
FINAL TECHNICAL MEMORANDUM Yucca Pens Hydrologic Restoration Plan (Work Order No: 4600000893-WO03)

Prepared for:

3301 Gun Club Road West Palm Beach, Florida 33406 561-686-8800

Prepared By:

6925 Lake Ellenor Drive, Suite 112 Orlando, Florida 32809 407-851-5020

January 28, 2010 08006.02

TABLE OF CONTENTS

Sect	ion		Page
1.0	INTR	ODUCTION	1_1
1.0	1.1	Project Objective	
	1.2	Scope of Work	
	1.3	Summary of Task 1 Report	
2.0	SITE	RECONNAISSANCE	2-1
	2.1	Visual Field Inspection	2-1
		2.1.1 Distribution of the Waypoints	2-1
		2.1.2 Flow Control Structures	
		2.1.3 Canals and Flow Ways	2-5
		2.1.4 ATV Trails	
	2.2	Historic Drainage Pattern (Updated Watershed Boundaries	s)2-5
	2.3	Updated Geodatabase	2-12
		2.3.1 Base Map and Geodatabase	2-12
		2.3.2 Metadata for Base Map	2-13
3.0	Hydi	ROLOGIC ANALYSES	3-1
	3.1	Water Budget Analysis	
		3.1.1 Flow Computation	
		3.1.2 Results and Discussion	
	3.2	Water Quality Analysis	3-5
		3.2.1 Development of Model	3-6
		3.2.1.1 Nonpoint Source Analysis	
		3.2.1.2 BMP Evaluation for Nonpoint Sources	
		3.2.1.3 Failing Septic Tank Impacts Analysis	
		3.2.1.4 Point Source Loadings Analysis	
		3.2.2 Discussion of Results	3-16
4.0	Mul	TI-FUNCTIONAL WATER MANAGEMENT PLAN	4-1
	4.1	Conceptual Plan Formulation	
		4.1.1 Restoration Planning Requirements	
		4.1.2 Planning Level Conceptual Design	4-2
		4.1.3 Permitting Requirements	4-13
		4.1.4 Order of Magnitude Cost Estimate	4-14
	4.2	Restoration Improvement Alternatives	
		4.2.1 Water Quality Best Management Practices (BMPs)	
		4.2.2 Passive Low Maintenance Conceptual Designs	4-17

FINAL TECHNICAL MEMORANDUM; JANUARY 28, 2010 YUCCA PENS HYDROLOGIC RESTORATION PLAN (WORK ORDER NO: 4600000893-WO03)

	4.2.3	Other Multi-Functional Alternatives.	4-17
4.3		nmended Multi-Functional Water Management Plan	
APPENDICES	S		
App	endix A	Site Reconnaissance Field Logs and	
11		Photographs of Selected Structures (July 20-29, 2009)	A-1
App	endix B	Results of Hydrologic Models (ICPR and WMM)	
		Geodatabase and Metadata Files	
		Response to Interagency Deliverable Review Team Comments	

LIST OF FIGURES

Figure 1-1	Approximate Extent of Project Area	1-8
Figure 2-1	Measured Waypoints during Site Reconnaissance	2-2
Figure 2-2	Location Map for Identified Culverts	2-4
Figure 2-3	Location Map for Identified Bridges	
Figure 2-4	Location Map for Identified Weirs, Drop Structures, and Outfalls	2-7
Figure 2-5	Location Map for Identified Canals and Flow Ways	2-8
Figure 2-6	Location Map for Identified ATV Trails and/or Dirt Roads	2-9
Figure 2-7	Location Map for State and County Owned Lands	2-11
Figure 3-1	Watershed Boundaries for Hydrologic Analysis	3-2
Figure 4-1	Schematic Conceptual Designs for Hydrologic Restoration of	
C	Yucca Pens Project Area	4-4
Figure 4-2	Schematic Conceptual Designs for Flow Diversions in GSE1	4-6
Figure 4-3	Schematic Conceptual Designs for Flow Diversions in GSE2	4-8
Figure 4-4	Schematic Conceptual Designs for Flow Distribution and	
C	Treatment Enhancement in DCEBS/YPEBS	4-11
Figure 4-5	Schematic Conceptual Designs for Restore Historic	
C	Flow across Burnt Store Road	4-12

LIST OF TABLES

Table 3-1	Summary of Hydrologic Computation by Watershed	
	for a 25-Year, 72-Hour Storm	3-3
Table 3-2	Summary of Water Budget by Watershed for a 25-Year, 72-Hour Storm.	3-4
Table 3-3	Land Use Categories for WMM	3-6
Table 3-4	Land Use Acreage by Watershed for WMM	3-7
Table 3-5	Land Use EMC Values for WMM	. 3-10
Table 3-6	Existing Land Use BMP Treatment Data	. 3-11
Table 3-7	Ranges of BMP Removal Efficiencies (%)	
Table 3-8	BMP Removal Efficiencies Used in WMM (%)	
Table 3-9	Summary of Septic Loading Rates	
Table 3-10	Point Source Data	. 3-16
Table 3-11	Annual Pollutant Load Analysis Results	
	from WMM for Existing Conditions	3-17

1.0 INTRODUCTION

The following summary of the background information on the project area was extracted from the statement of work prepared by the South Florida Water Management District (SFWMD or District), which was included in the work order no. 4600000893-WO03.

In the 1950's, almost all of the watershed areas in the South Charlotte, North Lee County and Fred C. Babcock-Cecil M. Webb (Babcock-Webb) Wildlife Management Area (WMA) were drained by sheet flow in a southwesterly or southerly direction. There was no significant development to block this southwesterly and southerly sheet flow. The next 30 years, 1950 – 1980, brought development into these sheet flow areas and significant flooding began to occur. Sheet flow from the Babcock-Webb area of 40 square miles remained unchanged. Topographic changes since the 1980's have further blocked, constricted and concentrated what were formerly sheet flow areas. Expanded development in the study area has exacerbated both constrictions and flooding in these newly developed sheet flow areas. Sheet flows prior to 1975 normally crossed over U.S. 41 near the Charlotte/Lee County line. This was blocked when the west lanes of U.S. 41 were raised in 1975. Sheet flow from the upper reaches of the Gator Slough watershed (Babcock-Webb Area) was concentrated at the 145-ft wide bridge under I-75 near the Charlotte/Lee County line when it was constructed in 1980.

The Yucca Pens Unit includes a portion of the Babcock-Webb WMA in both Lee and Charlotte Counties. A Conceptual Plan for Fred C. Babcock-Cecil M. Webb Wildlife Management Area 2003-2008 (Conceptual Plan) has been developed by the Florida Fish and Wildlife Conservation Commission (FWC) and approved by the Florida Department of Environmental Protection (FDEP). The Conceptual Plan contains resource management goals, objectives and strategies to restore and maintain the area hydrology to natural conditions where feasible. Historic sheet flow to the south has been significantly impeded due to development and diking, resulting in abnormally high water levels that cause degradation to the native upland habitat. The Conceptual Plan strategies specifically include working with the county and state government agencies to restore historical sheet flow to the area and contracting to complete a hydrology study of the Yucca Pens Unit. Additionally, Yucca Pens restoration is a component of the Tentatively Selected Plan of the Southwest Florida Feasibility Study. The purpose of this project is to conduct a reconnaissance study of the water characteristics of the Yucca Pens Unit in order to identify water management goals as well as available and needed data to make informed water management decisions in the area. Ultimately, the project information will be used to contribute to the net ecosystem benefit in the Cape Coral North Spreader watershed as part of the FDEP Ecosystem Management Agreement Process.

Previous Planning Activities

This area was described in the Northwest Lee County Surface Water Management Plan

prepared for Lee County by Boyle Engineering and completed in 2005. The main focus of this study was to develop a Geographic Information System (GIS) database necessary for surface water management, develop a hydrologic/hydraulic model of the surface water management system, identify issues of concern, and assess existing and future level of service deficiencies for flooding along Burnt Store Road. Water quality modeling was also performed. The data developed in this study should provide a basis for the proposed restoration plan for the Yucca Pens Unit.

In 2004, Johnson Engineering prepared a report for the District entitled *South Charlotte County, North Lee County, Babcock/Webb Surface Water Management Concept Plan* to address flooding concerns in the vicinity of the Babcock-Webb WMA. The recommendations of this report should be considered in the preparation of the restoration plan.

1.1 PROJECT OBJECTIVE

The ultimate goal of this project is to restore historic sheet flow to the Yucca Pens Unit. However, the primary objective of this contract (work order no. 4600000893-WO03) is to conduct a reconnaissance study of the water characteristics of the Yucca Pens project area. This study is intended to assist in making informed decisions to develop a multifunctional water management plan for implementing hydrologic restoration in the Yucca Pens area. The project has investigated the potential for restoring the historic outfall to the following systems: 1) Yucca Pen Creek, 2) Durden Creek, 3) Greenwell Branch, 4) Longview Run, and 5) Gator Slough. Runoff to these five systems (watersheds) originates in the Babcock-Webb WMA and passes through Charlotte County to reach the outfall in Lee County. A number of entities will be involved in the solution to this restoration including SFWMD, Southwest Florida Water Management District (SWFWMD), Lee and Charlotte counties specifically Lee County Natural Resources Division, Lee County Department of Transportation, Charlotte County Public Works Department, Charlotte County Growth Management Department, as well as the City of Cape Coral, FWC, FDEP, Florida Department of Transportation (FDOT), Charlotte Harbor Preserve State Park. Charlotte Harbor Aquatic Preserves, U.S. Fish and Wildlife Service (FWS), and the Seminole Gulf Railway. Successful implementation of the recommendations of this plan will involve cooperation among all involved. A Yucca Pens Interagency Deliverable Review Team (IDRT) has been assembled by the District.

Restoration of the historic flow will reduce the amount of water that has been redirected to Gator Slough and lessen the impact of damaging point discharges through the Gator Slough Canal. The multifunctional water management plan will thus contribute to the net ecosystem benefit in the Cape Coral North Spreader watershed for the Ecosystem Management Agreement Process. A desired outcome of the project is that the FWC will implement the recommended hydrologic restoration plan for the Yucca Pens area in phases.

The restoration plan will be designed to meet the following objectives:

- 1. Restoration of sheet flow across the Yucca Pens unit
- 2. Provide outfall from Babcock-Webb WMA to the Yucca Pens unit potential flow ways include Oil Well Road at I-75 and Harper & McNew Property at I-75
- 3. Investigate ways to allow water from the U.S. 41 ditch to sheet flow across Yucca Pens unit
- 4. Restoration of the ecological integrity of the ecosystem
- 5. Improvement of water retention and aquifer recharge
- 6. Restoration of flow severed by previous construction
- 7. Restoration of historic outfall to Charlotte Harbor
- 8. Reduction in unnatural point discharges from Gator Slough

1.2 SCOPE OF WORK

The work in this project consists of the reconnaissance study of the water characteristics in the Yucca Pens area; a conceptual planning level evaluation of the issues relating to water supply, flood protection, water quality and natural systems; and development of a multifunctional water management plan for hydrologic restoration of the Yucca Pens area. The multifunctional water management plan includes information on required permits for restoration. The project includes field verification of the water characteristics as well as relevant research and a compilation and synthesis of existing information on hydrologic conditions within the Yucca Pens study area.

This study is a master planning level study, and is not intended to serve as an engineering study. All references to design during this study indicate conceptual planning level design without details. Implementation of any design recommendation developed during this study will require engineering analysis and design, which is beyond the scope of this contract.

The current work order (Work Order No: 4600000893-WO03) is divided into several technical and deliverable tasks and sub-tasks as summarized below.

Task 1: Prepare Summary Report and Metadata

Sub-Task 1.1: Kick-Off Meeting

The scope of this subtask included attending the kickoff meeting with the District staff with primary focus on a) clarifying the project requirements along with establishing lines of communication and project schedule, b) receive all relevant data collected and assembled by the District, and c) receive a geodatabase and the base map for the project prepared by the District.

Sub-Task 1.2: Literature/Data Review

The scope of this sub-task included brief reviews of all documents, reports, and other relevant data provided by the District with focus on gaining better understanding of the challenges facing the Yucca Pens area with respect to the long term plan requirements and the goal to restore historic sheet flow to the area.

Sub-Task 1.3: Prepare Summary Report and Metadata

This included preparing and submitting the narrative description for the study area and metadata for the project base map.

BPC Group Inc. (BPC) completed Task 1 of the work order, and submitted the final report in September 2009 (Final Summary Report, Yucca Pens Hydrologic Restoration Plan, Task 1: Summary Report and Metadata; Work Order No: 4600000893-WO03; September 4, 2009).

Task 2: Complete Reconnaissance Study of Yucca Pens Study Area & Technical Memorandum

Sub-Task 2.1: Update Site Specific Data

This included developing the historic drainage pattern in the study area as well as conducting a limited visual field verification of hydrologic data, infrastructures, and drainage patterns including limited GPS survey (not at sub-meter level and not conducted by a licensed surveyor) as appropriate. The scope also included a complete water budget analysis solely based on the results from the *Northwest Lee County Surface Water Management Plan* report and other studies to build a spreadsheet model to analyze outfall restoration.

Sub-Task 2.2: Address Water Quality Issues

The scope of this subtask included customizing the existing ERD spreadsheet model or substitute with a more appropriate basin scale water quality model for evaluation of impacts from pollutants specific to the study area and to determine the efficiencies of potential BMPs. This analysis would be solely based on the data provided by the District.

<u>Sub-Task 2.3: Prepare Draft Technical Memorandum for Multifunctional Water Management Plan</u>

This included preparation of the 95% complete draft technical memorandum (TM) along with the field reconnaissance survey and analytical calculation results for the study area. The final TM shall incorporate the appropriate and applicable review comments from the District and the IDRT and be submitted within two weeks from receiving the comments.

This TM presents the findings of Task 2. A draft copy of this Task 2 TM dated December 11, 2009 was submitted to the Interagency Deliverable Review Team (IDRT) members for

their review. The comments from the IDRT members along with the responses to these comments are presented in Appendix D.

1.3 SUMMARY OF TASK 1 REPORT

This section presents a brief summary of the activities completed during Task 1 and the findings and recommendations documented in the Task 1 Report. For complete details on the documentation and findings, the reader is referred to the Task 1 Report (Final Summary Report, Yucca Pens Hydrologic Restoration Plan, Task 1: Summary Report and Metadata; Work Order No: 4600000893-WO03; September 4, 2009). This report is also listed in the reference section of this TM as "BPC Group, 2009".

BPC reviewed all available documents and data to become familiar with the project extent and needs, and to gain better understanding of the challenges facing the Yucca Pens project area with respect to the long term plan requirements and the goal to restore historic sheet flow within the project area.

The Yucca Pens Hydrologic Restoration project area includes the following five watersheds: Yucca Pen Creek, Durden Creek, Greenwell Branch, Longview Run, and Gator Slough. Geographically, the Yucca Pens project area extends from Babcock-Webb WMA in Charlotte County along the north and east to Charlotte Harbor along the west and Gator Slough canal on the south. The approximate extent of the project area, as presented in Task 1, is shown on Figure 1-1. The road maps were downloaded from the county websites of Lee and Charlotte counties. The study area consisted of approximately 52.8 square miles west of US 41 and about 44.8 square miles east of US 41. The approximate Yucca Pens project boundary shown on Figure 1-1 was generated by combining watershed boundary shapefiles provided by the District. These boundaries were refined through limited site reconnaissance activities during Task 2, and the revised watershed boundaries are presented later in this TM.

Some of the previous studies were conducted for flood control studies, while the others were aimed at restoration activities. The current study is not a flood control project; rather the objective of this project is to develop conceptual hydrologic restoration plans. Based on the objectives of the current project, following is a summary of the relevant recommendations from previous studies presented in the Task 1 Report.

Northwest Lee County Surface Water Management Plan, March 2005

• Develop new topographic data for the study area; use updated topographic data to refine the delineated watershed boundary; develop a GIS database for the study area to capture all watershed relevant information; collect more hydraulics and conveyance data within Long View Run watershed; and install weather station on Burnt Store Road for better accuracy of rainfall data for the study area.

- A detailed field survey should be conducted for engineering design purpose; update the runoff curve number of each sub-basin according to future developments and other landuse changes; update time of concentration of individual sub-basins according to the new topographic data; and determine accurate seasonal high water elevations to design flood control/water quality improvement structures. The curve number and time of concentration are standard hydrologic model parameters used to estimate runoff (for definition refer to "Urban Hydrology for Small Watersheds, TR-55, June 1986; Engineering Division, U.S. Department of Agriculture").
- For future study in the watersheds, the developed watershed model should be converted into ICPR Version 3.0; convert the Cape Coral canal system model from SWMM to ICPR Version 3.0 for integrated study of Northwest Lee region and City of Cape Coral canal system.
- Purchase additional right of way on Burnt Store Road if the roadway expansion occurs; maintain control structures on Burnt Store Road on a regular interval for full conveyance capacity of the control structures; construct wet or dry retention / detention system within the unincorporated areas of Lee County east of Burnt Store Road to provide treatment for 1-inch of runoff from developed areas.

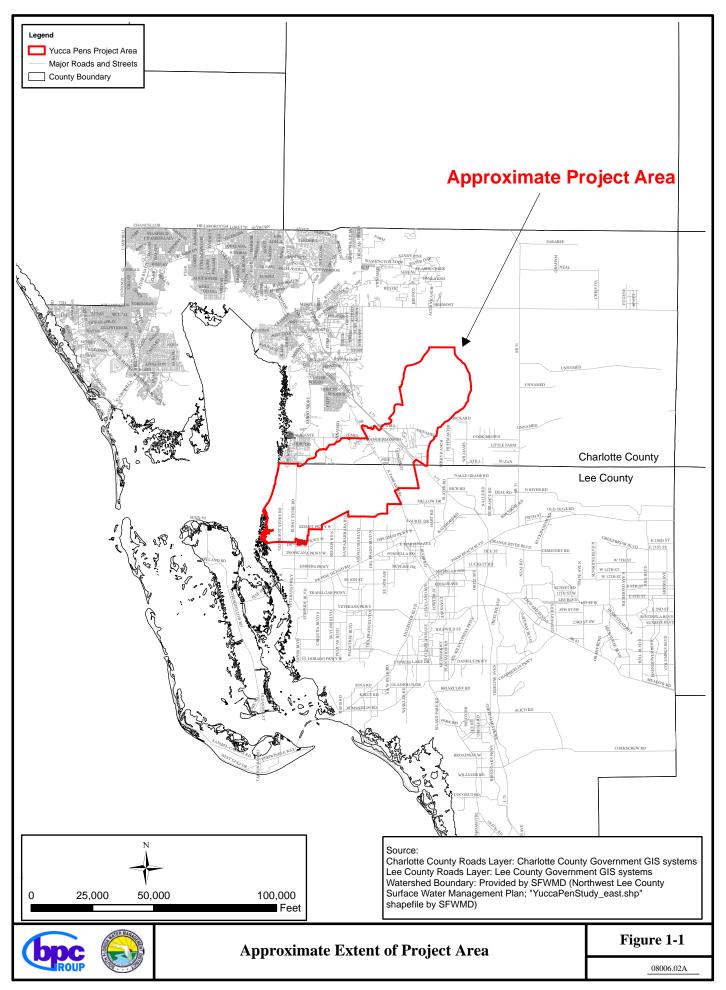
Water Management Study: Cecil M. Webb Wildlife Management Area, June 1983

- Proposed a Water Management Plan that included the following phased approach:
 - o Implement a Pilot Plan that includes immediate maintenance of the two existing Webb Lake outfall structures, the creation of a bypass flow way west of Webb Lake Road, and structural improvements to the North Prong of Alligator Creek and to the South Branch of Myrtle Slough;
 - o Create a Tucker's Grade water control system;
 - O Construct a single outlet control structure on each of the five maintenance channels identified in the report to control 60 percent of the outflow from the Webb WMA: and
 - o Create a major retention Area at the intersection of Tucker's Grade and SAL Grade.

Lee County Interim Surface Water Management Master Plan, May 1990

- Gator Slough is highly altered system which sends water rapidly to the estuary in Matlacha Pass and this characteristic has caused damage to the seagrasses in the shallow waters adjacent to the mouths of small natural creeks extending from the spreader system.
- Charlotte and Lee Counties will need to cooperate on any watershed work in Charlotte County for any development that would increase the rate of water in Gator Slough.
- Repair portions of the spreader waterway's seaward edge to better distribute water to the estuarine areas; and place fixed weir structures adjacent to the canal in Section 23 and 27 to reduce over drainage and control canal sedimentation.

- Divert or provide longer detention in the Cape Coral canal system to reduce the existing impacts to seagrass.
- Add the adjacent wetlands on the eastern side of U.S. 41 to the flow way.


Matlacha Pass Hydrologic Restoration Project - Phase 1, March 2007

• Expand and improve cross-drain culverts under Burnt Store Road to improve east west flow pattern, and side drains and roadside ditches along Burnt Store Road to improve conveyance within the individual basins in order to reduce inter basin flows between Greenwell Branch and Gator Slough Basins; and remove cross drain at the intersection of Durden Parkway and Burnt Store Road.

Surface Water Management Conceptual Plan: South Charlotte County, North Lee County, and Babcock/Webb, 2003

• Acquire online storage areas where practical to attenuate flood flows as they move south in addition to the right-of-ways along Gator Slough Outfall, such as Oil Well Grade Road to the 145-foot I-75 Bridge.

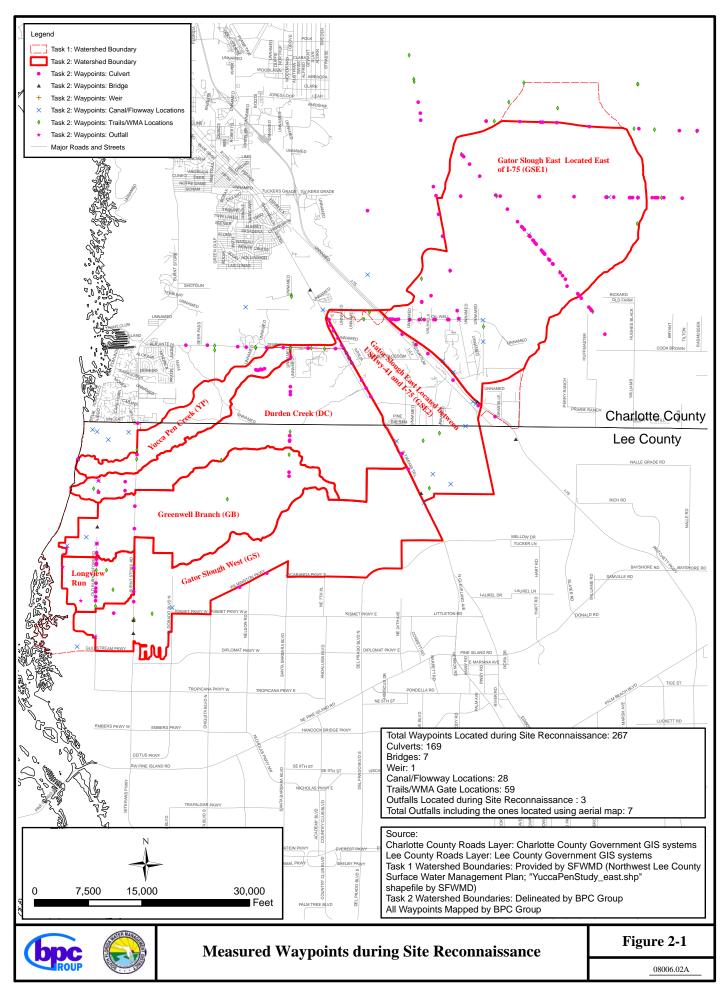
2.0 SITE RECONNAISSANCE

2.1 VISUAL FIELD INSPECTION

BPC Group conducted a limited visual reconnaissance of the Yucca Pens project area from July 20, 2009 to July 29, 2009. The scope of the site reconnaissance included visual verification and documentation of GPS coordinates of limited hydrologic features, including infrastructures and drainage patterns using a hand held Garmin GPSMAP 76CSx. According to the manufacturer's specification, this device has a GPS accuracy of ±10 m (33 ft) and an altimeter accuracy of ±10 ft. The type of structures or hydrologic features observed during the visual field inspection included: culverts, bridges, weirs, outfalls, canals and flow ways, swales and ditches, trails including dirt roads and ATV trails, and Babcock-Webb WMA gates. As indicated in the scope of work, this visual field inspection was not a complete site reconnaissance survey. It was only a limited visual field verification of selected accessible hydrologic features. The GPS coordinates of these hydrologic features were recorded in the GPS device known as waypoints.

The copies of the field logs documented during the site reconnaissance are presented in Appendix A. The photographs of the selected structures captured during the field inspection are also presented in Appendix A. A discussion of these photographs along with further details on the field inspection results are presented below in the next several subsections.

2.1.1 Distribution of the Waypoints

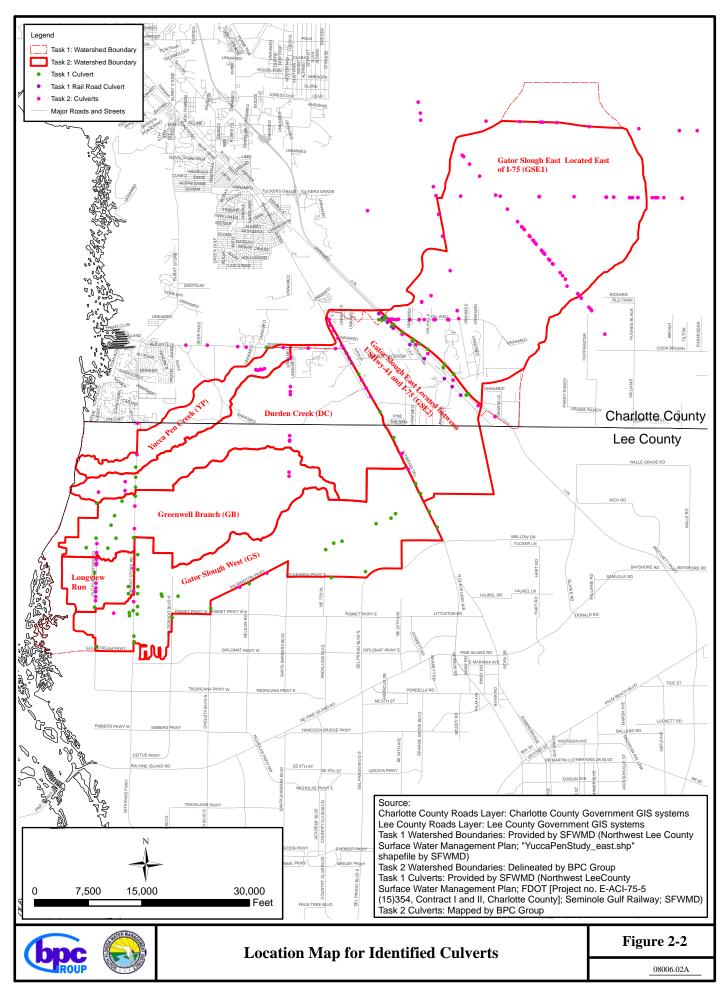

A total of 267 waypoints were recorded during the field reconnaissance of the project area. The GPS waypoints were imported to the GIS, and were organized into several layers. Following is the breakdown of the distribution of these waypoints.

- 169 Culvert Locations of which 10 culverts are equipped with flap/sliding gates
- 7 Bridge Locations
- 1 Weir Location
- 28 Canal and/or Flow Way Locations (several waypoints along each canal/flow way)
- 3 Outfall Locations
- 59 waypoints representing the Trails and WMA Gate Locations. Several waypoints recorded along each trail within the study area and other intermediate locations including the WMA gates. The trails included dirt roads and ATV trails.

The locations and distribution of the waypoints are shown on Figure 2-1.

08006.02-Task 2-Final TM 012810 2-1

2.1.2 Flow Control Structures


The flow control structures include individual culverts, bridges, weirs, drop structures, and outfalls within the study area. The canals and flow ways are presented in Section 2.1.3. As indicated above, the flow control structures surveyed during this task account for a total 180 waypoints. The waypoint measurements of these individual flow control structures were compared with the culverts, bridges, weirs, drop structures, and outfalls presented in Task 1. The geodatabase prepared during the Task 1 consisted of 198 points representing culverts and bridges. A majority of these structure locations were approximated from Google maps, were not field verified, and did not have dimensional information including vertical elevations. The Task 1 structures with no dimensional information that overlap with the field reconnaissance waypoints were replaced with the field GPS information. The 198 locations from Task 1 were thus reduced to 86 waypoints. The Task 1 locations which were removed from the current geodatabase are listed below.

S-1, S-2, S-3, S-4, S-8, S-12, S-14, S-18, S-24, S-25, S-26, S-26, S-26, S-29, S-30, S-31, S-32, S-33, S-34, S-35, S-36, S-37, S-38, S-39, S-40, S-41, S-42, S-43, S-54, P-3190, P-5110, P-5130, P-6260, P-3305B, P-4005, P-4050a, RR-1, RR-2, RR-3, RR-4, RR-5, RR-6, RR-17, RR-18, RR-19, RR-20, RR-20.5, RR-21, RR-22, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19 G-1, G-2, G-3, G-4, G-5, G-6, G-7, G-8, G-9, G-10, G-11, G-15, G-20, G-21, G-22, G-23, G-24, G-25, G-26, G-27, G-28, G-29, G-30, G-31, G-32, G-33, G-34, G-35, G-36, G-41, G-43, G-45, G-47, G-48, G-49, G-50, G-51, G-52, G-53, G-54, G-55, G-56, G-57, G-58, G-59, and G-60.

The updated geodatabase along with the metadata is discussed later in this TM. Figure 2-2 presents the culvert locations, which include 169 culverts obtained from field reconnaissance during Task 2 (this task) and 86 culverts retained from Task 1. The vertical elevations of the field verified culvert locations were measured during site reconnaissance at the top of the culverts, and are included in the geodatabase. As indicated earlier, these elevations are limited by the measurement accuracy of the hand held GPS unit, which is ± 10 ft. They may only be used for qualitative and relative data interpretation. Since little information on hydraulic structures was available for the watershed GSE1 (within Babcock-Webb WMA), a large number of culverts were identified within this watershed. Similarly, maximum information was available for the watershed GS, and therefore few measurements were taken in this watershed. The distribution of the field verified culverts amongst various watersheds is given below.

Watershed GSE1:	100	Watershed GB:	6
Watershed GSE2:	10	Watershed YP:	16
Watershed GS:	4	Watershed LV:	10
Watershed DC:	23		

A number of culverts were partially blocked with debris, vegetation, or sedimentation. Few other culverts were broken or partially damaged. Appendix A presents a number of these culverts having maintenance issues. The photographs in this appendix also present culverts which are clean and need no corrective actions.

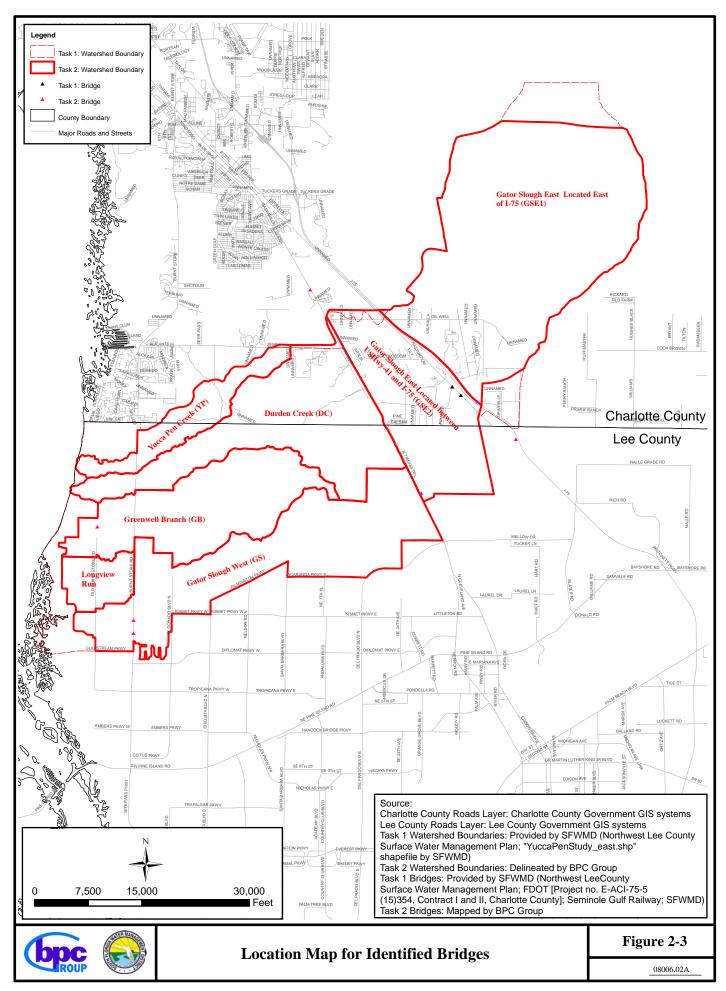
Figure 2-3 presents the bridge locations, which include 7 bridges obtained from field reconnaissance during this task and 2 bridges across Seminole Gulf Railway tracks retained from Task 1. These two railroad bridges are located within the private property of the Seminole Gulf Railway, and BPC did not have access to verify their locations. Figure 2-4 presents the location map for the weirs, drop structures, and outfalls. Appendix A also presents some photographs of the bridges, weirs, and outfalls recorded during the field reconnaissance.

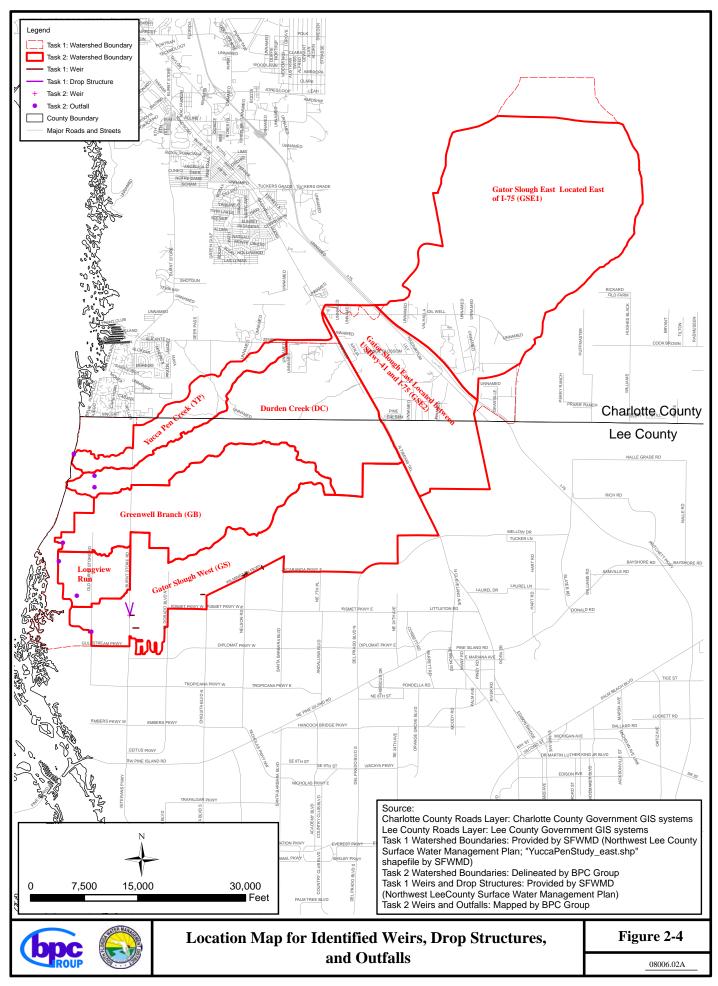
2.1.3 Canals and Flow Ways

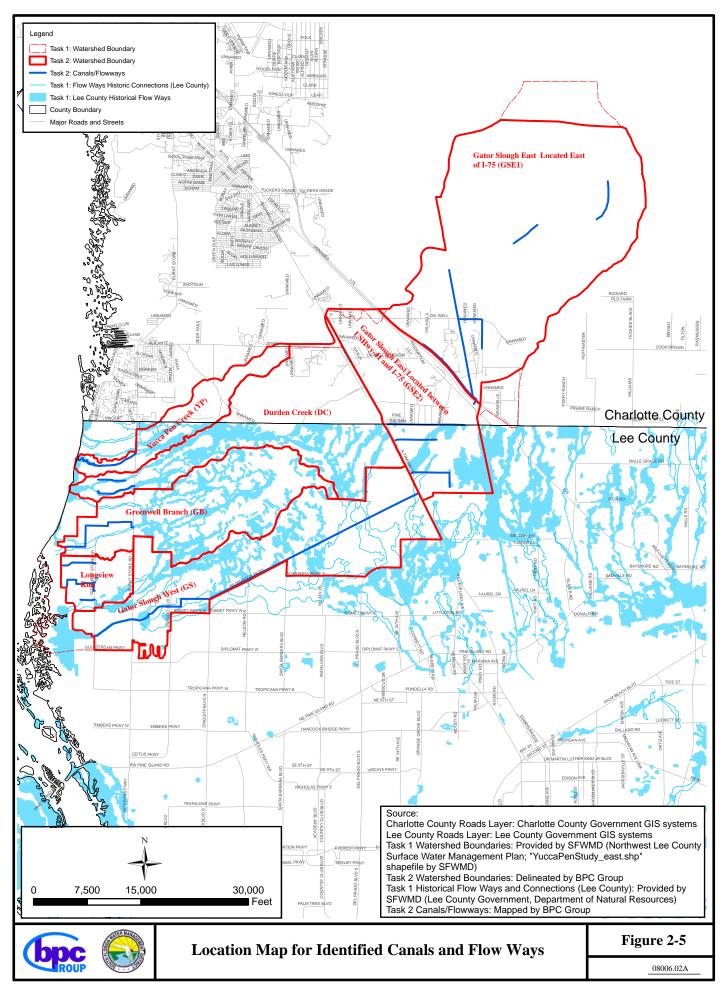
The waypoints measured along the canals and flow ways were joined using aerial photographs and topographic information to represent the canals as a line feature instead of point features in the geodatabase. A total of 28 waypoints were obtained during the site reconnaissance representing 19 canals/flow ways. Figure 2-5 presents the locations of these canals and flow ways. Appendix A presents some of the photographs of these features.

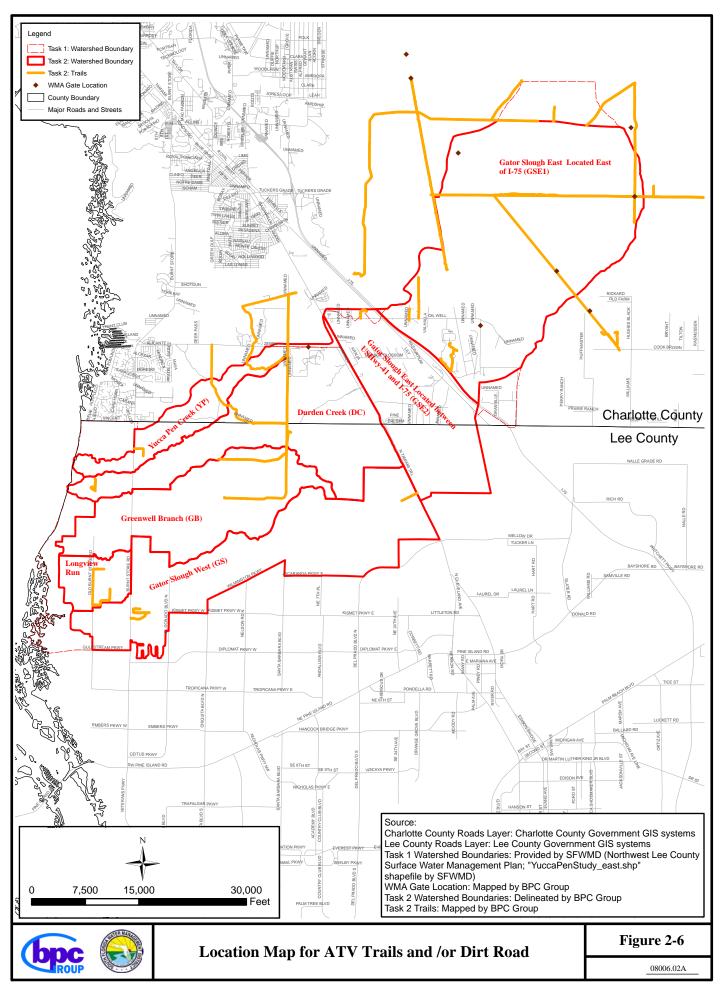
2.1.4 ATV Trails

BPC Group tracked 26 ATV Trails, which may act as potential sheet flow obstruction and/or flow ways in and around the project area. These trails were represented by 42 waypoints during the site reconnaissance. Figure 2-6 presents the approximate tracing of these ATV trails. Some of these ATV trails or portions of these trails, based on their higher topographic locations, are likely to act as flow barrier. The other trails could act as either flow way or flow barrier. The available topographic information along and around these trails is inadequate to classify either way. Photographs of some of these trails are presented in Appendix A.


2.2 HISTORIC DRAINAGE PATTERN (UPDATED WATERSHED BOUNDARIES)


Based on the field reconnaissance survey and the GPS waypoints along with the topographic contours and the Digital Elevation Model (DEM) presented in Task 1 report, the boundaries of the watersheds and the project area were modified as appropriate. Figure 2-1 presents the seven watersheds (5 watersheds west of US Hwy 41 similar to the Northwest Lee Stormwater Management Plan Report, and two watersheds east of US Hwy 41) as described below.


• Gator Slough East watershed located east of I-75 (GSE1): boundary was modified from the one presented in Task 1 Report



08006.02-Task 2-Final TM 012810 2-5

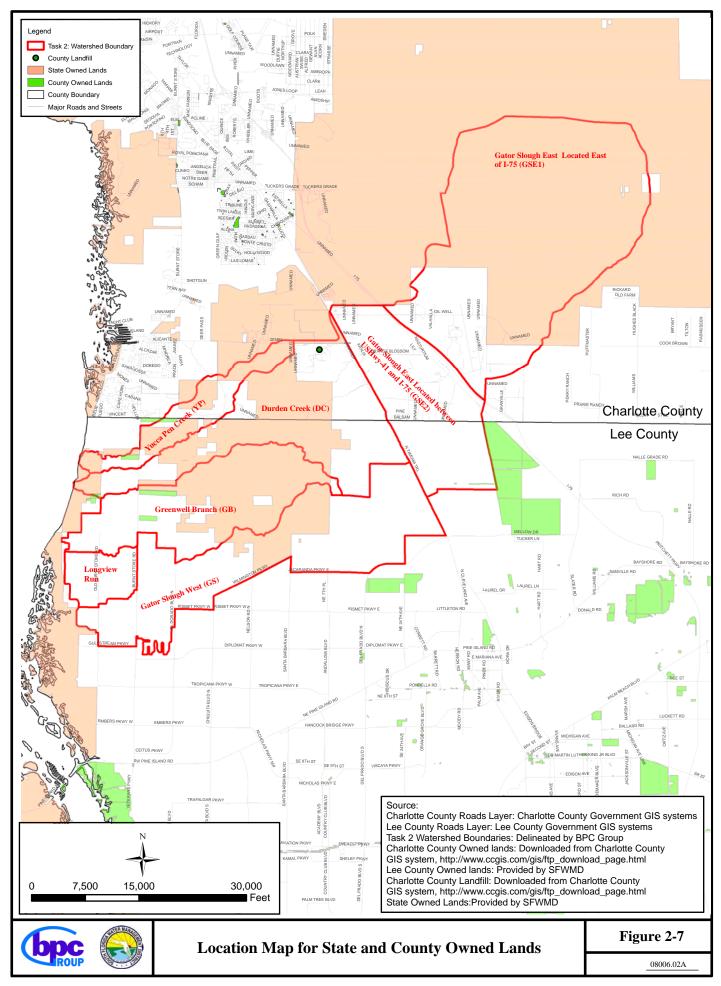

- Gator Slough East watershed located between US Hwy 41 and I-75 (GSE2): boundary was modified from the one presented in Task 1 Report
- Gator Slough West watershed located west of US Hwy 41 (GS): boundary remained unchanged from the one presented in Task 1 Report
- Durden Creek watershed located west of US Hwy 41 (DC): boundary was modified from the one presented in Task 1 Report
- Yucca Pen Creek watershed located west of US Hwy 41 (YP): boundary was modified from the one presented in Task 1 Report
- Greenwell Branch watershed located west of US Hwy 41 (GB): boundary remained unchanged from the one presented in Task 1 Report
- Longview Run watershed located west of US Hwy 41 (LV): boundary remained unchanged from the one presented in Task 1 Report

Figure 2-1 presents the comparison of the updated watershed boundaries with the boundaries presented in Task 1 Report. The old boundaries are shown as broken lines, and the modified (new) boundaries are shown as solid lines.

The historic flow ways and the historic flow way connections for the Lee County portions of the project area are shown on Figure 2-5. The historic flow way map for the Charlotte County area was not available. Therefore, the Babcock-Webb WMA portion in Charlotte County does not show any flow ways. The majority of this WMA is expected to be overlaid with natural flow ways (historic and current). This flow way map would be useful in developing the restoration plans presented later in this TM. The major canals, ditches, and significant swales are also shown on this map. As can be seen from Figure 2-5, the area between US Hwy 41 and I-75 in the watershed GSE2 is well developed and the flow is channelized. Similarly, urban development accounts for most of the area within GSEBS (see Figure 3-1), and the drainage pattern in this watershed is well channelized with engineering control structures. This watershed has minimal scope for restoration of historic flow ways. The restoration of historic drainage pattern in this portion of the watershed may not be practical. On the other hand, the current drainage patterns in the YP and DC watersheds west of Burnt Store Road follow the historic flow ways. The channel geometries may however be different. Please note that some of these flow ways do not have correct timing and distribution of flows, and the basins do not have the same amount of storage. Similarly, there are little manmade obstructions in restoring the historic flow ways in major portions of the YP, DC, and GB watersheds.

