USACE SOUTHEAST FLORIDA PROJECT INTEGRATION: VIRTUAL PUBLIC MEETING

29 August 2023

U.S. ARMY

Tim Gysan – Resilience Sr Project Manager Amy Thompson – Integration Planner Jacksonville District U.S. Army Corps of Engineers

> US Army Corps of Engineerse

Virtual Public Meeting Agenda

- 1. Welcome and Introduction
- 2. Project Integration
- 3. Projects Overview and Status Updates
 - a) Navigation Projects1. Miami Harbor Improvements Study
 - b) Coastal Storm Risk Management Projects
 - 1. Miami-Dade Back Bay CSRM
 - 2. Key Biscayne CSRM
 - 3. Dade County CSRM
 - c) Flood Risk Management Projects 1. C&SF Flood Resiliency Study
 - d) Ecosystem Restoration Projects
 - 1. Broward County WPA C-11 Reservoir
 - 2. Biscayne Bay Coastal Wetlands (BBCW)
 - 3. BBSEER
- 4. Resiliency Partners Perspectives
 - a) SFWMD Resiliency Efforts
 - b) Miami-Dade County
 - c) Broward County
- 5. Comments and Questions
- 6. Closing Remarks and Adjourn

BUILDING COMMUNITY RESILIENCE A COMPREHENSIVE AND COLLABORATIVE APPROACH

Water Resource infrastructure is the connector

USACE SOUTHEAST FLORIDA PROJECT INTEGRATION

All Projects Under One Umbrella

USACE SOUTHEAST FLORIDA PROJECT INTEGRATION What is Integration?

How do we define project integration in southeast Florida?

• Coordinate the planning of multiple USACE Civil Works projects across multiple mission areas to ensure functionality of all projects.

What is successful integration?

• Projects across multiple mission areas can be implemented and work in coordination to achieve each project's objectives and improve the resiliency of southeast Florida.

C&SF - Central & South Florida

BBSEER – Biscayne Bay and Southeastern Everglades Ecosystem

Restoration

AMM – Alternative Milestone Meeting

NFS – Non-Federal Sponsor

TSP - Tentatively Selected Plan

ADM – Agency Decision Milestone

USACE PROJECT INTEGRATION MIAMI-DADE | BROWARD | PALM BEACH COUNTIES

(Not All Inclusive)

COASTAL STORM RISK MANAGEMENT (CSRM)

NAVIGATION

CSRM | MIAMI BACK BAY STUDY

CONTINUING AUTHORITIES PROGRAM (CAP) | SECTION 14 (Mt. Sinai)

FPL MITIGATION BANK

- CENTRAL AND SOUTHERN FLORIDA (C&SF) CANALS
- CENTRAL AND SOUTHERN FLORIDA (C&SF) STRUCTURES
- # SOUTH FLORIDA ECOSYSTEM RESTORATION (SFER) PROJECTS AND STUDIES
- 7) Site 1 Impoundment
- 8) Broward County WPAs
- 9) Tamiami Trail Next Steps Phase 2
- 10) Biscayne Bay Coastal Wetlands (BBCW)
- 11) Biscayne Bay and Southeastern Everglades Ecosystem Restoration (BBSEER) STUDY BOUNDARIES
- 12) S-332 Pump Replacements
- 13) C-111 Spreader Canal Western Project
- 14) C&SF Flood Resiliency (Section 216) Study STUDY BOUNDARIES
- 15) Melaleuca Eradication

MIAMI HARBOR NAVIGATION IMPROVEMENT STUDY

BUILDING STRONG

- **Purpose:** Achieve transportation cost savings through increased economic efficiencies within Miami Harbor
- Study Authorization: Section 216 of the Flood Control Act of 1970

- Key Features
 - Deepening:
 - Outer Entrance Channel (Flare, Cut 1, Cut 2): Up to 60 feet
 - Inner Channel (Cut 3, Fisher Island Turning Basin, Fishermans Channel and Lummus Turning Basin): Up to 55 feet
 - Widening
 - Start of Entrance Channel through to start of Dodge Island Cut

Hardbottom/Coral Resources

Trusted Partners Delivering Value Today for a Better Tomorrow

BUILDING STRONG

• Schedule:

- Tentatively Selected Plan: 25 Oct 2024
- Agency Decision Milestone: 23 Jun 2025
- Signed Chief's Report: 16 Jun 2026

Challenges / Risks

- Environmental Compliance
 - Reduce Direct and Indirect Impacts to Resources
 - Developed Multiple Alternatives to Test at Ship Simulation (Direct)
 - Use SE FL Morphodynamics Study to Investigate Potential for Reduction in Mitigation Costs (Indirect)
- Economically Justified Project (due to very high environmental costs)

Hardbottom/Coral Resources

Trusted Partners Delivering Value Today for a Better Tomorrow

STUDY OVERVIEW

BUILDING STRONG

STUDY AUTHORITY:

U.S.ARMY

Section 216 of the Flood Control Act of 1970 (33 USC 426 et seq) as amended

PROBLEMS

- Existing navigation restrictions contribute to delays and transportation cost inefficiencies.
- Current channel depths and widths restrict vessels transiting Miami Harbor.

