10,288	\$5,658	55.0\%	\$15,946	0.0\%	\$10,288	\$5,658	\$15,946	2027Q2	7.3\%	\$11,041	\$6,073	\$17,114
2.0\%	Reviews, ATRs, IEPRs, VE	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2027Q2	7.3\%	\$2,454	\$1,349	\$3,803
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2027Q2	7.3\%	\$2,454	\$1,349	\$3,803
1.0\%	Contracting \& Reprographics	\$1,143	\$629	55.0\%	\$1,772	0.0\%	\$1,143	\$629	\$1,772	2027Q2	7.3\%	\$1,227	\$675	\$1,902
4.0\%	Engineering During Construction	\$4,572	\$2,515	55.0\%	\$7,087	0.0\%	\$4,572	\$2,515	\$7,087	2031Q1	16.5\%	\$5,325	\$2,929	\$8,253
2.0\%	Planning During Construction	\$2,286	\$1,257	55.0\%	\$3,544	0.0\%	\$2,286	\$1,257	\$3,544	2031Q1	16.5\%	\$2,662	\$1,464	\$4,127
0.5\%	Adaptive Management \& Monitoring	\$572	\$314	55.0\%	\$886	0.0\%	\$572	\$314	\$886	2031Q1	16.5\%	\$666	\$366	\$1,032
0.5\%	Project Operations	\$572	\$314	55.0\%	\$886	0.0\%	\$572	\$314	\$886	2027Q2	7.3\%	\$613	\$337	\$951
31	CONSTRUCTION MANAGEMENT													
7.2\%	Construction Management	\$8,230	\$4,527	55.0\%	\$12,757	0.0\%	\$8,230	\$4,527	\$12,757	2031Q1	16.5\%	\$9,584	\$5,271	\$14,856
1.0\%	Project Operation:	\$1,143	\$629	55.0\%	\$1,772	0.0\%	\$1,143	\$629	\$1,772	2031Q1	16.5\%	\$1,331	\$732	\$2,063
1.0\%	Project Management	\$1,143	\$629	55.0\%	\$1,772	0.0\%	\$1,143	\$629	\$1,772	2031Q1	16.5\%	\$1,331	\$732	\$2,063
	CONTRACT COST TOTALS:	\$153,400	\$84,370		\$237,769		\$153,400	\$84,370	\$237,769			\$180,533	\$99,293	\$279,826