The development of conceptual designs should consider the availability of state and county owned lands such that the impact of potential land acquisition can be incorporated into the alternatives evaluation. Figure 2-7 presents the state and county owned lands. As shown on this figure, most of the lands are owned by the State of Florida. A small portion is owned by the Lee County within the project area. Charlotte County does not own much land within the Yucca Pens project area.

2.3 UPDATED GEODATABASE

2.3.1 Base Map and Geodatabase

All the figures included in this TM and the Task 1 deliverable constitutes the base map. The updated geodatabase includes some layers from Task 1 geodatabase which were not modified during this task and the other layers that were generated during limited field verification survey or modified from the earlier geodatabase. The detailed list of this updated geodatabase is given below.

Layers Unchanged from Task 1 Geodatabase:

- Topographic details
- Land use conditions
- Aerial maps
- Wetlands
- Hydrologic conditions of soils
- Roads and streets, including highways

Layers Modified from Task 1 Geodatabase:

- Watershed boundaries
- Hydraulic structures
 - o Culverts
 - o Bridges
 - o Weirs, Drop Structures, Outfalls
 - Canals and Flow Ways

Layers Generated during This Task:

- State and County Lands
- Historic Flow Ways
- Waypoints (Field Reconnaissance)
- Major Swales/Ditches
- ATV Trails and Dirt Roads

The GIS coverages for the majority of these layers were provided by the District from various sources as indicated in the Task 1 Summary Report and Metadata. BPC downloaded the GIS coverages for the other features from the web sites of Lee and Charlotte counties. BPC measured the waypoints during site reconnaissance using a hand held GPS unit. The geodatabase and the coverages were modified as appropriate to suit the objective and scope of this study. All the features are cataloged as separate layers in the ArcGIS (version 9.2) environment.

An electronic copy of the ArcGIS (version 9.2) coverages of the base map is included in a DVD and presented in Appendix C. A "Task 2 Readme" file listing the summary of

directory structure is included in the DVD. Further details on the data organization and a hard copy of the "Task 2 Readme" file are included in Appendix C.

2.3.2 Metadata for Base Map

BPC has prepared the FGDC compliant metadata for each layer that is included in the base map coverage. In compliance with FGDC, the metadata from original files were imported for each feature class, and then edited the metadata files to update the incomplete information and the technical details on the modifications. A total of 67 metadata files were generated for the base map presented in this TM, which are grouped in accordance with the directory structure given below.

Layers Unchanged from Task 1 Geodatabase:

- Topo East.gdb 1 metadata file
- Landuse East.gdb 10 metadata files
- Aerials 2 metadata files for aerials of Lee and Charlotte Counties, one for each county (a total of 195 tiles)
- Wetland 3 metadata files
- Soils 2 metadata file
- Roads 2 metadata files
- Contour 1 metadata file
- Boundaries 9 metadata files
- Structure 1 metadata file (Drop Structure)

Layers Modified from Task 1 Geodatabase:

- Hydraulic structures
 - o Culverts 1 metadata files
 - o Bridges 1 metadata file
 - o Weirs/Outfalls 1 metadata file

Layers Generated during This Task:

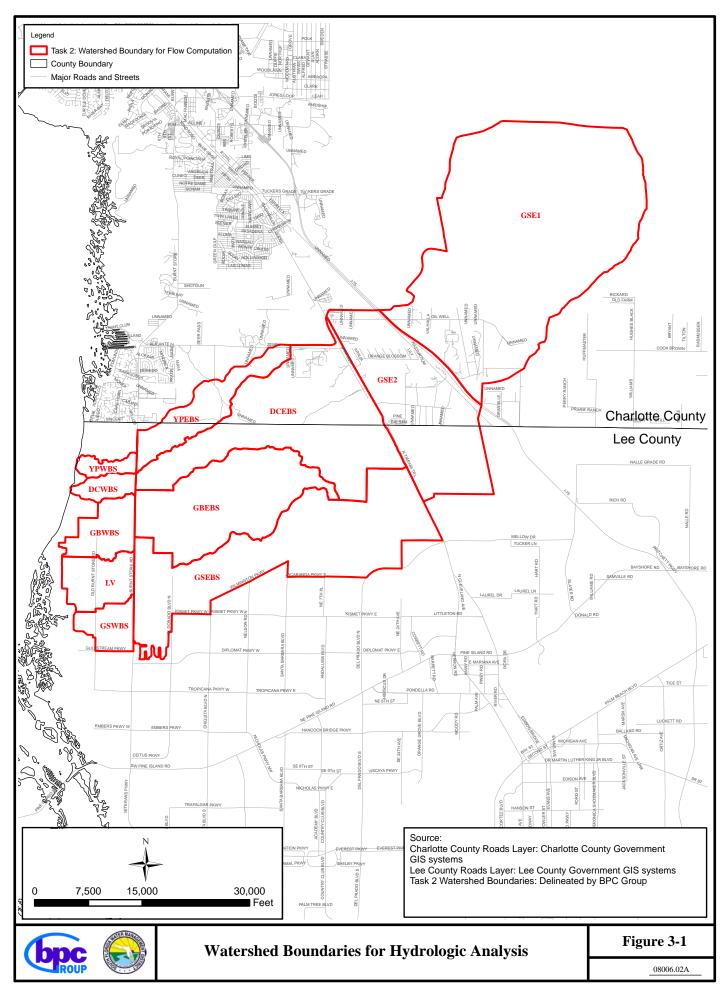
- Hydraulic structures
 - o Culverts 1 metadata file
 - o Bridges 1 metadata file
 - o Weirs/Outfalls 2 metadata files
 - o Canals and Flow Ways 3 metadata files
- Watershed Boundaries 7 metadata files
- Watershed Boundaries for Modeling 11 metadata files
- State and County Lands 5 metadata files
- Major Swales/Ditches 1 metadata file
- Waypoints 1 metadata file
- ATV Trails and Dirt Roads 1 metadata file

08006.02-Task 2-Final TM 012810 2-13

In accordance with the scope of work, BPC prepared the metadata files in the XML format using ArcCatalog. These metadata files are included within the GIS coverages (Appendix C). For convenience of the readers, BPC has also prepared copies of these metadata files in HTML format, and they are included in the DVD. A complete list of these metadata file names are presented in Appendix C. A hard copy of the actual content of an example of a metadata file (e.g., "Waypoints.shp") is presented in Appendix C.

3.0 HYDROLOGIC ANALYSES

The objectives of the present study include computation of the water budget analysis and water quality conditions at the basin level. The five watersheds located west of US Hwy 41 (GS, DC, YP, GB, and LV) were subdivided along Burn Store Road. Therefore, the study area was divided into 11 sub-basins as shown on Figure 3-1. These sub-basins are Gator Slough east of I-75 (GSE1), Gator Slough between US 41 and I-75 (GSE2), Yucca Pens Creek east of Burnt Store Road (YPEBS), Yucca Pens Creek west of Burnt Store Road (YPWBS), Durden Creek east of Burnt Store Road (DCEBS), Durden Creek west of Burnt Store Road (GBEBS), Greenwell Branch west of Burnt Store Road (GBWBS), Gator Slough east of Burnt Store Road (GSEBS), Gator Slough west of Burnt Store Road (GSWBS), and Longview Run (LV). The surface areas for the watersheds are summarized in Table 3-1. The stage-area relationships for the watersheds were derived from the one-foot contour map provided by the SFWMD and supplemented by the limited survey and numerous field inspections conducted during the study.


3.1 WATER BUDGET ANALYSIS

3.1.1 Flow Computation

To analyze the flow at basin/sub-basin level, a computer model for the study area was developed. The Interconnected Channel and Pond Routing (ICPR, Version 3) Program was used to model the study area by simulating the rainfall and runoff and then hydraulically routing the runoff. This model represents only a conceptual planning level model, and should not be used for any feasibility study or engineering design purpose. In order to estimate the runoff generated in each modeled watershed, the Soil Conservation Service (SCS) Unit Hydrograph method was utilized. The runoff hydrograph generated by the SCS method is a function of site-specific curve number, time of concentration, and the particular storm event used for simulation.

Runoff Curve Number. SCS runoff Curve Number (CN) method was used to compute the runoff volume from rainfall. The curve numbers for the model were developed using hydrologic soil groups, soil conditions, and land uses. A weighted CN was computed for each watershed based on hydrologic soil group and land use as described in TR-55 (2nd Edition, June 1986). The area weighted curve numbers were calculated for each watershed by intersecting the soil type and land use data within each watershed using GIS. Directly Connected Impervious Area (DCIA) percentages were neglected in the model since its contribution to the total runoff generation is very low. Most of the watersheds are covered by Rangeland and Forest. The computed CN values the watersheds are presented in Table 3-1. The CN values ranged from 83.3 for watershed LV to 90.1 for watershed GSE1.

Time of Concentration. An additional input parameter for the SCS Unit Hydrograph Method is the watershed time of concentration. The time of concentration (t_c) is the time for runoff to travel from the hydraulically most distant point of the watershed to a point of interest within the watershed (TR-55, 2nd Edition. June 1986). This parameter controls at what point in the storm event the entire basin is contributing runoff. For the purpose of this study, the "point of interest" is the topographic depression or the lowest elevation point for each watershed. The time of concentration computations were performed based on the general topography and field observations. The storm water runoff from each watershed flows to the topographic depressions or lowest point. The t_c values were calculated based on the equations and procedures outlined in TR-55 (2nd Edition, June 1986). The computed t_c values for the watersheds are presented in Table 3-1. The t_c values ranged from 216.96 minutes for watershed YPWBS to 2524.87 minutes for watershed GSE1.

Table 3-1 Summary of Hydrologic Computation by Watershed for a 25-Year, 72-Hour Storm

Watershed	Total Area (ac)	Curve Number	Time of Concentration (min)	25yr-72hr Rainfall (in)	Runoff (in)	Runoff (ac-ft)
GSE1	19430	88.8	2525	10.5	9.119	14764.5
GSE2	7041	90.1	1010	10.5	9.282	5446.0
GSEBS	9450	87.3	1233	10.5	8.930	7032.5
GSWBS	1021	86.9	604	10.5	8.879	755.4
YPEBS	2200	89.1	495	10.5	9.156	1678.3
YPWBS	438	84.0	217	10.5	8.510	310.4
DCEBS	8572	89.7	939	10.5	9.232	6594
DCWBS	602	84.4	278	10.5	8.561	429.5
GBEBS	5912	87.3	767	10.5	8.930	4399.3
GBWBS	1427	88.3	245	10.5	9.056	1077.2
LV	1567	83.3	539	10.5	8.421	1099.4

Rainfall Distribution. To implement the SCS Unit Hydrograph Method, a rainfall distribution must be specified for the desired storm event as a function of time for the watershed's unit hydrograph. For the purpose of this study, the standard Florida Modified or FLMOD (ICPR, Version 3) rainfall distribution records were used. A 25yr-72hr storm with a rainfall total of 10.5 inches was considered for water budget analysis. In addition, a 2yr-24hr storm event with a total of 4.5 inches was also simulated in the current model.

Peaking Factor. The peak rate factor is critical for the determination of peak discharge. The peak rate factor is used to represent the effect of watershed storage on hydrograph shape. The factor generally varies from 100 to 600. High values represent little or no storage with steep land slopes. Lower values are used for watersheds with significant ponding effects due to very little or no slope and containing abundant surface storage. Accordingly, the peak rate factor of 256 was used for all watersheds in this study due to moderate surface storage and mild slopes. Selection of the peak rate factor was based on the procedures outlined in the

document entitled "Procedure for Selection of SCS Peak Rate Factors for Use in MSSW Permit Applications", SJRWMD, April 1990.

Boundary Conditions. The boundary conditions (i.e., headwater / tailwater relationships) utilized for the model represented stage and/or flow conditions at downstream points. Since the ultimate receiving depressional area to the west of the project area for each watershed is a either a wetland or a canal and there is no stage-area information for this area, a time-stage tailwater condition was estimated from nearby drainage features. The time-stage at the boundary nodes for each watershed was set at the contour elevation represented in the map. The normal seasonal high water level within the project area is expected to be very high, within one foot of the ground surface.

3.1.2 Results and Discussion

The hydrologic runoff computations are summarized in Table 3-1. The ICPR model outputs are presented in Appendix B.

Based on the flow computations results from the ICPR model, a water budget computation was performed for each watershed and the water budget results are summarized in Table 3-2. As can be seen from this table, there are inter-basin flows in Yucca Creek and Durden Creek watersheds.

Table 3-2 Summary of Water Budget by Watershed for a 25-Year, 72-Hour Storm

Watershed	Rainfall	Upstream Inflow		Net Inter-basin Flow		Infiltration/Storage		Outf	low
	(ac-ft)	(ac-ft)	(ac-ft)	% of Rainfall	(ac-ft)	(ac-ft)	% of Total Inflow	(ac-ft)	% of Total Inflow
GSE1	17001	0	0	0.0	17001	9969	58.6	7032	41.4
GSE2	6161	7032	0	0.0	13192	2661	20.2	10531	79.8
GSEBS	8269	10531	2349	28.4	21149	4217	19.9	16932	80.1
GSWBS	893	16440	0	0.0	17333	253	1.5	17080	98.5
YPEBS	1925	0	351	18.2	2276	595	26.1	1681	73.9
YPWBS	383	2032	0	0.0	2415	-54	-2.2	2469	102.2
DCEBS	7500	0	-2320	-30.9	5180	-488	-9.4	5668	109.4
DCWBS	527	1378	0	0.0	1905	109	5.7	1796	94.3
GBEBS	5173	0	-379	-7.3	4794	605	12.6	4188	87.4
GBWBS	1249	1460	0	0.0	2709	178	6.6	2532	93.4
LV	1371	492	0	0.0	1863	356	19.1	1507	80.9
Total	50451	39366			89817	18402	20.5	71415	79.5

Notes: Upstream inflow occurs at the upstream end of the sub-basin, and obtained from ICPR model results; Inter-basin flows were obtained from ICPR model results;

Total Inflow = Rainfall + Upstream Inflow + Net Inter-basin Flow;

08006.02-Task 2-Final TM 012810 3-4

3.2 WATER QUALITY ANALYSIS

The purpose of the evaluation was to identify relative changes in nonpoint source pollutant loadings due to changes in land use, areas served by septic tank, point sources and existing BMPs. This conceptual evaluation was performed using the Watershed Management Model (WMM), Version 4.24. The WMM was originally developed by CDM under a contract with USEPA using Visual Basic® and MS Access®. The model is a "stand alone" application that runs in Microsoft Windows 95® or greater. The model provides a basis for planning-level evaluations of the long-term (annual or seasonal) basin pollution loads and the relative benefits of pollution management strategies to reduce these loads.

Model Capabilities: This model may be used to estimate annual or seasonal pollutant loads from many sources within a basin/watershed. The primary data required to use WMM include storm water event mean concentrations (EMCs) for each pollutant type, land use, impervious area, and average annual rainfall. The following summarizes the model capabilities (WMM User's Manual, Version 4.24).

- Estimates annual storm water runoff pollution loads and concentrations for nutrients (total phosphorus, dissolved phosphorus, total nitrogen, ammonia plus organic nitrogen), heavy metals (lead, copper, zinc, cadmium), and oxygen demand (BOD₅, COD) and sediment (total suspended solids, total dissolved solids) based upon EMCs, land use, percent impervious, and annual rainfall;
- Estimates annual pollution loads from stream baseflow;
- Estimates point source loads for comparison with relative magnitude of other watershed pollution loads;
- Estimates pollution loads from failing septic tanks;
- Applies a delivery ratio to account for reduction in runoff pollution load due to settling of particulate matter in stream courses; and
- Estimates stormwater runoff pollution load reduction due to partial or full-scale implementation of onsite or regional BMPs;

Model Limitations: The WMM was developed to estimate the relative changes in nonpoint source pollutant loads (average annual or seasonal) due to changes in land use or from the cumulative effects of alternative watershed management decisions (e.g. treatment BMPs). The models should be applied to appropriate spatial (basin wide) and temporal (average annual or seasonal) scales. It is not appropriate to use these input/output models for analysis of short-term (i.e., daily, weekly) water quality impacts. It is also not appropriate to use WMM to estimate absolute loads for a given outfall system without specific monitoring data for that system. The scale of this model and its output may not be appropriate for analysis of nutrient loadings from development projects.

3-5

3.2.1 Development of Model

3.2.1.1 Nonpoint Source Analysis

Nonpoint pollution loading factors (lbs/acre/year) for different land use categories are based upon annual runoff volumes and EMCs for different pollutants.

Land Use: As described earlier in this TM, the land use coverages were obtained from the South Florida Water Management District (SFWMD). For simplification, the FLUCCS categories were consolidated into 15 major categories for the purpose of implementing the WMM. These consolidated categories of land use are presented in Table 3-3. These consolidated land use categories generally correspond to land use categories that have EMC data available. Table 3-4 presents the acreages of each of the consolidated land use categories in the major watersheds for the existing land use conditions.

Table 3-3 Land Use Categories for WMM

FLUCCS Land Use Category	WMM Land Use Category
Upland Coniferous Forest Upland Hardwood Forest	Forest/Rural Open
Field and Row Crops Improved Pasture Unimproved Pasture	Agricultural/Pasture
Barren, Spoil Land	Urban Open
Parks, Recreation, Golf	Recreational
Extractive, Borrow, Holding Ponds	Extractive
Residential Low Density	Low Density Residential
Residential Medium Density	Medium Density Residential
Residential High Density	High Density Residential
Commercial and Services	Commercial
Institutional	Institutional
Transportation, Communications, Utilities (FLUCCS Codes: 8300,8350,8360, 8200)	Industrial
Transportation, Communications, Utilities (FLUCCS Codes: 8100, 8140)	Highways
Fresh water	Water
Mangrove, Saltwater Marsh Freshwater Marsh, Wet Prairie	Wetlands
Rangeland	Rangeland

Source: SFWMD's Nutrient Load Assessment, Estero Bay & Caloosahatchee River Watershed, January 2007, Final Report. Basins 43 and 81 cover Yucca Pens Project area.

3-6

Table 3-4 Land Use Acreage by Watershed for WMM

WMM Land Has	GSE1		GSE2		GSEBS	
WMM Land Use	Acreage	%	Acreage	%	Acreage	%
Forest / Rural Open	3201.2	16.5	613.5	8.7	1544.0	16.3
Urban Open	0.0	0.0	48.0	0.7	129.2	1.4
Agricultural / Pasture	1276.5	6.6	1094.3	15.5	0.1	0.0
Low Density Residential	1.2	0.0	67.0	1.0	108.5	1.1
Medium Density Residential	0.0	0.0	710.5	10.1	532.9	5.6
High Density Residential	0.0	0.0	13.2	0.2	305.1	3.2
Commercial	0.0	0.0	9.6	0.1	29.6	0.3
Industrial	5.2	0.0	0.0	0.0	0.0	0.0
Highways	38.3	0.2	224.6	3.2	13.6	0.1
Water	1465.1	7.5	168.1	2.4	494.9	5.2
Rangeland	7502.8	38.6	1010.6	14.4	4709.3	49.8
Extractive	0.0	0.0	339.6	4.8	0.0	0.0
Institutional	106.3	0.5	5.3	0.1	0.0	0.0
Recreational	0.0	0.0	138.9	2.0	356.2	3.8
Wetlands	5832.9	30.0	2597.7	36.9	1227.0	13.0
Total	19429.5	100.0	7041.1	100.0	9450.3	100.0

WMM I and Has	GSWBS		YPEBS		YPWBS	
WMM Land Use	Acreage	%	Acreage	%	Acreage	%
Forest / Rural Open	104.9	10.3	1009.3	45.9	249.5	57.0
Urban Open	26.1	2.6	0.0	0.0	0.0	0.0
Agricultural / Pasture	0.0	0.0	0.0	0.0	0.0	0.0
Low Density Residential	20.2	2.0	0.0	0.0	0.2	0.1
Medium Density Residential	0.0	0.0	0.4	0.0	0.0	0.0
High Density Residential	0.0	0.0	0.0	0.0	0.1	0.0
Commercial	0.0	0.0	0.0	0.0	0.0	0.0
Industrial	0.0	0.0	0.0	0.0	0.0	0.0
Highways	0.0	0.0	0.0	0.0	0.0	0.0
Water	182.8	17.9	6.3	0.3	2.9	0.7
Rangeland	682.5	66.9	111.8	5.1	105.8	24.2
Extractive	0.0	0.0	0	0.0	0.0	0.0
Institutional	0.0	0.0	0	0.0	0.0	0.0
Recreational	0.0	0.0	0	0.0	0.0	0.0
Wetlands	4.5	0.4	1071.7	48.7	79.1	18.1
Total	1021.0	100.0	2199.5	100.0	437.7	100.0

WMM I and Has	DCEBS		DCWBS		GBEBS	
WMM Land Use	Acreage	%	Acreage	%	Acreage	%
Forest / Rural Open	2931.8	34.2	235.2	39.1	2399.9	40.6
Urban Open	0.0	0.0	0.0	0.0	42.2	0.7
Agricultural / Pasture	80.7	0.9	0.0	0.0	0.0	0.0
Low Density Residential	0.0	0.0	0.0	0.0	0.0	0.0
Medium Density Residential	5.3	0.1	0.0	0.0	0.0	0.0
High Density Residential	0.0	0.0	0.0	0.0	0.0	0.0
Commercial	0.5	0.0	0.0	0.0	0.0	0.0
Industrial	383.3	4.5	0.0	0.0	0.0	0.0
Highways	23.5	0.3	0.0	0.0	0.0	0.0
Water	161.9	1.9	23.5	3.9	139.9	2.4
Rangeland	1077.9	12.6	275.4	45.7	1394.9	23.6
Extractive	0.0	0.0	0.0	0.0	0.0	0.0
Institutional	13.7	0.2	0.0	0.0	0.0	0.0
Recreational	0.0	0.0	0.0	0.0	0.0	0.0
Wetlands	3892.9	45.4	68.0	11.3	1934.9	32.7
Total	8571.5	100.0	602.0	100.0	5911.8	100.0

WMM Land Use	GB	WBS	LV		
WWW Land Use	Acreage	%	Acreage	%	
Forest / Rural Open	77.4	5.4	357.6	22.8	
Urban Open	112.0	7.8	14.9	1.0	
Agricultural / Pasture	0.0	0.0	38.4	2.4	
Low Density Residential	0.0	0.0	0.0	0.0	
Medium Density Residential	0.0	0.0	0.0	0.0	
High Density Residential	0.0	0.0	0.0	0.0	
Commercial	0.0	0.0	0.0	0.0	
Industrial	0.0	0.0	0.0	0.0	
Highways	0.0	0.0	10.0	0.6	
Water	327.0	22.9	255.5	16.3	
Rangeland	899.0	63.0	861.6	55.0	
Extractive	0	0.0	0	0.0	
Institutional	0.0	0.0	0	0.0	
Recreational	0.0	0.0	0	0.0	
Wetlands	12.1	0.8	28.7	1.8	
Total	1427.4	100.0	1566.7	100.0	

Annual Runoff Volume: The annual runoff volumes for the pervious/impervious areas in each land use category are calculated by multiplying the average annual rainfall volume by a runoff coefficient. The WMM calculates the total average annual surface runoff from land use L by weighting the impervious and pervious area runoff factors for each land use category as follows.

$$R_L = [C_P + (C_I - C_P) \text{ IMP}_L] * I$$
 (Equation 3-1)

08006.02-Task 2-Final TM 012810 3-8

Where:

 R_L = total average annual surface runoff from land use L (in/yr);

IMP_L = fractional imperviousness of land use L;

I = long-term average annual precipitation (in/yr);

C_p = pervious area runoff coefficient; and C_I = impervious area runoff coefficient.

The model then calculates the total runoff in a watershed by computing the area-weighted sum of R_L for all land uses. For rural/agricultural (nonurban) land uses, the pervious fraction represents the major source of runoff or stream flow, while impervious areas are the predominant contributors for most urban land uses. The typical values of 0.95 and 0.1 were used in the model for the runoff coefficients for impervious and pervious areas within the study area, respectively (WMM User's Manual, Version 4.24).

Annual Rainfall: The annual rainfall value used for the Yucca Pens Project area is 53.8 inches as reported in the "SFWMD's Nutrient Load Assessment, Estero Bay & Caloosahatchee River Watershed, January 2007, Final Report", which was based on the analysis of Average annual rainfall records for the Page Field station for a period of one year. As reported in the Plan, the wet season (May to October) had an average of 42.3 inches of rainfall, or 79% of the annual total, and the dry season (October to May) had 11.5 inches of rain, or 21% of the annual total.

Event Mean Concentrations: The EMC is a flow-weighted average concentration for a storm event and is defined as the sum of individual measurements of storm water pollution loads divided by the storm runoff volume. The EMC is widely used as the primary statistic for evaluations of storm water quality data and as the storm water pollutant loading factor in analyses of pollutant loadings to receiving waters. Over the past 20 years, nonpoint pollution monitoring studies throughout the U.S. have shown that annual "per acre" discharges of urban storm water pollution (e.g., nutrients, metals, BOD₅) are positively related to the amount of imperviousness in the land use (i.e., the more imperviousness the greater the nonpoint pollution load) and that the EMC is fairly consistent for a given land use.

Nonpoint pollution loading analyses typically consist of applying land use specific stormwater pollution loading factors to land use scenarios in the watershed under study. Runoff volumes are computed for the land use category based on the percent impervious of the land use and the annual rainfall. These runoff volumes are multiplied by land use specific mean EMC load factors (mg/l) to obtain nonpoint pollution loads by land use category. This analysis can be performed on a sub-area or basin-wide basis, and the results can be used for performing load allocations or analyzing pollution control alternatives, or for input into a riverine water quality model.

Selection of nonpoint pollution loading factors depends on the availability and accuracy of local monitoring data as well as the effective transfer of literature values for nonpoint

3-9

pollution loading factors to a particular study area. For this study, the EMC values for the WMM were adopted from the "SFWMD's Nutrient Load Assessment, Estero Bay & Caloosahatchee River Watershed, January 2007, Final Report". The EMC values for the land use categories used in the WMM are presented in Table 3-5.

Table 3-5 Land Use EMC Values for WMM

WMMM I and Has			EMC Valu	ues (mg/L)		
WMM Land Use	BOD	COD	TSS	TDS	TP	DP
Forest/Rural Open	1	51	11	100	0.05	0.04
Urban Open	10	69	63	120	0.37	0.23
Agricultural / Pasture	4	51	13	100	0.64	0.26
Low Density Residential	13	71	27	117	0.39	0.24
Medium Density Residential	9	65	59	117	0.39	0.24
High Density Residential	8	53	72	73	0.37	0.17
Commercial	14	83	77	130	0.28	0.20
Industrial	14	83	77	130	0.28	0.20
Highways	11	99	121	189	0.40	0.15
Water	2	51	5	100	0.06	0.03
Rangeland	3	51	12	100	0.345	0.15
Extractive	14	83	77	130	0.28	0.2
Institutional	9	65	59	117	0.39	0.24
Recreational	13	71	27	117	0.39	0.24
Wetlands	2	51	5	100	0.06	0.03

WMM Land Has			EMC Val	ues (mg/L)		
WMM Land Use	TKN	NO ₂ /NO ₃	Pb	Cu	Zn	Cd
Forest/Rural Open	0.86	0.30	0.001	0.001	0.000	0.001
Urban Open	1.73	0.52	0.017	0.023	0.085	0.001
Agricultural / Pasture	2.62	0.56	0.005	0.004	0.023	0.000
Low Density Residential	1.39	0.63	0.016	0.012	0.051	0.002
Medium Density Residential	1.79	0.55	0.016	0.023	0.073	0.001
High Density Residential	1.82	0.63	0.015	0.031	0.065	0.001
Commercial	1.47	0.40	0.023	0.024	0.132	0.002
Industrial	1.47	0.40	0.023	0.024	0.132	0.002
Highways	1.51	0.61	0.040	0.024	0.207	0.002
Water	0.72	0.24	0.000	0.000	0.000	0.000
Rangeland	1.74	0.43	0.003	0.002	0.115	0.000
Extractive	1.47	0.4	0.023	0.024	0.132	0.002
Institutional	1.79	0.55	0.016	0.023	0.073	0.001
Recreational	1.39	0.63	0.016	0.012	0.051	0.002
Wetlands	0.72	0.24	0.000	0.000	0.000	0.000

Nonpoint Pollution Loading Factors and Annual Load: WMM estimates pollutant loadings based upon nonpoint pollution loading factors (expressed as lbs/ac/yr) that vary by land use and the percent imperviousness associated with each land use. The pollution loading factor M_L is computed for each land use L by the following equation.

$$M_L = EMC_L * R_L * K$$

(Equation 3-2)

Where:

 M_L = loading factor for land use L (lbs/ac/yr);

 EMC_L = event mean concentration of runoff from land use L (mg/l); EMC_L varies by

land use and by pollutant;

R_L = total average annual surface runoff from land use L computed from

Equation 3-1 (in/yr); and

K = 0.2266, a unit conversion constant.

The total annual pollution load from a watershed is computed by multiplying the pollutant loading factor M_L by the acreage in each land use and then summing for all land uses. The EMC coverage is typically not changed for various land use scenarios within a given study basin, but any number of land use data sets can be created to examine and compare different land use scenarios (e.g., existing versus future) or land use management scenarios.

3.2.1.2 BMP Evaluation for Nonpoint Sources

BMP Identification and Pollution Removal Efficiencies: The existing BMP treatment areas were identified using existing aerial photography, site visits, and local knowledge of the area as well as parcel maps. Table 3-6 presents the BMP type and the acreage and percent land use served by each type of BMP under existing conditions.

Table 3-6 Existing Land Use BMP Treatment Data

Tuble 6 6 Empling Edite		GSE1		GSE2	GSEBS		
WMM Land Use	Wet	Detention	Wet	Detention	Wet	Detention	
	Acre	% Land Use	Acre	% Land Use	Acre	% Land Use	
Forest / Rural Open	0.0	0.0	0.0	0.0	0.0	0.0	
Urban Open	0.0	24.0	11.5	24.0	31.0	24.0	
Agricultural / Pasture	25.5	2.0	21.9	2.0	0.0	2.0	
Low Density Residential	0.0	0.0	0.0	0.0	0.0	0.0	
Medium Density Residential	0.0	1.0	7.1	1.0	5.3	1.0	
High Density Residential	0.0	7.0	0.9	7.0	21.4	7.0	
Commercial	0.0	0.0	0.0	0.0	0.0	0.0	
Industrial	0.0	0.0	0.0	0.0	0.0	0.0	
Highways	2.3	6.0	13.5	6.0	0.8	6.0	
Water	0.0	0.0	0.0	0.0	0.0	0.0	
Rangeland	150.1	2.0	20.2	2.0	94.2	2.0	
Extractive	0.0	48.0	163	48.0	0.0	48.0	
Institutional	101.0	95.0	5.1	95.0	0.0	95.0	
Recreational	0.0	7.0	9.7	7.0	24.9	7.0	
Wetlands	0.0	0.0	0.0	0.0	0.0	0.0	

	G	SWBS	Ŋ	(PEBS	Y	YPWBS
WMM Land Use	Wet	Detention	Wet	Detention	Wet	Detention
	Acre	% Land Use	Acre	% Land Use	Acre	% Land Use
Forest / Rural Open	0.0	0.0	0.0	0.0	0.0	0.0
Urban Open	6.3	24.0	0.0	24.0	0.0	24.0
Agricultural / Pasture	0.0	2.0	0.0	2.0	0.0	2.0
Low Density Residential	0.0	0.0	0.0	0.0	0.0	0.0
Medium Density Residential	0.0	1.0	0.0	1.0	0.0	1.0
High Density Residential	0.0	7.0	0.0	7.0	0.0	7.0
Commercial	0.0	0.0	0.0	0.0	0.0	0.0
Industrial	0.0	0.0	0.0	0.0	0.0	0.0
Highways	0.0	6.0	0.0	6.0	0.0	6.0
Water	0.0	0.0	0.0	0.0	0.0	0.0
Rangeland	13.7	2.0	2.2	2.0	2.1	2.0
Extractive	0.0	48.0	0.0	48.0	0.0	48.0
Institutional	0.0	95.0	0.0	95.0	0.0	95.0
Recreational	0.0	7.0	0.0	7.0	0.0	7.0
Wetlands	0.0	0.0	0.0	0.0	0.0	0.0

	Ι	OCEBS	D	CWBS		GBEBS
WMM Land Use	Wet	Detention	Wet	Detention	Wet	Detention
	Acre	% Land Use	Acre	% Land Use	Acre	% Land Use
Forest / Rural Open	0.0	0.0	0.0	0.0	0.0	0.0
Urban Open	0.0	24.0	0.0	24.0	10.1	24.0
Agricultural / Pasture	1.6	2.0	0.0	2.0	0.0	2.0
Low Density Residential	0.0	0.0	0.0	0.0	0.0	0.0
Medium Density Residential	0.1	1.0	0.0	1.0	0.0	1.0
High Density Residential	0.0	7.0	0.0	7.0	0.0	7.0
Commercial	0.0	0.0	0.0	0.0	0.0	0.0
Industrial	0.0	0.0	0.0	0.0	0.0	0.0
Highways	1.4	6.0	0.0	6.0	0.0	6.0
Water	0.0	0.0	0.0	0.0	0.0	0.0
Rangeland	21.6	2.0	5.5	2.0	27.9	2.0
Extractive	0.0	48.0	0.0	48.0	0.0	48.0
Institutional	13.0	95.0	0.0	95.0	0.0	95.0
Recreational	0.0	7.0	0.0	7.0	0.0	7.0
Wetlands	0.0	0.0	0.0	0.0	0.0	0.0

		BWBS		LVR
WMM Land Use	Wet	Detention	Wet	Detention
	Acre	% Land Use	Acre	% Land Use
Forest / Rural Open	0.0	0.0	0.0	0.0
Urban Open	26.9	24.0	3.6	24.0
Agricultural / Pasture	0.0	2.0	0.8	2.0
Low Density Residential	0.0	0.0	0.0	0.0
Medium Density Residential	0.0	1.0	0.0	1.0
High Density Residential	0.0	7.0	0.0	7.0
Commercial	0.0	0.0	0.0	0.0
Industrial	0.0	0.0	0.0	0.0
Highways	0.0	6.0	0.6	6.0
Water	0.0	0.0	0.0	0.0
Rangeland	18.0	2.0	17.2	2.0
Extractive	0.0	48.0	0.0	48.0
Institutional	0.0	95.0	0.0	95.0
Recreational	0.0	7.0	0.0	7.0
Wetlands	0.0	0.0	0.0	0.0

The WMM applies constant removal efficiency for each pollutant to all land use types to simulate treatment BMPs. Published literature values of the typical range of pollutant removal efficiencies for swales, extended dry and wet detention ponds, baffle boxes and retention ponds are presented in Table 3-7 (WMM User's Manual, Version 4.24).

For the current study, four types of BMPs were identified in the Yucca Pens watershed: wet detention, retention (lake), wet and dry detention (treatment train) swales, and wetlands. The treatment removal efficiencies for wet detention, retention, and swales were based on published literature values as presented in Table 3-7. Treatment wetlands are treated as wet detention in the WMM as their abilities in removing pollutants are similar. Table 3-8 presents the removal efficiencies of the treatment BMPs used in the WMM for the study area.

Table 3-7 Ranges of BMP Removal Efficiencies (%)

Parameter	Dry Detention	Wet Detention	Swale	Baffle Boxes	Retention Ponds
BOD ₅	20 - 30	20 - 30	20 - 40	0	90
COD	20 - 30	20 - 30	20 - 40	0	90
TSS	60 - 90	80 - 90	70 - 90	80	90
TDS	0	30 - 40	0 - 10	0	90
Total-P	20 - 30	40 - 65	30 - 50	35	90
Dissolved-P	0	60 - 70	0 - 20	0	90
TKN	10 - 20	20 - 30	30 - 50	5	90
NO ₂ +NO ₃	0	30 - 40	30 - 50	0	90
Lead	70 - 80	70 - 80	60 - 90	75	90
Copper	50 - 60	60 - 70	40 - 60	50	90
Zinc	40 - 50	40 - 50	40 - 50	35	90
Cadmium	70 - 80	70 - 80	50 - 80	60	90

Source: WMM User Manual, Version 4.24

08006.02-Task 2-Final TM 012810 3-13

Table 3-8 BMP Removal Efficiencies Used in WMM (%)

Parameter	Dry Detention	Wet Detention	Retention and Exfiltration
BOD	20	30	90
COD	20	30	90
TSS	80	85	90
TDS	0	30	90
TP	20	50	90
DP	0	65	90
TKN	10	25	90
NO ₂ /NO ₃	0	35	90
Lead	70	75	90
Copper	50	65	90
Zinc	40	45	90
Cadmium	70	75	90

Source: SFWMD's Nutrient Load Assessment, Estero Bay & Caloosahatchee River Watershed, January 2007, Final Report"

Pollutant Loading Reduction from BMPs: The WMM computes the effectiveness of BMPs in reducing nonpoint source loads for each land use in each watershed. Up to five BMPs per land use can be specified in the model. The percent reduction in nonpoint pollution per pollutant type in each watershed of the basin is calculated using the following relationship.

$$P_{L, SB} = \sum AC_{i,SB} (REM_i)$$
 (Equation 3-3)

Where:

 $P_{L, SB}$ = percent of annual nonpoint pollution load captured in sub-basin SB by application of the five BMP types on land use L;

AC_{i,SB} = fractional area coverage of BMP type i (=1 through 5) on sub-basin SB; REM_i = removal efficiency of BMP type i (=1 through 5); varies by pollutant type but not by land use or sub-basin.

Equation 3-3 enables the user to examine the effectiveness of various BMPs and the degree of BMP coverage within a watershed. Coverage might vary depending upon whether the BMP is applied to new development only, existing plus new development, etc. Also, topography may limit the areal coverage of some BMPs.

The nonpoint pollution load from a watershed is thus computed by combining Equations 3-2 and 3-3 and summing over all land uses and all sub-basins, i.e.

MASS =
$$\sum_{SB=1}^{n} \sum_{L=1}^{15} M_{L,SB} (1 - P_{L,SB})$$
 (Equation 3-4)

Where:

MASS = annual nonpoint pollution load washed off the watershed in lbs/yr with BMPs taken into account.

The resultant model is a very versatile yet simple algorithm for examining and comparing nonpoint pollution management alternatives for effectiveness in reducing nonpoint pollution.

3.2.1.3 Failing Septic Tank Impacts Analysis

The WMM assesses the impact of failing septic tank by applying a multiplication factor to the surface runoff load. This multiplication factor is applied only to the phosphorus (dissolved P, total P) and nitrogen (TKN, NO₂+NO₃) parameters. The factor used for the phosphorus parameters was 2.1, and 2.0 was used for the nitrogen parameters (i.e., nitrogen load for a residential area with failing septic tanks is estimated to be 2.0 times the load from a residential area without failing septic tanks).

To assess the increase in surface runoff load due to failing septic tanks, WMM considers the multiplication factor (discussed above), the percent septic tank coverage, and the percent failure rate. The percent failure rate used for this study was 10%. The range of concentrations of total-P and total-N in the septic system leachate based upon literature values are given below in Table 3-9 (SFWMD's Nutrient Load Assessment, Estero Bay & Caloosahatchee River Watershed, January 2007, Final Report).

Table 3-9 Summary of Septic Loading Rates

Concentration Level	Total-P (mg/L)	Total-N (mg/L)
Low	1.0	7.5
Medium	2.0	15.0
High	4.0	30.0

Source: SFWMD's Nutrient Load Assessment, Estero Bay & Caloosahatchee River Watershed, January 2007, Final Report"

For this study, the pollutant loading factors due to failing septic systems were adopted from the "SFWMD's Nutrient Load Assessment, Estero Bay & Caloosahatchee River Watershed, January 2007, Final Report". In this study, it was presumed that all areas currently not served by sanitary sewer are served by septic tanks.

3.2.1.4 Point Source Loadings Analysis

Pollutant loadings from point source discharges such as package wastewater treatment plants (WWTP), regional WWTPs, and industrial sources can also be estimated to determine the relative contributions of point versus other watershed pollution loadings. Four point sources were identified within the study area. Table 3-10 shows the Point Source Data used in the WMM Model.

Table 3-10: Point Source Data

		Watershed (W	WTP Name)	
Contaminant (mg/L)	GSE1 (Charlotte Correctional Institution)	GSE2 (Herons Glen aka: Del Vera WWTP)	GSEBS (Lake Fairways Six)	YPEBS (Burnt Store WWTF)
Flow (mgd)	0.18	0.13	0.16	0.25
BOD	5.51	5.51	5.51	5.51
COD	0.00	0.00	0.00	0.00
TSS	2.94	2.94	2.94	2.94
TDS	601	601	601	601
TP	0.30	0.30	0.30	0.30
DP	0.00	0.00	0.00	0.00
TKN	1.30	1.30	1.30	1.30
NO ₂ /NO ₃	3.33	3.33	3.33	3.33
Pb	0.005	0.005	0.005	0.005
Cu	0.002	0.002	0.002	0.002
Zn	0.052	0.052	0.052	0.052
Cd	0.006	0.006	0.006	0.006

Source: SFWMD's Nutrient Load Assessment, Estero Bay & Caloosahatchee River Watershed, January 2007, Final Report

3.2.2 Discussion of Results

This section presents the results of the WMM analysis for the existing land use conditions for the study area with BMPs considered under annual rainfall. The WMM output is presented in Appendix B.

The annual pollutant load estimates for each watershed within the Yucca Pens drainage basin obtained from the WMM are summarized in Table 3-11. This table presents the pollutant load estimates for with and without the BMP treatment conditions. The percentage reduction due to the BMP treatments is also presented in Table 3-11. As can be seen from this table, TDS, TSS, COD, and BOD account for most of the pollutant loads for each watershed within the study area. The greatest percentages of reduction due to BMP treatments were observed within the watersheds GSE1 and GSE2. The Cu, Pb, and Cd had the greatest percent reduction in pollutant loads due to BMP treatments for each watershed.

The total TP loads from the watersheds within the drainage basin were estimated at 28,906 lbs/yr without BMPs and 28,561 lbs/yr with BMP treatments. The total TKN loads from the watersheds within the drainage basin were estimated at 197,944 lbs/yr without BMPs and 197,119 lbs/yr with BMP treatments. The wet detention ponds accounted for the majority of the BMP treatments in this drainage basin.