OPPORTUNITIES

- Increase efficiency of vessels
- Reduce transportation costs
- Reduce frequency of operation and maintenance dredging intervals in high shoaling area
- Beneficial Use of Dredged Material

OBJECTIVES

 Reduce navigation transportation costs to/from Miami Harbor & develop an alternative that minimizes impacts to environmental resources, while providing safe, reliable, and efficient navigation for over the 50-year period of analysis, starting in 2036.

CONSTRAINTS:.

- Avoidance and/or minimization of impacts to cultural resources.
- Avoidance and/or minimization of impacts to essential fish habitat.
- Avoidance and/or minimization of impacts to threatened & endangered species and their designated critical habitat.

DESIGN VESSEL:

14K TEU MSC DANIELA

ADDITIONAL VESSEL TESTED:.

12K TEU MAERSK GUAYAQUIL

Trusted Partners Delivering Value Today for a Better Tomorrow

E THE MERICE

STUDY TIMEFRAME

BUILDING STRONG

5

Existing Project: FWOP

BUILDING STRONG

Trusted Partners Delivering Value Today for a Better Tomorrow

BUILDING STRONG

Environmental:

• SAV, Benthic, and ESA survey are occurring through summer and fall of 2023.

Economics:

• Collecting vessel call data and information on current transit guidelines to update existing condition description.

Engineering:

• Ship Simulation occurring last week of August to test alternatives

BUILDING STRONG

Website:

https://www.saj.usace.army.mil/MiamiHarborNavigationImprove mentStudy/

<u>Email:</u> <u>CESAJ-MiamiHarbor@usace.army.mil</u>

Project Manager: Mr. Chris McNees Planning Technical Lead: Mr. Rick Butler

Trusted Partners Delivering Value Today for a Better Tomorrow

T BOLY IS CONTRACTION

Re-initiation of the MIAMI-DADE BACK BAY COASTAL STORM RISK MANAGEMENT Feasibility Study

Public Webinar

August 29, 2023

Justine Woodward, Environmental Lead

U.S. Army Corps of Engineers, Norfolk District

https://www.saj.usace.army.mil/MiamiDadeBackBayCSRMFeasibilityStudy/

How we GO forward in Miami-Dade

Key Successes over the Past Year

We're excited to move forward with a 'GO!'

- Hundreds of residents and stakeholders engaged through expanded collaboration via webinars, charrettes, public meetings and briefings
- Collaboratively developed proposed 'bookend' conceptual alternatives under an expanded study scope
- Identified more natural and nature-based features for further analysis based on stakeholder feedback
- Began internal strategy for centering environmental justice
- Initiated efforts for USACE project/study integration
- Aligned our path forward for this study while considering the broader context of water resource management challenges faced by Miami-Dade County

For more information on the history of the study, please visit the project website to view past public webinar recordings and presentations:

https://www.saj.usace.army.mil/MiamiDadeBackBayCSRMFeasibilityStudy/

Study Purpose: To manage **coastal storm risk** through the implementation of coastal storm risk management (CSRM) measures designed to reduce potential damage caused by coastal storms, including preventing loss of human life.

Study Horizon: The Next Four Years 📟 🔤

During public engagements, multiple lines of defense emerged as the guiding principle to address an expanded geographic scope that is inclusive of vulnerable coastal and environmental justice communities

- Analysis, and feasibility design for actionable measures
- Extensive coordination to reach environmental compliance requirements
- Sustained community and public engagement
- Broad evaluation of the Atlantic Coastline Alternative
- Conclusion of the study with a signed Chief's Report in 2027

Miami-Dade County and the U.S. Army Corps of Engineers are committed to working together and support moving forward with an approach that results in a Chief's Report while also progressing toward a more comprehensive and inclusive solution.