**** CONTRACT COST SUMMARY ****

**** CONTRACT COST SUMMARY ****

DISTRICT: Jacksonville District PREPARED: 1/8/2024

This Estimate reflects the scope and schedule in report;
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{aligned} & \hline \text { 7-Jan-24 } \\ & \text { 1-Oct-23 } \end{aligned}$	Program Year (Budget EC): 2024 Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE				
WBS	Civil Works	cost	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	COST	CNTG	FULL
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)
A	PHASE 4 or CONTRACT 4	c	D	E	F	G	H	1	J	P	L	M	N	0
03	RESERVOIRS	\$1,119,282	\$615,605	55.0\%	\$1,734,887	0.0\%	\$1,119,282	\$615,605	\$1,734,887	2033Q1	26.1\%	\$1,411,526	\$776,339	\$2,187,865
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
11	LEVEES \& FLOODWALLS	\$5,410	\$2,975	55.0\%	\$8,385	0.0\%	\$5,410	\$2,975	\$8,385	2033Q1	26.1\%	\$6,822	\$3,752	\$10,574
13	PUMPING PLANT	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
CONSTRUCTION ESTIMATE TOTALS:		\$1,124,692	\$618,580	55.0\%	\$1,743,272		\$1,124,692	\$618,580	\$1,743,272			\$1,418,348	\$780,091	\$2,198,439
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2027Q1	6.7\%	\$24,011	\$13,206	\$37,218
2.0\%	Planning \& Environmental Compliance	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2027Q1	6.7\%	\$24,011	\$13,206	\$37,218
9.0\%	Engineering \& Design	\$101,222	\$55,672	55.0\%	\$156,894	0.0\%	\$101,222	\$55,672	\$156,894	2027Q1	6.7\%	\$108,051	\$59,428	\$167,479
2.0\%	Reviews, ATRs, IEPRs, VE	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2027Q1	6.7\%	\$24,011	\$13,206	\$37,218
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2027Q1	6.7\%	\$24,011	\$13,206	\$37,218
1.0\%	Contracting \& Reprographics	\$11,247	\$6,186	55.0\%	\$17,433	0.0\%	\$11,247	\$6,186	\$17,433	2027Q1	6.7\%	\$12,006	\$6,603	\$18,609
4.0\%	Engineering During Construction	\$44,988	\$24,743	55.0\%	\$69,731	0.0\%	\$44,988	\$24,743	\$69,731	2033Q1	21.6\%	\$54,721	\$30,096	\$84,817
2.0\%	Planning During Construction	\$22,494	\$12,372	55.0\%	\$34,865	0.0\%	\$22,494	\$12,372	\$34,865	2033Q1	21.6\%	\$27,360	\$15,048	\$42,409
0.5\%	Adaptive Management \& Monitoring	\$5,623	\$3,093	55.0\%	\$8,716	0.0\%	\$5,623	\$3,093	\$8,716	2033Q1	21.6\%	\$6,840	\$3,762	\$10,602
0.5\%	Project Operations	\$5,623	\$3,093	55.0\%	\$8,716	0.0\%	\$5,623	\$3,093	\$8,716	2027Q1	6.7\%	\$6,003	\$3,302	\$9,304
31	CONSTRUCTION MANAGEMENT													
7.2\%	Construction Management	\$80,978	\$44,538	55.0\%	\$125,516	0.0\%	\$80,978	\$44,538	\$125,516	2033Q1	21.6\%	\$98,497	\$54,173	\$152,671
1.0\%	Project Operation:	\$11,247	\$6,186	55.0\%	\$17,433	0.0\%	\$11,247	\$6,186	\$17,433	2033Q1	21.6\%	\$13,680	\$7,524	\$21,204
1.0\%	Project Management	\$11,247	\$6,186	55.0\%	\$17,433	0.0\%	\$11,247	\$6,186	\$17,433	2033Q1	21.6\%	\$13,680	\$7,524	\$21,204
	CONTRACT COST TOTALS:\|	\$1,509,336	\$830,135		\$2,339,471		\$1,509,336	\$830,135	\$2,339,471			\$1,855,231	\$1,020,377	\$2,875,609