Table 3-11 Annual Pollutant Load Analysis Results from WMM for Existing Conditions

Pollutant Load Estimates-Annual Pollutant Loads w/o BMPs

Watershed	Area	DCIA		Flow				An	nual Pollu	tant Loads	(lbs/yr)					
Name	(acres)	(acres)	%DCIA	(ac-ft/yr)	BOD	COD	TSS	TDS	TKN	NO2+3	DP	TP	Cd	Cu	Pb	Zn
GSE1	19,429	2,023	10.4	23,099	154,000	2,430,000	1,630,000	7,220,000	60,414	16,256	4,190	8,348	14	78	89	1,479
GSE2	7,041	1,322	18.8	10,689	134,000	1,410,000	1,070,000	3,650,000	33,442	10,351	3,074	5,868	16	206	219	1,259
GSEBS	9,450	995	10.5	11,359	126,000	1,260,000	1,210,000	3,660,000	37,176	11,176	3,321	6,326	16	200	148	1,333
GSWBS	1,021	70	6.8	1,064	9,576	111,000	116,000	326,000	3,229	756	268	517	0.85	8	7	128
YPEBS	2,200	281	12.8	3,070	17,218	299,000	81,434	1,290,000	6,792	4,067	319	753	6	5	8	72
YPWBS	438	24	5.5	434	2,236	42,773	24,426	132,000	1,041	251	68	116	0.40	1	1	19
DCEBS	8,572	1,371	16.0	11,924	105,000	1,440,000	682,000	3,640,000	28,439	7,441	2,078	3,407	12	107	107	743
DCWBS	602	28	4.6	577	3,593	56,045	47,706	176,000	1,545	355	110	206	0.49	2	2	46
GBEBS	5,912	578	9.8	6,823	38,257	715,000	346,000	2,050,000	15,958	3,998	1,025	1,798	4	19	19	278
GBWBS	1,428	151	10.5	1,690	17,496	190,000	184,000	519,000	5,259	1,277	464	862	1	21	17	208
LVR	1,567	100	6.4	1,606	12,637	167,000	163,000	498,000	4,649	1,091	359	705	1	10	11	174
Total	57,660	6,943	112.1	72,335	620,013	8,120,818	5,554,566	23,161,000	197,944	57,019	15,276	28,906	71.7	657	628	5,739

Pollutant Load Estimates-Annual Pollutant Loads w/ BMPs

Watershed	Area	DCIA	O/ DOTA	Flow				An	nual Pollu	tant Loads	s (lbs/yr)					
Name	(acres)	(acres)	%DCIA	(ac-ft/yr)	BOD	COD	TSS	TDS	TKN	NO2+3	DP	TP	Cd	Cu	Pb	Zn
GSE1	19,429	2,023	10.4	23,099	153,000	2,420,000	1,590,000	7,200,000	60,106	16,129	4,091	8,214	13	70	82	1,454
GSE2	7,041	1,322	18.8	10,689	130,000	1,390,000	1,020,000	3,620,000	33,141	10,237	2,970	5,750	15	194	206	1,215
GSEBS	9,450	995	10.5	11,359	126,000	1,250,000	1,200,000	3,650,000	37,052	11,123	3,280	6,272	16	197	145	1,322
GSWBS	1,021	70	6.8	1,064	9,562	111,000	115,000	326,000	3,225	755	268	515	0.84	8	7	127
YPEBS	2,200	281	12.8	3,070	17,216	299,000	81,316	1,290,000	6,792	4,067	319	753	6	5	8	72
YPWBS	438	24	5.5	434	2,234	42,751	24,310	132,000	1,040	251	68	116	0.40	1	1	19
DCEBS	8,572	1,371	16.0	11,924	105,000	1,430,000	678,000	3,640,000	28,401	7,425	2,066	3,391	12	106	106	740
DCWBS	602	28	4.6	577	3,587	55,989	47,414	176,000	1,544	355	110	205	0.49	2	2	46
GBEBS	5,912	578	9.8	6,823	38,034	714,000	341,000	2,050,000	15,922	3,983	1,013	1,783	4	18	18	275
GBWBS	1,428	151	10.5	1,690	17,478	190,000	183,000	519,000	5,254	1,275	463	860	1	21	17	207
LVR	1,567	100	6.4	1,606	12,599	167,000	161,000	497,000	4,642	1,088	357	702	1	10	11	172
Total	57,660	6,943	112.1	72,335	614,710	8,069,740	5,441,040	23,100,000	197,119	56,688	15,005	28,561	69.7	632	603	5,649

08006.02-Task 2-Final TM 012810 3-17

Pollutant Load Estimates-Annual Pollutant Loads – Percent Reduction Due to BMPs

Watershed	Area	DCIA	%DCIA	Flow					Pollutants	Reduction	(%)					
Name	(acres) (ac	(acres)	/oDCIA	(ac-ft/yr)	BOD	COD	TSS	TDS	TKN	NO2+3	DP	TP	Cd	Cu	Pb	Zn
GSE1	19,429	2,023	10.4	23,099	1.1	0.5	2.4	0.3	0.5	0.8	2.4	1.6	3.4	10.8	8.2	1.7
GSE2	7,041	1,322	18.8	10,689	2.4	1.4	4.8	0.8	0.9	1.1	3.4	2.0	6.8	5.6	5.8	3.5
GSEBS	9,450	995	10.5	11,359	0.6	0.5	1.4	0.3	0.3	0.5	1.2	0.9	1.4	1.7	2.1	0.9
GSWBS	1,021	70	6.8	1,064	0.1	0.1	0.6	0.1	0.1	0.2	0.3	0.3	0.4	0.2	0.3	0.4
YPEBS	2,200	281	12.8	3,070	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
YPWBS	438	24	5.5	434	0.1	0.1	0.5	0.0	0.1	0.1	0.2	0.2	0.1	0.3	0.3	0.4
DCEBS	8,572	1,371	16.0	11,924	0.2	0.1	0.7	0.1	0.1	0.2	0.6	0.5	0.5	1.0	0.8	0.4
DCWBS	602	28	4.6	577	0.2	0.1	0.6	0.1	0.1	0.2	0.3	0.3	0.3	0.3	0.4	0.4
GBEBS	5,912	578	9.8	6,823	0.6	0.2	1.4	0.1	0.2	0.4	1.1	0.8	1.3	5.2	4.7	1.2
GBWBS	1,428	151	10.5	1,690	0.1	0.1	0.5	0.1	0.1	0.1	0.3	0.2	0.3	0.1	0.2	0.3
LVR	1,567	100	6.4	1,606	0.3	0.2	1.0	0.1	0.2	0.3	0.5	0.5	1.1	1.2	1.9	0.7
Total	57,660	6,943	112.1	72,335	0.9	0.6	2.0	0.3	0.4	0.6	1.8	1.2	2.8	3.8	4.0	1.6

08006.02-Task 2-Final TM 012810 3-18

4.0 MULTI-FUNCTIONAL WATER MANAGEMENT PLAN

4.1 CONCEPTUAL PLAN FORMULATION

4.1.1 Restoration Planning Requirements

An integrated or multi-functional restoration plan is essential to achieve the desired goal for the study area, which is to restore the sheet flow conditions over the project area to the historic level. Over the years, significant developments have taken place in portions of the project area. It is impractical to displace the existing areas of development and restore the flow to historic conditions in its entirety. Therefore, the emphasis in developing the conceptual plans is given to pragmatic concepts for restoration of the historic flow conditions within the project area. It should be noted that flood protection is considered as a potential restoration constraint such that restoration should not decrease existing flood protection in currently developed areas. Some of the high level elements of the conceptual plan may include the following requirements.

- Historic sheet flow restoration
- Restoring more natural flows to Charlotte Harbor
- Watershed Water Quality Improvement (discharging to Charlotte Harbor)
- Ground Water Recharge (to protect and enhance the fish and wildlife habitats)
- Hydroperiod Maintenance (for vegetation management and protection and enhancement of the fish and wildlife habitats)
- Land Acquisition and Management (to address operational issues)

The scope of this study did not include development and implementation of an adequate model that would simulate the flood conditions within the study area. As indicated earlier in Task 1 Report, there are a number of studies completed in the past, which have addressed various issues for portions of the project area. However, no comprehensive study has been completed to-date for the entire project area addressing integrated issues. The basis of developing conceptual restoration plans is therefore adopted from the previously completed study reports supplemented with limited data collected during this study.

The primary impediments to restoration of historic flow ways are the constructed flow barriers in the project area. These barriers cause sheet flows to become concentrated point discharges through engineered structures. The three primary such barriers are:

- a) I-75: All flows east of I-75 in the sub-basin GSE1 discharge through the I-75 Bridge to the neighboring sub-basin GSE2. The I-75 Bridge is shown on Figure 4-1, which is located at the southern end of the sub-basin GSE1.
- b) US Hwy 41 (N. Tamiami Road): The entire flow from the sub-basin GSE2 between I-75 and US Hwy 41, including the flows from GSE1 through the I-75 Bridge, is

diverted to the Gator Slough Canal through the US-41 Bridge, which is located at the southwest end of the sub-basin GSE2 as shown on Figure 4-1.

c) Burnt Store Road: The majority of flows generated from the drainage basins between US Hwy 41 and Burnt Store Road encompassing more than 75% of the project area are blocked off at the Burnt Store Road. These flows are routed to the Gator Slough Canal through the Gator Slough Weir as shown on Figure 4-1.

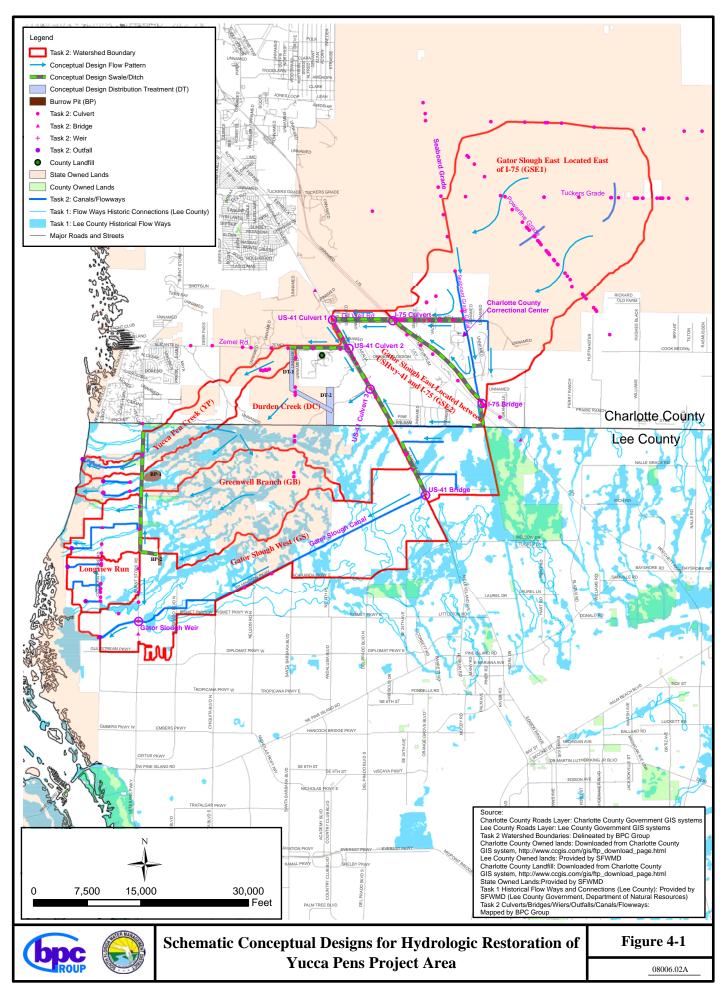
There are many other secondary flow barriers present throughout the study area, such as trails, secondary roads, local dikes and diversion structures, etc. For proper implementation and effective function of any hydrologic restoration plan, it is essential to create dispersion of flows from concentrated point structures to areal flow diversions such as sheet flows.

The majority of the runoff from GSE1, GSE2, and GS flows through the Gator Slough Canal to Matlacha Pass. In addition, flows from GBEB and DCEB discharge to the Gator Slough Canal. The key to restoring historic flow ways in the project area is to equitably redistribute the flow into the other watersheds instead of Gator Slough Canal.

4.1.2 Planning Level Conceptual Design

Figure 4-1 presents a composite overlay of the state and county owned lands, historic flow ways and historic flow connections, and watershed boundaries for specific sub-basins. This figure is utilized to develop the conceptual designs. Following is a list of concepts (planning level conceptual designs) that may be implemented to achieve the hydrologic restoration goal. Please note that a feasibility evaluation of the concepts presented in this TM is essential, but was not performed during this study. Such an evaluation of the concepts is beyond the scope of this study. All of the following conceptual designs are presented with a common key element that all restoration plans are based on the assumption of gravity drainage.

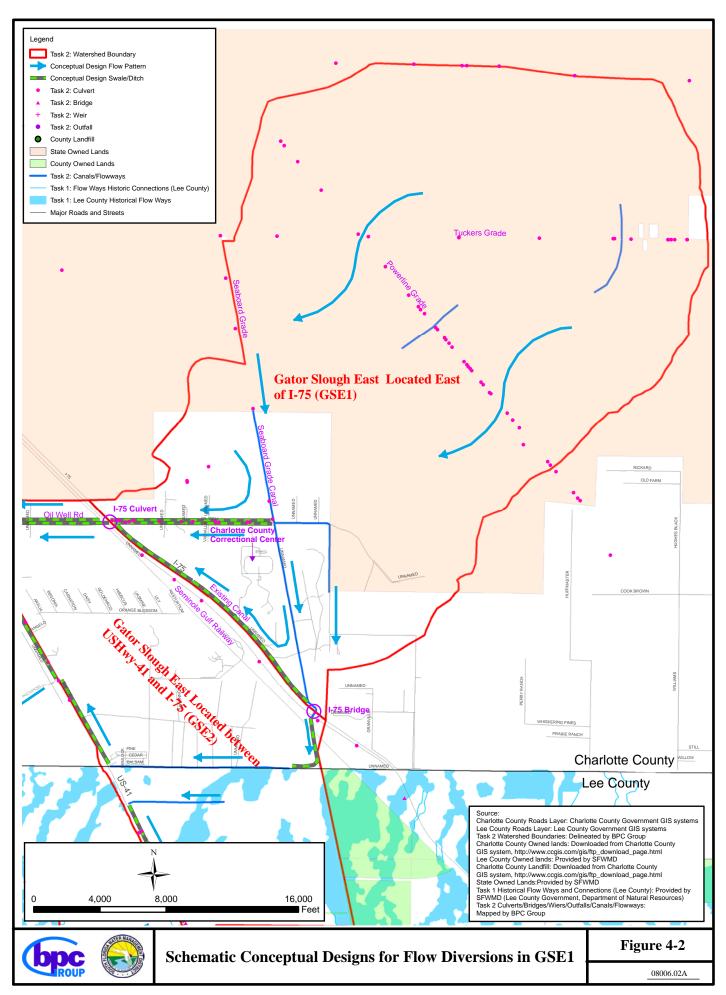
- Flow Diversions in GSE1
- Flow Diversions in GSE2
- Flow Distribution and Treatment Enhancement in DCEBS/YPEBS
- Protect and Perpetuate Flow Ways in YPEBS, GBEBS, and DCEBS
- Restore Historic Flow across Burnt Store Road
- Improved Monitoring System for Performance Measures


A careful consideration was given to the current level of state and county owned lands to avoid massive land acquisition process. In addition, these conceptual designs are designed to address multi-functional elements listed in Section 4.1.1. Further details on these planning level conceptual designs are given below.

08006.02-Task 2-Final TM 012810 4-2

It should be noted that details of the conceptual design elements to address the timing and quantity of water released downstream, protection and enhancement of native upland habitats for fish and wildlife species, hydroperiod improvements, and ground water recharges are beyond the current scope of work. An engineering study is necessary to address these issues, and is recommended as a follow up to this conceptual plan document.

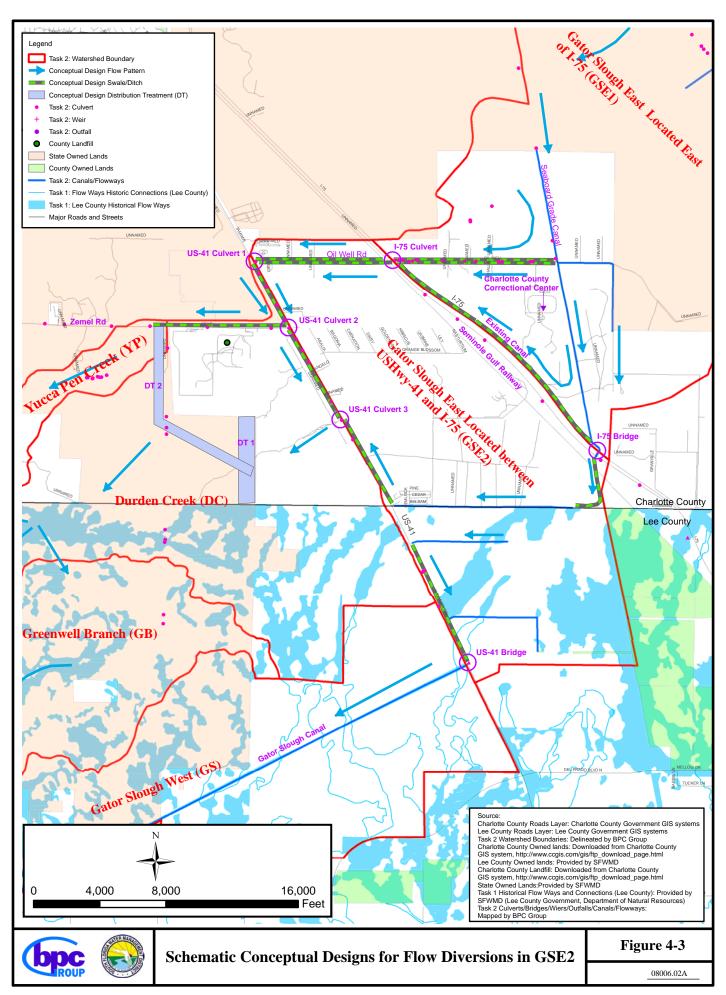
Concept: Flow Diversions in GSE1


The watershed GSE1 encompasses 19,430 acres and generates about 14,765 ac-ft of runoff during a 25-year, 72-hour storm event. The outflow from this watershed to GSE2 during this storm event is 7,032 ac-ft. It has been reported that sheet flows existed in the Babcock-Webb WMA prior to construction of the I-75 Bridge in 1980. After the bridge construction, the flow from this entire watershed was concentrated into one point discharge outfall. The majority of the land in this watershed is owned by the state and managed by the FWC. There is great opportunity to restore the sheet flows in this watershed with adequate maintenance and minimal construction as given below.

- The majority of the land east of Powerline Grade and north of Tuckers Grade consists of upland forests and rangeland. Based on the 2-ft contour map and the 10-ft DEM prepared during Task 1, the topography slopes southwesterly and the surface drainage from this area occurs naturally through overland flow (sheet flow). Tuckers Grade and Powerline Grade act as barriers, and the discharge across these road barriers is controlled through a series of culverts. These culverts are shown on Figure 4-2 and details of these culverts are given in Section 2.0 of this TM. The periodic cleaning or regular maintenance of these culverts should allow for sheet flow to occur between Powerline Grade and Seaboard Grade with gravity discharge to the Seaboard Grade Canal. The flow pattern from the area east of Seaboard Grade Canal will remain unchanged from flowing through the I-75 Bridge at the south end of the watershed GSE1. The conceptual flow pattern is schematically shown on Figure 4-2.
- The storm runoff generated in the area north of Oil Well Road and west of Seaboard Grade Canal may be diverted westward to the intersection of Oil Well Road and I-75 through dry swales. The area west of Correctional Center may also be diverted westward to the intersection of Oil Well Road and I-75 through the existing canal along east of I-75. This conceptual design will require construction of adequate flow control structures underneath I-75 and conveyance of the flow westward to ditches along US Hwy 41 through a constructed swale/ditch along the south side of Oil Well Road. This conceptual design will reduce the flow constriction at the I-75 Bridge outfall. In addition, the existing canal along the east of I-75 may need to be regraded and reconfigured (making them shallower and wider) such that the ground water table in the watershed is raised to support the fish and wildlife and enhance the hydroperiods in the watershed. The conceptual design is schematically shown on Figure 4-2.

It should be noted that an engineering evaluation of the conceptual designs presented above is essential, but not performed during this study due to limitations of the current scope of work.

08006.02-Task 2-Final TM 012810 4-5



Concept: Flow Diversions in GSE2

The watershed GSE2 encompasses 7,041 acres and generates about 5,446 ac-ft of runoff during a 25-year, 72-hour storm event. The inflow from the watershed GSE1 is 7,032 ac-ft entering this watershed through the I-75 Bridge. Currently, almost the entire flow from this watershed is diverted to the Gator Slough Canal through the US-41 Bridge located at the southeast end of the watershed as shown on Figure 4-3. Almost all of the land in this watershed is privately owned. Therefore, restoring sheet flow within this watershed may not be cost effective. However, the flows from this watershed may be diverted away from the Gator Slough Canal to other watersheds located west of US Hwy 41, where there is great opportunity for restoration of the sheet flows. This conceptual design may require some land acquisition. The construction of this conceptual design is described below.

- The dominant land use within the Lee County portion of the watershed GSE2 consists of residential, urban, and wetlands as shown on Figure 3-6 of the Task1 Summary Report and Metadata. Currently, the surface drainage from this section of the watershed discharges to the Gator Slough Canal through the Gator Slough Bridge outfall structure. The flow pattern in this section of the watershed consists of canals/ditches along US Hwy 41 and overland flow through wetlands as schematically shown on Figure 4-3. The flow pattern in this section may be left unmodified.
- The land in the Charlotte County portion of the watershed predominantly consists of barren lands, holding ponds, rangeland, and wetlands. The entire inflow from the watershed GSE1 entering through the I-75 Bridge may be diverted through modification of the existing canal/ditch along the county line as shown on Figure 4-3. This ditch extends from Seminole Gulf Railway to US Hwy 41. There are a number of outfalls along US Hwy 41 such as US-41 Culvert 3 as shown on Figure 4-3, which can be enhanced to convey the desired flows westward to the Durden Creek watershed. This will reduce the hydraulic load to the Gator Slough Canal, raise the ground water table to support the fish and wildlife, and enhance the hydroperiods in the watershed.
- The flows diverted from Oil Well Road can be routed through US-41 Culvert 1 to the reconstructed swale/ditch along the west side of US Hwy 41 as shown on Figure 4-3. The proposed culvert across US Hwy 41 can be enhanced and the swales, ditches, and/or canals can be reconstructed to maintain wider and shallower flow geometries along the west side of US Hwy 41 and along the north side of Zemel Road. The proposed enhancement can convey the desired flows westward to the Yucca Pen Creek watershed to follow the historic flow ways. This proposed enhancement will be performed within the state owned lands. This conceptual design will reduce the hydraulic load to the Gator Slough Canal, raise the ground water table to support the fish and wildlife, and enhance the hydroperiods in the watershed.

• The flows diverted from Oil Well Road can also be routed through the reconstructed swale/ditch along the east side of US Hwy 41 through US-41 Culvert 2 as shown on Figure 4-3. The swales, ditches, and/or canals can be reconstructed to maintain wider and shallower flow geometries. There are a number of outfalls along US Hwy 41, which can be enhanced to convey the desired flows westward to the Durden Creek watershed. This conceptual design is likely to require acquisition of privately owned lands since there is no state or county owned land is available along the US Hwy 41. This conceptual design will reduce the hydraulic load to the Gator Slough Canal, raise the ground water table to support the fish and wildlife, and enhance the hydroperiods in the watershed.

It should be noted that an engineering evaluation of the conceptual designs presented above is essential, but not performed during this study due to limitations of the current scope of work.

Concept: Flow Distribution and Treatment Enhancement in DCEBS/YPEBS

The sub-basin DCEBS (Durden Creek watershed east of Burnt Store Road) encompasses 8,572 acres and generates about 6,594 ac-ft of runoff during a 25-year, 72-hour storm event. In addition, the inflow from the watershed GSE2 may be in excess of 10,000 ac-ft during the design storm event. Currently, the majority of the land in this watershed along with the watersheds GBEBS and YPEBS (Greenwell Branch and Yucca Pen Creek east of Burnt Store Road) is state and county owned, and the traces of the historic flow ways are free from urban development. The predominant land use in this watershed is wetland and upland forests. Therefore, restoring sheet flow within these watersheds may not require land acquisition. The construction of this conceptual design is described below

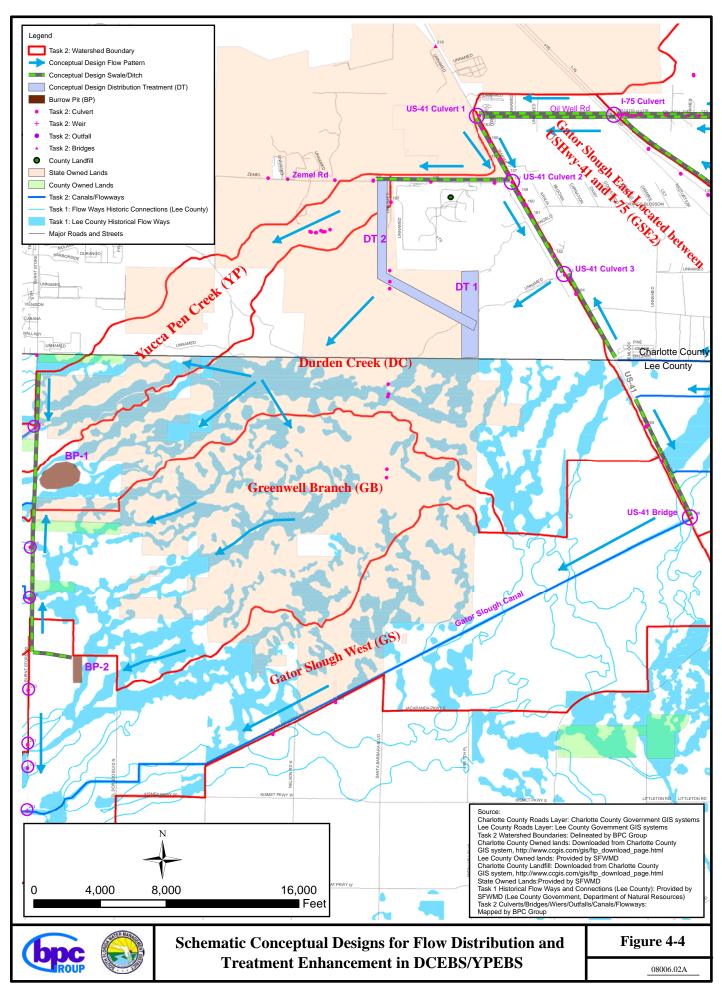
- It is proposed that an elongated flow distribution structure such as a shallow storage and treatment area may be constructed near upstream of DCEBS within the state owned land and the flow may be redirected to follow the historic flow ways in the DCEBS and GBEBS. The tentative location of this storage and treatment facility is schematically shown as DT1 on Figure 4-4. The distribution structure may be constructed with natural vegetation for biological treatment of the nutrients and other pollutants being carried from the upstream watersheds. This may also work as a fresh water filter marsh. The design of such a facility should emphasize more on detention and distribution of flow by gravity (overflow through banks), rather than storage of the runoff for a long period of time.
- Alternatively, an elongated flow distribution structure such as a shallow storage and treatment area may be constructed near upstream of YPEBS and DCEBS within the state owned land and the flow may be redirected to follow the historic flow ways in the DCEBS, GBEBS, and YPEBS. The tentative location of this storage and treatment facility is schematically shown as DT2 on Figure 4-4. The distribution

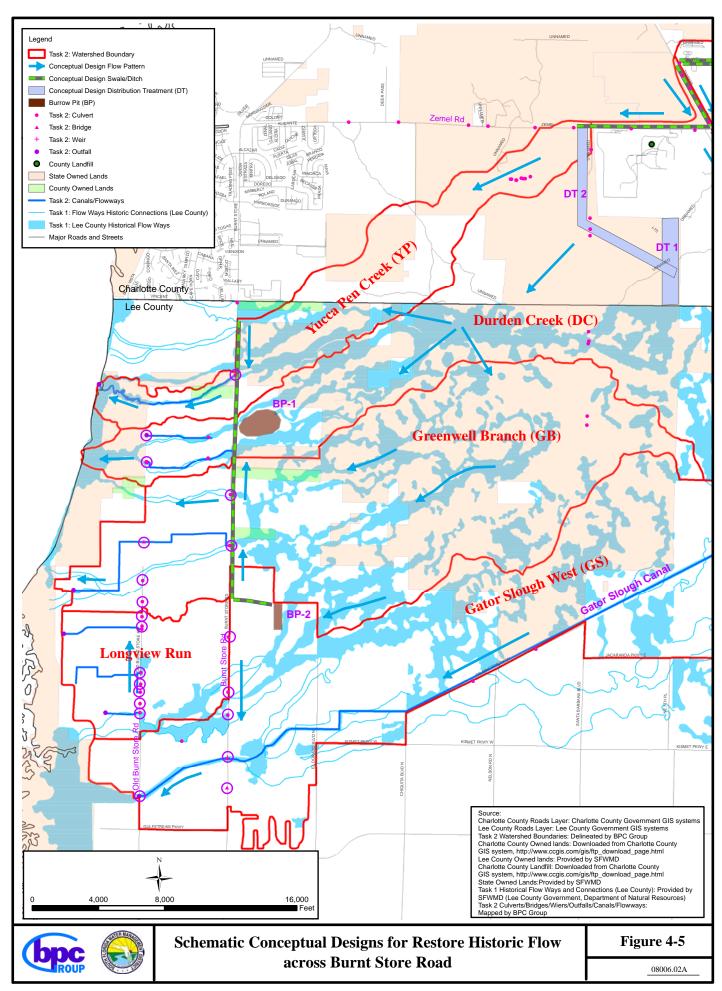
structure may be constructed with natural vegetation for biological treatment of the nutrients and other pollutants being carried from the upstream watersheds. This may also work as a fresh water filter marsh. The design of such a facility should emphasize more on detention and distribution of flow by gravity (overflow through banks), rather than storage of runoff for long time.

It should be noted that an engineering evaluation of the conceptual designs presented above is essential, but not performed during this study due to limitations of the current scope of work

Concept: Protect and Perpetuate Flow Ways in YPEBS, GBEBS, and DCEBS

The central portions of these watersheds are free from development. A majority of the land within these watersheds is owned by the state. The wetlands and rangeland are the predominant land use categories in these watersheds. Appropriate attention along with adequate maintenance should be given to protect the status and action should be taken now to better define the flow ways and inventory the structures to naturally enhance the flow crossings in its intended path. The details of this conceptual design are given below.


- Identify and implement plans for improvement of runoff storage, reduction of overdrainage, and rerouting of excess flows to other outlets. This would also include evaluation of watershed loss and channelization within the watersheds. The primary goal is to avoid extreme fluctuations in flows to improve the timing of freshwater flows.
- Develop BMP guidelines for drainage network maintenance programs such that downstream impacts to water quality and sediment load reduction can be attained.
- Encourage the maintenance of drainage conveyances consistent with BMPs that maximize water quality benefits to receiving waters.


It should be noted that the details of these conceptual designs can only be achieved by a comprehensive engineering evaluation, which is beyond the current scope of work.

Concept: Restore Historic Flow across Burnt Store Road

The historic flow ways in YPEBS, GBEBS and DCEBS are blocked by Burnt Store Road from flowing to the west. Currently, the stormwater runoff from these three watersheds is diverted southeasterly to the Gator Slough Canal and discharges through the Gator Slough Weir (see Figure 4-5). This flow pattern overloads the Gator Slough Canal outfall to Matlacha Pass. The flows from the flow ways can be diverted from discharging to Gator Slough, and managed along the east side of Burnt Store Road using improved drainage control features as described below

• The state or county does not own the lands along both sides of the Burnt Store Road. It is proposed to improve drainage control features by constructing shallow and wide ditches and/or storage impoundments to control the discharge. The goal is to divert the current flow pattern away from Gator Slough Canal such that the discharge through the Gator Slough Weir to Matlacha Pass can be reduced. The existing borrow pits, shown as BP1 and BP2 on Figure 4-5, with some control structures may be used for flow diversion, attenuation and water quality treatment. The existing borrow pits BP1 and BP2 are privately owned lands. Appropriate enhancement to the existing culvert outfalls such as BSR-Culvert 1 through BSR-Culvert 7 underneath the Burnt Store Road will be necessary to control the discharge rates. A schematic sketch of this conceptual design is shown on Figure 4-5.

It should be noted that the details on the geometry and configuration of this conceptual design features can only be achieved by a comprehensive engineering evaluation, which is beyond the current scope of work.

Concept: Improved Monitoring System for Performance Measures

The current status of the database containing the real site specific data on surface water, ground water, site topography, hydraulic control structures, water quality, and ecosystem (species and habitats) are limited. The existing information on the quality of discharge coming off of the Charlotte Harbor Landfill is limited, which may play an important role on the hydrologic restoration plan. It is strongly recommended that a monitoring program be implemented such that site specific valuable information can be collected that would be helpful in implementing any of the proposed conceptual plans. The monitoring system will serve a dual purpose: a) it will be helpful in developing the baseline conditions and engineering design, and b) it will serve as control points for the performance measures. The design of a monitoring program should capture the seasonal water levels, shifts in vegetation community composition, impact on seagrasses in Matlacha Pass and Charlotte Harbor, and hydroperiod targets for restored habitats. The exact details of the improved monitoring system should be consistent with the comprehensive analyses of the overall hydrologic system, which is beyond the current scope of work.

4.1.3 Permitting Requirements

Any of the structural improvement will require a series of permits. The most common reports and permits that may be required for the above listed conceptual designs are listed below. It should be noted that not all conceptual designs will require all the permits listed below.

- Environmental Assessment or Environmental Impact Statement
- Wetlands and Threatened and Endangered (T&E) Species Impact Approval from the FWC

- 404 Permit from the USACE
- Environmental Resource Permit
- Dewatering Permit (Water Use Permit) from SFWMD
- FDOT Right-of-Way Permit
- Construction Permits from Charlotte County
- Construction Permits from Lee County
- Construction Permits from City of Cape Coral

The actual scope of the conceptual design will determine the level of permitting requirements. However, following is a brief outline of the permitting requirements for the various conceptual designs presented above.

- Flow Diversions in GSE1: Environmental Resource Permit, Construction Permits from Charlotte County, FDOT ROW Permit
- Flow Diversions in GSE2: Environmental Resource Permit, Construction Permits from Charlotte and Lee Counties, FDOT ROW Permit
- Flow Distribution and Treatment Enhancement in DCEBS/YPEBS: Environmental Impact Statement, 404 Permit from the USACE, Environmental Resource Permit, Construction Permits from Charlotte and Lee Counties
- Protect and Perpetuate Flow Ways in YPEBS, GBEBS, and DCEBS: Environmental Impact Statement, Environmental Resource Permit, Construction Permits from Charlotte and Lee Counties
- Restore Historic Flow across Burnt Store Road: Environmental Impact Statement or Environmental Assessment, 404 Permit from the USACE, Environmental Resource Permit, Construction Permits from Lee County
- Improved Monitoring System for Performance Measures: Wetlands and T&E Species Impact Approval from the FWC, Construction Permits from Charlotte and Lee Counties and the City of Cape Coral, FDOT ROW

4.1.4 Order of Magnitude Cost Estimate

The benefits and the cost estimates for the various concepts presented in this report are given below. It should be noted that the cost estimates are not accurate since the actual scope of the conceptual designs are not materialized. The actual cost estimates, based on comprehensive engineering analysis, may significantly differ from the values presented below.

- Flow Diversions in GSE1
 - o Benefits: Reduce flow to Gator Slough Canal, redistribute the stormwater runoff outfalls, enhance the hydroperiods, support fish and wildlife and vegetation, improve water quality
 - o Approximate Total Cost: \$1,500,000
 - Construction \$ 800,00

08006.02-Task 2-Final TM 012810 4-14

DRAFT TECHNICAL MEMORANDUM; JANUARY 28, 2010 YUCCA PENS HYDROLOGIC RESTORATION PLAN (WORK ORDER NO: 4600000893-WO03)

- Land Acquisition \$ 350,000
- Construction Management \$ 100,000
- Feasibility Study, Design and Permitting \$250,000
- Flow Diversions in GSE2
 - o Benefits: Reduce flow to Gator Slough Canal, redistribute the stormwater runoff outfalls, enhance the hydroperiods, support fish and wildlife and vegetation, improve water quality
 - o Approximate Total Cost: \$2,200,000
 - Construction \$ 1,100,000
 - Land Acquisition \$ 750,000
 - Construction Management \$ 100,000
 - Feasibility Study, Design and Permitting \$250,000
- Flow Distribution and Treatment Enhancement in DCEBS/YPEBS
 - o Benefits: Ensure restoration of historic flow ways, enhance the hydroperiods, support fish and wildlife and vegetation, improve water quality
 - o Approximate Total Cost: \$4,500,000
 - Construction \$ 3,300,000
 - Land Acquisition \$ 300,000
 - Construction Management \$ 400,000
 - Feasibility Study, Design and Permitting \$500,000
- Protect and Perpetuate Flow Ways in YPEBS, GBEBS, and DCEBS
 - o Benefits: Enhance restoration of historic flow ways, enhance the hydroperiods, support fish and wildlife and vegetation, improve water quality
 - o Approximate Total Cost: \$400,000
 - Construction \$ 250,000
 - Land Acquisition \$ 0
 - Construction Management \$ 50,000
 - Feasibility Study, Design and Permitting \$100,000
- Restore Historic Flow across Burnt Store Road
 - o Benefits: Reduce flow to Gator Slough Canal, redistribute the stormwater runoff outfalls, enhance the hydroperiods, support fish and wildlife and vegetation, improve water quality
 - o Approximate Total Cost: \$1,700,000
 - Construction \$ 1,000,000
 - Land Acquisition \$ 400,000
 - Construction Management \$ 100,000
 - Feasibility Study, Design and Permitting \$200,000

08006.02-Task 2-Final TM 012810 4-15

- Improved Monitoring System for Performance Measures
 - o Benefits: Source of information for design of restoration plans, performance measures for implemented restoration plans, assist evaluate the hydroperiods and water quality improvement.
 - o Approximate Total Cost: \$350,000
 - Construction \$ 200,000
 - Land Acquisition \$ 0
 - Construction Management \$ 0
 - Feasibility Study, Design and Permitting \$150,000

4.2 RESTORATION IMPROVEMENT ALTERNATIVES

4.2.1 Water Quality Best Management Practices (BMPs)

For the purpose of this project, the goal is to incorporate appropriate types of BMPs into the designs such that the water quality discharging to the Matlacha Pass and Charlotte Harbor is improved. The water quality discussed here refers to the chemical constituents such as nutrients, etc. Although the water quality improvement is directly focused on freshwater wetlands within the watershed, the receiving waters (estuarine areas of Matlacha Pass and Charlotte Harbor) will also be affected. The improvement is typically measured over the current conditions or over the conventional way of stormwater discharges. Currently, most of the stormwater runoff from the Yucca Pens watershed discharges through the Gator Slough Canal to Matlacha Pass. Such a concentrated discharge is typically not efficient in improving the water quality.

The various BMPs that may be incorporated within the conceptual design of the restoration plans may include one or more of the followings:

- Dry Swale: This BMP is most suitable for the sub-basins GSE1, GSE2, and along roadways in other sub-basins. For example, the proposed swales along the north and south sides of Oil Well Road may be suitable for this BMP type. This treatment option provides a high level of removal of nutrients and other inorganics. The removal efficiency for dry retention basins is about 90%. However, the primary purpose of this treatment option is conveyance, and therefore the removal efficiency of these dray swales for nutrients would be less than that of the dry retention basins.
- Wet Detention Pond: This BMP can be constructed in any basin. For example, the
 proposed use of borrow pits along east of Burnt Store Road are suitable to be
 developed as the wet detention ponds. The removal efficiencies of nutrients and other
 inorganics for this BMP are lower than the dry ponds. The typical removal
 efficiencies for various compounds for this BMP are given in Section 3.2 of this
 report.
- Storm Water Treatment Area (STA): This BMP controls discharge rates and removes nutrients through vegetation. The District has wide experience in constructing and

- managing STAs of different sizes. The proposed concepts for construction of flow distribution and treatment facilities in the DCEBS and YPEBS watersheds are examples of this BMP.
- Filter Marsh: This BMP behaves similarly to wetlands or STAs depending on the size and components of the design. Currently, the filter marsh concept is proposed along Old Burnt Store Road and the outfall structures.
- Flow Way and Proposed Ditch: The shallow and wide ditches proposed in the conceptual designs in this TM are similar to certain flow ways which are populated with naturally occurring vegetation. These types of BMPs not only control the quantity of flows, but also control the timing of discharge, removal of nutrients and other inorganics, and improve the water quality at the downstream end. The examples of these BMPs include the proposed ditches along the east side of Burnt Store Road, north side of Zemel Road, and east side of I-75.

4.2.2 Passive Low Maintenance Conceptual Designs

As indicated earlier, the key element of the recommended conceptual design is the gravity drain system. In addition, the recommended conceptual designs presented in this report are intended to be low maintenance systems with no pumps. For example, the conceptual designs include shallow and wide flow ways with native vegetations to convey the stormwater runoff rather than the narrow and deep canals. This conceptual design may include more land acquisition at the start, but will need very low maintenance and improve the water quality.

For example, dry swales are proposed along Oil Well Road for the flow diversions conceptual design in the GSE1 watershed. The dry swales need very little maintenance except for periodical mowing. The shallow and wide ditches with vegetation are proposed in the conceptual designs rather than the deep canals along I-75, Zemel Road, US Hwy 41, and Burnt Store Road. This type of design requires simple engineering design, less expensive structures, and low maintenance. These designs may require vegetation control only few times a year. Similarly, the burrow pits and distribution and treatment facilities proposed in DCEBS and YPEBS watersheds are expected to be shallow, free of pumps maintaining gravity system for inflow and outflow, and require low maintenance of the berms and overflow structures.

The details of the low maintenance conceptual designs are emphasized during the engineering analysis and design phase.

4.2.3 Other Multi-Functional Alternatives

As described above, most of the recommended conceptual designs are multi-functional in nature. The flood control and water quality are common to all the proposed conceptual designs. In addition, these designs enhance the hydroperiods supporting healthy growth of

vegetation and maintenance of the fish and wildlife. Since the volume of runoff is the key factor and there are concentrated urban areas within the project area, flood control and maintenance of the flood control structures would be key elements in the restoration plan development.

4.3 RECOMMENDED MULTI-FUNCTIONAL WATER MANAGEMENT PLAN

This section presents a brief outline of the step process for implementation of a multifunctional water management plan. The multi-functional water management plan is intended to address the conceptual actions aimed at improving the hydrologic and water quality characteristics of natural systems including freshwater wetlands, and the receiving estuarine systems. This plan is aimed at improving the following elements.

- Historic sheet flow restoration
- Restoring more natural flows to Charlotte Harbor
- Watershed Water Quality Improvement (discharging to Charlotte Harbor)
- Ground Water Recharge (to protect and enhance the fish and wildlife habitats)
- Hydroperiod Maintenance (for vegetation management and protection and enhancement of the fish and wildlife habitats)
- Land Acquisition and Management (to address operational issues)

Based on the information contained in this TM, the recommended water management plan includes the following elements.

- Coordinate with the agencies managing the roadways and current I-75 widening permit applicants to evaluate potential for partial implementation of some of the conceptual designs presented in this document.
- Complete further engineering analysis of selected alternatives that would include the followings.
 - o Implement a monitoring network system;
 - o Perform a comprehensive site investigation;
 - o Develop and implement a detailed flow evaluation model;
 - o Develop and implement an integrated water quality model; and
 - o Formulate and evaluate specific alternatives including conceptual layouts, preliminary designs, and detailed cost estimates.

The engineering analysis should evaluate the conceptual designs proposed in this document, and be able to narrow down the specific designs most effective to achieve the project goals. The engineering analysis should recommend an alternative for implementation.

08006.02-Task 2-Final TM 012810 4-18

- Survey onsite/nearby wetlands for signs of biological indicators for average wet season water levels (stain lines, lichen lines, adventitious roots, etc.). Available surface water monitoring data in the area may be useful and can be cost saving factor.
- Prepare an environmental assessment or an environmental impact statement as appropriate based on the recommendation from the engineering analysis.
- Develop a detailed engineering design for the alternative recommended during the engineering analysis. This should include the detailed design plans and specifications, permit applications and approvals, preparation of bid specification package, and selection of a contractor for construction. The detailed design should emphasize the maintenance of the existing and future drainage features, which is critical in achieving the design goals.

The conceptual designs presented in this document address all of the above issues either by individual concepts or with a combination of more than one concept. The conceptual plans presented in this TM needs technical evaluation with more specific design features.