~\$7.3 M Part Two Federal Cost **4 years** Part Two Duration

5 Miles

Structural Measures Coral Gables Waterway Snapper Creek Canal Gate / Pump Stations Floodwall and/or Road/Levee Raising Natural and Nature-Based Features Living Shoreline Mangrove Restoration

Measures for Further Analysis

Hybrid Reef

- Living Seawall
 Reinforced Islands
- Northern Cutler Wetlands Restoration
- Central Cutler Wetlands Restoration

Southern Cutler Wetlands Restoration

Nonstructural Areas

PROPOSED ACTIONABLE MEASURES

Key measures for further analysis and coordination:

Critical Infrastructure (Countywide)

Floodproofing (not shown on map)

Natural and Nature-Based Features*

- 1. Reinforced Islands in Biscayne Bay
- 2. Wetland Restoration at Northern, Central, & Southern Cutler Wetlands
- 3. Mangrove Restoration along Causeways
- 4. Living Shoreline along Mainland
- 5. Living Seawall along Edgewater
- 6. Hybrid Reef Structure
- 7. Mangrove Restoration
- *site-specific locations not yet identified

Potential Structural Measures

- 8. Surge Barrier System at Coral Gables Waterway
- 9. Surge Barrier System at Snapper Creek
- 10. Cutler Bay Floodwall and/or Road/Levee Raising Alignment system

Nonstructural Measures

- 11. Elevating Residential Buildings and Floodproofing nonresidential buildings which will focus on:
 - o Environmental Justice communities
 - o High frequency event areas

USACE Study Integration efforts

DRAFT Proposed Measures for USACE 'Back Bay' CSRM Study

West Perrine

South Miami Height

SW 248 Street

Goulds

SW 268 Street

Naranja

Leisure City

Preliminary measures for South Dade

Hybrid & Nature-based features

- Plug & restore mosquito ditches
- Plug & restore old canals
- Rehydrate & restore coastal wetlands (via pumps & spreader canals)

Road & Levee Elevation + Floodwall (if needed)

Only in segments where needed to for consistent level of protection

- Old Cutler Road / 87th Ave elevation
- Levee around South District Wastewater Treatment Plant
- Turnpike and 231 road elevation

Proposal aims to complement measures of the Biscayne Bay and Southeastern Everglades Ecosystem Restoration (BBSEER) Project

> A separate and complimentary South Florida Military Installation Resilience Review (MIRR) is ongoing and includes Homestead Air Reserve Base (HARB)

Palmetto Bay

C100

Cutler Bay

The precise mix, scale and locations of measures are to be determined and subject to further changes and consultations.

Legend Pump Station Storm Surge Gate Storm Surge Diverter Storm Surge Gate & Pump to BBSSEER WPA Pump Station- Discharges to BBSEER-proposed WPA* Elevate Where Needed Pipe (underground) Approx Boundary BBSEER WPA EPA Environmental Justice Communities Outflow Nature Based Features Northern Cutler Wetlands Nature Based Features Central Cutler Wetlands Nature Based Features South Cutler Wetlands W Hydrological Park for Canal Storm Surge

PROPOSED SCHEDULE

Comprehensive Benefits Evaluation

- USACE Policy Directive (January 2021)
 - Requires a comprehensive consideration of total project benefits
- Benefit Categories:
 - Regional economics
 - Other social effects
 - Environment
- Presents community engagement opportunity to develop specific metrics or criteria for each category

Path Forward

- Feasibility analysis of actionable measures
- Guiding principle of Multiple Lines of Defense
- Sustained public engagement and outreach with an Environmental Justice community focus
- Quantification of Comprehensive Benefits
- Continued collaboration with Engineering With Nature team
- Utilization of expertise from multiple districts
- Project integration to address Miami-Dade County's complex water resource management challenges
- Concludes with a signed Chief's Report and broad investigation of a comprehensive plan to manage coastal storm risk and improve Miami-Dade County's resilience to coastal storms

For additional inquires and questions, please email: <u>MDBB-CSRMStudy@usace.army.mil</u> or <u>resilience@miamidade.gov</u>

Project website: https://www.saj.usace.army.mil/MiamiDadeBackBayCSRMFeasibilityStudy/

USACE SOUTHEAST FLORIDA PROJECT INTEGRATION VIRTUAL PUBLIC MEETING AUGUST 29, 2023

Miami-Dade County (MDC) Coastal Storm

Risk Management (CSRM) Project

U.S. ARMY of Engineers

12.11.22

Contract Overview

- **Title:** Beach Erosional Control and Hurricane Protection Project, Miami Beach Renourishment 2021, Miami-Dade County, Florida
- Contract No.: W912EP21C0013
- Contractor: Continental Heavy Civil Corporation
- **Contract Amount:** \$40,486,000
- Award Date: 30 July 2021
- Four Segments of Nourishment
 - ✤ 64th Street Fill Area R-42.4 to R-46.3
 - ✤ 55th Street Fill Area R-48.7 to R-51.6
 - ✤ 46th Street Fill Area R-52.9 to R-56
 - ✤ 27th Street Fill Area R-59.6 to R-62.8
- Approximately 13,000 linear feet of nourishment
- Estimated Quantity: 835,000 cubic yards (cy)
- Final Quantity: 857,686 cy