**** CONTRACT COST SUMMARY ****

DISTRICT: Jacksonville District PREPARED: 1/8/2024

This Estimate reflects the scope and schedule in report;
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \hline \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC): 2024 Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE				
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	COST	CNTG	FULL
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)
A	PHASE 5 or CONTRACT 5	c	D	E	F	G	H	1	J	P	L	M	N	0
03	RESERVOIRS	\$16,437	\$9,041	55.0\%	\$25,478	0.0\%	\$16,437	\$9,041	\$25,478	2032Q1	22.9\%	\$20,204	\$11,112	\$31,316
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$59,958	\$32,977	55.0\%	\$92,935	0.0\%	\$59,958	\$32,977	\$92,935	2032Q1	22.9\%	\$73,697	\$40,533	\$114,230
CONSTRUCTION ESTIMATE TOTALS:		\$76,396	\$42,018	55.0\%	\$118,413		\$76,396	\$42,018	\$118,413			\$93,901	\$51,646	\$145,546
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2027Q2	7.3\%	\$1,640	\$902	\$2,542
2.0\%	Planning \& Environmental Compliance	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2027Q2	7.3\%	\$1,640	\$902	\$2,542
9.0\%	Engineering \& Design	\$6,876	\$3,782	55.0\%	\$10,657	0.0\%	\$6,876	\$3,782	\$10,657	2027Q2	7.3\%	\$7,379	\$4,059	\$11,438
2.0\%	Reviews, ATRs, IEPRs, VE	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2027Q2	7.3\%	\$1,640	\$902	\$2,542
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2027Q2	7.3\%	\$1,640	\$902	\$2,542
1.0\%	Contracting \& Reprographics	\$764	\$420	55.0\%	\$1,184	0.0\%	\$764	\$420	\$1,184	2027Q2	7.3\%	\$820	\$451	\$1,271
4.0\%	Engineering During Construction	\$3,056	\$1,681	55.0\%	\$4,737	0.0\%	\$3,056	\$1,681	\$4,737	2032 Q1	19.0\%	\$3,637	\$2,000	\$5,637
2.0\%	Planning During Construction	\$1,528	\$840	55.0\%	\$2,368	0.0\%	\$1,528	\$840	\$2,368	2032 Q 1	19.0\%	\$1,818	\$1,000	\$2,819
0.5\%	Adaptive Management \& Monitoring	\$382	\$210	55.0\%	\$592	0.0\%	\$382	\$210	\$592	2032 Q 1	19.0\%	\$455	\$250	\$705
0.5\%	Project Operations	\$382	\$210	55.0\%	\$592	0.0\%	\$382	\$210	\$592	2027Q2	7.3\%	\$410	\$225	\$635
$31 \begin{array}{r} \\ 7.2 \% \\ 1.0 \% \\ 1.0 \%\end{array}$	CONSTRUCTION MANAGEMENT													
	Construction Management	\$5,500	\$3,025	55.0\%	\$8,526	0.0\%	\$5,500	\$3,025	\$8,526	2032 Q1	19.0\%	\$6,546	\$3,601	\$10,147
	Project Operation:	\$764	\$420	55.0\%	\$1,184	0.0\%	\$764	\$420	\$1,184	2032Q1	19.0\%	\$909	\$500	\$1,409
	Project Management	\$764	\$420	55.0\%	\$1,184	0.0\%	\$764	\$420	\$1,184	2032Q1	19.0\%	\$909	\$500	\$1,409
	CONTRACT COST TOTALS:\|	\$102,523	\$56,388		\$158,910		\$102,523	\$56,388	\$158,910			\$123,344	\$67,839	\$191,183

**** CONTRACT COST SUMMARY ****

 FLOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{aligned} & \text { 7-Jan-24 } \\ & \text { 1-Oct-23 } \end{aligned}$	Program Year (Budget EC): 2024 Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE				
WBS	Civil Works								TOTAL	Mid-Point	INFLATED		CNTG	FULL
$\frac{\text { NUMBER }}{A}$	$\frac{\text { Feature \& Sub-Feature Description }}{\boldsymbol{B}}$ PHASE 6 or CONTRACT 6	$\frac{(\$ \mathrm{~K})}{\mathrm{c}}$	$\frac{(\$ K)}{D}$	$\frac{(\%)}{E}$	$\frac{(\$ K)}{F}$	$\frac{(\%)}{G}$	$\frac{(\$ K)}{H}$	$\frac{(\$ \mathrm{~K})}{1}$	$\frac{(\$ K)}{J}$	$\frac{\text { Date }}{P}$	$\frac{(\%)}{L}$	$\frac{(\$ K)}{M}$	$\frac{(\$ K)}{N}$	$\frac{(\$ K)}{0}$
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
09	CHANNELS \& CANALS	\$732	\$403	55.0\%	\$1,135	0.0\%	\$732	\$403	\$1,135	2030Q2	17.3\%	\$859	\$473	\$1,332
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$12,826	\$7,054	55.0\%	\$19,880	0.0\%	\$12,826	\$7,054	\$19,880	2030Q2	17.3\%	\$15,050	\$8,278	\$23,328
14	RECREATION FACILITIES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$19,664	\$10,815	55.0\%	\$30,479	0.0\%	\$19,664	\$10,815	\$30,479	2030Q2	17.3\%	\$23,074	\$12,691	\$35,764
CONSTRUCTION ESTIMATE TOTALS:		\$33,222	\$18,272	55.0\%	\$51,494		\$33,222	\$18,272	\$51,494			\$38,983	\$21,441	\$60,424
01	LANDS AND DAMAGES	\$0	\$0	0.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2027Q2	7.3\%	\$713	\$392	\$1,105
2.0\%	Planning \& Environmental Compliance	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2027Q2	7.3\%	\$713	\$392	\$1,105
9.0\%	Engineering \& Design	\$2,990	\$1,644	55.0\%	\$4,634	0.0\%	\$2,990	\$1,644	\$4,634	2027Q2	7.3\%	\$3,209	\$1,765	\$4,974
2.0\%	Reviews, ATRs, IEPRs, VE	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2027Q2	7.3\%	\$713	\$392	\$1,105
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2027Q2	7.3\%	\$713	\$392	\$1,105
1.0\%	Contracting \& Reprographics	\$332	\$183	55.0\%	\$515	0.0\%	\$332	\$183	\$515	2027 Q2	7.3\%	\$357	\$196	\$553
4.0\%	Engineering During Construction	\$1,329	\$731	55.0\%	\$2,060	0.0\%	\$1,329	\$731	\$2,060	2030Q2	14.6\%	\$1,522	\$837	\$2,360
2.0\%	Planning During Construction	\$664	\$365	55.0\%	\$1,030	0.0\%	\$664	\$365	\$1,030	2030 Q2	14.6\%	\$761	\$419	\$1,180
0.5\%	Adaptive Management \& Monitoring	\$166	\$91	55.0\%	\$257	0.0\%	\$166	\$91	\$257	2030Q2	14.6\%	\$190	\$105	\$295
0.5\%	Project Operations	\$166	\$91	55.0\%	\$257	0.0\%	\$166	\$91	\$257	2027 Q2	7.3\%	\$178	\$98	\$276
31	CONSTRUCTION MANAGEMENT													
7.2\%	Construction Management	\$2,392	\$1,316	55.0\%	\$3,708	0.0\%	\$2,392	\$1,316	\$3,708	2030Q2	14.6\%	\$2,740	\$1,507	\$4,248
1.0\%	Project Operation:	\$332	\$183	55.0\%	\$515	0.0\%	\$332	\$183	\$515	2030Q2	14.6\%	\$381	\$209	\$590
1.0\%	Project Management	\$332	\$183	55.0\%	\$515	0.0\%	\$332	\$183	\$515	2030Q2	14.6\%	\$381	\$209	\$590
	CONTRACT COST TOTALS:\|	\$44,584	\$24,521		\$69,105		\$44,584	\$24,521	\$69,105			\$51,555	\$28,355	\$79,910