APPENDIX A Site Reconnaissance Field Logs and Photographs of Selected Structures (July 20-29, 2009)

File No.: 08006.02 Date: July 20, 2009 Start Time: 1:00 am/6m End Time: 4:45 am/6m

Project Name: Yucca Pens Hydrologic Restoration Plan Weather Conditions: Cloudy, mild, ~ 75°F to 80°F

Structure ID	Measured C	Coordinates	Structure Type and	Remarks/Description	Logged By
(if available)	Latitude	Longitude	Description of Location	on Ponsergrade	920
Coby Culvert(ool)	126°51'30.811	W81053"08.4"	Circle of Culvery appro	Remarks/Description on Porsergrade on One Intersection of porsergrade \(\sigma \) \[\sigma \text{3" of sediment at base of onlivert} \] \[\sigma \] \[\sigma'' \text{ or sodiment at base irocks at West and of cultert} \]	BIR
002	N26°5157.0"	W81°53′33.3"	1-24"CPP	~ 3" of sediment at base of culvert	AVA
003	N26°52'13.8"	W81°53"49.1"	1-24"CPP	~ 1" of sediment at base; rocks at West and of culvert	AVA
004	Na6°5a'a3.5"		1-24" CPP	at least 6" of sediment at base of culvert	
005	Na6°52'25.9"			~7" of standing water at base of culvert	GJR AVA
006			WMA Gate		20.77
007	Na6°5/29,3"	W81°54'02.54	1-18" CMP	North side of culvent completely blacked. Completely coronded on South side, Horth side completely	GT RVA
008	N26°51'29.5"	W81°54'40,3"	2-42" CMP	na of standing water in culverts	GJR
000	1430	,		J	
			, a	a selfe	
				*	

Date: July 21, 2009 Start Time: 9:20 ampm End Time: 12:30 ampm

Restoration Plan Weather Conditions: Clear, warm, ~ 80°F 08006.02 File No .:

Yucca Pens Hydrologic Restoration Plan Project Name:

Structure ID	Measured Coordinates		Structure Type and	Remarks/Description		
(if available)	Latitude	Longitude	Description of Location	remarks/Description	By	
009	N26°51'29,3"	W81°53'01.6"	1-24" CPP	~3" of sediment at base of culvert	AVA	
010	N26°51'29.4"	W81°52'01.2"	1-24"CPP+2-24"CMP	" of sediment at bases; metal culverts are	AVA	
011	N26°51'29.2"	W81°51'07.5"	2-48" CMP	Culverts are partially coredediluster at base.	AVA	
012	Nac°51'29.2"			South side covered w/ vegetation, rocks at both ends	STR AVA	
013	N26°51'29.2"	W81°50'17.4"	1-24" CPP	KI" of so I'mout at been of only t	AVIA	
014	N26°51'28.8"	W81°50' 13.6"		Pond on south side of Tucker's Grade Road	GJRAVA	
015	N26°51'29.0"	W81°50'06.4"	2-42" CMP	16" of standing water at base of culvert	AVA	
016	N26°51'28.9"	W81º49º41.4"	2-24" CPP	~ I" of sediment at base of culvert	AVA	
017	N26°51'28,9"	W810491395"	1-16" CMP	Completely coroded + Filled (blocked) w/ sidiments	GJR	
018	N26°51'28.9"	W81°49'37.2"	1-12" CMP	Partially coroded	AVA	
019	Na6°51'28.9"	W81°49'29,4"		Gate at Jucker's Grade Rd. at Zone D boundary	GJRAVA	
020	N26°51'28.9"	W81° 49'28.9"	1-24" CPP	N10" of sediment at base of onlivert	AVA	
021	N26°51'11.4"			" of sediment at base + little regetation at both ends</p	GJBAVA	
022	Na6°50'54.7"	W81°52"34.4"	1-18" CPP	~ 3" of scaliment at base Both ends partially blacked w/ rocks	AVA	
023	N26°50'47.9"		1 1 1 11	123" of seliment at base; heavy regetation at west end	GIJRAVA	
024	N26°50'46.1'	W81°52'264"	1-18" CPP	~3" of sediment at base; heavy vegetation at both ends	GJR AVA	
025	N26°50'43.7"		1	~10" of sediment at base of culvert	GJR AVA	
026	NX6°50'36,6"			Pond on east side of Power line Grade	HVII	
027	N26°50'35,3"	W81°52'16,2"	1-24" CPP	<1" of sediment at base of culvert	GJR	

A-3 08006.02-Task 2-Appendix A

File No.:

08006.02

Date: July 21, 2009

Project Name: Yucca Pens Hydrologic Restoration Plan

Weather Conditions: Partly sanny warm, ~85°F

	Structure ID	Measured C	Coordinates	Structure Type and	Remarks/Description		
	(if available)	nilable) Latitude	Longitude	Description of Location		at R	
	028	NQ6°50'34.2"	W81°52'15.1"	1-24" CPP	~ 2" of sediment at base of culvert	AVA	
	029	N26°50'29.3"	W81°52'10,4"	1-24" GPP	" of sediment at base; Partially blocked at Westerd	AVA GJR	
	030	N26 50 28.3"		1-24" CPP	of sediment at base i heavy vege lation at west end	HVI	
	031	N26°50'26.1"		1 1 - 11	nd" of sediment at base; west end partially blocked	AVA	
	032	Na6°50'23.8"		1-24" CPP	~ 2" of sealiment at base; West and almost blocked complete	AVA	
	033	Na6°50' 15.3"		1 : 57 (/	" of sediment at base of culvert	AVA	
	034	N26°50'13.2"			Heavy vegetation on west end of culvert	AVA	
	035	N26° 50'12.3"	W81°51'54.4"	1-36" CPP	" of sediment at base of culvert	AVA	
	036	N26°50'109"		11-36" CPP	~ 3" of sediment + rocks at base on Westend	AVA	
	037	N26°50'09.7		1-24" CPP	"of sediment at base; Partially block at westend "of sediment at base; Westend almost blocked off Half Filled w/ sediments & rocks on east end. Almost completely blocked at west end. Both ands half blocked at west end.	AVA	
	038	N26°50'03,0"		1-24" CPP	~ 6" of sediment at base j West and almost blocked of	AVA	
-	039	W26°50'01,5"		1-24" CPP	Almost completely blocked at west end	AVA	
	040	N26°49'56.9"		1-24" CPP	Both ends half blocked out rocks, sediment, vegetation	GJR AVA	
	041	N26°49'56,1			"a" of sediment at base; heavy vegetation on East end	GTR	
	042	N26°49'45,2			Grate at Powerline Grade	AVA	
	043		W81°51'28.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Heavy regetation on West end	AVA	
	044	N26°49'40,5		- 1111	wa" of sediment at base of entvert	GOR	
-	045	N26°49'35.8			>6" of sediment at base of culvert	AVA	
	046	Na6° 49 25.8		1 1 11011 - 110	Partially coroded; heavy vegetation at Westend	GJRAVA	

File No.:

08006.02

Date: July 21, 2009

Start Time: 3:35 am/pm End Time: 6:30 am/pm

Project Name: Yucca Pens Hydrologic Restoration Plan

Weather Conditions: Partly Cloudy, hot, ~ 90°F

Structure ID	Measured Coordinates		Structure Type and	Remarks/Description		
(if available)	Latitude	Longitude	Description of Location	Remarks/Description	By	
047	N26049 15.7"	W81°51'01.0	1-24" CPP	>6" of sediment at base of entert	SOR	
048	N26°49'13.7"	W81°50'59,1"	1-24" CPP		STRAYA	
049	N26°49'09.8"	W81°50554	2-24" CPP	Heavy vegetation at west end of culvert	GJR AVA	
050	N26°48'57,3"	W81°50'43.6	1-24" CPP	Heavy vegetation at west end of culvert	-	
051	N26° 48'54, J	W81°50'40.8	3-24" CPP	41" of sediment at base of culverts	AVA	
052	N26°48'52.5"	W81°5039.2	1-24" CPP	<1" of sediment at base of culvert	GJRAVA	
053	N26°48'50.6"			Gate at Powerline Grade	GJ BAVA	
054	N26°51'42.1"	W81°54'44-6	2-48" CMP	N/8" of stagnaut water at base	SJR AVA	
055	N26°53135	W81°55'049'	2-48" CMP	N30" of standing water at base	STR AVA	
056	Na6°53'23.2"	W81°55'05,4	2-48" CMP	Block off completely at North end	GJR	
057	NR6°54'06.6'	W81052'26.3	(End of Frackunmapped trail	GJR AVA	
058	N26°53'39,6"	W81°52'49.2"		Middle of Frack ununapped trail	GTRAVA	
059	N26°53133	W8195311,5	\$	Beginning of Frack unmapped trail	- 1/1/1	
060	N26°53'124	W81952/32.0"	2-48" CMP	Both culverts submerged in water	AVA	
061			2-48" CMP	Both culverts submerged in water	SJR	
062	Na6°53'12.0'	W81°51'56.7"	1-24" CPP	~18" of stagnant water at base	SJRAVA	
			-			
			, 0-69	* 52		

File No .:

08006.02

22,2009

Project Name: Yucca Pens Hydrologic Restoration Plan

Weather Conditions: Start Time: 8:45 ampm End Time: 2:00 am/pm

Structure ID	Measured Coordinates		Structure Type and	Remarks/Description	Logged By
(if available)	Latitude	Longitude	Description of Location		
063	N26°51'64.2"	W31°54'36.5"	2-48" CMP	Dense vegetation on both ends of culverts	GJR AVA
064	N26°50'34,0"	W81°54'299"	2-48" CMP	Dense vagetation on west end of culverts	AVA
065	N26°49'459'	W81954'182"		Intersection of animapped trails	AVA
066	Na6'49'46,1"	W81°54' 17.6"	2-48" CMP	Both culverts are completely coroded	AVA
067	N26°53'38,3	W81°55'088"	1-48" CMP	Partially moroded 78" of sediment at base	AVA
068	N26°54'10.2	W81°55'16.0"		Grate at end of Seaband Grade Rd	AVA
069	N2654 43.1"			End of Northern end of Seaboard Grade Rd	
070	N26°54'07.0"	W81°55'15.5"	Water Flow over Road	Depression that has puddled at canal on East of Rd Convert almost blocked on south end.	GJR AVA
071	N26°53'11.7"	W8(°51'35.1"	1-24"CPP on Tram Rd	Located at beginning of Road 3.	GJ R GJ R
072	1100052 21911	(181051 23.811		hacated at end of Road 3.	AVA
073	Na6°53'06.4"	W81°50'44.6"	Rit at Transir interection	wid" of sediment at base of culvert.	AVA
074			Fram Grade Road	Located at end of Road 4.	GJR AVA
075	Na6°53'03,91	W8/04935,81	Tram Grade Road	Watlands area in Zone C near Zone D boundary	GJR
076	N26954 05.5	W81049130.2		Northern end of Road 5	AVA
077	N26°5'3'03.8"	w81049'282'	1-36" CMP at Rd5 + Transgrade Rd interest 1-36" CMP at	Partially coroded; >30" of water atebase	AVA
1078			1-36" CMP at	Partially coroded; >30" of water at base	AVA
078	Na6°5053.1	"W81°49'29.8"		En Southern end of Road 9.	AVA
-079	1.00		Tuckers Grade Road	SE corner of hake on north side of Tucker's Gr	AVA
080	Na6°51'08.8'	Of the state of the state of the	12-48" CMP on Tuckers Grade Road	hake draining South into ditch	GJR

Weather Conditions: Partly cloudy, hot, humid, ~90°F File No .: 08006.02

Project Name: Yucca Pens Hydrologic Restoration Plan

Structure ID	Measured C	Coordinates	Structure Type and	Remarks/Description	Logged By
(if available)	Latitude	Longitude	Description of Location		STR
081	Na6°51'28.7"	W81048'20.811	2-48" CMP on Tuckers Gode Road	hake draining south into pond	AVA
082	N26°51'28.5"		Corner of SARoad 8A + Trackers Grade Road	SW corner of Lake on Tuckers Grade Rd	AVA
083		W81047 20,3"	On Road 8A	N 100 From Tuckers Grade Road	GOR
084		W81°47'14,6"	1-24" CPP on under Tuckers ande Road	Draining to the south	AVA
085			1-24" CPP under Tuckers Grade Road	Draining to the north; at Tuckers Ginder Rd 7	AVA
086	N265007.6		1	South end of Road 7	GJR AVA
087			Tucker Single Road	Down to the north art Tuckers Grade to o la	TIVE
088	Wa6°51' 280"	W810461 14.8K	Tucker Grade Road	Draining north; at Tuckers Grade, east of Rd7 At Tuckers Grade Road near US 31	AVA
089	N26°51'27.8"			THE THE PARTY OF T	GJR
090			1-24" CPP ander Tucker Grade Road	Draining North; West of US31	AVI
091	N26°51'28.0"	W81046'04.2'	tucker Grade Road	Draining north ; located at Rd 6 intersection	GJR
092	N26°51'28,1"	W81046'07.9"	7-28" CPP under	Flow obstruction at both ends	AV/
093	Na6°51'28,71		12-2611 CPP Under	Flow is stagnant at both ends; west of hake	4 V.
094	N26°51'28,8		same as above	Same as above	GJR AV
095	126951 28,81		1-3/4" C.PP MADEL	Flow is stagment at both ends; west of Lake	TOR
096		W81º49'87.0	" Same as above	Same as above	GUR
097	ND6°51"28,91		11-24" CPP under	N8" of sediment at base; A+ Rd 5 intersection	GUR
098	W26°51'28.9"		Tucker Grade Road	Dry at both ends; near unmarked Road	AVI
-099	N26°51'29,3"			Completely coroded	AVI

File No.:

08006.02

Project Name: Yucca Pens Hydrologic Restoration Plan

Date: July 23,2009 Start Time: 8:30 ampm End Time: 1:30

Restoration Plan Weather Conditions: Sunny, clear, warm, ~80°F

Structure ID	Measured C	Coordinates	Structure Type and	Remarks/Description		
(if available)	Latitude	Longitude	Description of Location	Remarks/Description	By	
100	N26°49'39.9x	W81°56'25.1'	webb hake	South end of Oilwell grade Road	STR AVA	
101	Nace57'08.1"	W81°56'25.8"	Culvert under Oilwell Rd 1-24" CPP under		AVA	
102	W26°53'13,0"	W81653'24.1"	Tran Grade Road	Stagnant water at both Ends	AVA	
103	N26°53' 815"	W81°48'25.7"		Both partially submerged in water	GJRAVA	
104	N26° 53'01.4"	W8194758,8	Jran Grade Road	1 /	AVA AVA	
105	N26°53'01.8"	W81047'35,5	1-24" CPP under Tram Grade Road		/ IV PT	
106	N26°53'03,4"	W81°46'01.4"		Rd 6 + Tran Grade Intersection	SJR	
107	N26°51'28.0"	U81°46'04.3'	Q ·	Rd 6 + Tucker Grade Intersection	COR AVA	
108	N26° 48'37.3"	W81°57°24.1"	0-24" CCP under	OilWell Rd + US 41 intersection	AVA	
109	N26°48'47,8"	W81°56'21.7"	Wetland Area	On upmarked trail off Oil Well Rd	STR AVA	
110	N26 48 38.1"	W81°56 30.6"		Start of Trail at the oilwell Rd	ANAGOR	
111	N26048'38,6"	W81°55'42,5"	1-48" CMP	Daroil Well Rd near I-75; completely conde	SURAVA	
112	N26°48'38.5	W81955139,7	1-84" CCP	an Oil Well Under Oil Well Rd near 1-75	AVA	
113	N26048138,61	W81255151,1"	1-18" CCP	O' Well Grade Rd overpass above I-7	AVA	
1(4	N26048'38,6"	W81°55'48.6"	same as above	same as above	GTR AVA	
115	N26°48'38.7"	W81°55'46,19	Same as above	Send completely blocked . Spathend completely block	AVA	
116	NO6°48'38,8"	W81055/36.8	Dil Wall Rd	Near I-75: N4" of sediment at base	AVA	
didnot save 17	Na6°48'38,3"	W81°55'32.8"	0:1 Well Rd(1-18"x12")	Near I-75, " of sediment at base	AVA	
117	N26°48'38,4"	W8155119,5"	178"x12" ECP under	East of I-75; Culvert sloping north	GJR	

Date: July 23, 2009 08006.02 File No .:

Project Name:

Yucca Pens Hydrologic Restoration Plan

Weather Conditions: Sunny, hot, humid, 90°F \$695°F

Structure ID	Measured C	oordinates	Structure Type and	Remarks/Description	Logged By
(if available)	Latitude	Longitude	Description of Location		GOR
118	N26°48'38.44	W81°55'04,9"	1-18"xa4" ECP under 011 Well Rd, E of I-75	Remarks/Description N 3" of sadiment at base Be North end of unnounced road off oil well Road Water theory regetation at both ands Water theory regetation at both ands S Intersection w/ oil well Rd N 1" of sadiment at base	AVA
119	N26°49'351"	W81355101.9"	unhamed Pd off on woll &	Water theavy regetation at both ends	GJB 4
120	N26°49'02,8"	W81°55'01.3"	unnamed Rd off oil Well Rd	Water + heavy vegetation at both ends	GJR AVA
121	N26049'02.3'	W8195501.3"	unnamed Rd off Oil Well	b	GJR AVA GJR
122	N26° 48' 38.8"	W81°55'01.6"	South end of annamed R 1-18"x24" ECP under 0:1 Well Road	~ I" of sediment at base	GJR AVA
133	110/0/18/ 24/14	1.181954574	1-48" CCP ander Valhalla Da Prive	North of Oil Well Rd	AVA
124	N26°49'11.3"	(N81°54 47,8"	1-18"XIS" ECP	7000411 01 1100011	GJR AVA GJR
125	N264838.4	W81 57 425	1-18"x12" ECP under oil Well Road 1-18"X13" ECP under oil Well Boad		GJR
126			Same as above	Heavy vegetation at bothe ends	GJR AVA
128			Same as above	, ,	AVA
129	N26°48' 29.3"	W\$1°53'25,9"	East end of Oil Well Rd	Intersection of Pancari Rd + Oil Well Rd	0.10
130	N26°48'37.9"	W81°53' 27.8"	Canal along Oil Well	Draining west	GJB AVA
131	N26°48'088"	(1)81° 531 26-21	Canal Estoil Wed	+ Flowing west	AVA
132	N26°48'38.2"	W81°54'03-8	Canal along Oil well Rd at Flowing West 1-18" CCP under	Intersection of Officering	GJR AVA
139	11260 48 442	1/181.54 142	Take Ave on South en	focated near dil Well Rdi	GJR
134	N26°48'50.9"	W81°54'06.4	Jack Ave		11110

File No.:

08006.02

Date: July 24, 2009

Project Name: Yucca Pens Hydrologic Restoration Plan

Weather Conditions: Sunny, hot, hand, ~ 85°F

Structure ID	Measured C	Coordinates	Structure Type and	Remarks/Description	Logged By
(if available)	Latitude	Longitude	Description of Location	O. W. Alice of off at Charlette County	
135	N26°47'25.7	W81°54" 11.9"	Canal at Correct	Parallel Along I-78 at charlotte county - Located at Correctional Facility Flow is stagnant	AVA
136	11-1011-111011	100511738011	Canal along I-75	Located at Charlotte County Correctional Facility	GUR AVA
137	N26°48'18,3"	W81°55'31.0"	under 1-75 men	Flow is west; located near Oil Well Rd.	AVA
138	W26°48'03.8"	W81°55'09,4"	1-75 south of Oil Well Rd	Flow is west glocated near Oil Well Rd.	GJR
139	N2014151311	1.18105451.11	Same as above	Same as above	GJB WA
140	N26°47'15.1"	W81°54'12.3"	3-24" CCP huder I-75	Flow is west along enliverTS	HVA
141	N26°46"458"	W81053'41.7	Canal along I-75		SJRAVA
142	1/0001/0/0/2011	1.10,000 000 000	Cahal under T-75	Flow is west under I-75 overpass	GJRAVA
143	11201614A	1101053/335	2-24" CCP under	Hrave regetation at both ends	AVA
144	N2646'253	W81058'N7.18	2-37" CCP under	Flow is west through culverts	GOR AVA
145	1126045543	W81521350"	3-12'x3' BCP Under 1-75 T-75 bridge (overpass)	Canal flowing east through enliverts	GJRAVA
146	NOCO4/4-3	481957348	I-75 bridge (overpass)		GJR
147	112047570	1/181057/01/6	-36" CCP under Zemel Rd	At intersection of Zemet RJ + U541	GJR AVA
148	1/2/044/20/	11810551005	Canal under U.S.41 3-12/25' BCP	~50' wide, Flowing west	GJR AVA
149	NOV 945' 33 3"	W81055 29.9"	2-36" CCP under Us 41 near hakeville bo	Flow through culverts is eastward	11.71
150	WOLD 15 50.1"	(1810 55) = 25	Canal flowing From east Canal flowing From North	Intersection of 2 canals at U.S.41	GJR AVA
151	N26°45'51.0"	The state of the s	-	Tracing canal flowing east from U.S. 41	GJR AVA
152		W8154'326"		Same as above	STR AVA
10-1	1100 7601,6	~0137 340	1 2	No. of the second secon	

08006.02 File No .:

Yucca Pens Hydrologic Restoration Plan Project Name:

Date: Valy 25, 2009 Start Time: 8:45 ampm End Time: 4:15 ampm

Restoration Plan Weather Conditions: Sunny, very warm, humid, ~80°F

Structure ID	Measured C	oordinates	Structure Type and	Remarks/Description	Logged
(if available)	Latitude	Longitude	Description of Location	•	By
153	N26°48'29.7"	W81°57'22.6"	2-36" CCP under US.41 near Oil Well Rd	Just south of Oil Well Rdj Flowing east through colors	GTRAVA
154	Na6°48'22.3"	W81°57'16.0"	Storm drain 3'x5' along US 41 on median	M mile south of Dil Well Rdj + low is to the west	AVA
155	N26°48'21.9"	W81°57'16.9"	wim: South of oil well Rd	~6" of sediment at base, Negetation	AVA
156	1126548/11.6"	W815710-2"	1-18" CCP under US 41	Flow is west from storm drain on median	STRAVA
157	N26°48'02.2"	W8057'04.2"	1-18" CCP under US 41		AVA
158			miles north of Zeme (Rd	Canal is flowing west	GJP
159			1-18" CCP UNDER US 41 ~0,25 mi south of Zemel Re	E	AUA
160	1126047'441"	1181056'525	1-18" CCP under 1341	Flow is west from storm drain on media	AVA
161	112/01/7/273"	1,1010 E 1484"	2-36" CCP under US41	Flow is to the past through culvert	AVA
162	Noc 647'14 011	1181056133 3"	1-18" CCP under US41	Flow is to the west from storm drain on medi	ab AVT
163	N26°47'02.9"	W81°56 26.0"	1-180 CCP under USAT	Flow is West From storm drain on median	GJR AVA
164	N26°46'513"	W81056 18-6"	1-18" CCP Under US 41	Flow is west from storm drain on median	11014
165	1/260451325	4181955/31.5"	2-36"CCP under US41	How appears to be east through culverts	G.TR AVA
166	1126°45' 120"	W81°55"20,4"	2-36" CCP under US 41	Flow appears to be east through culverts	GJR AVA
167	N26°44'45.9"			Tracking NE	GJR AVA
168	N26°44'51.0"		1 /	Same as above	AVA
169	N26°45'05,3"	W819541424	Channel	Same as above	6JR AVA
170	N26°44'25,4"	W81054'55.0"	1-1811 CCP under	150' North of Fountain View Blod, Flowing west	GJR
171	N26°46'11.8"			@notrot montana way.	GJRAVA

File No.: 08006.02 Date: July 26, 2009 Start Time: 9:00 ampm End Time: 11:50 ampm

Project Name: Yucca Pens Hydrologic Restoration Plan Weather Conditions: Cloudy, warm, occassional drizzle, ~80%

Structure ID	Measured Coordinates		Structure Type and	Remarks/Description	Logged
(if available)	Latitude	Longitude	Description of Location	Kemai ks/Description	By
172	N26°47'57.4"	W81°57'13.5"	2-10" Circular Plastic culverts off Zemel Rd	Near land fill (mound) ~ 0.5 mi from US41) draining N	GJR AYA SJRAVA
173	N26°47'57.5"	W81057 30.8"	Zemel Rd Laudfill Driveway + Zemel Rd	Zemel Rd Municipal Solid Waste Mgmt facility	1111
174	1	-	Gate to offrond on N side of Zemel Road	Located across From landfill	AVA
175	N26"47'57.9"		2-22"x14" ECP under	North ends of culverts almost completely blocked	SJR
176	N26°47'57.7"	W81°58'23.1"	Nend of Seminole Grad	Intersection of Seminole Grade Rd + Zemel Rd	AVA
177	N26°47'57.8"	W81°59'16.4"	Rd 3 + Zemel Rd	South and of Road 3	AVA
178	1126°47′27,3"	W81°59'16.2"	3-13" CPP under	NI" of sediment at base	STRAVA
179	N26-47'27,1"		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/11 of sediment at base	GJR AVA
180	N26°47'26.7"	W8155912.5"	1-13" CPP under Pool	ra" of sediment at base	GJANA
181	N26°47'267"			Same as above	GURAVA
183	N26°47'27.9"	W81° 59'82.90"	same as above	same as above	GJR
183	N26°47'27.44	W81°59'00,4"	same as above	Same as above	GTR
184	N2647 27.5"	ws1059'07.811	same as abov	13" of sediment at base	90R AVA
185	N 26°47'28.7"	W81°59'02.9"	2-12" CPP under Road 3	same as above	GJA AVA
186	N26°47'45,9"	W81°58'224'	Rd 3 + Seminale Grade	North East end of Road 3	GOR AVA
187	N26°47'45.2"	W81°58'22.4"	1-13" CCP under seminale	NG" of sadiment at base	9JR AVA
188	Na6°47'04.4"	w81°58'229"	2-18" ECP under Saminole Grade Poad	N5" of sediment at base	AVA
189			Semilele Grade Rd		GJR AVA
190		375	2-18" CCP under Seminole Stade Rd	West end submerged in water	GJR

A-12

File No .:

08006.02

Date: July 26, 2009

Project Name: Yucca Pens Hydrologic Restoration Plan

Weather Conditions: Cloudy warm, periodic drizzle, ~80°F

Structure ID	Measured C		Structure Type and Description of Location	Remarks/Description	Logged By
(if available)	Latitude	Longitude	Description of Location		
191	N26-46'01.8"	W81°581226"	unnamed Road + SG Rd	Beginning of unnamed road of Jeminola Gode	GJR AVA
192	N26° 45'56-6"		Seminale Grade Rd (454)	Owater on west end of culverts	AVA
193	N26°45'50,9"		2-24" CCP under seminole Grade Rd	Partially submerged in water	AVA
194	N26°45'49.3"		4-24" CCP under Seminole Grade Road	Macter a business of the Western tracking som	GJRAVA
195	NGG 45'30,7"		unnamed Road & Seminole ander Road	Beginning of track of unnamed road	AVA
196	Na6045122,14		end of aunamed road	Find of track of announced road	AVA
197	NO6º45'06.0"		3-12" CCP under Seminole Grade Read	Partially submerged in water on westend	AVA
198	N26° 45'00.7"		3-24' CCP under seminole Grade Road	Water on both sides of cylverts	AVA
199	Na6°44'28,6"		Near South end of Scringle Ende Road		STRAVA
200	Wa6049'10,6"		North and of seminole Grade Rd at Canal	End of track	AVI
301			1-18x12" EC+ under Zemel Rd +macking west		SURAYA
202	Na6°47'58.1"		1-18"XIR" ECP WLLEr	111 5 11 1 1	GJR AVA
203			1 2	Intersection of Rd3 + Zemel Rd	QTR AVA
204	N26°48'53,5"		0	Canal at Rd I	SJR
305	110/0/20/20/11	1.10/0000 (00 01)	PI1+ Formal Rd	End of Rd 1 Track	GJRAVA
206	NO6 77 08,6	(1081020 XX-7	1-18"XD" ECP under Zenel Rd 3-36"X24" ECP	~ 10" of rediment at base ; tracking West	GJRVA
207	NOG-47 50,7	1.30/6/01/4/1.4/1	3-36"X24"ECP	Heavy vegetation at South end of culverts	GIRAVA
208	7.0		unnamed trail	Intersection of Zenel Rd + trail	GJRVA
209		7	unnamed trail	End of access on trail	GJR AVA

File No.: 08006.02 Date: July 26, 2009 Start Time: 3.20 ambom End Time: 6.15 ambom

Project Name: Yucca Pens Hydrologic Restoration Plan Weather Conditions: Partly cloudy, hot, humid, ~ 90°F

Str	ructure ID	Measured C	coordinates	Structure Type and	Remarks/Description	Logged By
	available)	Latitude	Longitude	Description of Location	Worth	6315
2	10	N26°48'00,6"	W\$\$°00′31.["	2-36"XD4"ECP under Zemel Pd	< 1" sed ment at base flow is 50 through culver	GJR
2	()	Na6°48'00.5"	W82°01'04.44	1-36"xa4" ECP under Zemel Rd 15" wide bridge over	<1" sediment at base; Flow is 50 through culvery 50" wof Decr pass to 5 end is block; I end partially blocked	9JR AVA
. 6	12	Handleton III	102002117311	1 to the Rd	Canal is flowing west under bridge	HVA
a	13	N26º46'12.2"	W800 0217.7"	11/x 4' Box culvert (BCP) Bridge ware Barket Bore Canal ~ 20' wide at cape Cole Blyd	At Burnt Store Rd + Vincent Are jover dry creek	AVA GJR
6	214	N26°45'49.2"	W82°03'03.8"	At case Cole Blud	Canal is Trowing DE	
	215	NO6°45'59.7"	M&5.03,50'01,	canal ~ 50° wide at Matecumba key Rd	Canal 15 + lowing west	GJRVA
	216	N26°46'02.5"	W82°03'27.1'	hake flowing into canal	West end of Lake	GJR AVA
	217	NX6° 45'599"	W82002'31,5"	~50 wide canal	Flowing NW; at Big Pine have	

Date: July 27, 2009 08006.02 File No .:

Weather Conditions: Sunny, Wasmy ~ 80°F

End Time: 4:30 am/pm

End Time: 4:30 am/pm

Project Name: Yucca Pens Hydrologic Restoration Plan

Structure ID	Measured C	Coordinates	Structure Type and	Remarks/Description	Logged By
(if available)	Latitude	Longitude	Description of Location		OTR /
218	N26°49'18.6"	W81057'53.5"	under US41 at canal	Canal is flowing west, mi No of well	AVA
219	N26°45'27.8"	W82°08 18.411	2-10'x 8' box culverts at 120054 Burnt Storage	Canal is flowing East through sulverts	AVA
220	N26°45'35.6"	W8202"18.3"		Trail 5 of Charles Rd + Fot Burat Store	TIVA
291	1101011500011	1-lane 0 2/10 M	,	Sandther end of Trail	AVA
222	N26°44'391"	W820 02/363	4-36" CCP under Nw 34 Ave near No 455+	Canal Flowing west through culverts	GETR
223	N26°44'51.5"	U82º02/36.1"	Traday Ave near NO 4754	- Canal Flowing west through culverts	AVA SJR
224	N26°44'52.6"	W820317.0"	Canal Flowing ExWest	Canal Flowing into Contrander Area Flowing & Canal at Old BUNNT Store Rd Howing &	AVA
925	N26°44'365"	W82°63'17.2"	4-42" Club under	Canal Flowing west throw at location	AVA
226			langamed trail	End of trait at caual	AVA
227	N26°44'378	W82°03'17.6'	old Burnt Store Rd + Unnamed trail Canal 1100 wide at	End of trail at old Burnt Store Rd	AVA
228	N26043'22.1"	W82°04'04.8"	WHI 4CPL +NW 3G ST	Canal 15 100 ing to the north	GJR
229	NaG° 43'34.1"	W8263335,5	canal nioo'wide at	, Canalis Flowing to the north	AVA
230	N26°43'25,7'			Canal is flowing west	FAVA
231			Canal	- Canal is Flowing east	AVA GJR
235	N26°41'03,3'	W80°03'48.2	1 to ~ 300' canal along VIVE	Mac anal 15 + lowing north, near Gult streams	Cash 111
233	N26°42'81,9"	W82'02'53.6	the state of the s	Attend of access on trail E of Old Burat Store Ro	AVA
234	ND6°41'59.4"	W82°03'20.4	End of Trail	A+ wend of Trail atold Barkt Store Rd	GUR
235	N26°42'06.7"	W8203/200	old Barnt Store Road	Drains west to canal; Tracking north	GJIB .
236	N26° 4212.1"	W8703'20.	BURKT Store Road		AVF

Weather Conditions: Partly sanny, very warm, humid, N850F Date: July 27,2009 08006.02 File No .:

Project Name: Yucca Pens Hydrologic Restoration Plan

Structure ID (if available)	Measured Coordinates		Structure Type and	Remarks/Description	Logged
	Latitude	Longitude	Description of Location	Termina and Termina	By
237	Na6°42'19.2"	11000000 mak	1-24" CEP under Old Barnt Store Road	Tracking North	AVA
3382	112/042/24 011	W82°03119.8"	1-0411 CCP ander	lecking North	GJR
239	Na6º42'30.7"	W82°03'19-8"	Old Burnt Store Rd	Draining West to Canal East end of acress	SOR
240	N26°42'48.9"	W82°03(03,8"	1-24" CCP under Old Burnt Store Rd East and of East Tanis Road	East end of access	AVA
241	1/200/12/110 4/1	1.00000/10 57	What and of Janic Pd	latersection of Janis Rd + Old Burnt Store Rd	GUR
242	N26° 42'56.8"	W82°03'19,4"	01d Burnt Store Rd	Prains west into canal	SJR
243	N26042158.6"	W82°03'19,3	1-24/CCP under 0/1 Burnt Store Rd 1-30" CMP under Burnt Store Read	Drains west into canal	STR
244	N26°43'04.3"	W82°03'19.3"	Burnt Store Road	Tracking North	GJR
245	N26043' 13,14	W82°83'92"	Burnt Store Road	Tracking North	FIR
246	1120-43/258"	11.82 60 5 19.1"	Burnt Store Road	Arains west into canal	GJR AVA
247	N26°43'48,6"	U82° 03'18.3'	canal NGO' wide	canal is flowing west	AVI
				O	+
n American					
1					
			4		

File No.: 08006.02 Date: July 28, 2009 Start Time: 9:45 am/pm End Time: 3:30 am/pm

Project Name: Yucca Pens Hydrologic Restoration Plan Weather Conditions: Sunny clear, very warm, bunid, ~85°F

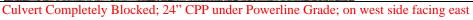
Structure ID	Measured C	oordinates	Structure Type and	Remarks/Description	Logged By
(if available)	Latitude	Longitude	Description of Location		4JR
248	N26°44117.5'	m82, 03 2111	4-24" CCP under of Burnt Stare Road	Culverts drain eastward; tracking south	AVA
249	110/042/4694	4182000 214	3-30' CCP under old Barnt Store Rd	Large rocks at both ends jarains west to canal	AV
250			old Burnt Store Rd	ECP trending west	GJR
251	N26°42'19.6"		4-30" CCP under	Swale at both ends it making Suphill	GJR AV
252	N26º42'05.8"		of Burnt Store Rd	Swale at both ends	1500/
253	N26041'40.2"	W82°02'21-7	Trail on east side of	At SE end of trail along can a litracking trail	GJ AVA
254			At intersection of trail At Burnt Store Rd At intersection of trail A Bld Burnt Store Rd		AVA
255	N2641'41.8"	M8409 21 21 8	Arroz Canal N 50 mid at 120033 punt Store R		STRAVE
256	1126041501	W82°02'52.5	Kismet Phuv at NW36Ave	Flow through culvert is south to lake	SORAYA
258	Wac 41 57,9"		125716 El Dorado Blue		STRAV
259	N26°42' 27.2"		Wilmington at NW9 Ph	11 1 1 1 - 1 - 1 - 1 - 1	GJR.
260	N26°42'46.6"		Wilmington HW 4 PA	IFlow is regulated by gate on porth ene	GJR
261	N26°43'32.9	W81057 25.5			AV
	47				

File No.: 08006.02 Date: Twy 29, 2009 Start Time: 9:20 ampm End Time: 2:00 am/pm

Project Name: Yucca Pens Hydrologic Restoration Plan Weather Conditions: 54444 Weather Conditions:

Structure ID	Measured C	Coordinates	Structure Type and	Remarks/Description	Logged
(if available)	Latitude	Longitude	Description of Location	200000000000000000000000000000000000000	By
262	N26°51'29.5"	W81°51'279"	Trail of Tuckers Grade	Beginning of Track	SOR AVA
263	N26°51'29.3"	W81°53'06.9"	Same as above	E I F Track	SJR AVA
264	N26°48'20,2"	W81°50'18.8"	Trail off Powerline Grade	Water + vegetation at both ends; flow is south	AVA
~265	N26.53'013	W81047'58-9"	Wetland area	Water is Flowing 5W	GJB
266	N26°53'02.8"	W81°49°04.3"	Wetland area	Standing water Water Flowing West	AVA
267			Wetland area	Water Flowing West	GJY3 AVA
	1				
			*		
				26,	

Culverts



Culvert Structure ID: 3 Watershed: GSE1 Photo # 100_0204

Culvert Structure ID: 4 Watershed: GSE1 Photo # 100_0059

Culvert Completely Blocked; 24" CPP under Tram Grade at intersection with Road 3; on north side facing south

Culvert Structure ID: 9 Watershed: GSE1 Photo # 100_073

Culvert Structure ID: 10 Watershed: GSE1 Photo # 100 0075

Culvert Completely Blocked; 24" CPP under Tuckers Grade; on south side facing north

One 24" CCP and two 24" completely corroded CMP under Tuckers Grade; on south side facing north

Culvert Structure ID: 11 Watershed: GSE1 Photo # 100_0077

Culvert Structure ID: 11 Watershed: GSE1 Photo # 100_0079

Two 48" partially corroded CMP under Tuckers Grade; on north side facing north

Culvert **Structure ID: 13** Watershed: GSE1 Photo # 100_0083

Flow Obstruction; Two 48" partially corroded CMP under Tuckers Grade; on south side facing south

Culvert Partially Blocked; 24" CPP under Tuckers Grade; on south side facing north

A-20 08006.02-Task 2-Appendix A.doc

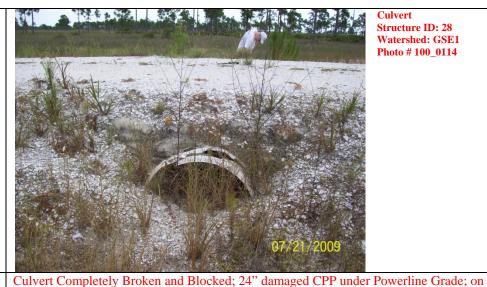
Culvert Structure ID: 17 Watershed: GSE1 Photo # 100_0092

Culvert Structure ID: 18 Watershed: GSE1 Photo # 100_0094

Culvert Completely Blocked; 16" completely corroded CMP under Tuckers Grade; on north side facing south.

Culvert Structure ID: 24 Watershed: GSE1 Photo # 100_0110

07/21/2009


One Culvert Partially Blocked and Broken; Two 36" CPP under Powerline Grade; on west side facing east.

Culvert Completely Blocked; 18" CPP under Powerline Grade; on east side facing west

A-21 08006.02-Task 2-Appendix A.doc

Culvert Structure ID: 25 Watershed: GSE1 Photo # 100_0112

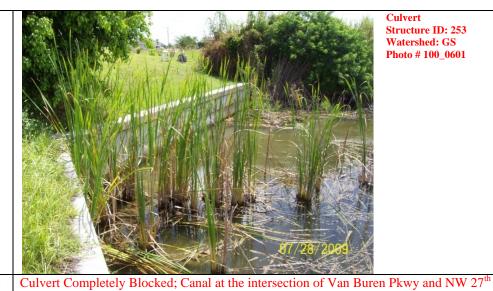
Culvert Structure ID: 28 Watershed: GSE1 Photo # 100_0114

Culvert Completely Blocked; 30" CPP under Powerline Grade; on east side facing west

east side facing west

Culvert Structure ID: 34 Watershed: GSE1 Photo # 100_0134

07/21/2009


Culvert Completely Blocked; 18" CPP draining into pond on east side of Powerline Grade; standing on east side facing east

Culvert Completely Blocked; 26" CPP under Powerline Grade; on east side facing west

A-22 08006.02-Task 2-Appendix A.doc

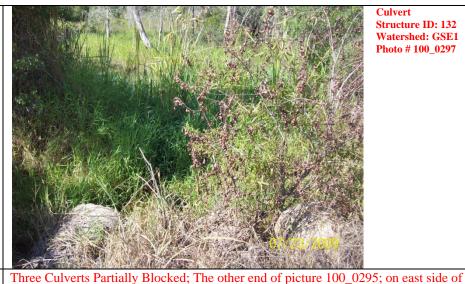
Culvert Structure ID: 36 Watershed: GSE1 Photo # 100_0152

Culvert Structure ID: 253 Watershed: GS Photo # 100_0601

Culvert Completely Blocked; 24" CPP under Powerline Grade; on east side facing west

Culvert Structure ID: 113 Watershed: GSE1 Photo # 100_0274

Culvert Structure ID: 120 Watershed: GSE1 Photo # 100_0283


Culvert Partially Blocked; Two 48" CCP under Oil Well Rd; on south side facing north

Culvert Completely Blocked; 48" CCP under Oil Well Rd; on north side facing south

A-23

Culvert Structure ID: 132 Watershed: GSE1 Photo # 100_0295

Culvert Structure ID: 132 Watershed: GSE1 Photo # 100_0297

One Culvert completely blocked and two others partially blocked; 3 culverts @ the intersection of Jack Ave. and Oil Well Rd; south side of Oil well Rd facing west.

Culvert **Structure ID: 175** Watershed: YP Photo # 100_0408

No Blockage; Three 12' x 3' BCP under I-75; south bound facing east

Culverts Completely Blocked; Two 22" x 14" ECP under Zemel Rd; on north side facing west

A-24 08006.02-Task 2-Appendix A.doc

07/24/2009

Culvert Structure ID: 192 Watershed: YP Photo # 100_0418

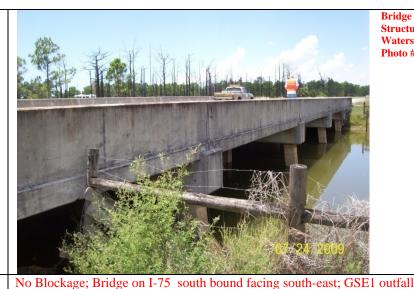
Culvert Structure ID: 199 Watershed: YP Photo # 100_0441

Culvert Partially Blocked; Two 24" CPP on east side of Seminole Grade facing south

Culvert Structure ID: 199 Watershed: YP Photo # 100_0442

Culvert Structure ID: 214 Watershed: GB Photo # 100_0471

Flow Blockage by Vegetation; Box culvert under BurntStore Road, just south of Charlee Rd; on west side facing west


Culvert Partially Blocked; 18" x 12" ECP under Zemel Rd; on northside facing west

A-25 08006.02-Task 2-Appendix A.doc

Bridges

Bridge Structure ID: 142 Watershed: GSE1 Photo # 100_0319

Bridge Structure ID: 146 Watershed: GSE1 Photo # 100_0328

No Blockage; Bridge on I-75 south bound facing east

Structure ID: 146 Watershed: GSE1 Photo # 100_0331

Bridge Structure ID: 148 Watershed: GS Photo # 100 0338

No Blockage; Bridge on US-41 north bound facing north-west;

Same as Photo # 100_0328; except that picture taken facing NE

Bridge Structure ID: 214 Watershed: GB Photo # 100_0469

Bridge

Structure ID: 231

Photo # 100_0526

Watershed: GS

Structure ID: 229 Watershed: LV Photo # 100_0497

Bridge

Structure ID: 231

Photo # 100_0527

Watershed: GS

No Blockage, Bridge on BurntStore road, just south of charlee road; on west side facing north

No Blockage, Bridge under Caloosa Pkwy, facing west

No Blockage, Bridge under Old Burntstore road facing south

No Blockage, Bridge under Old Burntstore road facing west

A-27

Bridge Structure ID: 256 Watershed: GS Photo # 100_0608

No Blockage, Bridge on Burntstore road; facing west.

Weir/Drop Structure

Weir/Drop Structure Structure ID: 253 Watershed: GS Photo # 100_0584

Weir/Drop Structure Structure ID: 253 Watershed: GS Photo # 100_0585

No Blockage, Weir on GatorSlough Canal, facing east

Weir/Drop Structure Structure ID: 253 Watershed: GS Photo # 100_0586

Weir/Drop Structure Structure ID: 253 Watershed: GS Photo # 100_0597

Same location as 100 584; facing south-east

Same location as 100_301, facing north cast

Canals

Canal Structure ID: 81 Watershed: GSE1 Photo # 100_0221

Structure ID: 131 Watershed: GSE1 Photo # 100_0294

No Blockage, Lake discharging into Canal flowing south-west across Tuckers Grade; facing south-west.

Canal **Structure ID: 145** Watershed: GSE1 Photo # 100_0327

07/24/2009

No Blockage, Canal flowing under I-75, south bound facing east.

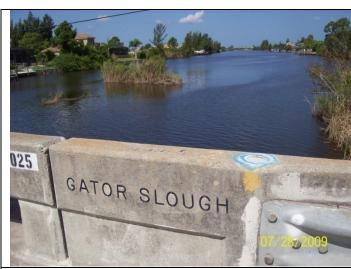
No Blockage, Canal at I-75; on east side facing east

A-30 08006.02-Task 2-Appendix A.doc

Canal Structure ID: 167 Watershed: GS Photo # 100_0382

Canal Structure ID: 171 Watershed: GS Photo # 100_0392

No Blockage, Gator Slough Canal flowing under US 41; on west side of US 41 facing west



Canal Structure ID: 214 Watershed: GS Photo # 100_0466

07/25/2009

Blockage in the canal flowing into ditch on US-41, just south of Harper & McNew Property facing east

Canal connecting pond and canal on Cape Coral Blvd; facing north-west

Canal Structure ID: 230 Watershed: GS Photo # 100_0592

Canal Structure ID: 222 Watershed: LV Photo # 100_0603

No Blockage, Gator Slough Canal flowing under Burnt Store Rd; flow regulated by weir; facing east

No Blockage, Canal flowing under NW 34th Ave; on south side facing east

07/28/2009

Canal Structure ID: 257 Watershed: GS Photo # 100_0627

07/28/2009

No Blockage, Syracuse Canal, facing south

Culvert draining into Canal @ Kismet Pkwy; facing south

A-32

Swales/Ditch

Swale/Ditch Structure ID: 109 Watershed: GSE2 Photo # 100_0270

Swale/Ditch Structure ID: 108 Watershed: GSE2 Photo # 100_0266

Swale/Ditch Structure ID: 108 Watershed: GSE2 Photo # 100_0267

Canal Structure ID: 108 Watershed: GSE2 Photo # 100_0269

Same location as 100_0266, facing west

Swale along north side of Oil Well Rd; facing east

Swale/Ditch Structure ID: 116 Watershed: GSE1 Photo # 100_0280

Swale/Ditch Structure ID: 116 Watershed: GSE1 Photo # 100_0279

Flow obstruction in Swale on north side of Oil Well Rd; on north side facing east

Swale/Ditch Structure ID: 108 Watershed: GSE2 Photo # 100_0264

Swale/Ditch **Structure ID: 147** Watershed: DC Photo # 100_0333

Ditch along US 41 sloping south; south side of Oil Well Rd facing south

Ditch @ intersection of Zemel Rd and US 41; on south-west side of intersection facing north

A-34 08006.02-Task 2-Appendix A.doc

Swale/Ditch Structure ID: 147 Watershed: DC Photo # 100_0334

Swale/Ditch Structure ID: 148 Watershed: GSE2 Photo # 100_0342

Swale/Ditch Structure ID: 149 Watershed: GSE2 Photo # 100_0343

Swale/Ditch Structure ID: 153 Watershed: DC Photo # 100_0357

Same location as 100_0342, facing north

Ditch sloping north along west side of US 41; on west side facing south

Swale/Ditch **Structure ID: 153** Watershed: DC Photo # 100_0358

Swale/Ditch Structure ID: 154 Watershed: DC Photo # 100_0359

Same location as 100_0357; facing north

Swale/Ditch Structure ID: 172 Watershed: YP Photo # 100_0399

Structure ID: 172 Watershed: YP Photo # 100_0401

Swale/Ditch

Swale on Zemel Rd close to intersection with US 41; on north side of Zemel Rd facing west

Swale on south side of Zemel Rd Landfill; facing west

A-36 08006.02-Task 2-Appendix A.doc

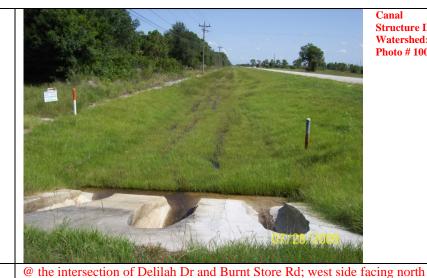
Swale/Ditch Structure ID: 175 Watershed: YP Photo # 100_0407

Swale/Ditch Structure ID: 235 Watershed: GS Photo # 100_0535

Swale on Zemel Rd; just north of Landfill, on south side facing west

Swale/Ditch Structure ID: 235 Watershed: GS Photo # 100_0536

Swale/Ditch Structure ID: 239 Watershed: GS Photo # 100 0578


Blocked by vegetation, Same location as 100_0535, facing south

Swale Old Burnt Store Rd; on east side facing north

A-37 08006.02-Task 2-Appendix A.doc

Swale/Ditch **Structure ID:** Watershed: GS Photo # 100_0580

Canal **Structure ID:** Watershed: GS Photo # 100_0583

@ the intersection of Delilah Dr and Burnt Store Rd; east side facing south

Canal **Structure ID:** Watershed: GS Photo # 100_0594

Canal **Structure ID:** Watershed: GS Photo # 100_0595

Swale along Burnt Store Rd; on east side facing north

Swale along Burnt Store Rd where surface water flows into storm drains that drain into Gator Slough canal; on east side of canal facing south

A-38 08006.02-Task 2-Appendix A.doc

Outfall

Outfall Structure ID: 225 Watershed: DC Photo # 100_0487

Outfall Structure ID: 230 Watershed: GB Photo # 100_0529

Outfall Structure ID: 231 Watershed: LVR Photo # 100_0522

Detention Pond Structure ID: 232 Watershed: DC Photo # 100_0564

No Blockage; Detention pond inside Zemel Rd Landfill; facing north.