U.S. ARMY

64th Street Fill Area - R-42.4 to R-46.3

- Segment 1 Allison Park 65th Street
- Length: Approximately 3,800 Linear Feet
- Estimated Quantity: 210,000 cy
- Final Quantity: 206,222 cy
- Nourishment Activities Completed: 13 Oct 2022

U.S. ARMY

55th Street Fill Area – R-48.7 to R-51.6

- Segment 2 Beach View Park 53rd Street
- Length: Approximately 2,800 Linear Feet
- Estimated Quantity: 175,000 cy
- Final Quantity: 198,061 cy
- Nourishment Activities Completed: 21 Feb 2023

U.S. ARMY

46th Street Fill Area – R-52.9 to R-56

- Segment 3 Indian Beach Park 46th Street
- Length: Approximately 3,500 Linear Feet
- Estimated Quantity: 245,000 cy
- Final Quantity: 231,222 cy
- Nourishment Activities Completed: 06 Apr 2023

U.S. ARMY

- 27th Street Fill Area R-59.6 to R-62.8
- Segment 4
- Length: Approximately 3,000 Linear Feet
- Estimated Quantity: 205,000 cy
- Final Quantity: 222,181 cy
- Nourishment Activities Completed: 03 Aug 2023

U.S. ARMY

HOW DID WE DO IT?...SAND IS DREDGED AT THE MINE

U.S. ARMY

HOW DID WE DO IT?...DREDGED SEDIMENTS/SLURRY PUMPED TO THE PLANT

Dredge Pipeline to Plant

HOW DID WE DO IT?...PLANT SEGREGATES THE BEACH-QUALITY SAND.

U.S. ARMY

HOW DID WE DO IT?...TRUCKS ARE LOADED...SOUTHBOUND TO MIAMI !

MDC BEACH RENOURISHMENT – CONTRACT E

U.S. ARMY

HOW DID WE DO IT?...SAND IS OFFLOADED AND TRANSFERRED TO OFF-ROAD DUMP TRUCKS.

MDC BEACH RENOURISHMENT – CONTRACT E

U.S. ARMY

HOW DID WE DO IT?...SAND IS PLACED AND BULLDOZERS SHAPE THE BERM'S HEIGHT AND WIDTH.

MDC BEACH RENOURISHMENT – CONTRACT E

U.S. ARMY

HOW DID WE DO IT?...VOILA – A RENOURISHED BEACH!

MDC BEACH CSRM – AUTHORIZED WRDA 2022

Project Location & Study Area

- Sunny Isles Segment
 - ✤ 2.5 Miles Long (R-7 to R-19.3)
- Main Segment
 - ✤ 10.8 miles long
 - Reaches
 - Haulover Beach Park (R19.3 to R-26)
 - Bal Harbour (R-27 to R-31)
 - Surfside (R-31 to R-38)
 - Miami Beach (R-38 to R-74)
 - Focused Study Area
 - 9.4 Miles Long
- Key Biscayne
 - ✤ 1.2 Miles Long (R-101 to R-108)

MDC BEACH CSRM – AUTHORIZED WRDA 2022

Authorized Plan

- Periodic Beach Renourishment (6.1 Miles, includes dunes)
 - R-27 to R-39.5: 25-ft wide equilibrated berm at elevation 7 feet NAVD88 (6.1 feet MSL)
 - R-39.5 to R-56.5: 50-ft wide equilibrated berm at elevation 7 feet NAVD88 (6.1 feet MSL)
 - Transition from a 25-ft to 50-ft wide berm template between R-39 and R-39.5 and taper from R-56.5 to R-57.5
 - 20-ft wide dune crest at elevation 9.5 feet NAVD88 (8.6 feet MSL)
- Five Groins
 - ✤ R-28 to 31.5: Bal Harbour Reach
- Sand Sources
 - Bakers Haulover Inlet (BHI) Complex Borrow Areas
 - Back-passing from the existing and expanded beach and nearshore areas of South Beach
 - New offshore sites
 - Anticipated reduction, if not elimination, of truck-haul events

USACE SOUTHEAST FLORIDA PROJECT INTEGRATION VIRTUAL PUBLIC MEETING AUGUST 29, 2023

Village of Key Biscayne CSRM Study

US Army Corps

U.S. ARMY of Engineers

Free sure

VERYNAUS BLANNERO BLOT

15.312.22

Brief Study History for Key Biscayne (KB)

- **2018**: KB was originally included in Main Segment's study
- **2019**: KB Segment screened from study due to lack of public access
- 2020: KB re-included in Main Segment study after Village developed policy-compliant public access plan
- **2021**: Study found benefits along ocean shoreline; however, damages from the back bay outweighed the ocean benefits
- **2022**: Corps concluded the KB Segment needed its own new start study to evaluate CSRM from the ocean and back bay sides of the island
- **2023**: Initial appropriations provided in the FY23 Work Plan to initiate the KB Segment's study
- Oct 31, 2023: Scheduled execution date of the Feasibility Cost Share Agreement between the Corps and Miami-Dade County