**** CONTRACT COST SUMMARY ****

L
LOCAR Feasibility Report

Civil Works Work Breakdown Structure		ESTIMATED COST				PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:			$\begin{gathered} \hline \hline \text { 7-Jan-24 } \\ \text { 1-Oct-23 } \end{gathered}$	Program Year (Budget EC): 2024 Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE				
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	COST	CNTG	FULL
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)	(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)
A	B PHASE 7 or CONTRACT 7	c	D	E	F	G	H	1	J	P	L	M	N	0
03	RESERVOIRS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
09	CHANNELS \& CANALS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
14	RECREATION FACILITIES	\$1,426	\$784	55.0\%	\$2,210	0.0\%	\$1,426	\$784	\$2,210	2036Q3	38.0\%	\$1,967	\$1,082	\$3,048
15	FLOODWAY CONTROL \& DIVERSION STRL	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
CONSTRUCTION ESTIMATE TOTALS:		\$1,426	\$784	55.0\%	\$2,210		\$1,426	\$784	\$2,210			\$1,967	\$1,082	\$3,048
01	LANDS AND DAMAGES	\$0	\$0	55.0\%	\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
30	PLANNING, ENGINEERING \& DESIGN													
2.0\%	Project Management	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2030Q4	15.8\%	\$33	\$18	\$51
2.0\%	Planning \& Environmental Compliance	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2030Q4	15.8\%	\$33	\$18	\$51
9.0\%	Engineering \& Design	\$128	\$71	55.0\%	\$199	0.0\%	\$128	\$71	\$199	2030Q4	15.8\%	\$149	\$82	\$230
2.0\%	Reviews, ATRs, IEPRs, VE	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2030Q4	15.8\%	\$33	\$18	\$51
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2030Q4	15.8\%	\$33	\$18	\$51
1.0\%	Contracting \& Reprographics	\$14	\$8	55.0\%	\$22	0.0\%	\$14	\$8	\$22	2030Q4	15.8\%	\$17	\$9	\$26
4.0\%	Engineering During Construction	\$57	\$31	55.0\%	\$88	0.0\%	\$57	\$31	\$88	2036Q3	31.1\%	\$75	\$41	\$116
2.0\%	Planning During Construction	\$29	\$16	55.0\%	\$44	0.0\%	\$29	\$16	\$44	2036Q3	31.1\%	\$37	\$21	\$58
0.5\%	Adaptive Management \& Monitoring	\$7	\$4	55.0\%	\$11	0.0\%	\$7	\$4	\$11	2036Q3	31.1\%	\$9	\$5	\$14
0.5\%	Project Operations	\$7	\$4	55.0\%	\$11	0.0\%	\$7	\$4	\$11	2030Q4	15.8\%	\$8	\$5	\$13
$31 \begin{array}{r} \\ 7.2 \% \\ 1.0 \% \\ 1.0 \%\end{array}$	CONSTRUCTION MANAGEMENT													
	Construction Management	\$103	\$56	55.0\%	\$159	0.0\%	\$103	\$56	\$159	2036Q3	31.1\%	\$135	\$74	\$209
	Project Operation:	\$14	\$8	55.0\%	\$22	0.0\%	\$14	\$8	\$22	2036Q3	31.1\%	\$19	\$10	\$29
	Project Management	\$14	\$8	55.0\%	\$22	0.0\%	\$14	\$8	\$22	2036Q3	31.1\%	\$19	\$10	\$29
	CONTRACT COST TOTALS:\|	\$1,913	\$1,052		\$2,965		\$1,913	\$1,052	\$2,965			\$2,566	\$1,411	\$3,977