Longview Run Outfall to Canal; facing north

A-39

Outfall Structure ID: 232 Watershed: DC Photo # 100_0566

Outfall Structure ID: 50 Watershed: GSE1 Photo # 100_0165

No Blockage; Culvert draining from Zemel Rd Landfill to the south into wetland area; facing south. Outfall can be seen to the wetlands

Outfall on west side of Powerline Grade from culvert draining west; standing on Powerline Grade facing east

Trail/Dirt Road

Trail/Dirt Road Structure ID: 59 Watershed: GSE1 Photo # 100_179

Trail/Dirt Road Structure ID: 70 Watershed: GSE1 Photo # 100_0202

Trail just north of Tram Grade at Post 2; facing north

Trail/ Dirt Road Structure ID: 21 Watershed GSE1 Photo # 100_0103

Trail/ Dirt Road Structure ID: 50 Watershed: GSE1 Photo # 100_0162

Dirt Road on Powerline Grade; facing west

Trail/Dirt Road Structure ID: 86 Watershed: GSE1 Photo # 100_0229

Trail/Dirt Road Structure ID: 86 Watershed: GSE1 Photo # 100_0232

Trail/Dirt Road Structure ID: Watershed: YP Photo # 100_0415

Trail/Dirt Road Structure ID: Watershed: YP Photo # 100 0416

Same location as 100_0415; facing south-west

Trail on Seminole Grade; on west side facing west

Trail/Dirt Road Structure ID: 59 Watershed: YP Photo # 100_0425

Trail/Dirt Road Structure ID: 70 Watershed: YP Photo # 100_0426

Trail on Seminole Grade Rd; facing west

Trail/Dirt Road Structure ID: 199 Watershed: YP Photo # 100_0427

Trail/Dirt Road Structure ID: 199 Watershed: YP Photo # 100_0428

Trail on Seminole Grade Rd; facing west

Trail on Seminole Grade Rd; Wetland area on south side of Seminole Grade Rd; on south side facing west

Trail/Dirt Road Structure ID: 199 Watershed: YP Photo # 100_0429

Trail/Dirt Road Structure ID: 199 Watershed: YP Photo # 100_0431

Trail/Dirt Road Structure ID: Watershed: YP Photo # 100_0432

Trail/Dirt Road Structure ID: Watershed: YP Photo # 100_0435

Flow obstruction (gravel pile) on east side of Seminole Grade; facing south

Trail on east side of Seminole Grade; facing west

APPENDIX B Results of Hydrologic Models (ICPR and WMM)


```
Basin Name: DCEBS
             Group Name: BASE
             Simulation: 25yr-72hr
              Node Name: N9
             Basin Type: SCS Unit Hydrograph
       Unit Hydrograph: Uh256
 Peaking Fator: 256.0
Spec Time Inc (min): 125.19
 Comp Time Inc (min): 15.00
         Rainfall File: Flmod
Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
  Status: Onsite
Time of Conc (min): 938.93
Time Shift (hrs): 0.00
Area (ac): 8571.460
Vol of Unit Hyd (in): 1.000
          Curve Number: 89.700
               DCIA (%): 0.000
        Time Max (hrs): 47.25
        Flow Max (cfs): 2103.00
   Runoff Volume (in): 9.234
 Runoff Volume (ft3): 287319210
             Basin Name: DCWBS
             Group Name: BASE
             Simulation: 25yr-72hr
              Node Name: N10
             Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
         Peaking Fator: 256.0
 Spec Time Inc (min): 37.00
Comp Time Inc (min): 15.00

Rainfall File: Flmod

Rainfall Amount (in): 10.500

Storm Duration (hrs): 72.00
                 Status: Onsite
  Time of Conc (min): 277.48
     Time Shift (hrs): 0.00
Area (ac): 602.020
Vol of Unit Hyd (in): 1.000
          Curve Number: 84.400
               DCIA (%): 0.000
        Time Max (hrs): 39.00
        Flow Max (cfs): 346.89
  Runoff Volume (in): 8.563
 Runoff Volume (ft3): 18712401
             Basin Name: GBEBS
             Group Name: BASE
             Simulation: 25yr-72hr
              Node Name: N7
             Basin Type: SCS Unit Hydrograph
 Unit Hydrograph: Uh256
Peaking Fator: 256.0
Spec Time Inc (min): 102.23
Comp Time Inc (min): 15.00
         Rainfall File: Flmod
Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
Status: Onsite
Time of Conc (min): 766.73
Time Shift (hrs): 0.00
Area (ac): 5911.780
Vol of Unit Hyd (in): 1.000
          Curve Number: 87.300
DCIA (%): 0.000
        Time Max (hrs): 45.00
        Flow Max (cfs): 1648.48
  Runoff Volume (in): 8.933
 Runoff Volume (ft3): 191693756
             Basin Name: GBWBS
             Group Name: BASE
```

Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.

```
Simulation: 25yr-72hr
Node Name: N8
             Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 32.72
Comp Time Inc (min): 15.00

Rainfall File: Flmod

Rainfall Amount (in): 10.500

Storm Duration (hrs): 72.00
                Status: Onsite
  Time of Conc (min): 245.41
    Time Shift (hrs): 0.00
Area (ac): 1427.390
Vol of Unit Hyd (in): 1.000
          Curve Number: 88.300
               DCIA (%): 0.000
  Time Max (hrs): 38.50
Flow Max (cfs): 936.55
Runoff Volume (in): 9.058
 Runoff Volume (ft3): 46932898
            Basin Name: GSE1
             Group Name: BASE
             Simulation: 25yr-72hr
              Node Name: N1
             Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 336.64
 Comp Time Inc (min): 15.00
        Rainfall File: Flmod
Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
                 Status: Onsite
  Time of Conc (min): 2524.87
Time Shift (hrs): 0.00
Area (ac): 19429.500
Vol of Unit Hyd (in): 1.000
          Curve Number: 88.800
DCIA (%): 0.000
       Time Max (hrs): 68.50
       Flow Max (cfs): 2139.19
  Runoff Volume (in): 9.122
 Runoff Volume (ft3): 643342958
             Basin Name: GSE2
             Group Name: BASE
             Simulation: 25yr-72hr
             Node Name: N2
             Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 134.66
Comp Time Inc (min): 15.00
Rainfall File: Flmod
Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
                Status: Onsite
  Time of Conc (min): 1009.96
Time Shift (hrs): 0.00
Area (ac): 7041.070
Vol of Unit Hyd (in): 1.000
          Curve Number: 90.100
               DCIA (%): 0.000
       Time Max (hrs): 48.00
        Flow Max (cfs): 1639.64
  Runoff Volume (in): 9.284
 Runoff Volume (ft3): 237301722
             Basin Name: GSEBS
             Group Name: BASE
             Simulation: 25yr-72hr
              Node Name: N3
```

```
Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 164.36
 Comp Time Inc (min): 15.00
        Rainfall File: Flmod
Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
                 Status: Onsite
  Time of Conc (min): 1232.75
Time Shift (hrs): 0.00
Area (ac): 9450.300
Vol of Unit Hyd (in): 1.000
Curve Number: 87.300
               DCIA (%): 0.000
        Time Max (hrs): 51.00
        Flow Max (cfs): 1814.58
  Runoff Volume (in): 8.933
 Runoff Volume (ft3): 306432414
             Basin Name: GSWBS
             Group Name: BASE
Simulation: 25yr-72hr
              Node Name: N4
             Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 80.51
Comp Time Inc (min): 15.00
Rainfall File: Flmod
Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
Storm Duration (hrs): 72.00
Status: Onsite
Time of Conc (min): 603.85
Time Shift (hrs): 0.00
Area (ac): 1020.950
Vol of Unit Hyd (in): 1.000
          Curve Number: 86.900
               DCIA (%): 0.000
        Time Max (hrs): 43.00
        Flow Max (cfs): 340.52
  Runoff Volume (in): 8.882
 Runoff Volume (ft3): 32915785
             Basin Name: LVR
             Group Name: BASE
             Simulation: 25yr-72hr
              Node Name: N6
             Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
         Peaking Fator: 256.0
 Spec Time Inc (min): 71.83
 Comp Time Inc (min): 15.00
Rainfall File: Flmod Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
                 Status: Onsite
  Time of Conc (min): 538.76
     Time Shift (hrs): 0.00
Area (ac): 1566.730
Vol of Unit Hyd (in): 1.000
          Curve Number: 83.300
               DCIA (%): 0.000
        Time Max (hrs): 42.25
  Flow Max (cfs): 543.08
Runoff Volume (in): 8.424
 Runoff Volume (ft3): 47906882
             Basin Name: YPEBS
             Group Name: BASE
             Simulation: 25yr-72hr
              Node Name: N11
             Basin Type: SCS Unit Hydrograph
```

```
Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 65.95
Comp Time Inc (min): 15.00
        Rainfall File: Flmod
Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
  Status: Onsite
Time of Conc (min): 494.62
Time Shift (hrs): 0.00
Area (ac): 2199.460
Vol of Unit Hyd (in): 1.000
         Curve Number: 89.100
             DCIA (%): 0.000
       Time Max (hrs): 41.50
       Flow Max (cfs): 876.40
  Runoff Volume (in): 9.159
 Runoff Volume (ft3): 73123066
            Basin Name: YPWBS
            Group Name: BASE
            Simulation: 25yr-72hr
            Node Name: N12
            Basin Type: SCS Unit Hydrograph
     Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 28.93
 Comp Time Inc (min): 15.00
Rainfall File: Flmod
Rainfall Amount (in): 10.500
Storm Duration (hrs): 72.00
               Status: Onsite
  Time of Conc (min): 216.96
    Time Shift (hrs): 0.00
Area (ac): 437.670
Vol of Unit Hyd (in): 1.000
         Curve Number: 84.000
             DCIA (%): 0.000
       Time Max (hrs): 38.25
  Flow Max (cfs): 297.43
Runoff Volume (in): 8.509
 Runoff Volume (ft3): 13517879
            Basin Name: DCEBS
            Group Name: BASE
            Simulation: 2yr-24hr
             Node Name: N9
            Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
 Peaking Fator: 256.0
Spec Time Inc (min): 125.19
 Comp Time Inc (min): 15.00
        Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
               Status: Onsite
  Time of Conc (min): 938.93
Time Shift (hrs): 0.00
Area (ac): 8571.460
Vol of Unit Hyd (in): 1.000
         Curve Number: 89.700
             DCIA (%): 0.000
       Time Max (hrs): 24.25
       Flow Max (cfs): 958.27
  Runoff Volume (in): 3.364
 Runoff Volume (ft3): 104675639
            Basin Name: DCWBS
            Group Name: BASE
            Simulation: 2yr-24hr
            Node Name: N10
            Basin Type: SCS Unit Hydrograph
     Unit Hydrograph: Uh256
        Peaking Fator: 256.0
```

```
Spec Time Inc (min): 37.00
 Comp Time Inc (min): 15.00
Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
                Status: Onsite
  Time of Conc (min): 277.48
    Time Shift (hrs): 0.00
Area (ac): 602.020
Vol of Unit Hyd (in): 1.000
         Curve Number: 84.400
              DCIA (%): 0.000
  Time Max (hrs): 15.50
Flow Max (cfs): 149.67
Runoff Volume (in): 2.852
 Runoff Volume (ft3): 6232409
            Basin Name: GBEBS
            Group Name: BASE
            Simulation: 2yr-24hr
             Node Name: N7
            Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
 Peaking Fator: 256.0
Spec Time Inc (min): 102.23
 Comp Time Inc (min): 15.00
        Rainfall File: Flmod
Rainfall Amount (in): 4.500 Storm Duration (hrs): 24.00
                Status: Onsite
  Time of Conc (min): 766.73
Time Shift (hrs): 0.00
Area (ac): 5911.780
Vol of Unit Hyd (in): 1.000
Curve Number: 87.300
              DCIA (%): 0.000
       Time Max (hrs): 22.00
       Flow Max (cfs): 722.42
  Runoff Volume (in): 3.127
 Runoff Volume (ft3): 67102303
            Basin Name: GBWBS
            Group Name: BASE
            Simulation: 2yr-24hr
             Node Name: N8
            Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
 Peaking Fator: 256.0
Spec Time Inc (min): 32.72
 Comp Time Inc (min): 15.00
Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
               Status: Onsite
  Time of Conc (min): 245.41
Time Shift (hrs): 0.00
Area (ac): 1427.390
Vol of Unit Hyd (in): 1.000
         Curve Number: 88.300
              DCIA (%): 0.000
       Time Max (hrs): 15.00
       Flow Max (cfs): 445.65
  Runoff Volume (in): 3.224
 Runoff Volume (ft3): 16706672
            Basin Name: GSE1
            Group Name: BASE
            Simulation: 2yr-24hr
             Node Name: N1
            Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 336.64
 Comp Time Inc (min): 15.00
```

```
Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
               Status: Onsite
  Time of Conc (min): 2524.87
     Time Shift (hrs): 0.00
Area (ac): 19429.500
Vol of Unit Hyd (in): 1.000
         Curve Number: 88.800
              DCIA (%): 0.000
       Time Max (hrs): 42.50
       Flow Max (cfs): 878.04
  Runoff Volume (in): 3.274
 Runoff Volume (ft3): 230923208
            Basin Name: GSE2
            Group Name: BASE
            Simulation: 2vr-24hr
             Node Name: N2
            Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
 Peaking Fator: 256.0
Spec Time Inc (min): 134.66
 Comp Time Inc (min): 15.00
        Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
  Status: Onsite
Time of Conc (min): 1009.96
Time Shift (hrs): 0.00
Area (ac): 7041.070
Vol of Unit Hyd (in): 1.000
         Curve Number: 90.100
              DCIA (%): 0.000
       Time Max (hrs): 25.25
       Flow Max (cfs): 750.28
  Runoff Volume (in): 3.405
 Runoff Volume (ft3): 87022725
            Basin Name: GSEBS
            Group Name: BASE
            Simulation: 2yr-24hr
             Node Name: N3
            Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 164.36
 Comp Time Inc (min): 15.00
Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
                Status: Onsite
  Time of Conc (min): 1232.75
Time Shift (hrs): 0.00
Area (ac): 9450.300
Vol of Unit Hyd (in): 1.000
         Curve Number: 87.300
              DCIA (%): 0.000
  Time Max (hrs): 28.25
Flow Max (cfs): 781.95
Runoff Volume (in): 3.127
 Runoff Volume (ft3): 107266512
            Basin Name: GSWBS
            Group Name: BASE
            Simulation: 2yr-24hr
             Node Name: N4
            Basin Type: SCS Unit Hydrograph
 Unit Hydrograph: Uh256
Peaking Fator: 256.0
Spec Time Inc (min): 80.51
 Comp Time Inc (min): 15.00
        Rainfall File: Flmod
```

Rainfall Amount (in): 4.500

```
Storm Duration (hrs): 24.00
                Status: Onsite
  Time of Conc (min): 603.85
    Time Shift (hrs): 0.00
Area (ac): 1020.950
Vol of Unit Hyd (in): 1.000
          Curve Number: 86.900
              DCIA (%): 0.000
       Time Max (hrs): 19.75
       Flow Max (cfs): 149.09
  Runoff Volume (in): 3.088
 Runoff Volume (ft3): 11444526
            Basin Name: LVR
            Group Name: BASE
            Simulation: 2yr-24hr
             Node Name: N6
            Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
        Peaking Fator: 256.0
 Spec Time Inc (min): 71.83
Comp Time Inc (min): 15.00

Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
                Status: Onsite
  Time of Conc (min): 538.76
Time Shift (hrs): 0.00
Area (ac): 1566.730
Vol of Unit Hyd (in): 1.000
          Curve Number: 83.300
              DCIA (%): 0.000
  Time Max (hrs): 19.00
Flow Max (cfs): 221.89
Runoff Volume (in): 2.752
 Runoff Volume (ft3): 15650275
            Basin Name: YPEBS
            Group Name: BASE
            Simulation: 2yr-24hr
              Node Name: N11
            Basin Type: SCS Unit Hydrograph
 Unit Hydrograph: Uh256
Peaking Fator: 256.0
Spec Time Inc (min): 65.95
 Comp Time Inc (min): 15.00
        Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
Status: Onsite
  Time of Conc (min): 494.62
    Time Shift (hrs): 0.00
Area (ac): 2199.460
Vol of Unit Hyd (in): 1.000
          Curve Number: 89.100
              DCIA (%): 0.000
       Time Max (hrs): 18.25
       Flow Max (cfs): 404.12
  Runoff Volume (in): 3.304
 Runoff Volume (ft3): 26377761
            Basin Name: YPWBS
            Group Name: BASE
            Simulation: 2yr-24hr
             Node Name: N12
            Basin Type: SCS Unit Hydrograph
      Unit Hydrograph: Uh256
 Peaking Fator: 256.0
Spec Time Inc (min): 28.93
Comp Time Inc (min): 15.00
        Rainfall File: Flmod
Rainfall Amount (in): 4.500
Storm Duration (hrs): 24.00
                 Status: Onsite
```

Time of Conc (min): 216.96
Time Shift (hrs): 0.00
Area (ac): 437.670
Vol of Unit Hyd (in): 1.000
Curve Number: 84.000
DCIA (%): 0.000

Time Max (hrs): 14.50
Flow Max (cfs): 130.00
Runoff Volume (in): 2.814
Runoff Volume (ft3): 4470888

NI	Name	Group	Simulation	Max Time Stage	Max Stage	Warning Marning Marnin	Max Delta Stage	Max Surf Area	Max Time Inflow	Max Inflow	Max Time Outflow	Max Outflow
N10 BASE 25yr-72hr 39.52 0.22 2.00 -0.0000 1451012 39.00 388.52 39.52 384.39 N10 N11 BASE 25yr-72hr 43.49 10.05 12.00 0.0001 188444 39.52 384.39 0.00 0.00 N11 BASE 25yr-72hr 43.49 10.05 12.00 0.0002 1543332 41.50 876.40 43.44 827.60 N11 BASE 25yr-72hr 47.95 9.06 12.00 0.0002 1543332 41.50 876.40 43.44 827.60 N11 BASE 25yr-72hr 50.43 0.58 2.00 0.0005 8086815 47.41 732.05 50.43 689.93 N12 BASE 25yr-72hr 10.59 16.35 18.00 0.0001 188066 50.43 689.93 0.00 0.00 N11 BASE 25yr-72hr 10.59 16.35 18.00 0.0009 11704058 72.23 465.92 153.52 488.96 N2 BASE 25yr-72hr 10.55 18.00 0.0000 18051729 48.25 1722.30 82.25 4864.06 N2 BASE 25yr-72hr 10.55 18.00 0.0000 18051729 48.25 1722.30 82.25 4864.06 N2 BASE 25yr-72hr 10.55 18.00 0.0000 18051729 48.25 1722.30 82.25 4864.06 N2 BASE 25yr-72hr 10.55 18.00 0.0000 18051729 48.25 1722.30 82.25 4864.06 N2 BASE 25yr-72hr 10.55 18.00 0.0000 18051729 48.25 1722.30 82.25 4864.06 N2 BASE 25yr-72hr 10.55 18.00 0.0000 18051729 48.25 1722.30 82.25 4864.06 N2 BASE 25yr-72hr 10.55 18.00 0.0000 18.00000 18.0000 18.00000 18.000000 18.0000 18.0000 18.00000 18.00000 18.00000 18.00000 18.00000	Name	Group	Dimaracion									
N10 BASE 25yr-72hr 39.52 0.22 2.00 -0.0009 1451012 39.00 388.52 39.52 384.39 N10a BASE 25yr-72hr 0.00 0.00 0.000 0.000 184444 39.52 384.39 0.00 0.00 N11a BASE 25yr-72hr 43.49 10.05 12.00 0.0002 1543332 41.50 876.40 43.44 827.60 N11a BASE 25yr-72hr 47.95 9.06 12.00 0.0034 2761903 43.44 827.60 N12a BASE 25yr-72hr 10.00 0.00 0.00 0.000 1808665 50.43 689.93 N12a BASE 25yr-72hr 10.00 0.00 0.00 0.000 1808665 50.43 689.93 N12a BASE 25yr-72hr 10.55 16.33 18.00 0.0000 11704088 72.23 465.92 153.52 488.86 N2 BASE 25yr-72hr 10.55 16.33 18.00 0.0000 11704088 72.23 465.92 153.52 488.96 N2 BASE 25yr-72hr 10.55 16.35 18.00 0.0000 11704088 72.23 465.92 153.52 488.96 N2 BASE 25yr-72hr 10.55 16.35 18.00 0.0000 12.00 0.000 18.	NT1	DACE	25,m-72hr	175 50	25.76	29 00	0 0005	224144000	69 50	2120 10	72 22	465 92
N10a BASE 25yr-72hr 0.00 0.00 2.00 0.000 188444 39.52 384.39 0.00 0.00 0.00 N11 BASE 25yr-72hr 47.95 9.06 12.00 0.002 2761903 43.44 827.60 47.97 631.21 N12 BASE 25yr-72hr 47.95 9.06 12.00 0.0034 2761903 43.44 827.60 47.97 631.21 N12 BASE 25yr-72hr 0.00 0.00 0.00 0.00 188066 50.43 689.93 0.00 0.00 0.00 N1a BASE 25yr-72hr 10.59 7.66 25.62 28.00 0.000 188066 50.43 689.93 0.00 0.00 0.00 N1a BASE 25yr-72hr 105.97 16.35 18.00 0.000 180066 50.43 689.93 1.00 0.00 0.00 N2 BASE 25yr-72hr 105.97 16.35 18.00 0.0002 90315729 48.25 1722.30 82.25 864.06 N2a BASE 25yr-72hr 97.19 6.22 7.00 0.0025 51770092 22.25 864.06 108.94 637.56 N3 BASE 25yr-72hr 97.19 6.22 7.00 0.0025 51770093 52.78 2028.65 97.02 1289.32 N84 BASE 25yr-72hr 93.54 0.68 5.00 0.0009 250664 87.62 1311.42 93.54 106.97 N84 BASE 25yr-72hr 101.80 6.98 5.00 0.0000 250664 87.93 101.80 99.50 10.00 0.00 N8 BASE 25yr-72hr 101.80 6.98 5.00 0.0000 250664 87.93 101.80 99.50 10.80 10.80 N84 BASE 25yr-72hr 101.80 6.98 5.00 0.0000 250664 42.76 540.75 0.00 0												
N11 BASE 25yr-72hr 43.49 10.05 12.00 0.0082 154332 41.50 876.40 43.44 827.60 N12 BASE 25yr-72hr 47.95 9.06 12.00 0.0034 2761903 43.44 827.60 47.97 631.21 N12 BASE 25yr-72hr 50.43 0.58 2.00 0.0005 8086815 47.41 732.05 50.43 689.93 N12a BASE 25yr-72hr 100.00 0.00 2.00 0.0000 18086815 47.41 732.05 50.43 689.93 N12a BASE 25yr-72hr 107.76 25.62 28.00 0.0009 11704058 72.23 465.92 153.52 418.96 N2B BASE 25yr-72hr 108.45 16.15 18.00 0.0026 91702502 82.25 864.06 108.94 657.56 N2B BASE 25yr-72hr 108.45 16.15 18.00 0.0026 91702502 82.25 864.06 108.94 657.56 N2B BASE 25yr-72hr 108.45 16.15 18.00 0.0026 91702502 82.25 864.06 108.94 657.56 N2B BASE 25yr-72hr 108.45 16.15 18.00 0.0026 91702502 82.25 864.06 108.94 657.56 N2B BASE 25yr-72hr 108.45 16.15 18.00 0.0026 91702502 82.25 864.06 108.94 657.56 N2B BASE 25yr-72hr 108.00 0.00 0.00 0.00 0.00 0.00 0.00 0.												
N11a BASE 25yr-72hr 47,95 9.06 12.00 0.0034 2761903 43,44 827,60 47,97 631,21 N12a BASE 25yr-72hr 0.00 0.00 2.00 0.0000 188066 50,43 689,93 0.00 0.00 N1a BASE 25yr-72hr 105,97 16.35 18.00 0.0000 11704058 72.23 465,92 153,52 418.96 N2 BASE 25yr-72hr 105,97 16.35 18.00 0.0009 11704058 72.23 465,92 153,52 418.96 N2a BASE 25yr-72hr 105,97 16.35 18.00 0.0009 90315729 48.25 1722,30 82.25 864.06 N2a BASE 25yr-72hr 105,97 16.35 18.00 0.0009 17029022 82.25 864.06 108.94 637,56 N3 BASE 25yr-72hr 97,19 6.22 7.00 0.0025 51770093 52.78 2028.65 97.02 1289,32 N3a BASE 25yr-72hr 97,19 6.22 7.00 0.0025 51770093 52.78 2028.65 97.02 1289,33 N4 BASE 25yr-72hr 93,54 0.68 5.00 -0.0009 24431674 87.62 1311.42 93,54 1306.97 N4a BASE 25yr-72hr 93,54 0.68 5.00 -0.0000 24431674 87.62 1311.42 93,54 1306.97 N5B BASE 25yr-72hr 99,13 6.98 9.00 -0.0777 353 101.81 182.99 10.81 182.99 N5B BASE 25yr-72hr 40.80 6.98 9.00 -0.0077 355 101.81 182.99 10.81 182.99 N5B BASE 25yr-72hr 40.80 6.98 9.00 -0.0077 355 101.81 182.99 N5B BASE 25yr-72hr 40.00 0.00 0.00 5.00 0.000 3865487 94.15 57.00 101.80 56.98 N5B BASE 25yr-72hr 101.80 6.17 9.00 0.000 2865487 94.15 57.00 101.80 56.98 N5B BASE 25yr-72hr 101.80 6.17 9.00 0.000 2865487 94.15 57.00 101.80 56.98 N5B BASE 25yr-72hr 101.81 11.69 11.00 0.0001 2865467 94.15 57.00 101.80 56.99 N5B BASE 25yr-72hr 101.81 11.69 11.00 0.0001 2865467 94.15 57.00 101.80 56.99 N5B BASE 25yr-72hr 101.82 18.69 11.00 0.0001 2865467 94.15 57.00 101.80 56.99 N5B BASE 25yr-72hr 101.82 18.69 11.00 0.0001 2865467 94.15 57.00 101.80 56.99 N5B BASE 25yr-72hr 101.82 18.60 11.00 0.0001 2865467 94.15 57.00 101.80 56.99 N5B BASE 25yr-72hr 101.81 11.69 11.00 0.0001 2865467 94.15 57.00 101.80 56.90 N5B BASE 25yr-72hr 101.80 10.00 0.00 0.00 0.00 0.00 0.00 0												
N12 BASE 25yr-72hr												
N12a BASE 25yr-72hr 19.76 25.62 28.00 0.0009 188066 50.43 689.93 0.00 0.00 0.000 N1a BASE 25yr-72hr 19.76 25.62 28.00 0.0009 17029022 82.25 864.06 10.000 N2a BASE 25yr-72hr 105.97 16.35 18.00 0.0026 90315729 48.25 1722.30 82.25 864.06 N2a BASE 25yr-72hr 97.19 6.22 7.00 0.0025 5177093 52.78 2028.65 97.02 1289.32 N3a BASE 25yr-72hr 97.19 6.22 7.00 0.0025 5177093 52.78 2028.65 97.02 1289.32 N3a BASE 25yr-72hr 97.29 5.21 7.00 0.0024 618848 97.02 1289.32 Y7.50 1289.32 N3a BASE 25yr-72hr 97.29 5.21 7.00 0.0026 24431674 87.62 1311.42 93.54 1306.97 N4a BASE 25yr-72hr 99.13 6.98 9.00 -0.0077 353 101.81 182.99 101.81 182.99 N5a BASE 25yr-72hr 99.13 6.98 9.00 -0.0077 353 101.81 182.99 101.81 182.99 N5a BASE 25yr-72hr 101.80 6.10 9.00 0.0001 965487 99.13 57.09 101.80 56.92 N6 BASE 25yr-72hr 101.80 6.10 9.00 0.0001 965487 99.13 57.09 101.80 56.92 N6 BASE 25yr-72hr 101.81 11.69 11.00 0.0020 107864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 104.27 8.36 110.00 0.0020 107864967 45.25 1654.52 101.81 275.43 N8a BASE 25yr-72hr 106.43 8.13 11.00 0.0003 11717947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 106.43 8.13 11.00 0.0003 11707947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 106.43 8.13 11.00 0.0003 11707947 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 106.43 8.13 11.00 0.0003 160768711 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 106.43 8.13 11.00 0.0003 160768711 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 106.43 8.13 11.00 0.0003 160768711 47.25 2103.00 115.77 226.54 N9a BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.55 257.19 N10 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.55 257.19 N10 BASE 2yr-24hr 0.00 0.00 2.00 0.0006 188444 0.00 245.25 0.00 0.00 0.01 80444 40.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 137.73 24.06 0.00 0.000 188444 0.00 245.25 0.00 0.00 0.00 N11 BASE 2yr-24hr 19.00 0.00 0.00 0.000 188444 0.00 245.25 0.00 0.00 0.00 N11 BASE 2yr-24hr 0.00 0.00 0.00 0.000 188444 0.00 245.25 0.00 0.00 0.00 0.00 0.00 188444 0.00 245.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
N1a BASE												
N2 BASE												
N2a BASE 25yr-72hr 97.19 6.22 7.00 0.005 5170093 52.78 26.40,60 108.94 637.56 N3 BASE 25yr-72hr 97.19 6.22 7.00 0.005 5170093 52.78 2028.65 97.02 1289.32 N3a BASE 25yr-72hr 97.29 5.21 7.00 0.0044 618848 97.02 1289.32 97.50 1289.31 N4 BASE 25yr-72hr 90.50 0.68 5.00 -0.006 24431674 87.62 1311.42 93.54 1306.97 N4a BASE 25yr-72hr 0.00 0.00 0.00 5.00 0.0000 250663 93.54 1306.97 0.00 0.00 N5 BASE 25yr-72hr 101.80 6.98 9.00 -0.0777 353 101.81 182.99 101.81 182.99 N5a BASE 25yr-72hr 0.00 0.00 0.00 0.0001 2588830 42.25 543.08 42.76 540.75 N6a BASE 25yr-72hr 0.00 0.00 0.00 250641 42.76 540.75 0.00 0.00 N7 BASE 25yr-72hr 0.00 0.00 0.00 6.00 0.0001 2588830 42.25 543.08 42.76 540.75 N6a BASE 25yr-72hr 0.00 0.00 0.00 6.00 0.0001 2588830 42.25 543.08 42.76 540.75 N6a BASE 25yr-72hr 0.00 0.00 0.00 6.00 0.0002 550641 42.76 540.75 0.00 0.00 N7 BASE 25yr-72hr 0.00 0.00 0.00 6.00 0.0001 250641 42.76 540.75 0.00 0.00 N8 BASE 25yr-72hr 0.00 0.00 0.00 1.0001 1717947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 0.00 0.00 0.00 5.00 0.008 17171947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 0.00 0.00 0.00 5.00 0.0008 17171947 38.50 937.01 40.89 742.40 N9a BASE 25yr-72hr 0.545 12.68 11.00 0.0007 171447 105.45 82.74 106.43 82.74 N9a BASE 25yr-24hr 0.00 0.00 0.00 6.00 0.0007 171447 105.45 82.74 106.43 82.74 N9a BASE 27r-24hr 0.00 0.00 0.00 2.00 1055620 42.55 N10a BASE 27r-24hr 0.00 0.00 0.00 2.00 0.0007 171447 105.45 82.74 106.43 82.74 N10 BASE 27r-24hr 0.00 0.00 0.00 2.00 0.0008 250566 40.89 742.40 0.00 0.00 0.00 N11 BASE 27r-24hr 137.73 24.06 28.00 0.0007 171447 105.45 82.74 106.43 82.74 N10a BASE 27r-24hr 10.64 6.07 0.0009 999890 15.50 150.51 0.00 245.25 N10a BASE 27r-24hr 0.00 0.00 0.00 2.00 0.0004 1575522 19.63 390.19 27.34 260.91 N11a BASE 27r-24hr 0.00 0.00 0.00 2.00 0.0004 1575522 19.63 390.19 27.34 260.91 N11a BASE 27r-24hr 0.00 0.00 0.00 2.00 0.0004 1575542 19.63 390.19 27.34 260.91 N11a BASE 27r-24hr 0.00 0.00 0.00 2.00 0.0004 1575542 19.63 390.19 27.34 260.91 N11a BASE 27r-24hr 0.00 0.00 0.00 2.00 0.0004 1575542 19.63 390.19 2												
N3 BASE 25yr-72hr 97.19 6.22 7.00 0.0025 5177093 52.78 2028.65 97.02 1289.32 N3 BASE 25yr-72hr 97.29 5.21 7.00 0.0044 618848 97.02 1289.32 97.50 1289.31 N4 BASE 25yr-72hr 93.54 0.68 5.00 -0.0006 2441674 87.62 1311.42 93.54 1306.97 0.00 0.00 N5 BASE 25yr-72hr 90.00 0.00 0.00 -5.00 0.0000 250663 93.54 1306.97 0.00 0.00 N5 BASE 25yr-72hr 99.13 6.98 9.00 -0.0777 353 101.81 182.99 101.81 182.99 N5a BASE 25yr-72hr 101.80 6.10 9.00 0.0001 955487 99.13 57.09 101.80 56.92 N6 BASE 25yr-72hr 0.00 0.00 0.000 250641 42.76 540.75 0.00 0.000 N7 BASE 25yr-72hr 0.00 0.00 0.000 250641 42.76 540.75 0.00 0.000 N7 BASE 25yr-72hr 0.00 0.00 0.000 1.000 250641 42.76 540.75 0.00 0.000 N7 BASE 25yr-72hr 104.27 8.36 11.00 0.002 107864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 104.27 8.36 11.00 0.002 107864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 0.00 0.00 0.00 1.000 111.7947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 0.00 0.00 0.00 6.00 0.0008 11717947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 105.45 12.68 11.00 0.0003 150768771 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N9a BASE 25yr-24hr 0.00 0.00 0.00 0.000 1155676 40.89 742.40 0.00 0.00 N11 BASE 2yr-24hr 0.00 0.00 0.00 0.000 188444 0.00 245.25 0.00 N11 BASE 2yr-24hr 0.00 0.00 0.00 0.000 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 0.00 0.00 0.00 200 0.000 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.000 26066 65.19 512.48 60.41 19.63 390.19 17.35 17.35 17.35 17.35 17.30 N2 BASE 2yr-24hr 19.67 7.61 12.00 0.000 260668 65.19 512.48 60.41 19.63 390.19 17.35												
N3a BASE												
N4 BASE 25yr-72hr 93.54 0.68 5.00 -0.0006 24431674 87.62 1311.42 93.54 1306.97 N4a BASE 25yr-72hr 99.13 6.98 9.00 -0.0777 353 101.81 102.99 101.81 182.99 N5a BASE 25yr-72hr 101.80 6.10 9.00 0.001 965487 99.13 57.09 101.80 56.92 N6 BASE 25yr-72hr 42.76 0.17 6.00 -0.0010 2988830 42.25 543.08 42.76 540.75 N6a BASE 25yr-72hr 42.76 0.17 6.00 -0.0010 2988830 42.25 543.08 42.76 540.75 N6a BASE 25yr-72hr 101.81 11.69 11.00 0.002 107864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 40.89 0.42 6.00 0.000 1074147 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 40.89 0.42 6.00 0.000 107447 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 105.45 12.68 11.00 0.000 250566 40.89 742.40 0.00 0.000 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0007 250566 40.89 742.40 0.00 0.000 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 25yr-24hr 105.45 83.31 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 106.43 83.13 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N10 BASE 2yr-24hr 10.00 0.00 0.000 1005 105560 40.89 742.40 0.00 0.00 N11 BASE 2yr-24hr 0.00 0.00 0.000 1005 105560 34 2.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.00 0.00 100 105560 34 2.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 19.67 7.61 12.00 0.000 18444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.000 18444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.000 180566 60.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 27.36 6.47 12.00 0.000 180566 60.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 19.67 7.61 12.00 0.000 180566 60.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 60.89 0.00 0.00 0.00 180566 60.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 60.89 0.00 0.00 0.00 180566 60.87 292.40 0.00 0.00 0.00 N1a BASE 2yr-24hr 60.89 0.00 0.00 0.00 180566 60.87 292.40 0.00 0.00 0.00 N1a BASE 2yr-24hr 60.89 0.00 0.00 0.00 180566 60.87 292.40 0.00 0.00 0.00 N1a BASE 2yr-24hr 60.89 0.00 0.00 0.00 180566 60.89 9.00 0.00 0.00 0.00 0.00 0.00 N5 BASE 2yr-24hr 60.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
N4a BASE 25yr-72hr 0.00 0.00 5.00 0.000 250663 93.54 1306.97 0.00 0.00 N5 BASE 25yr-72hr 101.80 6.10 9.00 0.0001 965487 99.13 57.09 101.81 182.99 N5a BASE 25yr-72hr 101.80 6.10 9.00 0.0001 965487 99.13 57.09 101.80 56.92 N6 BASE 25yr-72hr 101.80 6.10 9.00 0.0001 965487 99.13 57.09 101.80 56.92 N6 BASE 25yr-72hr 101.81 11.69 0.000 0.000 250641 42.75 543.08 42.76 540.75 N6a BASE 25yr-72hr 101.81 11.69 11.00 0.0020 107864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 104.27 8.36 11.00 0.0003 379506 101.81 92.44 104.25 92.42 N8 BASE 25yr-72hr 40.89 0.42 6.00 0.0003 379506 101.81 92.44 104.25 92.42 N8 BASE 25yr-72hr 105.45 12.68 11.00 0.0002 510641 42.76 540.75 101.81 92.44 104.25 92.42 N8 BASE 25yr-72hr 105.45 12.68 11.00 0.0003 579506 101.81 92.44 104.26 92.42 N8 BASE 25yr-72hr 105.45 12.68 11.00 0.0003 579506 101.81 92.44 104.26 92.42 N8 BASE 25yr-72hr 105.45 12.68 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.10 2.00 0.0008 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0028 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 19.67 7.61 12.00 0.0028 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 26.87 0.14 2.00 0.0004 7675491 25.17 297.97 26.87 292.40 N10 N12 BASE 2yr-24hr 19.65 7.61 12.00 0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 65.85 2.60 7.00 0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 65.85 2.60 7.00 0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 65.85 2.60 7.00 0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 65.85 2.60 7.00 0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 65.85 2.60 7.00 0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 65.85 2.60 7.00 0.0004 7675491 25.17 297.97 26.87 292.40 N13a BASE 2yr-24hr 65.85 2.60 7.00 0.0004 7675491 25.17 297.97 26.87 292.40 N13a BASE 2yr-24hr 65.85 2.60 7.00 0.0004 7675491 25.												
N5 BASE 25yr-72hr 99.13 6.98 9.00 -0.0777 353 101.81 182.99 101.81 182.99 N5a BASE 25yr-72hr 101.80 6.10 9.00 -0.001 298830 42.25 543.08 42.76 540.75 N6a BASE 25yr-72hr 0.00 0.00 6.00 0.000 250641 42.76 540.75 0.00 0.00 N7 BASE 25yr-72hr 101.81 11.69 11.00 0.000 250641 42.76 540.75 0.00 0.00 N7 BASE 25yr-72hr 101.81 11.69 11.00 0.0021 07864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 104.27 8.36 11.00 0.0003 3579506 101.81 92.44 104.26 92.42 N8 BASE 25yr-72hr 0.00 0.00 6.00 0.000 250566 40.89 742.40 0.00 0.00 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0003 1717947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 106.43 8.13 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N100 BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 999890 15.50 150.51 0.00 245.25 N10a BASE 2yr-24hr 19.67 7.61 12.00 0.0002 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N112 BASE 2yr-24hr 26.87 0.14 2.00 -0.001 188044 0.00 245.25 0.00 0.00 0.00 188444 0.00 245.25 0.00 0.00 0.00 188444 0.00 245.25 0.00 0.00 0.00 188449 0.00 245.25 0.00 0.00 0.00 188444 0.00 245.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
N5a BASE 25yr-72hr 42.76 0.17 6.00 -0.0010 965487 99.13 57.09 101.80 56.92 N6a BASE 25yr-72hr 42.76 0.17 6.00 -0.0010 2988830 42.25 543.08 42.76 540.75 N6a BASE 25yr-72hr 0.00 0.00 0.00 250641 42.76 540.75 N6a BASE 25yr-72hr 101.81 11.69 11.00 0.0020 107864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 104.27 8.36 11.00 0.0003 3579506 101.81 92.44 104.26 92.42 N8 BASE 25yr-72hr 40.89 0.42 6.00 0.0008 11717947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 105.45 12.68 11.00 0.0003 160768771 47.25 2103.00 115.77 226.54 N8 BASE 25yr-72hr 106.43 8.13 11.00 0.0003 160768771 47.25 2103.00 115.77 226.54 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 999890 15.50 150.51 0.00 245.25 N10 BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188444 0.00 245.25 N10 BASE 2yr-24hr 19.67 7.61 12.00 0.0003 12755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 20.36 6.47 12.00 0.0003 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 20.00 0.00 0.00 2.00 0.0000 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 20.00 0.00 0.00 2.00 0.0000 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 20.68 7 0.14 2.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 20.68 7 0.14 2.00 0.0003 12755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N12 BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N12 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 1699332 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 1699332 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 250663 63.87 520.35 0.00 0.00 0.00 N5A BASE 2yr-24hr 65.85 2.60 7.00 0.0000 250663 63.87 520.35 0.00 0.00 0.00 N5A BASE 2yr-24hr 65.85 2.60 7.00 0.0000 250664 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
N6 BASE 25yr-72hr 42.76 0.17 6.00 -0.0010 2988330 42.25 543.08 42.76 540.75 N6a BASE 25yr-72hr 0.00 0.00 6.00 0.0000 250641 42.76 540.75 0.00 0.00 N7 BASE 25yr-72hr 101.81 11.69 11.00 0.0020 107864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 40.89 0.42 6.00 0.0008 17171947 38.50 937.01 40.89 742.40 N8 BASE 25yr-72hr 105.45 12.68 11.00 0.0008 17171947 38.50 937.01 40.89 742.40 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0008 160768771 47.25 2103.00 115.77 226.54 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 25yr-72hr 106.43 8.13 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 0.00 0.10 0.00 0.000 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.00 0.00 2.00 0.0008 2697395 18.25 404.12 19.63 390.19 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0002 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0002 188044 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 27.36 6.47 12.00 0.0003 188066 26.87 292.40 0.00 0.00 N12 BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N12 BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N12 BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 52.65 257.19 N12 BASE 2yr-24hr 65.85 2.60 7.00 0.0002 188066 26.87 292.40 0.00 0.00 0.00 N12 BASE 2yr-24hr 65.85 2.60 7.00 0.0002 188066 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 188066 65.19 512.48 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 188066 65.19 512.48 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 188066 65.19 512.48 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 188066 65.19 512.48 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 2096382 28.99 871.26 65.19 512.48 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 2096382 28.99 871.26 65.19 512.48 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 2096382 28.99 871.26 65.19 512.48 N3 BASE 2yr-24hr 0.00 0.00 5.00 0.000 250663 63.87 520.35 0.00 0.00 0.00 0.00 N6a BASE 2yr-24hr 0.00 0.00 5.00 0.000 250663 63.87 520.35 0.00 0.00 0.00												
N6a BASE 25yr-72hr 0.00 0.00 6.00 0.0002 250641 42.76 540.75 0.00 0.00 0.07 N7 BASE 25yr-72hr 101.81 11.69 11.00 0.0020 107864967 45.25 1654.52 101.81 275.43 N7a BASE 25yr-72hr 104.27 8.36 11.00 0.0003 3579506 101.81 92.44 104.26 92.42 N8 BASE 25yr-72hr 40.89 0.42 6.00 0.0008 11717947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 105.45 12.68 11.00 0.0003 250566 40.89 742.40 0.00 0.00 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N8a BASE 25yr-72hr 106.43 8.13 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10a BASE 2yr-24hr 0.00 0.10 0.00 2.00 0.000 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0002 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 26.87 0.14 2.00 0.0001 188444 0.00 245.25 0.00 0.00 N11a BASE 2yr-24hr 26.87 0.14 2.00 0.0001 7675491 25.17 297.97 26.87 292.40 N10a BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 99890 15.50 150.51 10.00 245.25 N10a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9940956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 139.03 14.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 65.85 2.60 7.00 0.0001 180066 26.87 292.40 0.00 0.00 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 180066 26.87 292.40 0.00 0.00 0.00 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0001 20963382 28.99 871.26 65.19 512.48 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0000 250566 65.87 59.15 10.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 -0.00777 125 79.52 15.91 0.00 21.05 N5 BASE 2yr-24hr 65.85 2.60 7.00 0.0000 250566 65.19 512.49 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.0												
N7 BASE 25yr-72hr 101.81 11.69 11.00 0.0020 107864967 45.25 1654.52 101.81 275.43 N8 BASE 25yr-72hr 40.89 0.42 6.00 0.0003 3579506 101.81 92.44 104.26 92.42 N8 BASE 25yr-72hr 40.89 0.42 6.00 0.0008 11717947 38.50 937.01 40.89 742.40 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N9 BASE 25yr-72hr 106.43 8.13 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 999890 15.50 150.51 0.00 245.25 N10 BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188444 0.00 245.25 0.00 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 26.87 0.14 2.00 -0.001 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N10 BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 65.85 2.60 7.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 65.85 2.60 7.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 65.85 2.60 7.00 0.0000 180806 26.87 292.40 0.00 0.00 N1 BASE 2yr-24hr 65.85 2.60 7.00 0.0000 180806 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 65.85 2.60 7.00 0.0000 180806 26.87 292.40 0.00 0.00 N1 BASE 2yr-24hr 65.85 2.60 7.00 0.0000 250663 63.87 520.35 0.00 0.00 0.00 N1 BASE 2yr-24hr 65.85 2.60 7.00 0.0000 250663 63.87 520.35 0.00 0.00 0.00 N1 BASE 2yr-24hr 65.85 2.60 7.00 0.0000 250663 63.87 520.35 0.00 0.00 0.00 N1 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 250663 63.87 520.35 0.00 0.00 0.00 N1 BASE 2yr-24hr 0.00 0.00 5.40 9.00 0.000 250663 63.87 520.35 0.00 0.00 0.00 0.00 N1 BASE 2yr-24hr 0.00 0.00 5.40 9.00 0.0000 250664 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
N7a BASE												
N8 BASE 25yr-72hr 40.89 0.42 6.00 0.008 11717947 38.50 937.01 40.89 742.40 N8a BASE 25yr-72hr 0.00 0.00 6.00 0.0000 250566 40.89 742.40 0.00 0.00 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 106.43 8.13 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 99890 15.50 150.51 0.00 245.25 N10a BASE 2yr-24hr 19.67 7.61 12.00 0.0002 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 27.36 6.47 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11 BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188444 0.00 245.25 N10 N12 BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 N12a BASE 2yr-24hr 19.90 0.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 N12a BASE 2yr-24hr 19.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 N12a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2 BASE 2yr-24hr 65.85 2.60 7.00 0.001 1699322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.001 1699322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.001 1699322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 63.87 0.14 5.00 -0.000 23022057 60.93 521.09 63.87 520.35 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.00777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.00777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.00777 125 79.52 15.91 0.00 21.89 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 -0.00777 125 79.52 15.91 0.00 0.00 12.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.00777 125 79.52 15.91 0.00 0.00 12.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.00777 125 79.52 15.91 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 -0.000 250661 0.00 412.50 0.00 0.00 0.00 N6a BASE 2yr-24hr 0.00 0.00 5.00 0.00 0.00 250661 0.00 412.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
N8a BASE 25yr-72hr 0.00 0.00 6.00 0.000250566 40.89 742.40 0.00 0.00 0.00 N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 106.43 8.13 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.00 2.00 -0.0009 99980 15.50 150.51 0.00 245.25 N10 BASE 2yr-24hr 0.00 0.00 2.00 -0.0009 99980 15.50 150.51 0.00 245.25 N10 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11 BASE 2yr-24hr 26.87 0.14 2.00 -0.0012 1755152 19.63 390.19 N12 BASE 2yr-24hr 26.87 0.14 2.00 -0.0014 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 19.00 0.00 2.00 0.000 188066 26.87 292.40 0.00 0.00 N11 BASE 2yr-24hr 19.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 N11 BASE 2yr-24hr 19.00 0.00 2.00 0.0000 188066 26.87 292.40 N12a BASE 2yr-24hr 19.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 0.00 N12 BASE 2yr-24hr 19.00 0.00 0.00 188066 26.87 292.40 0.00 0.00 0.00 N12 BASE 2yr-24hr 19.00 0.00 0.00 188066 26.87 292.40 0.00 0.00 0.00 N12 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N22 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N32 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N32 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N32 BASE 2yr-24hr 65.87 0.14 5.00 -0.006 23022057 60.93 521.09 63.87 520.35 N42 BASE 2yr-24hr 65.87 0.14 5.00 -0.006 23022057 60.93 521.09 63.87 520.35 N42 BASE 2yr-24hr 0.00 5.40 9.00 -0.0077 125 79.52 15.91 0.00 21.05 N52 BASE 2yr-24hr 0.00 5.40 9.00 -0.0077 125 79.52 15.91 0.00 21.05 N52 BASE 2yr-24hr 0.00 5.40 9.00 -0.0077 125 79.52 15.91 0.00 21.05 N52 BASE 2yr-24hr 0.00 5.40 9.00 -0.0077 125 79.52 15.91 0.00 21.05 N52 BASE 2yr-24hr 0.00 5.40 9.00 -0.0077 125 79.52 15.91 0.00 0.00 0.00 N66 BASE 2yr-24hr 0.00 6.00 6.00 0.000 250661 0.00 412.50 0.00 0.00 0.00 N66 BASE 2yr-24hr 0.00 6.00 0.00 250661 0.00 412.50 0.00 0.00 0.00 0.00 0.00 0.00 0												
N9 BASE 25yr-72hr 105.45 12.68 11.00 0.0035 160768771 47.25 2103.00 115.77 226.54 N9a BASE 25yr-72hr 106.43 8.13 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 999890 15.50 150.51 0.00 245.25 N10a BASE 2yr-24hr 19.67 7.61 12.00 0.0001 188444 0.00 245.25 0.00 0.000 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12a BASE 2yr-24hr 0.00 0.00 2.00 0.000 188046 26.87 292.40 0.00 N12a BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.66 802.23 41.30 476.59 N2a BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.91 2.50 7.00 0.0021 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.91 2.50 7.00 0.0021 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.91 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.45 N4a BASE 2yr-24hr 0.00 0.00 0.00 0.00 250663 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 0.00 2.00 0.000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 0.00 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.50 0.00 0.000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.50 0.00 0.000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.50 0.00 0.000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.50 0.00 0.000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.50 0.00 0.000 250663 63.87 520.35 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 0.00 0.00 250663 63.87 520.35 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 0.00 0.00 250663 63.87 520.35 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.												
N9a BASE 25yr-72hr 106.43 8.13 11.00 0.0007 771447 105.45 82.74 106.43 82.74 N1 BASE 2yr-24hr 137.73 24.06 28.00 0.0006 101556203 42.50 878.04 52.65 257.19 N10a BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 99889 15.50 150.51 0.00 245.25 N10a BASE 2yr-24hr 19.67 7.61 12.00 0.0002 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 26.87 0.14 2.00 -0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 0.00 0.00 0.00 0.00 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2a BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.85 2.60 7.00 0.0050 60686 65.19 512.48 N4 BASE 2yr-24hr 65.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 5.40 9.00 5.00 0.000 250663 63.87 520.35 N4a BASE 2yr-24hr 0.00 5.40 9.00 -0.0000 250663 63.87 520.35 0.00 0.00 N5 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.00777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 -0.0000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 -0.0000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 -0.0000 250663 63.87 520.35 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 0.000 250663 63.87 520.35 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 5.40 9.00 0.000 250663 63.87 520.35 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 5.00 0.000 250664 0.00 0.00 412.50 0.00 0.00 0.00 0.00 0.00 0.00 0												
N1 BASE 2yr-24hr 0.00 0.10 2.00 -0.0006 101556203 42.50 878.04 52.65 257.19 N10 BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 999890 15.50 150.51 0.00 245.25 N10a BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 26.87 0.14 2.00 -0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 N11a BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N11a BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2 BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N4 BASE 2yr-24hr 65.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 0.00 5.00 0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 250661 0.00 412.50 0.00 0.00 N6 BASE 2yr-24hr 0.00 6.00 0.00 250661 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 6.00 0.00 250661 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 0.00 412.50 0.00 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 0.00 412.50 0.00 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 0.00 0.000 250661 0.00 412.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
N10 BASE 2yr-24hr 0.00 0.10 2.00 -0.0009 999890 15.50 150.51 0.00 245.25 N10a BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12a BASE 2yr-24hr 26.87 0.14 2.00 -0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2a BASE 2yr-24hr 65.85 2.60 7.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 5.40 9.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N6a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N6a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 1.00 N6 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 1.00 N6 BASE 2yr-24hr 0.00 6.00 0.00 276436 0.00 0.00 412.50 0.00 N7 BASE 2yr-24hr 0.00 6.00 0.00 276436 0.00 0.00 412.50 0.00 N7 BASE 2yr-24hr 0.00 6.00 0.00 6.00 0.000 250661 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 6.00 0.00 6.00 0.000 250661 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 6.00 0.00 6.00 0.000 250661 0.00 412.50 0.00 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 0.00 6.00 0.000 250661 0.00 445.65 16.58 386.34 N8 BASE 2yr-24hr 0.00 0.00 0.00 6.00 0.000 250665 16.58 386.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0												
N10a BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188444 0.00 245.25 0.00 0.00 N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 26.87 0.14 2.00 -0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2a BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.81 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.000 250663 63.87 520.35 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.00 0.00 250661 60.00 0.00 412.50 0.00 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.00 250661 60.00 0.00 412.50 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.00 250661 60.00 412.50 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 6.00 0.00 250661 10.58 386.34 0.00 0.00 0.00 N7 BASE 2yr-24hr 16.58 0.14 6.00 0.000 250566 16.58 386.34 0.00 0.00 0.00												
N11 BASE 2yr-24hr 19.67 7.61 12.00 0.0082 697395 18.25 404.12 19.63 390.19 N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 26.87 0.14 2.00 -0.0004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2a BASE 2yr-24hr 65.85 14.33 18.00 0.0014 16996158 25.26 802.23 41.30 476.59 N3a BASE 2yr-24hr 65.85 2.60 7.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.91 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 60.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250661 0.00 0.00 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250661 0.00 0.00 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250661 0.00 0.00 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250661 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250661 0.00 412.50 0.00 0.00 N8 BASE 2yr-24hr 0.00 0.00 6.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0002 350566 16.58 386.34 0.00 0.00 0.00												
N11a BASE 2yr-24hr 27.36 6.47 12.00 0.0031 2755152 19.63 390.19 27.34 260.91 N12 BASE 2yr-24hr 26.87 0.14 2.00 -0.004 7675491 25.17 297.97 26.87 292.40 N12a BASE 2yr-24hr 139.03 24.02 28.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2 BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N4 BASE 2yr-24hr 65.87 0.14 5.00 -0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 0.00 0.00 5.00 0.000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N5 BASE 2yr-24hr 0.00 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250641 0.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.000 250641 0.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 16.58 0.14 6.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 16.58 0.14 6.00 0.000 250566 16.58 386.34 0.00 0.00 0.00												
N12 BASE 2yr-24hr 0.00 0.00 2.00 0.0000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 297.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2a BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3 BASE 2yr-24hr 65.87 0.14 5.00 -0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 357566 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 16.58 0.14 6.00 0.0005 250566 16.58 386.34 0.00 0.000												
N12a BASE 2yr-24hr 0.00 0.00 2.00 0.000 188066 26.87 292.40 0.00 0.00 N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2a BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 N2a BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.91 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N6a BASE 2yr-24hr 0.00 0.10 6.00 -0.0077 125 79.52 15.91 0.00 21.05 N6a BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 276436 0.00 0.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 250566 16.58 386.34 0.00 0.00 0.00												
N1a BASE 2yr-24hr 139.03 24.02 28.00 0.0009 9404956 52.65 257.19 137.35 170.30 N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2a BASE 2yr-24hr 65.85 2.60 7.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.91 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N6a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.00 6.00 0.00 250661 0.00 0.00 412.50 0.00 N6 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 0.00 0.00 412.50 0.00 N6 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 0.00 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 0.00 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 0.00 0.00 6.00 0.000 250661 0.00 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 81.98 8.25 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7A BASE 2yr-24hr 16.58 0.14 6.00 0.000 250566 15.58 386.34 0.00 0.00 0.00												
N2 BASE 2yr-24hr 41.50 14.85 18.00 0.0024 16926158 25.26 802.23 41.30 476.59 N2a BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.91 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 250566 16.58 386.34 0.00 0.00 0.00												
N2a BASE 2yr-24hr 70.65 14.33 18.00 0.0011 16999322 41.30 476.59 70.58 306.68 N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.91 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.48 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 20.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 <td></td>												
N3 BASE 2yr-24hr 65.85 2.60 7.00 0.0021 20963382 28.99 871.26 65.19 512.48 N3a BASE 2yr-24hr 65.91 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0006 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.000												
N3a BASE 2yr-24hr 65.91 2.50 7.00 0.0050 606686 65.19 512.48 65.96 512.45 N4 BASE 2yr-24hr 63.87 0.14 5.00 -0.0060 23022057 60.93 521.09 63.87 520.35 N4a BASE 2yr-24hr 0.00 0.00 5.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.000 250566 16.58 386.34 0.00 0.00												
N4 BASE 2yr-24hr 0.00 0.00 5.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 0.00 N6 BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 0.00 6.00 0.000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.00												
N4a BASE 2yr-24hr 0.00 0.00 5.00 0.0000 250663 63.87 520.35 0.00 0.00 N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 125 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.000												
N5 BASE 2yr-24hr 0.00 5.40 9.00 -0.0777 1.25 79.52 15.91 0.00 21.05 N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.00												
N5a BASE 2yr-24hr 0.00 5.20 9.00 0.0000 276436 0.00 0.00 0.00 0.00 0.00 N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.000 250566 16.58 386.34 0.00 0.00												
N6 BASE 2yr-24hr 0.00 0.10 6.00 -0.0010 2394824 19.00 221.89 0.00 412.50 N6a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.00												
N6a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250641 0.00 412.50 0.00 0.00 N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.00												
N7 BASE 2yr-24hr 79.52 10.33 11.00 0.0018 46396283 22.01 722.41 79.52 67.21 N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.00											0.00	
N7a BASE 2yr-24hr 81.98 8.25 11.00 0.0002 3579265 79.52 51.30 81.98 51.23 N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.00					10.33		0.0018		22.01			
N8 BASE 2yr-24hr 16.58 0.14 6.00 0.0005 10803496 15.00 445.65 16.58 386.34 N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.00												
N8a BASE 2yr-24hr 0.00 0.00 6.00 0.0000 250566 16.58 386.34 0.00 0.00												
	N9	BASE	2yr-24hr	79.50	11.57	11.00	0.0037	95540805	24.26	958.25	79.50	101.16
N9a BASE 2yr-24hr 80.57 8.05 11.00 0.0008 771131 79.50 65.39 80.57 65.38												