Anticipated Study Analysis and Surveys

- Hydrologic Engineering Center-River Analysis System (HEC-RAS) modeling to assess higher fidelity flooding for entire island and flood pathways
- Generation 2 Coastal Risk Model (G2CRM) modeling of the Back Bay
- Environmental and Cultural Surveys
- Geotechnical Surveys
- Depreciation less replacement value sampling
- Expanded Structural Inventory
 - Yellow dots: Structural Inventory previously completed
 - Red dots: Additional Structures to be analyzed

2nd Exception Request (Awaiting Submittal and Approval)

HEC-RAS to assess higher fidelity flooding for entire island and flood pathways into populated area

Assumed scope of analysis for plan formulation and benefits base for coastal flooding, wave attack and erosion

COASTAL SIDE OF KEY BISCAYNE

BACK BAY SIDE OF KEY BISCAYNE

CENTRAL AND SOUTHERN FLORIDA (C&SF) FLOOD RESILIENCY STUDY

Southeast Florida Projects Integration

29 August 2023

Virtual Meeting

Working Today to Build a Better Tomorrow

Pre-1948 Drainage Projects

Post-1948 C & S Florida Project

ATLANTIC

- Congressionally-authorized by the Flood Control Acts of 1948 and 1954
- Large multi-purpose water resources project
- System includes canals, levees/berms, pump stations and water control structures

C&SF FLOOD RESILIENCY STUDY OVERVIEW

Authority

- Section 216 of the Flood Control Act of 1970 (33 U.S.C. 549a).
- Review of the existing C&SF infrastructure that have significantly changed due to physical or economic conditions within southern Palm Beach, Broward and Miami-Dade.

Objective

 Enhance aging C&SF system water control and salinity control structure's functionality and capacity to provide flood risk management benefits and improve resiliency caused by inland inundation and changed conditions.

C&SF FLOOD RESILIENCY STUDY PROJECT AREA

Project Area

- Focus on the <u>highly vulnerable infrastructure</u> that can reduce the most immediate flood risks
- Lower East Coast Southern Palm Beach, Broward and Miami-Dade counties.

C&SF FLOOD RESILIENCY AND COMPREHENSIVE C&SF

The purpose of the C&SF Flood Resiliency Study is to evaluate the performance of the existing C&SF water management system based on change conditions and increase flood resiliency.

Primary Focus of 216 Study	Flood Control (Flood Risk Management) Drainage and Water Control Prevention of Saltwater Intrusion	
Future Comprehensive C&SF Study	Flood Control (flood risk management)* Drainage and Water Control* Prevention of Saltwater Intrusion* Water Supply for: Agricultural Municipal Industrial Everglades National Park Groundwater Recharge Preservation of Fish and Wildlife Preservation of Everglades National Park Navigation Recreation	C& (Se • F fl • 4 3 • 3 • N

FLOOD RISK MANAGEMENT (FRM) AND MEASURES

Flood Risk = Flood Probability x Flood Consequences

Type of measures:

- Structural
- Non-Structural*
- Natural and Nature-Based Features (NNBF)*

* Potential Opportunity

POTENTIAL MEASURES TO IMPROVE RESILIENCE AND SUSTAINABILITY

Graphic modified from https://ewn.el.erdc.dren.mil/nnbf/other/5_ERDC-NNBF_Brochure.pdf

PRELIMINARY ALTERNATIVES

Initial Array

of

Alternatives

Input from the Workshops

Preliminary Alternatives as a result of Workshops

1: Structural – Storage & Conveyance

2: Structural – Structures Only

3: Nonstructural

4: Natural and nature-based features

+ No Action

Preliminary Alternatives as a result of Current Scope

1: Structural – Structures Only & Conveyance

2: Nonstructural (Limited Evaluation)

3: Natural and nature-based features (Limited Evaluation)

Will require additional input from the PDT, stakeholders and public moving forward

+ No Action

USACE - Risk-Informed Planning Process

U.S.ARM

(#) Shows the planning steps within the risk-informed planning process

Milestone	Date
Signing of Feasibility Cost Share Agreement	September 21, 2022 [A]
Alternatives Milestone	June 20, 2023 [A]
Tentatively Selected Plan Milestone	April 2025 (S)
Draft Report Submittal to HQ	June 2025 (S)
Public Release of Draft	June 2025 (S)
Agency Decision Milestone	March 2026 (S)
Submit Final Report Package to Vertical Team	May 2026 (S)
Signed Chief's Report	September 2026 (S)

The schedule follows the USACE SMART (*Specific Measurable Attainable Riskinformed Timely*) planning process an 3x3x3 policy, and any extension will require a formal waiver request.