**** CONTRACT COST SUMMARY ****

ROCATI Lake Okeechobee, FL mponent A Reservoi
Lake Okeechobee, FL
lects the scope and schedule in report;
Estimate recturn

Civil Works Work Breakdown Structure		ESTIMATED COST					PROJECT FIRST COST (Constant Dollar Basis)				TOTAL PROJECT COST (FULLY FUNDED)				
		Estimate Prepared: Effective Price Level:				$\begin{aligned} & \hline \text { 7-Jan-24 } \\ & \text { 1-Oct-23 } \end{aligned}$	Program Year (Budget EC): 2024 Effective Price Level Date: 1 OCT 23				FULLY FUNDED PROJECT ESTIMATE				
WBS	Civil Works	COST	CNTG	CNTG		TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	INFLATED	COST	CNTG	FULL
NUMBER	Feature \& Sub-Feature Description	(\$K)	(\$K)	(\%)		(\$K)	(\%)	(\$K)	(\$K)	(\$K)	Date	(\%)	(\$K)	(\$K)	(\$K)
A	B	c	D	E		F	G	H	1	J	P	L	M	N	0
03	RESERVOIRS	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
09	CHANNELS \& CANALS	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
11	LEVEES \& FLOODWALLS	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
13	PUMPING PLANT	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
14	RECREATION FACILITIES	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
15	FLOODWAY CONTROL \& DIVERSION STRL	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
CONSTRUCTION EStIMATE TOTALS:		\$0	\$0	0.0\%		0		\$0	\$0	\$0			\$0	\$0	\$0
01	LANDS AND DAMAGES	\$130,005	\$89,238	68.6\%	\$	219,243	0.0\%	\$130,005	\$89,238	\$219,243	2026Q4	6.9\%	\$138,987	\$95,404	\$234,391
30	PLANNING, ENGINEERING \& DESIGN														
2.0\%	Project Management	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
2.0\%	Planning \& Environmental Compliance	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
9.0\%	Engineering \& Design	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
2.0\%	Reviews, ATRs, IEPRs, VE	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
2.0\%	Life Cycle Updates (cost, schedule, risks)	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
1.0\%	Contracting \& Reprographics	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
4.0\%	Engineering During Construction	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
2.0\%	Planning During Construction	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
0.5\%	Adaptive Management \& Monitoring	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
0.5\%	Project Operations	\$0	\$0	55.0\%		\$0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
$31 \begin{aligned} & \\ & 7.2 \% \\ & 1.0 \% \\ & 1.0 \%\end{aligned}$	CONSTRUCTION MANAGEMENT														
	Construction Management	\$0	\$0	55.0\%		0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
	Project Operation:	\$0	\$0	55.0\%		0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
	Project Management	\$0	\$0	55.0\%		0	0.0\%	\$0	\$0	\$0	0	0.0\%	\$0	\$0	\$0
	CONTRACT COST TOTALS:\|	\$130,005	\$89,238			219,243		\$130,005	\$89,238	\$219,243			\$138,987	\$95,404	\$234,391