Name	Group	Simulation	Max Time Flow hrs	Max Flow cfs	Max Delta Q cfs	Max Time US Stage hrs	Max US Stage ft	Max Time DS Stage hrs	Max DS Stage ft
CN10N10a	BASE	25yr-72hr	39.52	384.39	245.252	39.52	0.22	0.00	0.00
CN11a12	BASE	25yr-72hr	47.97	631.21	126.520	47.95	9.06	50.43	0.58
CN12N12a	BASE	25yr-72hr	50.43	689.93	244.993	50.43	0.58	0.00	0.00
CN1aN2	BASE	25yr-72hr	153.52	418.96	13.940	179.76	25.62	105.97	16.35
CN2aN3	BASE	25yr-72hr	108.94	637.56	37.024	108.45	16.16	97.19	6.22
CN3aN4	BASE	25yr-72hr	97.50	1289.31	-217.010	97.29	5.21	93.54	0.68
CN4N4a	BASE	25yr-72hr	93.54	1306.97	430.657	93.54	0.68	0.00	0.00
CN5aN6	BASE	25yr-72hr	101.80	56.92	0.009	101.80	6.10	42.76	0.17
CN6N6a	BASE	25yr-72hr	42.76	540.75	412.499	42.76	0.17	0.00	0.00
CN7aN8	BASE	25yr-72hr	104.26	92.42	0.055	104.27	8.36	40.89	0.42
CN8N8a	BASE	25yr-72hr	40.89	742.40	326.981	40.89	0.42	0.00	0.00
CN9aN10	BASE	25yr-72hr	106.43	82.74	0.086	106.43	8.13	39.52	0.22
N11N11a	BASE	25yr-72hr	43.44	827.60	194.471	43.49	10.05	47.95	9.06
N1N1a	BASE	25yr-72hr	72.23	465.92	96.346	175.58	25.76	179.76	25.62
N2N2a	BASE	25yr-72hr	82.25	864.06	97.259	105.97	16.35	108.45	16.16
N3N3a	BASE	25yr-72hr	97.02	1289.32	192.788	97.19	6.22	97.29	5.21
N5N5a	BASE	25yr-72hr	99.13	57.09	0.266	99.13	6.98	99.13	6.17
N7N7a	BASE	25yr-72hr	101.81	92.44	-0.474	101.81	11.69	55.04	10.00
N9N9a	BASE	25yr-72hr	105.45	82.74	0.088	105.45	12.68	105.45	9.25
WN11N9-O	BASE	25yr-72hr	0.00	0.00	-0.006	43.49	10.05	105.45	12.68
WN5N3-0	BASE	25yr-72hr	138.76	132.20	21.048	99.13	6.98	97.19	6.22
WN7N5-0	BASE	25yr-72hr	101.81	182.99	0.045	101.81	11.69	99.13	6.98
WN9N7-O	BASE	25yr-72hr	120.14	144.10	0.064	105.45	12.68	101.81	11.69
CN10N10a	BASE	2yr-24hr	0.00	245.25	245.252	0.00	0.10	0.00	0.00
CN11a12	BASE	2yr-24hr	27.34	260.91	126.520	27.36	6.47	26.87	0.14
CN12N12a	BASE	2yr-24hr	26.87	292.40	244.993	26.87	0.14	0.00	0.00
CN1aN2	BASE	2yr-24hr	137.35	170.30	13.940	139.03	24.02	41.50	14.85
CN2aN3	BASE	2yr-24hr	70.58	306.68	37.024	70.65	14.33	65.85	2.60
CN3aN4	BASE	2yr-24hr	65.96	512.45	-217.010	65.91	2.50	63.87	0.14
CN4N4a	BASE	2yr-24hr	63.87	520.35	430.657	63.87	0.14	0.00	0.00
CN5aN6	BASE	2yr-24hr	0.00	0.00	0.000	0.00	5.20	0.00	0.10
CN6N6a	BASE	2yr-24hr	0.00	412.50	412.499	0.00	0.10	0.00	0.00
CN7aN8	BASE	2yr-24hr	81.98	51.23	0.040	81.98	8.25	16.58	0.14
CN8N8a	BASE	2yr-24hr	16.58	386.34	326.981	16.58	0.14	0.00	0.00
CN9aN10	BASE	2yr-24hr	80.57	65.38	0.079	80.57	8.05	0.00	0.10
N11N11a	BASE	2yr-24hr	19.63	390.19	-195.107	19.67	7.61	29.54	6.41
N1N1a	BASE	2yr-24hr	52.65	257.19	96.346	137.73	24.06	139.03	24.02
N2N2a	BASE	2yr-24hr	41.30	476.59	265.758	41.50	14.85	70.65	14.33
N3N3a	BASE	2yr-24hr	65.19	512.48	-339.118	65.85	2.60	65.91	2.50
N5N5a	BASE	2yr-24hr	0.00	0.00	0.000	0.00	5.40	0.00	5.20
N7N7a	BASE	2yr-24hr	79.52	51.30	0.563	79.52	10.33	78.29	9.31
N9N9a	BASE	2yr-24hr	79.50	65.39	0.093	79.52	11.57	79.50	8.99
WN11N9-O	BASE	2yr-24hr	0.00	0.00	0.000	19.67	7.61	79.50	11.57
WN5N3-0	BASE	2yr-24hr	0.00	21.05	21.048	0.00	5.40	65.85	2.60
WN7N5-0	BASE	2yr-24hr	79.52	15.91	0.006	79.52	10.33	0.00	5.40
WN9N7-O	BASE	2yr-24hr	79.52	35.78	0.008	79.52	11.57	79.52	10.33
MIN ZIN / O	מכתם	ZĂT ZAIII	,,,,,	33.76	0.020	,,,,	11.57	10.52	10.33

```
Node: N9
            Group: BASE
                                                               Type: SCS Unit Hydrograph CN
     Unit Hydrograph: Uh256 Peaking Factor. 250.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 938.93 Area(ac): 8571.460 Time Shift(hrs): 0.00
                                                                            Peaking Factor: 256.0
                      Area(ac): 8571.460
                 Curve Number: 89.70
                                                                    Max Allowable Q(cfs): 999999.000
                        DCIA(%): 0.00
                                    Node: N10
Type: SCS Unit Hydrograph CN
             Name: DCWBS
     Unit Hydrograph: Uh256
Rainfall File:
Rainfall Amount(in): 0.000
Area(ac): 602.020
Curve Number: 84.40
DCIA(%): 0.000

Peaking Factor: 256.0
Storm Duration(hrs): 0.00
Time of Conc(min): 277.48
Time Shift(hrs): 0.00
Max Allowable Q(cfs): 999999.000
            Group: BASE
                                                        Node: N7
Type: SCS Unit Hydrograph CN
             Name: GBEBS
            Group: BASE
     Unit Hydrograph: Uh256 Peaking Factor: 256.0
Rainfall File: Storm Duration(hrs): 0.00
Rainfall Amount(in): 0.000 Time of Conc(min): 766.73
Area(ac): 5911.780 Time Shift(hrs): 0.00
Curve Number: 87.30 Max Allowable Q(cfs): 999999.000
DCIA(%): 0.00
             Name: GBWBS Node: N8 Status: Onsite
Group: BASE Type: SCS Unit Hydrograph CN
            Group: BASE
                                                              Peaking Factor: 256.0
     Unit Hydrograph: Uh256 Peaking Factor: 256.0
Rainfall File: Storm Duration(hrs): 0.00
Rainfall Amount(in): 0.000 Time of Conc(min): 245.41
Area(ac): 1427.390 Time Shift(hrs): 0.00
Curve Number: 88.30 Max Allowable Q(cfs): 999999.000
                        DCIA(%): 0.00
                                                           Node: N1
Type: SCS Unit Hydrograph CN
             Name: GSE1
                                                                                                                Status: Onsite
     Unit Hydrograph: Uh256 Peaking Factor: 256.0
Rainfall File: Storm Duration(hrs): 0.00
Rainfall Amount(in): 0.000 Time of Conc(min): 2524.87
Area(ac): 19429.500 Time Shift(hrs): 0.00
Curve Number: 88.80 Max Allowable Q(cfs): 999999.000
DCIA(%): 0.00
            Group: BASE
                                  Node: N2
Type: SCS Unit Hydrograph CN
             Name: GSE2
                                                                                                               Status: Onsite
            Group: BASE
     Unit Hydrograph: Uh256 Peaking Factor: 256.0
Rainfall File: Storm Duration(hrs): 0.00
Rainfall Amount(in): 0.000 Time of Conc(min): 1009.96
Area(ac): 7041.070 Time Shift(hrs): 0.00
Curve Number: 90.10 Max Allowable Q(cfs): 999999.000
                        DCIA(%): 0.00
            Name: GSEBS Node: N3
Group: BASE Type: SCS Unit Hydrograph CN
                                                                                                                Status: Onsite
            Group: BASE
            Unit Hydrograph: Uh256 Peaking Factor: 256.0
Rainfall File: Storm Duration(hrs): 0.00
Afall Amount(in): 0.000 Time of Constraints
      Rainfall Amount(in): 0.000
                                                                          Time of Conc(min): 1232.75
```

DCIA(%): 0.00

Status: Onsite

Mode: N4 Star Type: SCS Unit Hydrograph CN

Unit Hydrograph: Uh256 Peaking Factor: 256.0 Storm Duration(hrs): 0.00 Time of Conc(min): 603.85

Area(ac): 1020.950 Area(ac): 1020.950 Curve Number: 86.90 Max Allowable Q(cfs): 999999

DCIA(%): 0.00 Max Allowable Q(cfs): 999999.000

Node: N6 Type: SCS Unit Hydrograph CN Name: LVR Status: Onsite

Group: BASE

Unit Hydrograph: Uh256 Peaking Factor: 256.0
Rainfall File: Storm Duration(hrs): 0.00
Rainfall Amount(in): 0.000 Time of Conc(min): 538.76
Area(ac): 1566.730 Time Shift(hrs): 0.00
Curve Number: 83.30 Max Allowable Q(cfs): 999999.000
DCIA(%): 0.00

Name: YPEBS Node: N11
Group: BASE Type: SCS Unit Hydrograph CN Status: Onsite

Group: BASE

Peaking Factor: 256.0 Unit Hydrograph: Uh256 Peaking Factor: 256.0
Rainfall File: Storm Duration(hrs): 0.00
Rainfall Amount(in): 0.000 Time of Conc(min): 494.62
Area(ac): 2199.460 Time Shift(hrs): 0.00
Curve Number: 89.10 Max Allowable Q(cfs): 999999.000

DCIA(%): 0.00

Status: Onsite

DCIA(%): 0.00

Name: N1 Base Flow(cfs): 0.000 Init Stage(ft): 22.500 Group: BASE Warn Stage(ft): 28.000

Type: Stage/Area

Node at the east end of culvert at Subbasin "GSE1"; GatorSlough East of I-75 Warning stage obtained from 2ft contour map

Stage(ft) Area(ac) 21.000 0.0020 25.000 3050.7200 30.000 18432.2800 35.000 19429.8000

Name: N10 Base Flow(cfs): 0.000 Init Stage(ft): 0.100

Group: BASE Warn Stage(ft): 2.000

Type: Stage/Area

Outfall at Subbasin "DCWBS"; Durden Creek West of Burnt Store Road Warning stage obtained from 2ft contour map

Area(ac)	Stage(ft)
0.0020	-5.000
0.0200 247.4000	0.000 5.000

10.000 602.0300 Init Stage(ft): 0.000 Base Flow(cfs): 0.000 Name: N10a Group: BASE Warn Stage(ft): 2.000 Type: Time/Stage Time(hrs) Stage(ft) 0.00 50.00 0.000 250.00 Base Flow(cfs): 0.000 Init Stage(ft): 4.000 Name: N11 Group: BASE Warn Stage(ft): 12.000 Type: Stage/Area Node at the east end of culvert at Subbasin "YPEBS"; Yucca Pen Creek East of Burnt Store Road Warning stage obtained from 2ft contour map Stage(ft) Area(ac) 4.000 0.0020 26.5900 10.000 865.00 2199.4600 865.8600 15.000 20.000 Init Stage(ft): 5.000 Name: N11a Base Flow(cfs): 0.000 Group: BASE Warn Stage(ft): 12.000 Type: Stage/Area Node at the west end of culvert at Subbasin "YPEBS"; Yucca Pen Creek East of Burnt Store Road Warning stage obtained from 2ft contour map Stage(ft) Area(ac) 0.0020 0.000 20.000 0.0020 Name: N12 Base Flow(cfs): 0.000 Init Stage(ft): 0.100 Warn Stage(ft): 2.000 Group: BASE Type: Stage/Area Outfall at Subbasin "YPWBS"; Yucca Pen Creek West of Burnt Store Road Warning stage obtained from 2ft contour map Stage(ft) Area(ac) -5.000 0.0020 5.000 211.4700 10.000 437.6700 Name: N12a Base Flow(cfs): 0.000 Init Stage(ft): 0.000 Group: BASE Warn Stage(ft): 2.000 Type: Time/Stage Time(hrs) Stage(ft) 0.00 0.000 50.00 0.000 250.00 Name: Nla Base Flow(cfs): 0.000 Init Stage(ft): 21.500 Group: BASE Warn Stage(ft): 28.000 Type: Stage/Area Node at the west end of culvert at Subbasin "GSE1"; GatorSlough East of I-75 Warning stage obtained from 2ft contour map Area(ac) Stage(ft) 0.0020 0.0020 35.000 Base Flow(cfs): 0.000 Init Stage(ft): 13.000 Name: N2 Group: BASE Warn Stage(ft): 18.000 Type: Stage/Area

Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.

Warning stage obtained from 2ft contour map Stage (ft.) Area(ac) 20.1900 73.1900 5.000 10.000 191.8100 191.8100 6216.6750 7040.5150 7041.0750 15.000 20.000 25.000 30.000 Name: N2a Base Flow(cfs): 0.000 Init Stage(ft): 12.000 Group: BASE Warn Stage(ft): 18.000 Type: Stage/Area Node at the west end of culvert at Subbasin "GSE2"; GatorSlough West of I-75 Warning stage obtained from 2ft contour map Stage(ft) Area(ac) 5.000 0.0020 30.000 0.0020 30.000 Base Flow(cfs): 0.000 Init Stage(ft): -0.500 Name: N3 Warn Stage(ft): 7.000 Group: BASE Type: Stage/Area Node at the east end of culvert at Subbasin "GSEBS"; GatorSlough East of Burnstore Road Warning stage obtained from 2ft contour map Stage(ft) Area(ac) -5.000 1.6200 0.000 8.1300 8.1300 167.1300 2745.8900 9433.6300 9450.2500 5.000 10.000 15.000 20.000 Name: N3a Base Flow(cfs): 0.000 Init Stage(ft): -1.600 Group: BASE Warn Stage(ft): 7.000 Type: Stage/Area Node at the west end of culvert at Subbasin "GSEBS"; GatorSlough East of Burnstore Road Warning stage obtained from 2ft contour map Stage(ft) Area(ac) -5.000 0.0020 20.000 0.0020 20.000 Name: N4 Base Flow(cfs): 0.000 Init Stage(ft): 0.100 Group: BASE Warn Stage(ft): 5.000 Type: Stage/Area Outfall from subbasin "GSWBS"; GatorSlough West of Burnstore Road Warning stage obtained from 2ft contour map Stage(ft) Area(ac) -3.000 0.002 0.000 500.4400 798.6600 _____
 0.000
 500.4400

 5.000
 798.6600

 10.000
 1020.9600

 Name:
 N4a
 Base Flow(cfs):
 0.000
 Init Stage(ft):
 0.000

 Group:
 BASE
 Warn Stage(ft):
 5.000
 Type: Time/Stage Time(hrs) Stage(ft) 250.00 0.000 Base Flow(cfs): 0.000 Init Stage(ft): 5.400 Name: N5 Group: BASE Warn Stage(ft): 9.000

Node at the east end of culvert at Subbasin "LVR"; Longview Run $\,$

Type: Stage/Area

Warning stage obtained from 2ft contour map Initial stage obtained from P-5110 structure ID Stage(ft) Area(ac) 5.000 0.0020 15.000 0.0020 15.000 Name: N5a Group: BASE Type: Stage/Area Node at the west end of culvert at Subbasin "LVR"; Longview Run Warning stage obtained from 2ft contour map Stage(ft) Area(ac) -5.000 0.0020 20.000 0.0020 20.000 Base Flow(cfs): 0.000 Init Stage(ft): 0.100 Warn Stage(ft): 6.000 Name: N6 Group: BASE Type: Stage/Area Outfall at Subbasin "LVR"; Longview Run Warning stage obtained from 2ft contour map Stage(ft) Area(ac)
 0.000
 11.4700

 5.000
 1058.0000

 10.000
 1566.7200
 10.000 Base Flow(cfs): 0.000 Init Stage(ft): 0.000 Warn Stage(ft): 6.000 Name: N6a Group: BASE Type: Time/Stage Time(hrs) Stage(ft) 0.00 0.000 50.00 0.000 250.00 Base Flow(cfs): 0.000 Init Stage(ft): 8.100 Group: BASE Warn Stage(ft): 11.000 Type: Stage/Area Node at the east end of culvert at Subbasin "GBEBS"; Greenwell Branch East of Burnt Store Road Warning stage obtained from 2ft contour map Initial stage obtained from P-3190 structure ID Stage(ft) Area(ac) 5.000 2.2000 10.000 720.4800 15.000 5911.2900 10.000 15.000 Base Flow(cfs): 0.000 Init Stage(ft): 8.000 Warn Stage(ft): 11.000 Name: N7a Group: BASE Type: Stage/Area Node at the west end of culvert at Subbasin "GBEBS"; Greenwell Branch East of Burnt Store Road Warning stage obtained from 2ft contour map Initial stage obtained from P-3190 structure ID Area(ac) Stage(ft) 5.000 0.0020 20.000 0.0020 20.000 Name: N8 Base Flow(cfs): 0.000 Init Stage(ft): 0.100 Group: BASE Warn Stage(ft): 6.000 Type: Stage/Area Outfall at Subbasin "GBWBS"; Greenwell Branch West of Burnt Store Road Warning stage obtained from 2ft contour map Stage(ft) Area(ac) 0.0020 -2.000

5 10		524.2300 1427.3900					
Name: Group: Type:		:	Base Flow(cfs): 0.	.000	Init Stage(ft Warn Stage(ft		
	hrs)						
	 0.00 0.00	0.000					
Name:			Base Flow(cfs): 0.	000	Init Stage(ft)): 8 100	
Group:	BASE Stage/Area				Warn Stage(ft)		
			at Subbasin "DCEBS contour map	S"; Durden Cre	eek East of Bur	rnt Store Road	
	(ft)						
10 15 20 25	.000 .000 .000	0.0020 69.2700 6834.9700 8475.4300 8489.9000 8504.9400					
Name: Group:	BASE		Base Flow(cfs): 0.	.000	Init Stage(ft)		
Node at the		of culvert	at Subbasin "DCEBS	S"; Durden Cre	eek East of Bur	rnt Store Road	
Marning stag	ge obtained	i from 21t	contour map				
	(ft) .000						
	.000	0.0020	===========				
==== Cross	Sections ==					========	
Encro	Name: achment: No)	C	Group: BASE			
Station		ration(ft)	Manning's N				
==== Pipes :					.=======		
Na: Gro	me: N11N11a up: BASE	ι	From Node: N11 To Node: N11a	a.	Length(ft): Count:	2	
Span(i: Rise(i:	ry: Rectang n): 120.00 n): 84.00	gular R 1 8	OWNSTREAM ectangular 20.00 4.00 .000 .013000 .000	Solut: Entrai E: Be Out: In:	cion Equation: Algorithm: Flow: nce Loss Coef: cit Loss Coef: end Loss Coef: Let Ctrl Spec: Let Ctrl Spec: Let Ctrl Spec: Lizer Option:	Most Restrictive Both 0.00 1.00 0.00 Use dc or tw Use dc	2
Jpstream FH Rectangular			ption: gwall flares				
Downstream 1 Rectangular			ription: gwall flares				
			tructure ID				
Naı	me: N1N1a up: BASE		From Node: N1 To Node: N1a		Length(ft): Count: ion Equation:	100.00	

UPSTREAM DOWNSTREAM Solution Algorithm: Most Restrictive Geometry: Rectangular Rectangular Flow: Both Span(in): 144.00 Entrance Loss Coef: 0.50 144.00 Exit Loss Coef: 1.00 Rise(in): 60.00 60.00 Invert(ft): 21.500 20.500 Bend Loss Coef: 0.50 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dn or tw Top Clip(in): 1.000 1.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 1.000 1.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Rectangular Box: 30° to 75° wingwall flares Downstream FHWA Inlet Edge Description: Rectangular Box: 30° to 75° wingwall flares From Node: N2 Length(ft): 80.00 Name: N2N2a To Node: N2a Group: BASE Count: 3 DOWNSTREAM Friction Equation: Automatic UPSTREAM Solution Algorithm: Most Restrictive Geometry: Rectangular Rectangular Flow: Both Span(in): 144.00 144.00 Entrance Loss Coef: 0.00 Rise(in): 60.00 Invert(ft): 12.000 Exit Loss Coef: 1.00 Bend Loss Coef: 0.00 60.00 11.000 Invert(ft): 12.000
Manning's N: 0.013000
Top Clip(in): 1.000
Bot Clip(in): 1.000 0.013000 Outlet Ctrl Spec: Use dc or tw 1.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 1.000 Stabilizer Option: None 1.000 Upstream FHWA Inlet Edge Description: Rectangular Box: 30° to 75° wingwall flares Downstream FHWA Inlet Edge Description: Rectangular Box: 30° to 75° wingwall flares
 Name:
 N3N3a
 From Node:
 N3
 Length(ft):
 80.00

 Group:
 BASE
 To Node:
 N3a
 Count:
 3
 To Node: N3a Group: BASE Friction Equation: Automatic Solution Algorithm: Most Restrictive UPSTREAM DOWNSTREAM Geometry: Rectangular Rectangular Span(in): 144.00 144.00 Flow: Both Span(in): 144.00 Rise(in): 60.00 Entrance Loss Coef: 0.00 Exit Loss Coef: 1.00 60.00 Invert(ft): -1.500 -2.600 Bend Loss Coef: 0.00 Invert(it): -1.500
Manning's N: 0.013000
For Clin(in): 1.000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 1.000 1.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 1.000 1.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Rectangular Box: 30° to 75° wingwall flares Downstream FHWA Inlet Edge Description: Rectangular Box: 30° to 75° wingwall flares Inverts Obtained from P-6550 structure ID Count: 4 Group: BASE To Node: N5a Friction Equation: Automatic UPSTREAM DOWNSTREAM Solution Algorithm: Most Restrictive Geometry: Rectangular Rectangular Flow: Both Entrance Loss Coef: 0.00

Exit Loss Coef: 1.00

Rend Loss Coef: 0.00 Span(in): 36.00 Rise(in): 24.00 36.00 24.00 Invert(ft): 5.400 5.200 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 1.000 1.000 Inlet Ctrl Spec: Use dc Stabilizer Option: None Bot Clip(in): 1.000 1.000 Upstream FHWA Inlet Edge Description: Rectangular Box: 30° to 75° wingwall flares Downstream FHWA Inlet Edge Description: Rectangular Box: 30° to 75° wingwall flares Inverts obtained from P-5110 structure ID

```
Name: N7N7a
                                 From Node: N7
                                                              Length(ft): 40.00
       Group: BASE
                                    To Node: N7a
                                                                    Count: 4
                                                        Friction Equation: Automatic
                                                       Solution Algorithm: Most Restrictive
Flow: Both
              UPSTREAM
                             DOWNSTREAM
    Geometry: Circular
                             Circular
     Span(in): 24.00
                             24.00
                                                       Entrance Loss Coef: 0.00
                                                       Exit Loss Coef: 1.00
Bend Loss Coef: 0.00
    Rise(in): 24.00
                             24.00
  Invert(ft): 8.100
                             8.000
                                                         Outlet Ctrl Spec: Use dc or tw
Inlet Ctrl Spec: Use dc
Manning's N: 0.013000
Top Clip(in): 1.000
                             0.013000
                             1.000
Bot Clip(in): 1.000
                             1.000
                                                        Stabilizer Option: None
Upstream FHWA Inlet Edge Description:
Circular Concrete: Square edge w/ headwall
Downstream FHWA Inlet Edge Description:
Circular Concrete: Square edge w/ headwall
Inverts obtained from Countour GIS Map
                                 To Node: N9 Length(ft): 40.00
        Name: N9N9a From Node: N9
       Group: BASE
    UPSTREAM DOWNSTREAM
Geometry: Circular Circular
Span(in): 30.00 30.00
Rise(in): 30.00 30.00
avert(ft): 8 100
                                                        Friction Equation: Automatic
                                                     Solution Algorithm: Most Restrictive Flow: Both
                                                      Entrance Loss Coef: 0.00
                                                       Exit Loss Coef: 1.00
   Invert(ft): 8.100
                             7.500
                                                           Bend Loss Coef: 0.00
 Manning's N: 0.013000
                            0.013000
                                                       Outlet Ctrl Spec: Use dc or tw
Top Clip(in): 1.000
                             1.000
                                                          Inlet Ctrl Spec: Use dc
                                                        Stabilizer Option: None
Bot Clip(in): 1.000
                             1.000
Upstream FHWA Inlet Edge Description:
Circular Concrete: Square edge w/ headwall
Downstream FHWA Inlet Edge Description:
Circular Concrete: Square edge w/ headwall
Inverts obtained from P-2040 structure ID
______
Name: CN10N10a
                                                                Length(ft): 500.00
        Group: BASE
                                   To Node: N10a
                                                                    Count: 1
               UPSTREAM
                             DOWNSTREAM
                                                         Friction Equation: Automatic
                                                     Friction Equation: ..... Solution Algorithm: Automatic
     Geometry: Trapezoidal
                              Trapezoidal
   Invert(ft): -3.000
                               -4.000
                                                                      Flow: Both
                                                        Contraction Coef: 0.100
 TClpInitZ(ft): 9999.000
                              9999.000
  Manning's N: 0.500000
                              0.500000
                                                            Expansion Coef: 0.300
                                                        Entrance Loss Coef: 0.000
Exit Loss Coef: 0.000
 Top Clip(ft): 0.000
Bot Clip(ft): 0.000
                              0.000
                             0.000
                                                          Outlet Ctrl Spec: Use dc or tw
    Main XSec:
 AuxElev1(ft):
                                                           Inlet Ctrl Spec: Use dc
    Aux XSec1:
                                                          Stabilizer Option: None
 AuxElev2(ft):
    Aux XSec2:
Top Width(ft):
    Depth(ft):
Bot Width(ft): 750.000
                              750.000
 LtSdSlp(h/v): 0.50
 RtSdSlp(h/v): 0.50
         Name: CN11a12 From Node: N11a Length(ft): 10974.00
                                    To Node: N12
        Group: BASE
                                                                     Count: 1
               UPSTREAM
                              DOWNSTREAM
                                                         Friction Equation: Automatic
   Geometry: Trapezoidal
Invert(ft): 3.000
                                                      Solution Algorithm: Automatic
                              Trapezoidal
                              -3.000
                                                                      Flow: Both
Invert(ft): 3.000
TClpInitZ(ft): 9999.000
                                                        Contraction Coef: 0.100
                              9999.000
  Manning's N: 0.500000
                              0.500000
                                                            Expansion Coef: 0.300
  Top Clip(ft): 0.000
                              0.000
                                                         Entrance Loss Coef: 0.000
 Bot Clip(ft): 0.000
                              0.000
                                                            Exit Loss Coef: 0.000
                                                          Outlet Ctrl Spec: Use dc or tw
Inlet Ctrl Spec: Use dc
    Main XSec:
 AuxElev1(ft):
    Aux XSec1:
                                                          Stabilizer Option: None
 AuxElev2(ft):
    Aux XSec2:
```

Top Width(ft):

```
Deptn(ii, Bot Width(ft): 500.000 500.0 Ltsdslp(h/v): 0.30 0.30 0.30
    Depth(ft):
                                500.000
         Name: CN12N12a From Node: N12 Length(ft): 500.00
                                      To Node: N12a
        Group: BASE
                                                                            Count: 1
                                 DOWNSTREAM
                                                                Friction Equation: Automatic
                 UPSTREAM
Geometry: Trapezoluca

Invert(ft): -3.000 -4.000

TClpInitZ(ft): 9999.000 9999.000

Manning's N: 0.500000 0.500000

Top Clip(ft): 0.000 0.000
     Geometry: Trapezoidal Trapezoidal
                                                            Solution Algorithm: Automatic
                                                                             Flow: Both
                                                              Contraction Coef: 0.100
Expansion Coef: 0.300
                                                               Entrance Loss Coef: 0.000
                                                                  Exit Loss Coef: 0.000
   Main XSec:
                                                                 Outlet Ctrl Spec: Use dc or tw
 AuxElev1(ft):
                                                                  Inlet Ctrl Spec: Use dc
   Aux XSec1:
                                                                Stabilizer Option: None
 AuxElev2(ft):
   Aux XSec2:
Top Width(ft):
    Depth(ft):
Bot Width(ft): 750.000
                                750.000
 LtSdSlp(h/v): 0.30
                              0.30
 RtSdSlp(h/v): 0.30
                                                        Length(ft): 22500.00
Count: 1
         Name: CN1aN2 From Node: N1a
Group: BASE To Node: N2
        Group: BASE
                UPSTREAM
                                DOWNSTREAM
                                                           Friction Equation: Automatic
Solution Algorithm: Automatic
                                                               Friction Equation: Automatic
                             DOWNSTREAM
Parabolic
     Geometry: Parabolic
   Invert(ft): 20.500
                                 12.000
                                                                              Flow: Both
TClpInitZ(ft): 9999.000
Manning's N: 0.500000
Top Clip(ft): 0.000
Bot Clip(ft): 0.000
                                                              Contraction Coef: 0.100
Expansion Coef: 0.300
Entrance Loss Coef: 0.000
Exit Loss Coef: 0.000
                                 9999.000
0.500000
                                 0.000
                                 0.000
    Main XSec:
                                                                 Outlet Ctrl Spec: Use dc or tw
 AuxElev1(ft):
                                                                  Inlet Ctrl Spec: Use dc
   Aux XSec1:
                                                                Stabilizer Option: None
 AuxElev2(ft):
   Aux XSec2:
Top Width(ft): 750.000
                                 750.000
   Depth(ft): 2.500
                               2.500
Bot Width(ft):
 LtSdSlp(h/v):
 RtSdSlp(h/v):
         Name: CN2aN3 From Node: N2a Length(ft): 45200.00
        Group: BASE
                                        To Node: N3
                                                                            Count: 1
                UPSTREAM
                                 DOWNSTREAM
                                                                Friction Equation: Automatic
                                                            Solution Algorithm: Automatic
    Geometry: Trapezoidal
                                 Trapezoidal
   Invert(ft): 11.000
                                 -1.500
                                                                              Flow: Both
TClpInitZ(ft): 9999.000
                                 9999.000
                                                              Contraction Coef: 0.100
                                                               Expansion Coef: 0.300
Entrance Loss Coef: 0.000
Exit Loss Coef: 0.000
 Manning's N: 0.500000
Top Clip(ft): 0.000
Bot Clip(ft): 0.000
                                 0.500000
                                 0.000
                                0.000
   Main XSec:
                                                                 Outlet Ctrl Spec: Use dc or tw
 AuxElev1(ft):
                                                                  Inlet Ctrl Spec: Use dc
    Aux XSec1:
                                                                Stabilizer Option: None
 AuxElev2(ft):
   Aux XSec2:
Top Width(ft):
   Depth(ft):
Bot Width(ft): 750.000
                           0.30
 LtSdSlp(h/v): 0.30
 RtSdSlp(h/v): 0.30
         Name: CN3aN4 From Node: N3a Length(ft): 11572.00
                                                                         Count: 1
        Group: BASE
                                      To Node: N4
                UPSTREAM
                                DOWNSTREAM
                                                               Friction Equation: Automatic
                                                           Friction Equation: Automatic
   Geometry: Trapezoidal
Invert(ft): -2.600
                                 Trapezoidal
                                 -3.600
                                                                             Flow: Both
                                                              Contraction Coef: 0.100
TClpInitZ(ft): 9999.000
                                 9999.000
  Manning's N: 0.050000
                                 0.050000
                                                                  Expansion Coef: 0.300
 Top Clip(ft): 0.000
                                                               Entrance Loss Coef: 0.000
```