[A]=Actual/Completed (S) = scheduled

COMMENTS TO BE RECEIVED BY EMAIL AT CSFFRSCOMMENTS@USACE.ARMY.MIL

VISIT OUR WEBSITES FOR MORE UPDATES AND STUDY DETAILS

USACE: WWW.SAJ.USACE.ARMY.MIL/CSFFRS

SFWMD: WWW.SFWMD.GOV/C&SF

COLLABORATION!

COMPREHENSIVE EVERGLADES RESTORATION PLAN (CERP) BROWARD COUNTY WATER PRESERVE AREAS PROJECT

South Florida Project Integration

Date: August 29, 2023

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation." TANKIEK GATE

BROWARD COUNTY WATER PRESERVE AREAS DESIGN AND CONSTRUCTION

Schedule

- Contract 1: Mitigation Area A Berm
- Contract 2: C-11 Impoundment
 - Funded by the Bipartisan Infrastructure Law (BIL)
 - Advertisement Spring 2024
 - Construction Contract Award Late Summer 2024
- Contract 3: C-11 Impoundment Pump Station S-503
 - Currently in Final Design
 - Construction Contract Award Late Summer FY25*
- Contract 4: Seepage Management Area
 - Design start 2024*
- Contract 5: C-9 Impoundment
 - Design Start 2025*
- *Pending Funds availability

BROWARD COUNTY WATER PRESERVE AREAS

One Everglades System

- As CERP decompartmentalizes the Everglades, projects like the BCWPA provide needed buffers between natural and urbanized areas.
- The BCWPA project is a key connector in CERP-wide project implementation and realization of benefits (refer to project map). Operation of the BCWPA project directly affects several structural and operational components of CERP and the capability to move water south, including among others, components of the Central Everglades Planning Project (CEPP) phases, Biscayne Bay Southeastern Everglades Restoration (BBSEER), and the future Southern Everglades study.

CEPP South depends on BCWPA C-11 storage prior to increasing flow through S-333 or implementation of WCA 3B inflow structures along the L-67A&C levees to ensure adequate water inflows to WCA 3B and Northeast Shark River Slough.

Ref: CEPP Chief's Report

Project Benefits

The BCWPA project is designed to achieve regional benefits:

- ~563,000 acres in WCA 3 and
- ~200,000 acres in the Greater Everglades,
- including Everglades National Park (ENP).

BISCAYNE BAY COASTAL WETLANDS

Amy Thompson – Integration Planner Jacksonville District U.S. Army Corps of Engineers

To rehydrate coastal wetlands and reduce damaging point-source freshwater discharge to Biscayne Bay and Biscayne National Park. The BBCW project will restore wetland and estuarine habitats, and divert an average of 59 percent of the annual coastal structure discharge into freshwater and saltwater wetlands instead of direct discharges to Biscayne Bay and Biscayne National Park.

Project Goals

The goal of the Biscayne Coastal Wetlands (BBCW) project is to restore or enhance freshwater wetlands, tidal wetlands, and nearshore bay habitat. The objectives of this project are to:

- Reestablish productive nursery habitat along the shoreline.
- Redistribute freshwater flow to minimize point source discharges to improve freshwater and estuarine habitat.
- Restore and improve quantity, quality, timing, and distribution of freshwater to the Bay, including Biscayne National Park.
- Preserve and restore spatial extent of natural coastal glades habitat.
- Reestablish connectivity between Biscayne Coastal Wetlands, C-111 Basin, Model Lands, and adjacent basins.

BISCAYNE BAY COASTAL WETLANDS Project Benefits

- Rehydrate 190 acres of freshwater
- Increase hydroperiods in target freshwater wetlands from approximately 70 to 200 days per year.
- Improve oyster bars, submerged aquatic vegetation, wetland vegetation, and associated biota.
- Increase abundance of fish and abundance and diversity of seagrasses.
- Improve habitat for alligators and juvenile crocodiles.
- Produce high-functioning grassy wetlands that serve as critical habitat to prey fish and wading birds.
- Increase saltwater wetland function from 1,002 habitat units to 7,398 habitat units (net of 6,396 acres of functionality) out of the total available 22,500 acres of saltwater wetlands,

5

Structure Number	Structure Type	Design Capacity (cfs)	Location	Tech Specs & Notes	
			DEERING ESTATE	Sector Charles and Sector	
S-700	Pump Station	100	East of C-100A Spur Canal, Power's Addition Parcel	Delivers water from C-100A Spur Canal to historic flow way on Deering Estate, Culvert from pump station under Old Cutler road, including outlet spreader structure	80°1846°W
C-100A	Canal Extension	100	Extension of Existing C- 100A Spur Canal Power's Addition Parcel	Delivers water to historic flow way on Deering Estate	
Pipe	60" pipe	100	South of new pump station running under Ol Cutler Road to Outlet	d Delivers water from pump station to Spreader canal	
Deering Estate Spreader Structure	Spreader Canal	100	East side of Old Cutler Road	Delivers water to coastal wetlands in Deering Estate	
			Legend Alternativ	ve "O" Phase 1 Proposed Features	O HOOA Spur
			Structure Pur Spr	es Improvements np Conveyance Channel eader Structure	
				Areas	