ATTACHMENT 7

DESIGN MATURITY DETERMINATION FOR COST CERTIFICATION

Design Maturity Determination for Cost Certification

Date: ${ }^{1 / 23 / 24}$
P2 Designation/Project Name: Lake Okeechobee Component A Reservoir (LOCAR) Section 203 Feasibility Study
The Chief of Engineering is responsible for the technical content and engineering sufficiency for all engineering products produced by the command. As such, I have performed the Management Control Evaluation per Engineer Regulation (ER) 1110-2-1150, Engineering and Design for Civil Works Projects, Appendix H, Internal Management Control Review Checklist.

The current design DOES NOT . require HQ approval (ie., engineering waivers), requiring a deviation from mandatory requirements and mandatory standards, as defined in ERs, Engineering Manuals, Engineering Technical letters, and Engineering Circulars.

The current hydrology and hydraulics modeling is at $\underline{20 ~ \%}$ \% design maturity, per reference (h) below.
The current geotechnical data and subsurface investigations are at $\underline{20} \%$ design maturity, per reference (h) below. Subsurface investigations shall also include investigations of potential borrow and spoil areas.

The current survey data is at $\underline{20}$ \% design maturity, per reference (h) below.
Other major technical and/or scope assumptions and risks include the following, which will be refined as the design progresses.

Many design assumptions are based on SFWMD standard design practice and past construction experience for several other recent similar projects in similar geologic/construction settings. While data collection for survey and geotechnical are considered preliminary, confidence in concept design details presented are appropriate for feasibility level cost estimating for the project. Please refer to the risk register for additional identified risk items.

Due to potential conservative assumptions in overwash rates and the elimination of the wave wall feature from the proposed design, the embankment height estimates at this stage are considered to be conservative. Stability and seepage analysis indicate the proposed dam geometry is conservative. It is expected, during PED, that refinements in embankment height are possible for potential future cost savings during design.

The aggregate for all features is 20 \% design maturity. Therefore, per the CECW-EC memorandum dated 05-June-2023, I certify that the design deliverables used to generate the cost products for this project and the estimate meet the requirements for a CLASS 3 estimate, as per reference (a) below. Design risks, impacts and remaining efforts are summarized on page 2.

Considering risks and assumptions noted above, along with all other concerns documented in the Risk Register, the Cost and Schedule Risk Analysis has developed a contingency of $\underline{55} \%$ at the 80 \% confidence level for the defined project scope.

Chief of Engineering \& Construction

Lucina Dadrian 1/24/24

Printed Name

Sadi ion

Design Maturity Determination for Cost Certification, Remaining Work

If an engineering waiver is required, list the risks and remaining design work needed to mitigate this issue in the current design. Identify remaining effort to complete the design required for 100% design. N/A at this time.

Identify remaining effort to complete geotechnical design effort required for 100% design. List the risks and cost and schedule impacts needed to mitigate this issue in the current design.
Additional geotechnical investigations/program, materials testing, along with pump testing to verify seepage assumptions on the 12,000-acre reservoir footprint are required to finalize the Geotechnical Design. The schedule for the additional site investigations are programmed into the cost estimate and are presented in the Feasibility Study. It has been determined that sufficient quantities of materials are available on-site for construction of the dam. Rip rap slope protection and drain materials will be imported in from off-site sources. The final geotechnical investigations are expected to confirm current assumptions.