0.000

```
Bot Clip(ft): 0.000
                                    0.000
                                                                          Exit Loss Coef: 0.000
    Main XSec:
                                                                       Outlet Ctrl Spec: Use dc or tw
                                                                        Inlet Ctrl Spec: Use dc
  AuxElev1(ft.):
    Aux XSec1:
                                                                      Stabilizer Option: None
  AuxElev2(ft):
    Aux XSec2:
Top Width(ft):
     Depth(ft):
Bot Width(ft): 100.000 100.000
 LtSdSlp(h/v): 0.50
                                    0.50
 RtSdSlp(h/v): 0.50
          Name: CN4N4a From Node: N4 Length(ft): 500.00
                                         To Node: N4a
                                                                             Count: 1
          Group: BASE
                                                      Friction Equation: Automatic
Solution Algorithm: Automatic
UPSTREAM DOWNSTREAM
Geometry: Trapezoidal Trapezoidal
Invert(ft): -3.600 -4.600
TClpInitZ(ft): 9999.000 9999.000
Manning's N: 0.500000 0.500000
Top Clip(ft): 0.000 0.000
Bot Clip(ft): 0.000 0.000
                                                                                     Flow: Both
                                                                   Contraction Coef: 0.100
                                                                        Expansion Coef: 0.300
                                                                    Entrance Loss Coef: 0.000
                                                                      Exit Loss Coef: 0.000
    Main XSec:
                                                                       Outlet Ctrl Spec: Use dc or tw
                                                                        Inlet Ctrl Spec: Use dc
  AuxElev1(ft):
    Aux XSec1:
                                                                      Stabilizer Option: None
  AuxElev2(ft):
    Aux XSec2:
Top Width(ft):
     Depth(ft):
Bot Width(ft): 1000.000 1000.000

Ltsdslp(h/v): 0.50 0.50

Rtsdslp(h/v): 0.50 0.00
______
          Name: CN5aN6 From Node: N5a Length(ft): 12807.00
                                          To Node: N6
                                                                                   Count: 1
          Group: BASE
UPSTREAM DOWNSTREAM
Geometry: Trapezoidal Trapezoidal
Invert(ft): 5.200 0.000
TClpInitZ(ft): 9999.000 9999.000
Manning's N: 0.050000 0.050000
Top Clip(ft): 0.000 0.000
Bot Clip(ft): 0.000 0.000
                                   DOWNSTREAM
                  UPSTREAM
                                                                     Friction Equation: Automatic
                                                              Solution Algorithm: Automatic
                                                                                    Flow: Both
                                                                   Contraction Coef: 0.100
Expansion Coef: 0.300
                                                                    Entrance Loss Coef: 0.000
                                                                        Exit Loss Coef: 0.000
    Main XSec:
                                                                       Outlet Ctrl Spec: Use dc or tw
  AuxElev1(ft):
                                                                        Inlet Ctrl Spec: Use dc
    Aux XSec1:
                                                                      Stabilizer Option: None
 AuxElev2(ft):
    Aux XSec2:
Top Width(ft):
     Depth(ft):
Bot Width(ft): 150.000
                                   150.000
 LtSdSlp(h/v): 0.50
                                  0.50
 RtSdSlp(h/v): 0.50

        Name:
        CN6N6a
        From Node:
        N6
        Length(ft):
        500.00

        Group:
        BASE
        To Node:
        N6a
        Count:
        1

         Group: BASE
                                                                Friction Equation: Automatic
Solution Algorithm: Automatic
                  UPSTREAM
                                   DOWNSTREAM
Geometry: Trapezotania
Invert(ft): -3.500 -4.500
TClpInitZ(ft): 9999.000 9999.000
"Traing's N: 0.500000 0.500000
0.000
     Geometry: Trapezoidal Trapezoidal
                                                                                     Flow: Both
                                                                   Contraction Coef: 0.100
 Manning's N: 0.500000
Top Clip(ft): 0.000
Bot Clip(ft): 0.000
                                                                    Expansion Coef: 0.300
Entrance Loss Coef: 0.000
Exit Loss Coef: 0.000
                                   0.000
                                                                       Outlet Ctrl Spec: Use dc or tw
    Main XSec:
  AuxElev1(ft):
                                                                        Inlet Ctrl Spec: Use dc
    Aux XSec1:
                                                                      Stabilizer Option: None
  AuxElev2(ft):
    Aux XSec2:
Top Width(ft):
    Depth(ft):
                                1000.000
0.30
 Bot Width(ft): 1000.000
  LtSdSlp(h/v): 0.30
 RtSdSlp(h/v): 0.30
                                                              Length(ft): 14300.00
           Name: CN7aN8 From Node: N7a
```

To Node: N8

Group: BASE

Count: 1

```
UPSTREAM
                            DOWNSTREAM
                                                      Friction Equation: Automatic
     Geometry: Trapezoidal
                            Trapezoidal
                                                     Solution Algorithm: Automatic
   Invert(ft): 8.000
                            -3.000
                                                                 Flow: Both
TClpInitZ(ft): 9999.000
                            9999.000
                                                      Contraction Coef: 0.100
  Manning's N: 0.050000
                            0.050000
                                                        Expansion Coef: 0.300
 Top Clip(ft): 0.000
                            0.000
                                                     Entrance Loss Coef: 0.000
 Bot Clip(ft): 0.000
                                                        Exit Loss Coef: 0.000
                            0.000
    Main XSec:
                                                       Outlet Ctrl Spec: Use dc or tw
 AuxElev1(ft):
                                                        Inlet Ctrl Spec: Use dc
    Aux XSec1:
                                                      Stabilizer Option: None
 AuxElev2(ft):
    Aux XSec2:
Top Width(ft):
    Depth(ft):
Bot Width(ft): 500.000
                            500.000
 ItSdSlp(h/v): 0.30
                            0.30
 RtSdSlp(h/v): 0.30
        Name: CN8N8a From Node: N8 Length(ft): 500.00
       Group: BASE
                                 To Node: N8a
                                                                 Count: 1
              UPSTREAM
                            DOWNSTREAM
                                                     Friction Equation: Automatic
                                                  Solution Algorithm: Automatic
Flow: Both
     Geometry: Trapezoidal
                          Trapezoidal
   Invert(ft): -3.000
                           -4.000
                                                     Contraction Coef: 0.100
TClpInitZ(ft): 9999.000
                            9999.000
  Manning's N: 0.500000
                            0.500000
                                                        Expansion Coef: 0.300
 Top Clip(ft): 0.000
                            0.000
                                                     Entrance Loss Coef: 0.000
 Bot Clip(ft): 0.000
                            0.000
                                                        Exit Loss Coef: 0.000
   Main XSec:
                                                       Outlet Ctrl Spec: Use dc or tw
 AuxElev1(ft):
                                                        Inlet Ctrl Spec: Use dc
    Aux XSec1:
                                                      Stabilizer Option: None
 AuxElev2(ft):
    Aux XSec2:
Top Width(ft):
    Depth(ft):
                           1000.000
Bot Width(ft): 1000.000
 LtSdSlp(h/v): 0.30
                            0.30
 RtSdSlp(h/v): 0.30
                           0.30
        Name: CN9aN10 From Node: N9a Length(ft): 10200.00
                                To Node: N10
                                                            Count: 1
       Group: BASE
              UPSTREAM
                           DOWNSTREAM
                                                     Friction Equation: Automatic
                                                  Solution Algorithm: Automatic
    Geometry: Trapezoidal Trapezoidal
Invert(ft): 7.500
TClpInitZ(ft): 9999.000
Manning's N: 0.050000
                           -3.000
                                                                 Flow: Both
                            9999.000
0.050000
                                                     Contraction Coef: 0.100
                                                        Expansion Coef: 0.300
 Top Clip(ft): 0.000
                            0.000
                                                     Entrance Loss Coef: 0.000
 Bot Clip(ft): 0.000
                                                        Exit Loss Coef: 0.000
   Main XSec:
                                                       Outlet Ctrl Spec: Use dc or tw
 AuxElev1(ft):
                                                        Inlet Ctrl Spec: Use dc
   Aux XSec1:
                                                      Stabilizer Option: None
 AuxElev2(ft):
    Aux XSec2:
Top Width(ft):
    Depth(ft):
Bot Width(ft): 150.000
                            150.000
 LtSdSlp(h/v): 0.50
                            0.50
 RtSdSlp(h/v): 0.50
                            0.50
______
       Name: WN11N9-O
                               From Node: N11
       Name: WNIIN9-O
Group: BASE
Flow: Both
                               To Node: N9
        Flow: Both
                                  Count: 1
        Type: Horizontal
                                Geometry: Rectangular
                  Span(in): 120.00
                  Rise(in): 36.00
                Invert(ft): 12.000
      Control Elevation(ft): 12.000
                                          TABLE
        Bottom Clip(in): 0.000
Top Clip(in): 0.000
Weir Discharge Coef: 3.200
     Orifice Discharge Coef: 0.600
```

```
Name: WN5N3-0 From Node: N5
                                To Node: N3
       Group: BASE
        Flow: Both
                                    Count: 1
        Type: Horizontal
                                Geometry: Rectangular
                Span(in): 120.00
Rise(in): 36.00
Invert(ft): 5.000
      Control Elevation(ft): 5.000
                                          TABLE
            Bottom Clip(in): 0.000
     Top Clip(in): 0.000
Weir Discharge Coef: 3.200
Orifice Discharge Coef: 0.600
                             From Node: N7
        Name: WN7N5-O
       Group: BASE
                                To Node: N5
        Flow: Both
                                    Count: 1
        Type: Horizontal
                               Geometry: Rectangular
                  Span(in): 120.00
                Rise(in): 36.00
Invert(ft): 10.000
      Control Elevation(ft): 10.000
                                          TABLE
           Bottom Clip(in): 0.000
     Top Clip(in): 0.000
Weir Discharge Coef: 3.200
Orifice Discharge Coef: 0.600
        Name: WN9N7-O From Node: N9
                               To Node: N7
       Group: BASE
        Flow: Both
                                    Count: 1
        Type: Horizontal
                               Geometry: Rectangular
                  Span(in): 120.00
      Rise(in): 36.00
Invert(ft): 11.000
Control Elevation(ft): 11.000
                                          TABLE
           Bottom Clip(in): 0.000
              Top Clip(in): 0.000
        Weir Discharge Coef: 3.200
     Orifice Discharge Coef: 0.600
______
        Name: 25yr-72hr
    Filename: U:\Projects-Continuing\08006.02-Yucca Pens Hydrologic Restoration Plan\08006.02-Data Analysis\08006.02-Yu
   Override Defaults: Yes
Storm Duration(hrs): 72.00
         Rainfall File: Flmod
   Rainfall Amount(in): 10.50
Time(hrs)
              Print Inc(min)
9999.000
              5.00
       Name: 2yr-24hr
    Filename: U:\Projects-Continuing\08006.02-Yucca Pens Hydrologic Restoration Plan\08006.02-Data Analysis\08006.02-Yu
     Override Defaults: Yes
   Storm Duration(hrs): 24.00
Rainfall File: Flmod
   Rainfall Amount(in): 4.50
              Print Inc(min)
9999.000
              5.00
Name: 25yr-72hr
                               Hydrology Sim: 25yr-72hr
```

```
Filename: U:\Projects-Continuing\08006.02-Yucca Pens Hydrologic Restoration Plan\08006.02-Data Analysis\08006.02-Yu
    Execute: Yes
                   Restart: No
                                      Patch: No
 Alternative: No
      Max Delta Z(ft): 1.00
                                      Delta Z Factor: 0.00500
  Time Step Optimizer: 10.000
   Start Time(hrs): 0.000
Min Calc Time(sec): 0.5000
                                        End Time(hrs): 250.00
                                  Max Calc Time(sec): 60.0000
                                       Boundary Flows:
      Boundary Stages:
          Print Inc(min)
Time(hrs)
999.000
           15.000
Group
            Run
BASE
            Yes
      Name: 2yr-24hr
                         Hydrology Sim: 2yr-24hr
   Filename: U:\Projects-Continuing\08006.02-Yucca Pens Hydrologic Restoration Plan\08006.02-Data Analysis\08006.02-Yu
    Execute: Yes
                   Restart: No
                                      Patch: No
 Alternative: No
      Max Delta Z(ft): 1.00
                                     Delta Z Factor: 0.00500
   Time Step Optimizer: 10.000
      Start Time(hrs): 0.000
                                       End Time(hrs): 250.00
                                  Max Calc Time(sec): 60.0000
   Min Calc Time(sec): 0.5000
      Boundary Stages:
                                       Boundary Flows:
Time(hrs)
           Print Inc(min)
999.000
            15.000
Group
            Run
BASE
Name: N12
                          Node: N12
                                                Type: Stage
   Time(hrs)
               Stage(ft.)
0.000
             1.000
1.000
______
   Name: N6
                         Node: N6
                                             Type: Stage
    Time(hrs)
               Stage(ft)
             1.000
       0.000
    1000.000
                    1.000
                  Node: N4
   Name: N4
                                               Type: Stage
    Time(hrs) Stage(ft)
       0.000 1.000
    1000.000
                   1.000
   Name: N8
                   Node: N8
                                               Type: Stage
   Time(hrs)
               Stage(ft)
0.000 1.000
1000.000 1.000
    Name: N10
                          Node: N10
                                                Type: Stage
    Time(hrs)
                Stage(ft)
      0.000 1.000
     1000.000
                    1.000
```

08006.02_YPHRP_WMM_Task2EC

Name Jurisdiction	Tributary Area (acres)	DCIA (acres)	DCIA (%)	Loading Factor	<u>Parameter</u>	<u>Units</u>	Storm_ Water	Base Flow	Point Source	<u>CSO</u>	<u>Total</u>	Storm Water with BMP Controls	CSOs with Controls	Total with Controls	Reduction (%)
GSE2 GatorSlough We	7,041	1,322	18.8		Flow	(ac-ft/yr)	8,197	2,347	146	0	10,689	8,197	0	10,689	0.0
GSE2 GatorSlough We	7,041	1,322	18.8	medium	BOD	lbs/yr	1.24E+005	7,661	2,183	0	1.34E+005	1.21E+005	0	1.30E+005	2.4
GSE2 GatorSlough We	7,041	1,322	18.8	medium	Cd	lbs/yr	14	0	2	0	16	13	0	15	6.8
GSE2 GatorSlough We	7,041	1,322	18.8	medium	COD	lbs/yr	1.36E+006	44,689	0	0	1.41E+006	1.34E+006	0	1.39E+006	1.4
GSE2 GatorSlough We	7,041	1,322	18.8	medium	Cu	lbs/yr	199	6	0.87	0	206	187	0	194	5.6
GSE2 GatorSlough We	7,041	1,322	18.8	medium	DP	lbs/yr	2,691	383	0	0	3,074	2,587	0	2,970	3.4
GSE2 GatorSlough We	7,041	1,322	18.8	medium	NO23	lbs/yr	8,776	255	1,319	0	10,351	8,662	0	10,237	1.1
GSE2 GatorSlough We	7,041	1,322	18.8	medium	Pb	lbs/yr	211	6	2	0	219	198	0	206	5.8
GSE2 GatorSlough We	7,041	1,322	18.8	medium	TDS	lbs/yr	2.55E+006	8.62E+005	2.38E+005	0	3.65E+006	2.52E+006	0	3.62E+006	0.8
GSE2 GatorSlough We	7,041	1,322	18.8	medium	TKN	lbs/yr	28,330	4,597	515	0	33,442	28,030	0	33,141	0.9
GSE2 GatorSlough We	7,041	1,322	18.8	medium	TP	lbs/yr	5,239	511	119	0	5,868	5,121	0	5,750	2.0
GSE2 GatorSlough We	7,041	1,322	18.8	medium	TSS	lbs/yr	9.72E+005	95,763	1,165	0	1.07E+006	9.21E+005	0	1.02E+006	4.8
GSE2 GatorSlough We	7,041	1,322	18.8	medium	Zn	lbs/yr	1,188	51	20	0	1,259	1,144	0	1,215	3.5
GSE1 GatorSlough Ee	19,429	2,023	10.4		Flow	(ac-ft/yr)	16,421	6,476	202	0	23,099	16,421	0	23,099	0.0
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	BOD	lbs/yr	1.30E+005	21,140	3,022	0	1.54E+005	1.28E+005	0	1.53E+005	1.1
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	Cd	lbs/yr	11	0	3	0	14	10	0	13	3.4
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	COD	lbs/yr	2.31E+006	1.23E+005	0	0	2.43E+006	2.29E+006	0	2.42E+006	0.5
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	Cu	lbs/yr	59	18	1	0	78	51	0	70	10.8
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	DP	lbs/yr	3,133	1,057	0	0	4,190	3,034	0	4,091	2.4
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	NO23	lbs/yr	13,725	705	1,826	0	16,256	13,598	0	16,129	0.8
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	Pb	lbs/yr	68	18	3	0	89	61	0	82	8.2
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	TDS	lbs/yr	4.51E+006	2.38E+006	3.30E+005	0	7.22E+006	4.49E+006	0	7.20E+006	0.3
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	TKN	lbs/yr	47,016	12,684	713	0	60,414	46,709	0	60,106	0.5
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	TP	lbs/yr	6,774	1,409	165	0	8,348	6,640	0	8,214	1.6
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	TSS	lbs/yr	1.37E+006	2.64E+005	1,613	0	1.63E+006	1.33E+006	0	1.59E+006	2.4
GSE1 GatorSlough Ee	19,429	2,023	10.4	medium	Zn	lbs/yr	1,310	141	28	0	1,479	1,285	0	1,454	1.7
GSEB GatorSlough Ea	9,450	995	10.5		Flow	(ac-ft/yr)	8,029	3,150	179	0	11,359	8,029	0	11,359	0.0
GSEB GatorSlough Ea	9,450	995	10.5	medium	BOD	lbs/yr	1.14E+005	10,282	2,686	0	1.26E+005	1.13E+005	0	1.26E+005	0.6
GSEB GatorSlough Ea	9,450	995	10.5	medium	Cd	lbs/yr	13	0	3	0	16	13	0	16	1.4
GSEB GatorSlough Ea	9,450	995	10.5	medium	COD	lbs/yr	1.20E+006	59,981	0	0	1.26E+006	1.19E+006	0	1.25E+006	0.5
GSEB GatorSlough Ea	9,450	995	10.5	medium	Cu	lbs/yr	191	9	1	0	200	187	0	197	1.7
GSEB GatorSlough Ea	9,450	995	10.5	medium	DP	lbs/yr	2,807	514	0	0	3,321	2,766	0	3,280	1.2
GSEB GatorSlough Ea	9,450	995	10.5	medium	NO23	lbs/yr	9,210	343	1,624	0	11,176	9,157	0	11,123	0.5
GSEB GatorSlough Ea	9,450	995	10.5	medium	Pb	lbs/yr	137	9	2	0	148	134	0	145	2.1
GSEB GatorSlough Ea	9,450	995	10.5	medium	TDS	lbs/yr	2.21E+006	1.16E+006	2.93E+005	0	3.66E+006	2.20E+006	0	3.65E+006	0.3
GSEB GatorSlough Ea	9,450	995	10.5	medium	TKN	lbs/yr	30,373	6,169	634	0	37,176	30,249	0	37,052	0.3
GSEB GatorSlough Ea	9,450	995	10.5	medium	TP	lbs/yr	5,494	685	146	0	6,326	5,440	0	6,272	0.9
GSEB GatorSlough Ea	9,450	995	10.5	medium	TSS	lbs/yr	1.08E+006	1.29E+005	1,433	0	1.21E+006	1.07E+006	0	1.20E+006	1.4

Name Jurisdiction	Tributary Area (acres)	DCIA (acres)	DCIA (%)	Loading Factor	<u>Parameter</u>	<u>Units</u>	Storm_ Water	Base Flow	Point Source	<u>CSO</u>	<u>Total</u>	Storm Water with BMP Controls	CSOs with Controls	Total with Controls	Reduction (%)
GSEB GatorSlough Ea	9,450	995	10.5	medium	Zn	lbs/yr	1,240	69	25	0	1,333	1,228	0	1,322	0.9
GSW GatorSlough We	1,021	70	6.8		Flow	(ac-ft/yr)	724	340	0	0	1,064	724	0	1,064	0.0
GSW GatorSlough We	1,021	70	6.8	medium	BOD	lbs/yr	8,465	1,111	0	0	9,576	8,451	0	9,562	0.1
GSW GatorSlough We	1,021	70	6.8	medium	Cd	lbs/yr	0.85	0	0	0	0.85	0.84	0	0.84	0.4
GSW GatorSlough We	1,021	70	6.8	medium	COD	lbs/yr	1.04E+005	6,480	0	0	1.11E+005	1.04E+005	0	1.11E+005	0.1
GSW GatorSlough We	1,021	70	6.8	medium	Cu	lbs/yr	7	0.93	0	0	8	7	0	8	0.2
GSW GatorSlough We	1,021	70	6.8	medium	DP	lbs/yr	213	56	0	0	268	212	0	268	0.3
GSW GatorSlough We	1,021	70	6.8	medium	NO23	lbs/yr	719	37	0	0	756	718	0	755	0.2
GSW GatorSlough We	1,021	70	6.8	medium	Pb	lbs/yr	6	0.93	0	0	7	6	0	7	0.3
GSW GatorSlough We	1,021	70	6.8	medium	TDS	lbs/yr	2.01E+005	1.25E+005	0	0	3.26E+005	2.01E+005	0	3.26E+005	0.1
GSW GatorSlough We	1,021	70	6.8	medium	TKN	lbs/yr	2,562	667	0	0	3,229	2,559	0	3,225	0.1
GSW GatorSlough We	1,021	70	6.8	medium	TP	lbs/yr	443	74	0	0	517	441	0	515	0.3
GSW GatorSlough We	1,021	70	6.8	medium	TSS	lbs/yr	1.02E+005	13,886	0	0	1.16E+005	1.01E+005	0	1.15E+005	0.6
GSW GatorSlough We	1,021	70	6.8	medium	Zn	lbs/yr	120	7	0	0	128	120	0	127	0.4
	2 200	201	120		E.	(6/)									
YPEB Yucca Pen wate	2,200	281	12.8		Flow	(ac-ft/yr)	2,056	733	280	0	3,070	2,056	0	3,070	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	BOD	lbs/yr	10,628	2,393	4,197	0	17,218	10,625	0	17,216	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	Cd	lbs/yr	1	0	4	0	6	1	0	6	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	COD	lbs/yr	2.85E+005	13,960	0	0	2.99E+005	2.85E+005	0	2.99E+005	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	Cu	lbs/yr	2	2	2	0	5	2	0	5	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	DP	lbs/yr	199	120	0	0	319	199	0	319	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	NO23	lbs/yr	1,451	80	2,537	0	4,067	1,451	0	4,067	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	Pb	lbs/yr	2	2	4	0	8	2	0	8	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	TDS	lbs/yr		2.69E+005	4.58E+005	0	1.29E+006	5.59E+005	0	1.29E+006	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	TKN	lbs/yr	4,366	1,436	990	0	6,792	4,366	0	6,792	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	TP	lbs/yr	365	160	229	0	753	365	0	753	0.0
YPEB Yucca Pen wate	2,200	281	12.8	medium	TSS	lbs/yr	49,280	29,915	2,240	0	81,434	49,161	0	81,316	0.1
YPEB Yucca Pen wate	2,200	281	12.8	medium	Zn	lbs/yr	17	16	39	0	72	17	0	72	0.1
YPW Yucca Pen Wate	438	24	5.5		Flow	(ac-ft/yr)	288	146	0	0	434	288	0	434	0.0
YPW Yucca Pen Wate	438	24	5.5	medium	BOD	lbs/yr	1,760	476	0	0	2,236	1,757	0	2,234	0.1
YPW Yucca Pen Wate	438	24	5.5	medium	Cd	lbs/yr	0.40	0	0	0	0.40	0.40	0	0.40	0.1
YPW Yucca Pen Wate	438	24	5.5	medium	COD	lbs/yr	39,995	2,778	0	0	42,773	39,973	0	42,751	0.1
YPW Yucca Pen Wate	438	24	5.5	medium	Cu	lbs/yr	0.72	0.40	0	0	1	0.71	0	1	0.3
YPW Yucca Pen Wate	438	24	5.5	medium	DP	lbs/yr	44	24	0	0	68	44	0	68	0.2
YPW Yucca Pen Wate	438	24	5.5	medium	NO23	lbs/yr	235	16	0	0	251	235	0	251	0.1
YPW Yucca Pen Wate	438	24	5.5	medium	Pb	lbs/yr	0.77	0.40	0	0	1	0.77	0	1	0.3
YPW Yucca Pen Wate	438	24	5.5	medium	TDS	lbs/yr	78,381	53,575	0	0	1.32E+005	78,338	0	1.32E+005	0.0
YPW Yucca Pen Wate	438	24	5.5	medium	TKN	lbs/yr	755	286	0	0	1,041	754	0	1,040	0.1
YPW Yucca Pen Wate	438	24	5.5	medium	TP	lbs/yr	84	32	0	0	116	84	0	116	0.2
YPW Yucca Pen Wate	438	24	5.5	medium	TSS	lbs/yr	18,474	5,953	0	0	24,426	18,358	0	24,310	0.5
YPW Yucca Pen Wate	438	24	5.5	medium	Zn	lbs/yr	16	3	0	0	19	16	0	19	0.4

Name <u>Jurisdiction</u>	Tributary Area (acres)	DCIA (acres)	DCIA (%)	Loading Factor	<u>Parameter</u>	<u>Units</u>	Storm_ Water	Base Flow	Point Source	<u>CSO</u>	<u>Total</u>	Storm Water with BMP Controls	CSOs with Controls	Total with Controls	Reduction (%)
DCEB Durden Creek W	8,572	1,371	16.0		Flow	(ac-ft/yr)	9,067	2,857	0	0	11,924	9,067	0	11,924	0.0
DCEB Durden Creek W	8,572	1,371	16.0	medium	BOD	lbs/yr	95,395	9,326	C	0	1.05E+005	95,188	0	1.05E+005	0.2
DCEB Durden Creek W	8,572	1,371	16.0	medium	Cd	lbs/yr	12	0	0	0	12	12	0	12	0.5
DCEB Durden Creek W	8,572	1,371	16.0	medium	COD	lbs/yr	1.38E+006	54,403	0	0	1.44E+006	1.38E+006	0	1.43E+006	0.1
DCEB Durden Creek W	8,572	1,371	16.0	medium	Cu	lbs/yr	99	8	0	0	107	98	0	106	1.0
DCEB Durden Creek W	8,572	1,371	16.0	medium	DP	lbs/yr	1,611	466	0	0	2,078	1,599	0	2,066	0.6
DCEB Durden Creek W	8,572	1,371	16.0	medium	NO23	lbs/yr	7,130	311	0	0	7,441	7,114	0	7,425	0.2
DCEB Durden Creek W	8,572	1,371	16.0	medium	Pb	lbs/yr	100	8	0	0	107	99	0	106	0.8
DCEB Durden Creek W	8,572	1,371	16.0	medium	TDS	lbs/yr	2.59E+006	1.05E+006	0	0	3.64E+006	2.59E+006	0	3.64E+006	0.1
DCEB Durden Creek W	8,572	1,371	16.0	medium	TKN	lbs/yr	22,843	5,596	0	0	28,439	22,805	0	28,401	0.1
DCEB Durden Creek W	8,572	1,371	16.0	medium	TP	lbs/yr	2,785	622	0	0	3,407	2,769	0	3,391	0.5
DCEB Durden Creek W	8,572	1,371	16.0	medium	TSS	lbs/yr	5.66E+005	1.17E+005	0	0	6.82E+005	5.61E+005	0	6.78E+005	0.7
DCEB Durden Creek W	8,572	1,371	16.0	medium	Zn	lbs/yr	680	62	0	0	743	677	0	740	0.4
DCW Durden Creek W	602	28	4.6		Flow	(ac-ft/yr)	377	201	O	0	577	377	0	577	0.0
DCW Durden Creek W	602	28	4.6	medium	BOD	lbs/yr	2,938	655	0	0	3,593	2,932	0	3,587	0.2
DCW Durden Creek W	602	28	4.6	medium	Cd	lbs/yr	0.49	0	O	0	0.49	0.49	0	0.49	0.3
DCW Durden Creek W	602	28	4.6	medium	COD	lbs/yr	52,224	3,822	O	0	56,045	52,168	0	55,989	0.1
DCW Durden Creek W	602	28	4.6	medium	Cu	lbs/yr	1	0.55	0	0	2	1	0	2	0.3
DCW Durden Creek W	602	28	4.6	medium	DP	lbs/yr	78	33	C	0	110	77	0	110	0.3
DCW Durden Creek W	602	28	4.6	medium	NO23	lbs/yr	334	22	0	0	355	333	0	355	0.2
DCW Durden Creek W	602	28	4.6	medium	Pb	lbs/yr	1	0.55	C	0	2	1	0	2	0.4
DCW Durden Creek W	602	28	4.6	medium	TDS	lbs/yr	1.02E+005	73,701	0	0	1.76E+005	1.02E+005	0	1.76E+005	0.1
DCW Durden Creek W	602	28	4.6	medium	TKN	lbs/yr	1,152	393	0	0	1,545	1,151	0	1,544	0.1
DCW Durden Creek W	602	28	4.6	medium	TP	lbs/yr	162	44	C	0	206	162	0	205	0.3
DCW Durden Creek W	602	28	4.6	medium	TSS	lbs/yr	39,517	8,189	C	0	47,706	39,225	0	47,414	0.6
DCW Durden Creek W	602	28	4.6	medium	Zn	lbs/yr	42	4	0	0	46	42	0	46	0.4
					-										
GBEB Greenwell Bran	5,912	578	9.8		Flow	(ac-ft/yr)	4,852	1,971	0	_	6,823	4,852	0	6,823	0.0
GBEB Greenwell Bran	5,912	578		medium	BOD	lbs/yr	31,825	6,432	C		38,257	31,602	0	38,034	0.6
GBEB Greenwell Bran	5,912	578	9.8	medium	Cd	lbs/yr	4	0	C	0	4	4	0	4	1.3
GBEB Greenwell Bran	5,912	578	9.8	medium	COD	lbs/yr	6.78E+005	37,522	C	0	7.15E+005	6.76E+005	0	7.14E+005	0.2
GBEB Greenwell Bran	5,912	578	9.8	medium	Cu	lbs/yr	14	5	C	0	19	13	0	18	5.2
GBEB Greenwell Bran	5,912	578	9.8	medium	DP	lbs/yr	703	322	C	0	1,025	692	0	1,013	1.1
GBEB Greenwell Bran	5,912	578	9.8	medium	NO23	lbs/yr	3,783	214	O	0	3,998	3,769	0	3,983	0.4
GBEB Greenwell Bran	5,912	578	9.8	medium	Pb	lbs/yr	13	5	O	0	19	12	0	18	4.7
GBEB Greenwell Bran	5,912	578	9.8	medium	TDS	lbs/yr	1.32E+006	7.24E+005	C	0	2.05E+006	1.32E+006	0	2.05E+006	0.1
GBEB Greenwell Bran	5,912	578	9.8	medium	TKN	lbs/yr	12,099	3,859	C	0	15,958	12,063	0	15,922	0.2
GBEB Greenwell Bran	5,912	578	9.8	medium	TP	lbs/yr	1,369	429	C	0	1,798	1,354	0	1,783	0.8
GBEB Greenwell Bran	5,912	578	9.8	medium	TSS	lbs/yr	2.65E+005	80,404	C	0	3.46E+005	2.61E+005	0	3.41E+005	1.4
GBEB Greenwell Bran	5,912	578	9.8	medium	Zn	lbs/yr	235	43	0	0	278	232	0	275	1.2
u			40.5		E.	(6/)			_				_		
GBW Greenwell Bran	1,428	151			Flow	(ac-ft/yr)	1,214	476	0		1,690	1,214	0	1,690	0.0
GBW Greenwell Bran	1,428	151	10.5	medium	BOD	lbs/yr	15,943	1,553	C	0	17,496	15,925	0	17,478	0.1

Name	Jurisdiction	Tributary Area (acres)	DCIA (acres)	DCIA (%)	Loading Factor	Parameter	Units	Storm_ Water	Base Flow	Point Source	<u>CSO</u>	<u>Total</u>	Storm Water with BMP Controls	CSOs with Controls	Total with Controls	Reduction (%)
GBW	Greenwell Bran	1,428	151	10.5	medium	Cd	lbs/yr	1	0	0	0	1	1	0	1	0.3
GBW	Greenwell Bran	1,428	151	10.5	medium	COD	lbs/yr	1.81E+005	9,060	0	0	1.90E+005	1.81E+005	0	1.90E+005	0.1
GBW	Greenwell Bran	1,428	151	10.5	medium	Cu	lbs/yr	20	1	0	0	21	20	0	21	0.1
GBW	Greenwell Bran	1,428	151	10.5	medium	DP	lbs/yr	386	78	0	0	464	385	0	463	0.3
GBW	Greenwell Bran	1,428	151	10.5	medium	NO23	lbs/yr	1,225	52	0	0	1,277	1,223	0	1,275	0.1
GBW	Greenwell Bran	1,428	151	10.5	medium	Pb	lbs/yr	16	1	0	0	17	16	0	17	0.2
GBW	Greenwell Bran	1,428	151	10.5	medium	TDS	lbs/yr	3.44E+005	1.75E+005	0	0	5.19E+005	3.44E+005	0	5.19E+005	0.1
GBW	Greenwell Bran	1,428	151	10.5	medium	TKN	lbs/yr	4,327	932	0	0	5,259	4,322	0	5,254	0.1
GBW	Greenwell Bran	1,428	151	10.5	medium	TP	lbs/yr	758	104	0	0	862	756	0	860	0.2
GBW	Greenwell Bran	1,428	151	10.5	medium	TSS	lbs/yr	1.65E+005	19,415	0	0	1.84E+005	1.64E+005	0	1.83E+005	0.5
GBW	Greenwell Bran	1,428	151	10.5	medium	Zn	lbs/yr	198	10	0	0	208	197	0	207	0.3
LVR	Longview Run V	1,567	100	6.4		Flow	(ac-ft/yr)	1,084	522	0	0	1,606	1,084	0	1,606	0.0
LVR	Longview Run V	1,567	100	6.4	medium	BOD	lbs/yr	10,932	1,705	0	0	12,637	10,894	0	12,599	0.3
LVR	Longview Run V	1,567	100	6.4	medium	Cd	lbs/yr	1	0	0	0	1	1	0	1	1.0
LVR	Longview Run V	1,567	100	6.4	medium	COD	lbs/yr	1.57E+005	9,944	0	0	1.67E+005	1.57E+005	0	1.67E+005	0.2
LVR	Longview Run V	1,567	100	6.4	medium	Cu	lbs/yr	8	1	0	0	10	8	0	10	1.2
LVR	Longview Run V	1,567	100	6.4	medium	DP	lbs/yr	273	85	0	0	359	272	0	357	0.5
LVR	Longview Run V	1,567	100	6.4	medium	NO23	lbs/yr	1,034	57	0	0	1,091	1,031	0	1,088	0.3
LVR	Longview Run V	1,567	100	6.4	medium	Pb	lbs/yr	10	1	0	0	11	10	0	11	1.9
LVR	Longview Run V	1,567	100	6.4	medium	TDS	lbs/yr	3.06E+005	1.92E+005	0	0	4.98E+005	3.05E+005	0	4.97E+005	0.1
LVR	Longview Run V	1,567	100	6.4	medium	TKN	lbs/yr	3,627	1,023	0	0	4,649	3,619	0	4,642	0.2
LVR	Longview Run V	1,567	100	6.4	medium	TP	lbs/yr	592	114	0	0	705	589	0	702	0.5
LVR	Longview Run V	1,567	100	6.4	medium	TSS	lbs/yr	1.42E+005	21,308	0	0	1.63E+005	1.40E+005	0	1.61E+005	1.0
LVR	Longview Run V	1,567	100	6.4	medium	Zn	lbs/yr	162	11	0	0	174	161	0	172	0.7

APPENDIX C Geodatabase and Metadata Files

Task 2 Technical Memorandum Yucca Pens Hydrologic Restoration Plan

File: Task 2 Readme

NOTE:

This file contains an inventory of the digital data found on the Yucca Pens Hydrologic Restoration Plan DVD. This DVD contains all of the report text, figures, and digital data (GIS coverages including geodatabase) for Task 2 of the study. The main directory structure in the DVD is given below.

Folder Name Description

Readme Contains the "Task 2 Readme" file (contents of this file)

Report Contains complete report including Figures and Appendices

Task 1-Base Map

Task 2-GIS Files Contains ArcGIS Coverages (includes metadata in XML format)

Contains ArcGIS Coverages (includes metadata in XML format)

Task 2-GIS Metadata/Task 1 GIS files

Contains all metadata files for Task 1 GIS files in HTML format

Task 2-GIS Metadata/Task 2 GIS files

Contains all metadata files for Task 2 GIS files in HTML format

CONDITIONS OF USE:

BPC Group provides this digital data for the express use of:

South Florida Water Management District.

Data contained herein may be subject to change without notice. Responsibility for the accuracy of current conditions and/or digital transfers is solely that of the user. The user of this information must determine the suitability for the intended purpose.

These "CONDITIONS OF USE" shall be supplied to all users of this data.

In order to access data recorded on this DVD, a compatible PC along with the following software is required:

Windows XP or higher

Microsoft Office Professional (2003 or later)

ArcGIS Version 9.2 or higher

Adobe Acrobat reader 8 or later or equivalent PDF reader

Internet Explorer Version 8 or higher or comparable software

The total hard disk space required to load all data on this DVD is approximately 3 gigabytes.

NOTE: All data presented in this DVD is for planning purposes only; they may not be suitable for engineering analysis; and the end user is solely responsible for its use. It must be verified in the field prior to any design use.

DVD Inventory

Folder Name Description

Readme Contains the content of this file (Task 2 Readme).

Report Contains complete report including Figures and Appendices.

Task 2 Technical Memorandum Yucca Pens Hydrologic Restoration Plan

File: Task 2 Readme

Task 1-Base Map Contains ArcGIS Coverages maintained/edited from Task 1

(includes metadata in XML format).

Aerials Contains aerials for Lee and Charlotte counties (195 tiles) (each

aerial is represented by 3 files: *.sdw, *.sid, *.aux).

Boundaries Contains 1 Personal Geodatabase file with 7 features classes

> containing the boundary information for Yucca Pen Creek, Durden Creek, Greenwell Branch, Longview and Gator Slough watershed. The Folder also contains 2 shapefiles of Florida County Boundary and Yucca Pens Project Area (each shapefile is represented by 6

files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx).

Contour Contains only 1 Geodatabase file of 1 ft contours for Yucca Pens

project area.

Contains 2004/2005 Land Use/ Land Cover Geodatabase file for LandUse_East.gdb

Yucca Pens project area.

Contains 2 shapefiles representing the Roads and Streets Roads

> information for Lee and Charlotte County (each shapefile is represented by 6 files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx).

Contains 2 shapefiles representing Soils in Lee and Charlotte Soils

County for Yucca Pens project area (each shapefile is represented

by 6 files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx).

Contains 4 shapefiles representing the Culverts, Bridges, Weirs Structures

and Drop Structures area (each shapefile is represented by 6 files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx). Folder also contains 1 personal geodatabase with 2 feature classes representing Historic Flow Ways (Lee County) and Flow Way connections information

for Lee County inside the Yucca Pens project

Topo_East.gdb Contains 10 ft DEM for Covering Yucca Pens project area.

Wetland Contains 3 shapefiles representing the three categories of Wetlands

inside the Yucca Pens project area (each shapefile is represented

by 6 files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx).

Task 2-GIS Files Contains ArcGIS Coverages created for Task 2 (includes metadata

in XML format).

ATV Trails Contains a shapefile for Trails/Dirt Roads inside the Yucca Pens

Project Area (each shapefile is represented by 6 files: *.dbf, *.prj,

*.sbn, *.sbx, *.shp, *.shx).

State & County

Owned Lands Contains 5 shapefiles representing the Florida State Owned Lands,

> Lee County and Charlotte County Owned Lands, Charlotte County Facilities and Harper and McNew Property layer (each shapefile is

represented by 6 files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx).

Structures Contains 7 shapefiles representing the Culverts, Bridges, Weirs, Canals, Outfalls. Swales/ditches, and Waypoints (each shapefile is

represented by 6 files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx).

C-3 08006 02-Task 2 Readme 102809

Task 2 Technical Memorandum Yucca Pens Hydrologic Restoration Plan

File: Task 2 Readme

WatershedBoundaries Contains 7 shapefiles representing the Task 2 delineated watershed

boundaries inside Yucca Pens Project Area (each shapefile is represented by 6 files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx).

Watershed Boundaries

for Modeling Contains 11 shapefiles representing the Task 2 delineated

watershed boundaries exclusively for Hydrologic and Water Quality Modeling for Yucca Pens Project Area (each shapefile is represented by 6 files: *.dbf, *.prj, *.sbn, *.sbx, *.shp, *.shx).

Task 2 GIS Metadata/Task 1 GIS Files

Aerials Contains 2 metadata files representing Aerials of Charlotte and Lee

County.

Boundaries Contains 9 metadata files for Boundaries Contour Contains 1 metadata file for Contours.

LandUse East.gdb Contains 10 metadata files for Land Use/Land Cover

Roads
Soils
Contains 2 metadata files for Roads
Contains 2 metadata files for Soils
Structures
Contains 6 metadata files for Structures
Topo_East.gdb
Contains 1 metadata file for DEM
Wetland
Contains 3 metadata files for Wetlands

Task 2 GIS Metadata/Task 2 GIS Files

ATV Trails Contains 1 metadata file for Trails/Dirt Roads

State & County

Owned Lands Contains 5 metadata files representing Florida State Owned Lands,

Lee County and Charlotte County Owned Lands, Charlotte County

Facilities and Harper and McNew Property layer.

Structures Contains 7 metadata files for Structures

Watershed Boundaries Contains 7 metadata files for Watershed Boundaries

Watershed Boundaries

for Modeling Contains 11 metadata files for Watershed Boundaries for modeling

08006.02-Task 2 Readme 102809 C-4

Task 2 Technical Memorandum Yucca Pens Hydrologic Restoration Plan List of Metadata Files in HTML Format

List of Metadata Files in HTML Format included in the

"Task 2 GIS Metadata/Task 1 GIS Files" folder.

Folder: Aerials (2007/2008 Aerials for Lee and Charlotte Counties)

There are 195 raster files of aerials: one file for each tile of the aerials. These represent the aerials for two counties: Lee and Charlotte Counties. The following two files are listed as representative of the

Lee County metadata file and Charlotte County metadata file.

charlotte county aerials.html Contains 1 Metadata file for 189 tiles for Charlotte County

lee county aerials.html Contains 1Metadata file for 6 tiles for Lee county

Folder: Boundaries (Watershed boundaries and County boundaries)

cntbnd.html Metadata file for cntbnd.shp

durden_creek.html Metadata file for feature class Durden_Creek

(Boundary.mdb)

gator_slough.html Metadata file for feature class Gator_Slough

(Boundary.mdb)

gator slough divide.html Metadata file for feature class Gator Slough Divide

(Boundary.mdb)

greenwell_branch.html Metadata file for feature class Greenwell_Branch

(Boundary.mdb)

longview_run.html Metadata file for feature class Longview_Run

(Boundary.mdb)

yucca_pens_creek.html Metadata file for feature class Yucca_Pens_Creek

(Boundary.mdb)

yucca_pens_unit.html Metadata file for feature class Yucca_Pens_Unit

(Boundary.mdb)

yucca_pens_project_area.html Metadata file for yucca_pens_project_area.shp

Folder: Contour (Topographic Contours for the Project Area)

contour10 1ft east.html Metadata file for contour10 1ft east

Folder: Landuse_East.gdb (2004/2005 Land Use Land Cover Maps)

fdem tiles east.html Metadata file for fdem tiles east

flu_234.html Metadata file for flu_234
flu_main.html Metadata file for flu_main
flu_misc.html Metadata file for flu_misc
flu_model.html Metadata file for flu_model
landuse_fluccs.html Metadata file for landuse_fluccs
landuse_source.html Metadata file for landuse_source
lu_main.html Metadata file for lu_main
lu_model.html Metadata file for lu_model

lu_model.htmlMetadata file for lu_modelstats.htmlMetadata file for stats

Folder: Roads (Major roads and streets for the project area)

MajorRoads.html Metadata file for MajorRoads.shp streets.html Metadata file for streets.shp

Folder: Soils (NRCS soils maps for the project area)

Task 2 Technical Memorandum Yucca Pens Hydrologic Restoration Plan List of Metadata Files in HTML Format

Soils_clipped_Lee.html Metadata file for Soils_clipped_Lee.shp
Soils_clipped Charlotte.html Metadata file for Soils_clipped Charlotte.shp

Folder: Structures
drop_structures_082609.html
flowways2005.html

Metadata file for Drop_Structures_082609.shp
Metadata file for feature class Flowways2005

(Flowways2005.mdb)

flowwayshistoricconnections.html Metadata file for feature class FlowwaysHistoricConnections

(Flowways2005.mdb)

sgrr_bridges_culverts.html Metadata file for SGRR_bridges_culverts.shp task_1_structures_edited.html Metadata file for Task_1_Structures_edited.shp

weir090409.html Metadata file for weir090409.shp

Folder: Topo_East.gdb (DEM raster datasets for the project area)

topoeast_10ft.html Metadata file for topoeast_10ft

Folder: Wetland (Wetland categories for the project area)

category_1.html Metadata file for category_1.shp category_2.html Metadata file for category_2.shp category_3.html Metadata file for category_3.shp

List of Metadata Files in HTML Format included in the

"Task 2 GIS Metadata/Task 2 GIS Files" folder.