Existing Structures

Went

S-701

C-701

C-702

BISCAYNE BAY COASTAL WETLANDS Cutler Wetlands

Structure Number	Structure Type	Design Capacity (cfs)	Location	Tech Specs & Notes					
L-31 EAST									
S-703	Pump Station	50	On L-31 E Canal, just north of C-102	Delivers water to the saltwater wetlands, utilizes an outlet spreader structure					
S-705	Pump Station	100	On L-31 E Canal, just south of C-102 intersection	Delivers water from C-102 to southern reach of L-31 E Borrow Canal					
S-706A, B, C	Culvert	Varies	L-31E Levee	Delivers water from L-31 E Canal to saltwater wetlands to the east					
S-708	Culvert	Varies	L-31 E Levee	Delivers water from L-31 E Canal to saltwater wetlands to the east					
S-23 A, B, C, D	Culvert	Varies	L-31 E Levee	Delivers water from L-31 E Canal to saltwater wetlands to the east					
S-707	Inverted Siphon	Varies	Intersection of L-31 E Canal and Military Canal	Will connect L-31 E Canal on the north and south sides of Military Canal while isolating flows from Military Canal					
S-709	Pump Station	40	On L-31 E Canal, just north of C-103 intersection	Delivers water from C-103 north to L-31 E Canal					
S-710	Pump Station	40	Approximately 0.7 miles west of L-31 E Canal on south bank of C-103	Delivers water from C-103 to the freshwater wetland (between C-103 and North Canal, west of L-31 E Canal) via a spreader structure					
S-711	Pump Station	40	Approximately 1.4 miles west of L-31 E Canal on south bank of C-103	Delivers water from C-103 to the freshwater wetland (between C-103 and North Canal, west of L-31 E Canal) via a spreader canal (C-711)					
C-711E	Spreader Canal	40	Approximately 1.4 miles west of L-31 E Canal, between C-103 and North Canal	Delivers water from S-711 Pump Station to the freshwater wetland via overland sheetflow					
C-711W	Seepage Collection Ditch	Varies	Approximately 1.4 miles west of L-31 E Canal, between C-103 and North Canal	Collects seepage from C-711E spreader canal and delivers it back to C-103					
S-712A&B	Culvert	Varies	L-31 E Levee	Delivers water from L-31 E Canal to saltwater wetlands to the east					

BISCAYNE BAY COASTAL WETLAND L-31E Flow way

BISCAYNE BAY COASTAL WETLANDS Design and Construction Progress

Deering Estate

Contract 1 (SFWMD); completed

L-31E Flow-way

- Contract 2 (SFWMD); completed
- Contract 3 (USACE); completed
- Contract 4 (SFWMD); completed
- Contract 4 (USACE); in Operational Testing and Monitoring Period (OTMP)
- Contract 5A (USACE); in construction
- Contract 5B (USACE); in construction
- Contract 5C (USACE); in construction

Cutler Wetlands

- Contract 6A (SFWMD); in construction
- Contract 6B (SFWMD); in design

Construction Complete – Tracking Jan 2028

BISCAYNE BAY AND SOUTHEASTERN EVERGLADES ECOSYSTEM RESTORATION (BBSEER)

South Florida Project Integration Project Status, Goals, Objectives, Alternatives Analysis

August 29, 2023

US Army Corps of Engineerse

U.S. ARM

https://www.saj.usace.army.mil/BBSEER

TANKIER GATE

_____ Lo.z

- Everglades Big Picture
- Objectives
- Phasing and Progress
- Existing and Future Conditions
- Objectives and Constraints
- Formulation Strategy
- Overview of Round 2 Alternatives
- Schedule

THE CASE FOR RESTORATION

AND HABITAT LOSS.

 MAJOR DRAINAGE AND LAND USE CHANGES TO OVERCOME EXPOSURE TO SEA LEVEL RISE
ALMOST FLAT TOPOGRAPHY POROUS SUBSTRATE GRADIENT OF HABITATS NEED UNIQUE
WATER LEVELS FLOOD PROTECTION LEVEL OF SERVICE REQUIREMENTS FOR URBAN AREAS
WATER QUALITY REQUIREMENTS COMPLEX FWOP ASSUMPTIONS REAL ESTATE NON-STANDARD ESTATES//MITIGATION BANKS ALL MUST BE IN ONE COHESIVE PLAN.