Identify remaining effort required to complete H\&H required for 100% design. List the risks and cost and schedule impacts needed to mitigate this issue in the current design.
Due to limited geotechnical data for seepage and groundwater conditions adjacent to the reservoir, additional 3D groundwater seepage modeling will be required to finalize the seepage management system design and establish operations to maintain compliance with the Savings Clause requirements. The current design incorporates sufficient operational flexibility to accommodate variations in anticipated seepage impacts around the reservoir. Final H\&H conveyance analysis is also required to verify compliance with the Savings Clause. The schedule for the final $\mathrm{H} \& \mathrm{H}$ modeling are programmed into the cost estimate and are presented in the Feasibility Study.
Identify remaining effort needed to complete survey data required for 100% design. List the risks and cost and schedule impacts needed to mitigate this issue in the current design.

 the Reservoir being built on existing ground. Minor elevation differences will only impact structures adjacent to the canal and the appropriate contingency is added to the risk register.

If the project is anticipated to be executed in parts, provide a design assessment (percent complete) of each part/phase below.
N/A

References:

a. ER 1110-2-1302 - Civil Works Cost Engineering
b. CECW-EC memorandum dated 05-June-2023MFR, Guidance on Cost Engineering Products update for Civil Works Projects in accordance with Engineer Regulation 1110-2-1302 - Civil Works Cost Engineering
c. ER 1165-2-217 - Civil Works Review Policy
d. ER 1110-2-1150 - Engineering and Design for Civil Works Projects
e. ER 1110-3-12 - Quality Management
f. ER 1110-345-700 - Design Analysis, Drawings and Specifications
g. EM 5-1-11 - Project Delivery Business Process (PDBP)
h. Engineering and Construction Bulletin (ECB) 2023-9 - Civil Works Design Milestone Checklists

Design Maturity Determination for Cost Certification - Instructions

Paragraph 1 - Design Date: Use the drop-down menu to populate the date of the design.
Paragraph 1 - Project Information: Enter the P2 Project number and Project name.
Paragraph 3 - Engineering Waivers: Use the drop-down menu to populate this field with either "Does," or "Does not." If an engineering waiver is needed, or anticipated to be needed, provide the specific waiver required for the Project. A waiver is any deviation from current mandatory standards, as indicated.

Paragraph 4 - Hydrology and Hydraulics: Populate this field with the \% design maturity.
Paragraph 5 - Geotechnical Information: Populate this field with the \% design maturity.
Paragraph 6 - Survey Data: Populate this field with the \% design maturity.
Paragraph 7 - Other Technical Assumptions and/or Scope: Enter any other major technical assumptions or scope assumptions here. Only include assumptions that pertain to design. Template discussion fields are provided as a courtesy. Please include additional pages as necessary.

Paragraph 8 - Signature: Print the name and title and provide the signature for the District's Chief of Engineering. This authority cannot be delegated; however, the Deputy Chief of Engineering and Design may sign the form in the absence of the Chief of Engineering. All fillable fields must be populated (use N/A if not applicable) in order for the document to be signed.

Page 2 - Remaining Work: Identify the current baseline design assumptions and the remaining design effort and risks to complete 100% design for the authorized project. If the project is to be broken into parts or phases, provide details on the aggregate design level of each phase and anticipated timeline for completion.

[^3]
[^0]: This form is required for all Civil Works projects for initial Cost Certification and Recertification, based on Policy Clarification MFR dated 05 June 2023, Guidance on Cost Engineering Products update for Civil Works Projects in accordance with Engineer Regulation 1110-2-1302 - Civil Works Cost Engineering.
 The Point of Contact for this action is Mr. Mukesh Kumar, Cost Engineering Community of Practice Leader, CECW-
 EC, Mukesh.Kumar@usace.army.mil.
 Version 1: 01 October 2023.

[^1]: Approx. from As-Built
 $=\quad 43.2 \mathrm{CY}$

[^2]: TOTAL J BULB for GATES AND STOP LOGS = 567.0 FT

[^3]: This form is required for all Civil Works projects for initial Cost Certification and Recertification, based on Policy Clarification MFR dated 05 June 2023, Guidance on Cost Engineering Products update for Civil Works Projects in accordance with Engineer Regulation 1110-2-1302 - Civil Works Cost Engineering.
 The Point of Contact for this action is Mr. Mukesh Kumar, Cost Engineering Community of Practice Leader, CECW-
 EC, Mukesh.Kumar@usace.army.mil.
 Version 1: 01 October 2023.