Folder: ATV Trail (ATV Trails/Dirt Roads categories for the project area)

track_10.html Metadata file for Track_10.shp

Folder: State & County Owned lands (State and County owned lands for the project area)

charlotte_county_owned_lands.html

county_facilites.html

Metadata file for Charlotte_County_Owned_Lands.shp

Metadata file for County_Facilities.shp

Metadata file for County-Owned-Lands.shp

harper and monew property.html Metadata file for Harper and McNew Property.shp

state_owned_lands.html Metadata file for State_Owned_Lands.shp

Folder: Structures (Hydraulic structures: culverts, canals, weirs)

allculverts_bpc.html Metadata file for AllCulvets_BPC.shp bridges_bpc.html Metadata file for Bridges_BPC.shp canal line bpc.html Metadata file for Canal Line BPC.shp

outfall.htmlMetadata file for Outfall.shpswale_ditch.htmlMetadata file for Swale_Ditch.shpwaypoints.htmlMetadata file for Waypoints.shpweir_bpc.htmMetadata file for Weir_BPC.shp

Folder: Watershed Boundaries (Watershed Boundaries in the project area)

durden_creek.htmlMetadata file for Durden_Creek.shpgatorslough_e1.htmlMetadata file for GatorSlough_E1.shpgatorslough_e2.htmlMetadata file for GatorSlough_E2.shpgatorslough_west.htmlMetadata file for GatorSlough_West.shp

Task 2 Technical Memorandum Yucca Pens Hydrologic Restoration Plan List of Metadata Files in HTML Format

greenwell_branch.html Metadata file for Greenwell_Branch.shp longview_run.html Metadata file for Longview_Run.shp yucca_pens_creek.html Metadata file for Yucca_Pens_Creek.shp

Folder: Watershed Boundaries (Watershed Boundaries for ICPR &WMM Model)

Metadata file for Yucca WBS.shp

For Modeling durden ebs.html Metadata file for Durden_EBS.shp Metadata file for Durden_WBS.shp durden_wbs.html gatorslough e1.html Metadata file for GatorSlough E1.shp gatorslough_e2.html Metadata file for GatorSlough_E2.shp gatorslough ebs.html Metadata file for GatorSlough EBS.shp gatorslough_wbs.html Metadata file for GatorSlough_WBS.shp greenwell_ebs.html Metadata file for Greenwell_EBS.shp greenwell_wbs.html Metadata file for Greenwell_WBS.shp longview_run.html Metadata file for Longview_Run.shp yucca ebs.html Metadata file for Yucca EBS.shp

yucca wbs.html

08006.02-Metadata Files List 102809 C-7

Task 2 Technical Memorandum Yucca Pens Hydrologic Restoration Plan Example of Metadata File for "Waypoints.shp"

Metadata:

- Identification_Information
- Data_Quality_Information
- Spatial Data Organization Information
- Spatial Reference Information
- Entity_and_Attribute_Information
- Distribution Information
- Metadata_Reference_Information

Identification_Information:

Citation:

Citation_Information:
Originator: BPC Group

Publication_Date: 10/26/2009 Publication_Time: 10:00 am

Title: Waypoints

Geospatial_Data_Presentation_Form: vector digital data

Online_Linkage:

\\filesrv\Users\Projects-Continuing\08006.02-Yucca Pens Hydrologic Restoration Plan\08006.02-Data Analysis\08006.02-Yucca Pens Hydrologic Restoration Plan - Task 2\08006.02-Task 2-GIS Files\Structures\Waypoints.shp

Description:

Abstract:

BPC Group conducted field reconnaissance of Yucca Pens Project Area from July 20th 2009 to July 29th 2009. A total of 267 waypoints were recorded during this process using Garmin 76CSX handheld GPS. The GPS waypoints were imported to the GIS, and were organized into several layers. Following is the breakdown of the distribution of these waypoints.

169 Culvert Locations of which 10 culverts are attached with flap/sliding gates 7 Bridge Locations 1 Weir Location 28 Canal and/or Flow Way Locations (several waypoints along each canal/flow way) 3 Outfall Locations 59 waypoints representing the Trails and WMA Gate Locations. Several waypoints recorded along each trail within the study area and other intermediate locations including the WMA gates. The trails included dirt roads and ATV trails.

Purpose: Conduct a Site Reconnaissance Study of Yucca Pens Area

Time_Period_of_Content:

Time_Period_Information:

Single Date/Time:

Calendar_Date: 10/26/2009 Currentness_Reference:

The feature class is created by BPC Group after preliminary site investigation of the area

Example of Metadata File for "Waypoints.shp"

Status:

Progress: Planned

Maintenance_and_Update_Frequency: As needed

Spatial_Domain:

Bounding_Coordinates:

West_Bounding_Coordinate: -82.071679 East_Bounding_Coordinate: -81.763349 North_Bounding_Coordinate: 26.912910 South_Bounding_Coordinate: 26.688023

Keywords:

Theme:

Theme_Keyword: Waypoints, Yucca Pens Project Area

Access_Constraints: No Access Constraints Use_Constraints: No User Constraints

Point_of_Contact:
Contact_Information:

Contact_Organization_Primary: Contact_Organization: BPC Group Contact_Person: Bijay K. Panigrahi

Contact Address:

Address_Type: mailing and physical address Address: 6925 Lake Ellenor Drive, Suite 112

City: Orlando

State_or_Province: Florida

Postal_Code: 32809 Country: USA

Contact_Voice_Telephone: 407-851-5020

Contact_Electronic_Mail_Address: bpanigrahi@bpcgi.com

Security_Information:

Native Data Set Environment:

Microsoft Windows XP Version 5.1 (Build 2600) Service Pack 3; ESRI ArcCatalog

9.2.6.1500

Data_Quality_Information:

Attribute Accuracy:

Attribute_Accuracy_Report:

According to the manufacturer's specification, this device has a GPS accuracy of ± 10 m (33 ft) and an altimeter accuracy of ± 10 ft.

Positional Accuracy:

Horizontal Positional Accuracy:

Horizontal Positional Accuracy Report: Good

Vertical_Positional_Accuracy:

Vertical Positional Accuracy Report: Good

Lineage: Process_Step:

Example of Metadata File for "Waypoints.shp"

Process_Step:

Process_Description: Dataset copied. Source Used Citation Abbreviation:

Process Step:

Process_Description: Metadata imported.

Source_Used_Citation_Abbreviation:

C:\DOCUME~1\aaduvala\LOCALS~1\Temp\xml9F4.tmp

Process_Step:

Process_Description: Metadata imported.

Source_Used_Citation_Abbreviation:

C:\DOCUME~1\aaduvala\LOCALS~1\Temp\xml362.tmp

Process_Step:

Process_Description: Metadata imported.

Source_Used_Citation_Abbreviation:

 $C:\DOCUME~1\aduvala\LOCALS~1\Temp\xml364.tmp$

Process_Step:

Process_Description: Metadata imported.

Source Used Citation Abbreviation:

C:\DOCUME~1\aaduvala\LOCALS~1\Temp\xml366.tmp

Process_Step:

Process_Description: Metadata imported.

Source_Used_Citation_Abbreviation:

C:\DOCUME~1\aaduvala\LOCALS~1\Temp\xm1567.tmp

Process_Step:

Process_Description: Metadata imported.

Source Used Citation Abbreviation:

C:\DOCUME~1\aaduvala\LOCALS~1\Temp\xmlF5.tmp

Process Step:

Process_Description: Metadata imported.

Source Used Citation Abbreviation:

C:\DOCUME~1\aaduvala\LOCALS~1\Temp\xml1F5.tmp

Spatial_Data_Organization_Information:

Direct_Spatial_Reference_Method: Vector

Point and Vector Object Information:

SDTS_Terms_Description:

SDTS_Point_and_Vector_Object_Type: Entity point

Point_and_Vector_Object_Count: 267

Spatial_Reference_Information:

Horizontal_Coordinate_System_Definition:

Planar:

Map Projection:

Map_Projection_Name: Transverse Mercator

Transverse Mercator:

Example of Metadata File for "Waypoints.shp"

Scale_Factor_at_Central_Meridian: 0.999941 Longitude_of_Central_Meridian: -81.000000 Latitude_of_Projection_Origin: 24.333333

False_Easting: 656166.666667 False_Northing: 0.000000

Planar_Coordinate_Information:

Planar_Coordinate_Encoding_Method: coordinate pair

Coordinate_Representation: Abscissa_Resolution: 0.001 Ordinate_Resolution: 0.001

Planar_Distance_Units: survey feet

Geodetic_Model:

Horizontal_Datum_Name: D_North_American_1983_HARN

Ellipsoid_Name: Geodetic Reference System 80

Semi-major_Axis: 6378137.000000

Denominator_of_Flattening_Ratio: 298.257222

Vertical Coordinate System Definition:

Altitude_System_Definition:

Altitude_Datum_Name: North American Vertical Datum of 1988

Altitude_Resolution: 0.001 Altitude_Distance_Units: feet Altitude Encoding Method:

Explicit elevation coordinate included with horizontal coordinates

Entity and Attribute Information:

Detailed_Description:

Entity_Type:

Entity_Type_Label: Waypoints

Attribute:

Attribute Label: FID

Attribute Definition: Internal feature number.

Attribute_Definition_Source: ESRI

Attribute_Domain_Values: Unrepresentable Domain:

Sequential unique whole numbers that are automatically generated.

Attribute:

Attribute Label: SHAPE

Attribute_Definition: Feature geometry. Attribute Definition Source: ESRI

Attribute Domain Values:

Unrepresentable Domain: Coordinates defining the features.

Attribute:

Attribute Label: Shape

Attribute_Definition: Feature geometry. Attribute Definition Source: ESRI

Example of Metadata File for "Waypoints.shp"

Attribute_Domain_Values:

Unrepresentable_Domain: Coordinates defining the features.

Attribute:

Attribute Label: TYPE

Attribute:

Attribute_Label: IDENT

Attribute:

Attribute Label: LAT

Attribute:

Attribute_Label: LONG

Attribute:

Attribute_Label: Y_PROJ

Attribute:

Attribute_Label: X_PROJ

Attribute:

Attribute_Label: COMMENT

Attribute:

Attribute Label: DISPLAY

Attribute:

Attribute Label: SYMBOL

Attribute:

Attribute_Label: UNUSED1

Attribute:

Attribute_Label: DIST

Attribute:

Attribute Label: PROX INDEX

Attribute:

Attribute Label: COLOR

Attribute:

Attribute Label: ALTITUDE

Attribute:

Attribute_Label: DEPTH

Attribute:

Attribute_Label: TEMP

Attribute:

Attribute_Label: TIME

Attribute:

Attribute_Label: WPT_CLASS

Attribute:

Attribute_Label: SUB_CLASS

Attribute:

Attribute_Label: ATTRIB

Attribute:

Attribute_Label: LINK

Attribute:

Example of Metadata File for "Waypoints.shp"

Attribute_Label: STATE

Attribute:

Attribute Label: COUNTRY

Attribute:

Attribute Label: CITY

Attribute:

Attribute_Label: ADDRESS

Attribute:

Attribute_Label: FACILITY

Attribute:

Attribute_Label: CROSSROAD

Attribute:

Attribute Label: UNUSED2

Attribute:

Attribute_Label: ETE

Attribute:

Attribute_Label: DTYPE

Attribute:

Attribute_Label: MODEL

Attribute:

Attribute_Label: FILENAME

Attribute:

Attribute Label: LTIME

Distribution_Information:

Resource Description: Downloadable Data

Standard_Order_Process:

Digital Form:

Digital_Transfer_Information:

Transfer Size: 0.021

Metadata_Reference_Information:

Metadata Date: 10/26/2009

Metadata_Contact:
Contact Information:

Contact_Organization_Primary: Contact_Organization: BPC Group Contact_Person: Bijay K. Panigrahi

Contact Address:

Address_Type: mailing and physical address *Address:* 6925 Lake Ellenor Drive, Suite 112

City: Orlando

State or Province: Florida

Postal_Code: 32809

Country: USA

Example of Metadata File for "Waypoints.shp"

Contact_Voice_Telephone: 407-851-5020

Contact_Electronic_Mail_Address: bpanigrahi@bpcgi.com

Metadata Standard Name: FGDC Content Standards for Digital Geospatial

Metadata

Metadata_Standard_Version: FGDC-STD-001-1998

Metadata_Time_Convention: local time

Metadata Extensions:

Online Linkage: http://www.esri.com/metadata/esriprof80.html

Profile_Name: ESRI Metadata Profile

Metadata Extensions:

Online_Linkage: http://www.esri.com/metadata/esriprof80.html

Profile_Name: ESRI Metadata Profile

Metadata Extensions:

Online_Linkage: http://www.esri.com/metadata/esriprof80.html

Profile_Name: ESRI Metadata Profile

Metadata Extensions:

Online_Linkage: http://www.esri.com/metadata/esriprof80.html

Profile Name: ESRI Metadata Profile

Metadata_Extensions:

Online Linkage: http://www.esri.com/metadata/esriprof80.html

Profile Name: ESRI Metadata Profile

Metadata Extensions:

Online Linkage: http://www.esri.com/metadata/esriprof80.html

Profile_Name: ESRI Metadata Profile

Metadata Extensions:

Online Linkage: http://www.esri.com/metadata/esriprof80.html

Profile_Name: ESRI Metadata Profile

Metadata Extensions:

Online Linkage: http://www.esri.com/metadata/esriprof80.html

Profile Name: ESRI Metadata Profile

Generated by mp version 2.9.6 on Wed Oct 28 10:34:09 2009

APPENDIX D Response to Interagency Deliverable Review Team Comments

YUCCA PENS HYDROLOGIC RESTORATION PLAN INTERAGENCY DELIVERABLE REVIEW TEAM COMBINED COMMENT SHEET

TECHNICAL MEMORANDUM DELIVERABLE DRAFT 12-11-09

Instructions:

Section #: Indicate Section such as 3.4 or 3.4.1 as applicable and Page #

Line #: If multiple lines are included in your comment, please copy and paste the referenced text or include the first line followed by a hyphen and the last line without spaces

Comments: Please be very specific with your comments

Language or verbal changes - Please cut and paste the original excerpt, strike through words to be omitted and underline added words Comments needing references - Please provide an electronic version (pdf or word) of references or web addresses to reference the document

Name: This is the name of the person making the comment

Agency/Organization: Please spell out agency acronyms at least once

Section #, Page #, and Line #		Name/Agency	Response to Comments	
General Comment	Based on my limited knowledge of hydrological subjects the report looks to provide a good starting point.	Mike Kemmerer / Florida Fish and Wildlife Conservation Commission	Thank you.	
General Comments	The Interconnected Channel and Pond Routing (ICPR) hydrologic / hydraulic computations provided results for the 25 year-72 hour and 2 year-24 hour storm events. Charlotte County requires submittal of the 25 year - 24 hour storm event results.	John DeGiovine / Charlotte County Public Works	Beyond the current scope of work. This may be considered in an engineering study.	
General comment	How will restoration of sheet flow be addressed in areas where development is planned to occur?	John DeGiovine / Charlotte County Public Works	Beyond the current scope of work. This may be considered in an engineering study.	
	To provide a complete review of the hydrologic / hydraulic computations (ADICPR) the following additional information is necessary: Survey field notes and survey datum, additional information on how the boundary stage's were determined, a node / reach network diagram, TR-55 computations for CN and Tc determinations. Provide / describe the choice for using mannings "N" values that range from 0.05 to 0.50 for the channel reaches. Please verify / describe the reason for the channel bottom / top widths being in excess of 750-1000 feet wide.	John DeGiovine / Charlotte County Public Works	Acknowledged. This may be considered for the engineering study. Values and dimensions were taken from existing studies (primarily from the "Northwest Lee County Surface Water Management Plan, March 2005")	
Section 4, Page 4-9, Line 11	Under this heading reference is made to encourage maintenance of drainage conveyance's in specific basins. It also states that the State owns a majority of the lands where these conveyance's exist. Will the State develop and fund a maintenance plan to address these?	John DeGiovine / Charlotte County Public Works	The development of the maintenance plan may be considered in the recommended engineering study. However, a state funded maintenance plan is not considered at this time.	
Section 4.3, Page 4-16	I suggest that the "Recommended Multifunctional Water Management Plan" include a drainage conveyance maintenance plan. This does not have to be linked with a more detailed design project as referenced in Section 4.3, Page 4-17, Line 42. Future projects could be delayed due to funding issues and should not delay maintenance efforts.	John DeGiovine / Charlotte County Public Works	Drainage conveyance maintenance plan is typically part of the engineering study & design. The detailed conveyance system need to be evaluated for its feasibility.	
Section 2, Figure 2-2	Recommend showing those culverts which were identified as needing maintenance on the location map with a specific identifier (figure 2-2, Page 2-4) as referenced on Page 2-5, Lines 1-4.	John DeGiovine / Charlotte County Public Works	Current study is very limited in scope, which does not include a more comprehensive infrastructure survey that is needed for engineering analysis and maintenance plan. This may be considered in an engineering study.	
Section 1, Page 1-6, Line 34	Change the word "Volume" to Rate to be consistent with current Water Management criteria.	John DeGiovine / Charlotte County Public Works	Incorporated. "Volume" was extracted from the original report.	
General Comment	In general I am concerned that the recommendations will be considered as valid, with further design planning and installation of improvements, based on this document. A major missing part - which is recognized - is that the vertical data collected is with instruments that are not sensitive enough for this area of Florida. I think the document should include a listing of the limitations of the study at the beginning of the report.	Stephanie R. Smith, P.E. / City of Cape Coral	This TM repeatedly states that this is not an engineering document and that an engineering study is required for any design whatsoever.	
08006.02-Task	08006.02-Task 2-IDRT Comments & Responses 012810 D-2			

Section #, Page #, and Line #	Comment	Name/Agency	Response to Comments
page 3.3	Under section for Rainfall Distribution, concern that the rainfall amount for the 25 ry. 3 day at 10.5 in. should be looked at more carefully. More data may be available for this specific area and a statistical analysis could be run to determine a more accurate total rainfall amount.	Stephanie R. Smith, P.E. / City of Cape Coral	Beyond the current scope of work. Such details may be considered in the recommended engineering study.
page 3.4	Under section for boundary conditions, the statement that the normal wet season water table is within 1 ft of the ground surface should be looked at more carefully. While it is understood that water ponds at various locations within the study area probably because of inadequate outfalls, conditions may have been created over time that now require the water table to be as it is and which may in fact be above the ground.	Stephanie R. Smith, P.E. / City of Cape Coral	Beyond the current scope of work. Such details may be considered in the recommended engineering study.
	It does not appear that infiltration was considered in the analysis of the run-off from the site. This is probably a large component of the water budget for the site.	Stephanie R. Smith, P.E. / City of Cape Coral	Please refer to Table 3-2 in the TM for Infiltration / Storage.
page 3.9	Under annual rainfall, using data from Page Field may not really be very accurate for this area. More data may be available from other sources for the rainfall in this specific area.	Stephanie R. Smith, P.E. / City of Cape Coral	Beyond the current scope of work. Such details may be considered in the recommended engineering study.
General Comment	While the report discusses the problems associated with Burnt Store Road restricting flow, there is no analysis of the conveyance capacity of the natural or man-made conveyance systems downstream of Burnt Store road. If the intent is to re-establish flows through the system and away from Gator Slough, then these systems downstream from Burnt Store Road must be included in the design study.	Stephanie R. Smith, P.E. / City of Cape Coral	Beyond the current scope of work. This will be addressed in the future phases as warranted.
	We (DEP-Charlotte Harbor Aquatic Preserves) were going to combine our comments with Parks (Charlotte Harbor Preserve State Park). However, at this time the Aquatic Preserves do not have any comments in reference to this deliverable. Please keep us in the loop as if there are any changes to the conceptual report we may want to send additional comments.	Melynda A. Brown / FDEP- Charlotte Harbor Aquatic Preserves	Acknowledged. Thank you.
	The conceptual plan looks pretty good keeping in mind that a more detailed comprehensive engineering analysis is still required. We understand that there will be an engineering analysis and design phase evaluation at a later time. On a large scale note were references to Gator Slough and Matlacha Pass. Most of the water is currently diverted to Gator Slough and ultimately Matlacha Pass, but no reference is made to the Cape Coral North Spreader Waterway Canal. We believe that it should be referenced by name since that is the receiving water body prior to discharge to Matlacha Pass for a lot of the watershed.	John Aspiolea / Charlotte Harbor Preserve State Park	North Spreader Canal (NSC) analysis was not within the scope of the current study. NSC will be addressed in the future phases as warranted according to the finalized NSEMA Consent Agreement between FDEP and the City of Cape Coral.
	The concept plan is to improve runoff storage and re-route excess flows mainly north and west to restore historic flow ways as best as practical and reduce current flows to Gator Slough. This will help restore the drainage problems in Yucca Pen and reduce excessive flows to Gator Slough. Although there is a plan to develop BMP's for a drainage network maintenance that will address downstream impacts to water quality and sediment load reduction, the timing and quantity of water released downstream may also be critical to wetlands and flow ways of the Charlotte Harbor Preserve State Park. Aaron Adams from Mote Marine could provide help determining marine life that could be impacted by the additional water. Improved water quality and restored flow ways is a great, but if there is a faucet on(lots of water) and faucet off(no water) effect (like it is currently), it will need to be evaluated to determine if there will be any detrimental impacts to the creeks as result from the proposed project.	John Aspiolea / Charlotte Harbor Preserve State Park	Beyond the current scope of work. It is acknowledged that timing and quantity of water released downstream are critical factors, which will be addressed as warranted in the recommended engineering study.
	There should be the mention of the importance of land acquisition west of Burnt Store Road. Particularly the area along the remaining portion of Yucca Pen Creek west of Burnt Store Road. There is still property of considerable size in this area that could be purchased as additional STA's or for further protection of Yucca Pen Creek from development and associated stormwater contributions. These areas may also be critical for accepting additional flows from east of Burnt Store Road. If they are developed, we can't put additional sheet flow through them. Acquisition of the remaining private lands on the north and south banks of the creek would allow the highest possible flows under Burnt Store Road, without threatening developed areas.	John Aspiolea / Charlotte Harbor Preserve State Park	Beyond the current scope of work. Such details will be addressed as warranted in the recommended engineering study.
	One more thing to consider is the quality of the discharge coming off of the Charlotte Harbor Land Fill. The monitoring program should consider this area since there could be questions regarding the quality of the water discharged from this site.	John Aspiolea / Charlotte Harbor Preserve State Park	The text in Section 4 has been appropriately expanded to incorporate this issue.

Section #, Page #, and	Comment	Name/Agency	Response to Comments
Line #	Comment	Hame/Agency	Response to comments
	Our staff greatly appreciated the opportunity to thoroughly evaluate the plan. We hope that our additions to the plan can be accommodated. We anxiously await further detailed evaluation and, ultimately, implementation of this project.	John Aspiolea / Charlotte Harbor Preserve State Park	Acknowledged.
	We commend the authors' work to provide a comprehensive summary and synopsis of such a wealth of information available in the Yucca Pens study area. The report is thorough, organized, and well written. Accordingly, most of our comments are conceptual rather than editorial, and apply broadly to each section of the report.	Jennifer Nelson / Florida Department of Environmental Protection (FDEP)	Thank you.
Sec. 1, p. 1- 3, lines 2-10	Although previously referenced on p. 1-2, we suggest adding 'reduction in unnatural point discharges from Gator Slough' as an explicit restoration objective listed on page 1-3.	Jennifer Nelson / FDEP	The text in Section 1.1 has been appropriately expanded to incorporate this issue.
Sec. 2, p.2- 10, line 26	Suggest adding reference to Figure 3.1 when discussing GSEBS because Figure 2.5 does not show GSEBS.	Jennifer Nelson / FDEP	The text in Section 2 has been appropriately expanded to incorporate this issue.
Sec. 2, p.2- 10, lines 24- 29	While restoring the historic flowway in this area may not be practical, are there opportunities to better retain stormwater to reduce runoff? If so, suggest mentioning in Section 4.0.	Jennifer Nelson / FDEP	This is already considered within the Design Concepts. However, further details of such consideration will be addressed as warranted during the recommended engineering study.
Section 3	We feel that the hydrologic analysis presented in Section 3.0 did not report results at a time scale that is appropriate for addressing impacts to aquatic resources in receiving water bodies west of Burnt Store Rd. Specifically, reporting water budget and pollutant loading results annually does not capture the seasonal and event-based variability in the timing and duration of freshwater discharges which has been cited by the technical community as a major issue in the study area. This is of particular importance, as intra-annual (seasonal) variation in hydroperiod is a major influence on water quality and biota in areas west of Burnt Store including tidal creeks, ephemeral wetlands and oligohaline marshes.	Jennifer Nelson / FDEP	Beyond the current scope of work. It is acknowledged that timing and quantity of water released downstream are critical factors, which will be addressed as warranted in the recommended engineering study.
Sec. 3, p.3- 1, lines 38- 40	Lines 38-40 state that no DCIA was calculated because "most of the watersheds are covered by Rangeland and Forest", however on p. 2-10, Line 26 it is stated that urban development accounts for most of the area within GSEBS. Please clarify this statement and explain why DCIA was not calculated in this watershed (GSEBS).	Jennifer Nelson / FDEP	Beyond the current scope of work. The scope of modeling was very limited. Such details will be considered in the recommended engineering study.
Section 3	Is the goal of analyses conducted in Section 3.0 to identify the problems which are intended to be addressed by the conceptual plans presented in Section 4.0? If so, please elaborate as to how findings were used to help develop the conceptual design of projects.	Jennifer Nelson / FDEP	Please refer to the "Concepts" described in Section 4 which conceptually incorporates the results from Section 3.
Sec. 4, p. 4- 1, line 16	Flood protection should not be identified as a goal of this hydrologic restoration plan. Rather, flood protection should be considered as a potential restoration constraint such that restoration should not decrease existing flood protection in currently developed areas.	Jennifer Nelson / FDEP	Concurred. The text in Section 4 has been appropriately revised to indicate that flood protection is a potential restoration constraint such that restoration should not decrease existing flood protection in currently developed areas.
Section 4	Overall, the document successfully addresses the issue of hydraulic load to, and discharges from, Gator Slough. However, we feel that conceptual design elements discussed in Section 4 (p. 4-1, Lines 16-21) are not specific enough to ensure that the remaining restoration objectives outlined in Section 1.0 will be met, including restoring historic outfalls to Charlotte Harbor, restore ecological integrity, improve aquifer recharge. Specifically, it is unclear as to how design concepts will provide the following outcomes: -Restored timing, quantity, quality, distribution, of freshwater to wetlands, tidal creeks, and Charlotte Harbor Improve hydroperiod of vegetation communities -Improve water quality in receiving water bodies -Protect and enhance native upland habitats for fish and wildlife species -Restore groundwater levels to historic conditions	Jennifer Nelson / FDEP	The text in Section 4 has been appropriately expanded to incorporate these issues. However, the requested details are beyond the current scope of work. Such details will be addressed as warranted in the recommended engineering study.

Section #, Page #, and	Comment	Name/Agency	Response to Comments
Line #			
Section 4	To allow better comparison of restored flows to existing flow patterns, we suggest the authors add current flow ways to supplement the conceptual flow patterns represented in Figures 4-2, 4-3, 4-4, and 4-5. Existing flow ways are discussed in each section very well but would be more easily understood if represented on a map.	Jennifer Nelson / FDEP	This will more appropriately be addressed in the recommended engineering study.
Section 4	In Section 1.0 Summary of Task 1 Report (p. 1-7), the authors summarize the objectives of the several management and restoration efforts within the study area. Please elaborate as to how these objectives and any completed construction are considered in the design concepts outlined in Section 4.0. For example, it is unclear as to which projects are being proposed and how they relate to or supplement the recently completed efforts of Lee County and the SFWMD for the Matlacha Pass Hydrologic Restoration Project. Will the Burnt Store Rd. design concept (p. 4-9, Lines 35-43) include future phases of Matlacha Pass Restoration Project? Or will these concepts be used to supplement the Matlacha Pass project? How? Provide similar explanation for current or ongoing projects throughout the study area.	Jennifer Nelson / FDEP	Addressing such details require a more detailed model and engineering analysis, which is beyond the current scope of work. This will be more appropriately addressed in the recommended engineering study.
Sec. 4, p.4- 9, lines 35- 43	This section does not adequately explain how historic flowways across Burnt Store Rd. will be restored through the proposed designs.	Jennifer Nelson / FDEP	Beyond the current scope of work. This will be addressed in the future phases as warranted.
Section 4	The authors frequently state that outcomes of restored sheet flow include 'raise the ground water table to support the fish and wildlife, and enhance the hydroperiods' (p. 4-4, 4-6, 4-8, etc.). Please be more specific as to how the proposed conceptual design will improve hydroperiod, water quality, and fish and wildlife habitat.	Jennifer Nelson / FDEP	The text in Section 4 has been appropriately expanded to incorporate these issues. However, the requested details are beyond the current scope of work. Such details will be addressed as warranted in the recommended engineering study.
Section 4	Raising groundwater levels is cited as a benefit of several design concepts (see comment above) however, throughout the report the problem of altered groundwater levels is not clearly addressed. Please identify groundwater level issues within the study area and provide details as to how proposed projects address these issues.	Jennifer Nelson / FDEP	The text in Section 4 has been appropriately expanded to incorporate these issues. However, the requested details are beyond the current scope of work. Such details will be addressed as warranted in the recommended engineering study.
Section 4	Section 4 includes many references to the goal of reducing flows to Gator Slough. In addition to this goal, we suggest that restoring more natural flows of freshwater to the Charlotte Harbor estuary through historic flowways also needs to be cited as a goal. This should include a more detailed definition of 'historic flowway restoration' with references to the quantity, timing, and quality of flows through these flowways into the tidal creeks.	Jennifer Nelson / FDEP	Freshwater discharge to Charlotte Harbor through Gator Slough is obvious and inehrent to the subject hydrologic system. This will be added to the text. The requested details is beyond the current scope of work. This will be addressed as warranted in the recommended engineering study.
Sec. 4, p.4- 12, lines 16- 26	The monitoring system should include monitoring that will yield data that allow for the determination of optimum flow within restored flowways and appropriate target discharges to the receiving estuary. This may include biological, water quality, and flow monitoring in order to set targets based on ecological components of the ecosystems.	Jennifer Nelson / FDEP	The text in Section 4 has been appropriately expanded to incorporate these issues. Flow monitoring may be addressed in the recommended engineering study as warranted.
The state of the s	Add "and Charlotte Harbor" to this sentence, as these projects will be affecting flows to Charlotte Harbor through the restored historic flowways.	Jennifer Nelson / FDEP	The text has been updated.
	In addition to the BMPs listed, please add all conceptual infrastructure components (BMPs) to this list and discuss all benefits including water quality improvement, habitat enhancement, and expected hydrologic benefits, e.g. benefit of culvert improvements, flowway restoration, ditch enhancements. Please provide as much design detail as possible at this conceptual phase.	Jennifer Nelson / FDEP	The scope of current study does not include engineering analysis to provide design details. This will be addressed in the recommended engineering study.
Sec. 4, p. 4- 15, lines 20- 24	Dry retention basins can have high pollutant removal efficiencies because they hold stormwater until it percolates through the soil (not discharging to a surface water). However, if the designed purpose of the dry retention swale is conveyance, efficiencies will not approach 90% particularly during high rainfall storm events. Please revise this section to more accurately describe the expected benefits of dry swales. Where nutrient removal efficiencies are identified, please distinguish between nitrogen and phosphorus removal. Additional clarification and detail is necessary to evaluate the benefit of each BMP.	Jennifer Nelson / FDEP	The text has been updated with clarification.

Section #,	2	N1A	Parameter Community
Page #, and Line #	Comment	Name/Agency	Response to Comments
	This plan is aimed at improving the following elements. Flood Control (for existing and future conditions) Watershed Water Quality Improvement (discharging to Charlotte Harbor) Ground Water Recharge (to meet future demands and to protect and enhance the fish and wildlife habitats) Hydroperiod Maintenance (for vegetation management) Land Acquisition and Management (to address operational issues)" Why is flood control listed as a goal of this plan? It was our understanding that this plan was intended to provide a conceptual design leading to ecosystem benefits. This should be removed as a goal or aim. Also, why is "to meet future demands" a reason that ground water recharge is an aim of the projects?	Jennifer Nelson / FDEP	The text has been updated documenting removal of phrases ("flood control" and "to meet future demands") from the goal.
Section 4	Water supply for future demand should not be a goal of this project. We also suggest expanding upon the remaining items (Watershed Water Quality Improvement, Ground Water Recharge, Hydroperiod Maintenance, & Land Acquisition and Management) to better explain the framework under which the conceptual projects were designed as noted in the following four comments.	Jennifer Nelson / FDEP	Beyond the current scope of work. This will be more appropriately addressed in the recommended engineering study.
Section 4	Watershed Water Quality Improvement (discharging to Charlotte Harbor) – Is this referring to water quality improvements within the watershed (freshwater wetlands) or in the receiving waters (estuarine areas of Matlacha Pass and Charlotte Harbor)? And is "water quality" here referring to chemical constituents (nutrients, etc.) or salinity regimes? We believe that all of these should be included in the goals.	Jennifer Nelson / FDEP	The text has been updated with clarification.
Section 4	Ground Water Recharge (to meet future demands and to protect and enhance the fish and wildlife habitats) – Suggest elaborating on how groundwater recharge will protect and enhance fish and wildlife habitats (e.g. southern portions of Yucca Pens are drained due to Gator Slough. This is negatively affecting native habitats in this area by). In addition, implementing BMPs that increase infiltration instead of runoff reduces pollutant loads to receiving waters and enhances recharge of the surficial aquifer to help support water levels and hydroperiods of freshwater wetlands, etc.	Jennifer Nelson / FDEP	This will be addressed as warranted in the engineering study.
Section 4	Hydroperiod Maintenance (for vegetation management) – Unsure what exactly "vegetation management" is referring to, but elaboration on hydroperiod maintenance is suggested. Appropriate hydroperiods of freshwater wetlands is essential for maintaining the ecological integrity of these habitats. It seems that this goal is aimed at the watershed wetlands and restored flowway wetlands. Please clarify and elaborate.	Jennifer Nelson / FDEP	The text has been updated with clarification.
Section 4	Land Acquisition and Management (to address operational issues) – We suggest adding the identification of private parcels for potential land acquisition that are strategically located to facilitate flowway restoration. Also, suggest stating that restored area management should be coordinated with land managers and incorporated into land management plans.	Jennifer Nelson / FDEP	This will more appropriately be addressed in the future as warranted after an engineering analysis is completed.
this comment is referring to)	Note: This comment is related to Section 4, Bullet 2. We understand that the goal of the multi-functional water management plan is to contribute to ecosystem benefits both at the outfall of Gator Slough and within the watersheds and the receiving water bodies. However, the level of detail throughout the report does not demonstrate 1) what ecosystem benefits will be provided, and 2) how the conceptual designs will result in these ecosystem benefits. We suggest it be made clearer that ecosystem benefit is the ultimate goal in addition to the immediate objective to restore historic flowways. It is our understanding that alterations within the watershed have created degraded ecological conditions both within habitats of the watershed itself, and within receiving waterbodies (Matlacha Pass estuary via Gator Slough Canal), and Charlotte Harbor estuary (via altered flowways and tributaries). Is it the case that the proposed projects aim to reverse some of this degradation and move toward more historic conditions? If so, please make this clear and better explain how the proposed projects will accomplish this.	Jennifer Nelson / FDEP	Restoration of ecological integrity of the ecosystem is listed as goal no. 4 in Section 1, Introduction. An engineering analysis is required to address these issues, which is not included in the current scope of work.
	Benefit to the estuarine portions of the study area is implied however, please provide more detail within the description of each design concept as to how proposed upstream flowway restoration will improve hydrologic condition in the areas west of Burnt Store Road.	Jennifer Nelson / FDEP	Beyond the current scope of work. This will be addressed in the future phases as warranted after the recommended engineering study is completed.

Section #, Page #, and	Comment	Nama/Aganay	Response to Comments
Line #	Comment	Name/Agency	Response to Comments
Sec. 4, p.4- 17, lines 32- 34	Is the purpose of determining the wet season water levels to identify restoration targets or to evaluate the degree of alteration from natural water levels? In addition to water levels, we suggest discussion of hydroperiod targets for restored habitats, as they are a crucial component of designing any restoration project involving water levels.	Jennifer Nelson / FDEP	The text in Section 4 has been updated with clarification.
Sec. 4, p.4- 17, lines 11- 12	The recommended water management plan should also include an analysis to determine flow targets for the estuary "outfalls" based on the needs of selected components of the biological community.	Jennifer Nelson / FDEP	Concurred. Beyond the current scope of work. This may be addressed in the recommended engineering study.
General (from e-mail cover sheet)	In general, we support the project, especially in conjunction with any federal efforts under SWFFS; and favor improved drainage only where it contributes to restoring sheetflow wetlands and downstream estuaries. Restoration of historic flows to estuaries is most important where that delivery is over the broadest possible landscape. Where that landscape is destroyed by development (Cape Coral), multiple small discharges are preferred over routing to a larger outflow.	Kim Dryden / U.S. Fish & Wildlife Service	Concurred.
Sec. 1, p. 1- 2, line 30	Please add U.S. Fish and Wildlife Service to list of reviewers	Kim Dryden / U.S. Fish & Wildlife Service	The text has been updated to include FWS.
	There does not seem to be a thorough discussion on listed species, state and federal in this document, especially with regard to how hydrology might affect their habitat. In particular, specific hydroperiods must be maintained to support hydric pine flatwoods, as too much water for too long will result in the loss of forage and nesting habitat for this species. Also, hydroperiods consistent with providing conditions of drawdown for wading birds should be a target of the restoration efforts. Hydroperiods that support sandhill crane nesting should also be a target of this effort. Sub-basin level analysis may be required to evaluate these potential opportunities or effects may be needed at the design stage. FWC should be consultated along with the FWS.	Kim Dryden / U.S. Fish & Wildlife Service	Concurred. Beyond the current scope of work. This will be included as warranted in the recommended engineering study.
Sec. 2, p. 2- 10	Documents indicated that there are no specific flowways identified within the Webb. This seems inconsistent with the Johnson Study and has FWC been consulted and concurred with this assumption?	Kim Dryden / U.S. Fish & Wildlife Service	FWC reviewed the Task 1 report, which inclluded a review of all available documents at the time. Any new materials should be included in the engineering study.
Sec. 4, p. 4- 1, line 20	Fish and wildlife resources are referenced with referenced to groundwater improvement but the listing of fish and wildlife resources related to the role of hydroperiods in restoring vegetation seems to be missing. Hydroperiods related to historic vegetation should be targeted except where specific listed species concerns may require management of sub-basins to prevent loss of listed species.	Kim Dryden / U.S. Fish & Wildlife Service	The text in Section 4 has been updated with clarification.
Sec. 4, p.4- 17, line 32	Seems to indicate that targeted hydroperiods would result from on-site determinations of water levels using physical factors: instead soils or historic vegetation maps should be used to determine pre-drainage vegetation thereby providing target hydroperiods; per Duever methodologies used for PSRP and SWFFS. See SWFFS pre-development maps	Kim Dryden / U.S. Fish & Wildlife Service	Beyond the current scope of work. This will be included as warranted in the recommended engineering study.
	Curious why the Railroad grade was not pointed out as one of the top restrictors to historic flows. They list I_75 and Us-41 and development but not the RR. Also it seems critical that we get detailed survey information of this impediment to flow. The consultant basically stated that no access was provided. There may already be data available.	Roland Ottolini / Lee County Natural Resources Div.	Seminole Gulf Railway culvert and bridge data were reviewed and mapped for this project. The railroad grade west of I-75 is a major impediment. The railroad grade and I-75 are very close to each other, and for the purpose of conceptual plan, they are considered as one unit. However, they will be addressed as separate entities in the engineering analysis, which is essential for design and beyond.
	The study also cites a Lee County Interim SW Master Plan. That study is outdated and was replaced with subsequent master plan studies for the area.	Roland Ottolini / Lee County Natural Resources Div.	Acknowledged.
	Task 2.1 should include a bullet on "Management plan for the Charlotte Harbor Buffer State Park and Aquatic Preserve"	Anura Karuna-Muni / Lee County Natural Resources Div.	Not relevant to this TM.
	Fig 3-9a should be supplemented with specifications and an inventory of all structures identified in the figure.	Anura Karuna-Muni / Lee County Natural Resources Div.	Not relevant to this TM.
	Task 4: See the attached figure. Restoration of the flow way in Durden Creek need to be listed.	Anura Karuna-Muni / Lee County Natural Resources Div.	Not relevant to this TM.

Section #.			
Page #, and	Comment	Name/Agency	Response to Comments
Line #	Comment	Name/Agency	ixesponse to comments
	I would say that these comments (for the Draft Technical Memorandum) are in addition to my original set of	Laura Laymen / SFWMD	Acknowledged.
	comments (submitted for Task 1), which I did not repeat here.	Laura Laymen / SEVVIVID	Acknowledged.
cover oneet)	comments (submitted for rask 1), which i did not repeat here.		
	I think the Charlotte Harbor Aquatic Preserve should be mentioned as a coordinating agency (they are part	Laura Laymen / SFWMD	Charlotte Harbor Aquatic Preserve is an active
2, line 29-30	of DEP), especially since one of the negative effects of the current drainage patterns is seagrass impacts		memebr of the Interagency Deliverable Review Team,
	in Matlacha Pass. I think they should be mentioned specifically.		and the text will be updated.
Sec. 4.1.2,	Monitoring should be as extensive as possible and feasible given the budget, using any existing monitoring	Laura Laymen / SFWMD	The text in Section 4 has been updated with
p.4-12, lines	reports or information available, including any ERP permit wetland monitoring. Monitoring wells should be		clarification. The details shall be addressed as
18-26	installed to a depth of at least 10 feet, to capture dry season and drought water levels. Vegetation monitoring to see shifts in community composition would also be helpful to see ecological changes.		warranted in the engineering study.
	Monitoring to see shifts in community composition would also be reipful to see ecological changes. Monitoring should include seagrasses in Matlacha Pass and wherever else is appropriate in Charlotte		
	Harbor Aquatic Preserve.		
Sec. 4.1.3,	Permits required may also include dewatering permits (water use permits) from the SFWMD for installation	Laura Laymen / SFWMD	The text has been updated. Typically, they will be part
p.4-12, lines	of structures and water management facilities. Noah Kugler would be the contact in this office.		of the construction permit package.
35-43	•		
	, , , , , , , , , , , , , , , , , , , ,	Bill Foley / SFWMD	Seminole Gulf Railway culvert and bridge data were
cover sheet)	to date I was under the impression that the railroad grade west of I75 would be a major impediment.		reviewed and mapped for this project. The railroad
	However, it was not listed and I did not see much of a discussion related to this feature. Based on that, I		grade west of I-75 is a major impediment. The railroad
	am led to believe the work completed show this will not be a constriction as others had pointed out earlier in		grade and I-75 are very close to each other, and for
	the process.		the purpose of conceptual plan, they are considered as
			one unit. However, they will be addressed as separate entity in the engineering analysis, which is essential for
			design and beyond.
Sec. 3.2. p.3-	It is appropriate to include the statement about the relative changes in pollutant loadings. However, given	Bill Foley / SFWMD	The text has been updated with clarification.
5, 33-40	the hydrologic characteristics of southwest Florida and the data supplied in Section 3.2.1.1 of this report, it		γ
	is also appropriate to add a statement that this model and its outputs are not appropriate for analysis being		
	completed related to nutrient loadings from development projects. The statement in this paragraph		
	indicates only that site specific data may be required.		
Sec. 4.1.2,	Provide an order of magnitude estimate on the additional capacity that would be required under I-75 with a	Bill Foley / SFWMD	Current scope of work did not include estimations to
p.4-4, lines	more defined description of the location. In addition, a statement stating that this value and specific		such level. This will be addressed as warranted in the
29-32	location would be refined during the engineering analysis is also appropriate.	DIV. 5. 1. (05)4/4/5	recommended engineering study.
Sec. 4.1.2,	Please clarify if BP-1 and/or BP-2 is in either state or county ownership. The discussion is to use these	Bill Foley / SFWMD	They are privately owned. The text has been updated with clarification.
p. 4-12, lines 5-6	features with control structures to control flows and they are not immediately adjacent to Burnt Store Road.		with Clarinication.
Sec. 4.1.4,	Please clarify if these costs also include the design and construction of additional conveyances under I-75.	Bill Foley / SFWMD	Yes. They are directly related to scope presented in
p.4-13, lines	in leade diality if these seems also include the design and construction of additional conveyances dilucit 1-75.	Dill 1 Gloy / GI VVIVID	each "concept".
36-39			550. 55.155pt 1
		L.	ı