FLOOD PROTECTION CANALS THROUGH DENSELY POPULATED AREAS, MIXED LAND USES, SUSCEPTIBILE TO SEA LEVEL CHANGE, COMPOUNDED BY POROUS LIMESTONE AND FLAT TOPOGRAPHY.

CERP'S VISION & BBSEER

- - **Keep Everglades Water in the Everglades**
 - Improve Sheet Flow to Freshwater and Coastal Wetlands and the **Nearshore Estuary Ecosystem**
 - Store Water in North and Move It South to Bay
 - Supplement Regional Water **Budget with Wastewater Re-use**

MEETING PURPOSE UPDATE | WHAT HAVE WE DONE SO FAR

ANALYZING HYDROLOGY NORTH TO EAST TO SOUTH ROUNDS OF INTEGRATED MODELING: FROM BASELINE TO TSP

BBSEER MODELS FULLY DEVELOPED AND IN ACTION:

MEETING PURPOSE UPDATE | ROUND 2 ECOLOGICAL PERFORMANCE

WE ARE HERE

Evaluate Additional Environmental Effects and System wide Analysis – JEM Models summer 2023

Environmental Effects

- Water SupplyFlood Protection
- Savings Clause
- Real Estate
- Economics

Habitat Units: One Piece of the Puzzle

EXISTING CONDITIONS: HABITAT AT RISK DESCRIPTIONS AND OPTIMAL SURFACE SALINITIES (PSU)

PROJECT OBJECTIVES

1) RESTORE SALINITY REGIMES, MINIMIZE UNNATURAL CANAL RELEASES:

Improve quantity, timing, and distribution of freshwater to estuarine and nearshore subtidal areas, including mangrove and seagrass areas (500-meter zone).

2) FRESHWATER WETLAND WATER DEPTH, PONDING DURATION AND FLOW TIMING:

Restore freshwater depths, hydroperiods, and flows, for dry and wet seasons in terrestrial wetlands.

3) RESTORE NATURAL ECOLOGICAL AND HYDROLOGICAL **CONNECTIVITY:**

Restore connectivity and habitat gradients in areas compartmentalized by federal and state canal systems in Southern Everglades, Model Lands, Biscayne Bay Coastal Wetlands.

4) SEA LEVEL CHANGE RESILIENCY:

Increase and restore ecological resilience in coastal habitats in southeastern Miami-Dade County.

BBSEER PLAN FORMULATION

The BBSEER Study is focused on formulating plans to restore parts of the south Florida ecosystem in:

Freshwater wetlands (terrestrial areas) of Southern Glades and Model Lands

<u>Coastal wetlands (inter-tidal areas)</u> of Southern Glades, Model Lands, Biscayne Bay Coastal Wetlands and Eastern Panhandle

<u>Nearshore (subtidal areas including</u> <u>mangrove and seagrass areas)</u> of Biscayne Bay, Biscayne National Park, Manatee Bay, Card Sound, Barnes Sound

ALTERNATIVES

PRIMARY MEASURES/THEMES

HOLDING WATER: NORTHWESTERN WETLANDS AND STORAGE

NEW CANAL FOR WATER SOURCING CONVEYANCE CANALS (EXISTING) + OPERATIONAL CHANGES REDISTRIBUTION AND REHYDRATION (INCLUDING PUMPS)

SMART PLANNING PROCESS

BBSEER PDT and Public:

Thank you for Supporting BBSEER Study Efforts! Sincerely, BBSEER Core Team

BBSEER Project Information: https://www.saj.usace.army.mil/BBSEER

Virtual Public Meeting Agenda

- 1. Welcome and Introduction
- 2. Project Integration
- 3. Projects Overview and Status Updates
 - a) Navigation Projects1. Miami Harbor Improvements Study
 - b) Coastal Storm Risk Management Projects
 - 1. Miami-Dade Back Bay CSRM
 - 2. Key Biscayne CSRM
 - 3. Dade County CSRM
 - c) Flood Risk Management Projects 1. C&SF Flood Resiliency Study
 - d) Ecosystem Restoration Projects
 - 1. Broward County WPA C-11 Reservoir
 - 2. Biscayne Bay Coastal Wetlands (BBCW)
 - 3. BBSEER
- 4. Resiliency Partners Perspectives
 - a) SFWMD Resiliency Efforts
 - b) Miami-Dade County
 - c) Broward County
- 5. Comments and Questions
- 6. Closing Remarks and Adjourn

WE ARE HIRING!

Join the Jacksonville District Team

Seeking to fill multiple positions: Biologist, Physical Scientist, Program Analyst, Engineers, Geologist, Chemist, Landscape Architect and many more.

Scan the QR Code

Or visit

www.saj.usace.army.mil/NowHiring